xref: /openbmc/linux/fs/gfs2/rgrp.c (revision ac64a9ca)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <linux/completion.h>
13 #include <linux/buffer_head.h>
14 #include <linux/fs.h>
15 #include <linux/gfs2_ondisk.h>
16 #include <linux/prefetch.h>
17 #include <linux/blkdev.h>
18 #include <linux/rbtree.h>
19 
20 #include "gfs2.h"
21 #include "incore.h"
22 #include "glock.h"
23 #include "glops.h"
24 #include "lops.h"
25 #include "meta_io.h"
26 #include "quota.h"
27 #include "rgrp.h"
28 #include "super.h"
29 #include "trans.h"
30 #include "util.h"
31 #include "log.h"
32 #include "inode.h"
33 #include "trace_gfs2.h"
34 
35 #define BFITNOENT ((u32)~0)
36 #define NO_BLOCK ((u64)~0)
37 
38 #if BITS_PER_LONG == 32
39 #define LBITMASK   (0x55555555UL)
40 #define LBITSKIP55 (0x55555555UL)
41 #define LBITSKIP00 (0x00000000UL)
42 #else
43 #define LBITMASK   (0x5555555555555555UL)
44 #define LBITSKIP55 (0x5555555555555555UL)
45 #define LBITSKIP00 (0x0000000000000000UL)
46 #endif
47 
48 /*
49  * These routines are used by the resource group routines (rgrp.c)
50  * to keep track of block allocation.  Each block is represented by two
51  * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
52  *
53  * 0 = Free
54  * 1 = Used (not metadata)
55  * 2 = Unlinked (still in use) inode
56  * 3 = Used (metadata)
57  */
58 
59 static const char valid_change[16] = {
60 	        /* current */
61 	/* n */ 0, 1, 1, 1,
62 	/* e */ 1, 0, 0, 0,
63 	/* w */ 0, 0, 0, 1,
64 	        1, 0, 0, 0
65 };
66 
67 static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal,
68 			unsigned char old_state,
69 			struct gfs2_bitmap **rbi);
70 
71 /**
72  * gfs2_setbit - Set a bit in the bitmaps
73  * @buffer: the buffer that holds the bitmaps
74  * @buflen: the length (in bytes) of the buffer
75  * @block: the block to set
76  * @new_state: the new state of the block
77  *
78  */
79 
80 static inline void gfs2_setbit(struct gfs2_rgrpd *rgd, unsigned char *buf1,
81 			       unsigned char *buf2, unsigned int offset,
82 			       struct gfs2_bitmap *bi, u32 block,
83 			       unsigned char new_state)
84 {
85 	unsigned char *byte1, *byte2, *end, cur_state;
86 	unsigned int buflen = bi->bi_len;
87 	const unsigned int bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
88 
89 	byte1 = buf1 + offset + (block / GFS2_NBBY);
90 	end = buf1 + offset + buflen;
91 
92 	BUG_ON(byte1 >= end);
93 
94 	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
95 
96 	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
97 		printk(KERN_WARNING "GFS2: buf_blk = 0x%llx old_state=%d, "
98 		       "new_state=%d\n",
99 		       (unsigned long long)block, cur_state, new_state);
100 		printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%lx\n",
101 		       (unsigned long long)rgd->rd_addr,
102 		       (unsigned long)bi->bi_start);
103 		printk(KERN_WARNING "GFS2: bi_offset=0x%lx bi_len=0x%lx\n",
104 		       (unsigned long)bi->bi_offset,
105 		       (unsigned long)bi->bi_len);
106 		dump_stack();
107 		gfs2_consist_rgrpd(rgd);
108 		return;
109 	}
110 	*byte1 ^= (cur_state ^ new_state) << bit;
111 
112 	if (buf2) {
113 		byte2 = buf2 + offset + (block / GFS2_NBBY);
114 		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
115 		*byte2 ^= (cur_state ^ new_state) << bit;
116 	}
117 }
118 
119 /**
120  * gfs2_testbit - test a bit in the bitmaps
121  * @buffer: the buffer that holds the bitmaps
122  * @buflen: the length (in bytes) of the buffer
123  * @block: the block to read
124  *
125  */
126 
127 static inline unsigned char gfs2_testbit(struct gfs2_rgrpd *rgd,
128 					 const unsigned char *buffer,
129 					 unsigned int buflen, u32 block)
130 {
131 	const unsigned char *byte, *end;
132 	unsigned char cur_state;
133 	unsigned int bit;
134 
135 	byte = buffer + (block / GFS2_NBBY);
136 	bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
137 	end = buffer + buflen;
138 
139 	gfs2_assert(rgd->rd_sbd, byte < end);
140 
141 	cur_state = (*byte >> bit) & GFS2_BIT_MASK;
142 
143 	return cur_state;
144 }
145 
146 /**
147  * gfs2_bit_search
148  * @ptr: Pointer to bitmap data
149  * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
150  * @state: The state we are searching for
151  *
152  * We xor the bitmap data with a patter which is the bitwise opposite
153  * of what we are looking for, this gives rise to a pattern of ones
154  * wherever there is a match. Since we have two bits per entry, we
155  * take this pattern, shift it down by one place and then and it with
156  * the original. All the even bit positions (0,2,4, etc) then represent
157  * successful matches, so we mask with 0x55555..... to remove the unwanted
158  * odd bit positions.
159  *
160  * This allows searching of a whole u64 at once (32 blocks) with a
161  * single test (on 64 bit arches).
162  */
163 
164 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
165 {
166 	u64 tmp;
167 	static const u64 search[] = {
168 		[0] = 0xffffffffffffffffULL,
169 		[1] = 0xaaaaaaaaaaaaaaaaULL,
170 		[2] = 0x5555555555555555ULL,
171 		[3] = 0x0000000000000000ULL,
172 	};
173 	tmp = le64_to_cpu(*ptr) ^ search[state];
174 	tmp &= (tmp >> 1);
175 	tmp &= mask;
176 	return tmp;
177 }
178 
179 /**
180  * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
181  *       a block in a given allocation state.
182  * @buffer: the buffer that holds the bitmaps
183  * @len: the length (in bytes) of the buffer
184  * @goal: start search at this block's bit-pair (within @buffer)
185  * @state: GFS2_BLKST_XXX the state of the block we're looking for.
186  *
187  * Scope of @goal and returned block number is only within this bitmap buffer,
188  * not entire rgrp or filesystem.  @buffer will be offset from the actual
189  * beginning of a bitmap block buffer, skipping any header structures, but
190  * headers are always a multiple of 64 bits long so that the buffer is
191  * always aligned to a 64 bit boundary.
192  *
193  * The size of the buffer is in bytes, but is it assumed that it is
194  * always ok to read a complete multiple of 64 bits at the end
195  * of the block in case the end is no aligned to a natural boundary.
196  *
197  * Return: the block number (bitmap buffer scope) that was found
198  */
199 
200 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
201 		       u32 goal, u8 state)
202 {
203 	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
204 	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
205 	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
206 	u64 tmp;
207 	u64 mask = 0x5555555555555555ULL;
208 	u32 bit;
209 
210 	BUG_ON(state > 3);
211 
212 	/* Mask off bits we don't care about at the start of the search */
213 	mask <<= spoint;
214 	tmp = gfs2_bit_search(ptr, mask, state);
215 	ptr++;
216 	while(tmp == 0 && ptr < end) {
217 		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
218 		ptr++;
219 	}
220 	/* Mask off any bits which are more than len bytes from the start */
221 	if (ptr == end && (len & (sizeof(u64) - 1)))
222 		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
223 	/* Didn't find anything, so return */
224 	if (tmp == 0)
225 		return BFITNOENT;
226 	ptr--;
227 	bit = __ffs64(tmp);
228 	bit /= 2;	/* two bits per entry in the bitmap */
229 	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
230 }
231 
232 /**
233  * gfs2_bitcount - count the number of bits in a certain state
234  * @buffer: the buffer that holds the bitmaps
235  * @buflen: the length (in bytes) of the buffer
236  * @state: the state of the block we're looking for
237  *
238  * Returns: The number of bits
239  */
240 
241 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
242 			 unsigned int buflen, u8 state)
243 {
244 	const u8 *byte = buffer;
245 	const u8 *end = buffer + buflen;
246 	const u8 state1 = state << 2;
247 	const u8 state2 = state << 4;
248 	const u8 state3 = state << 6;
249 	u32 count = 0;
250 
251 	for (; byte < end; byte++) {
252 		if (((*byte) & 0x03) == state)
253 			count++;
254 		if (((*byte) & 0x0C) == state1)
255 			count++;
256 		if (((*byte) & 0x30) == state2)
257 			count++;
258 		if (((*byte) & 0xC0) == state3)
259 			count++;
260 	}
261 
262 	return count;
263 }
264 
265 /**
266  * gfs2_rgrp_verify - Verify that a resource group is consistent
267  * @sdp: the filesystem
268  * @rgd: the rgrp
269  *
270  */
271 
272 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
273 {
274 	struct gfs2_sbd *sdp = rgd->rd_sbd;
275 	struct gfs2_bitmap *bi = NULL;
276 	u32 length = rgd->rd_length;
277 	u32 count[4], tmp;
278 	int buf, x;
279 
280 	memset(count, 0, 4 * sizeof(u32));
281 
282 	/* Count # blocks in each of 4 possible allocation states */
283 	for (buf = 0; buf < length; buf++) {
284 		bi = rgd->rd_bits + buf;
285 		for (x = 0; x < 4; x++)
286 			count[x] += gfs2_bitcount(rgd,
287 						  bi->bi_bh->b_data +
288 						  bi->bi_offset,
289 						  bi->bi_len, x);
290 	}
291 
292 	if (count[0] != rgd->rd_free) {
293 		if (gfs2_consist_rgrpd(rgd))
294 			fs_err(sdp, "free data mismatch:  %u != %u\n",
295 			       count[0], rgd->rd_free);
296 		return;
297 	}
298 
299 	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
300 	if (count[1] != tmp) {
301 		if (gfs2_consist_rgrpd(rgd))
302 			fs_err(sdp, "used data mismatch:  %u != %u\n",
303 			       count[1], tmp);
304 		return;
305 	}
306 
307 	if (count[2] + count[3] != rgd->rd_dinodes) {
308 		if (gfs2_consist_rgrpd(rgd))
309 			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
310 			       count[2] + count[3], rgd->rd_dinodes);
311 		return;
312 	}
313 }
314 
315 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
316 {
317 	u64 first = rgd->rd_data0;
318 	u64 last = first + rgd->rd_data;
319 	return first <= block && block < last;
320 }
321 
322 /**
323  * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
324  * @sdp: The GFS2 superblock
325  * @n: The data block number
326  *
327  * Returns: The resource group, or NULL if not found
328  */
329 
330 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk)
331 {
332 	struct rb_node **newn;
333 	struct gfs2_rgrpd *cur;
334 
335 	spin_lock(&sdp->sd_rindex_spin);
336 	newn = &sdp->sd_rindex_tree.rb_node;
337 	while (*newn) {
338 		cur = rb_entry(*newn, struct gfs2_rgrpd, rd_node);
339 		if (blk < cur->rd_addr)
340 			newn = &((*newn)->rb_left);
341 		else if (blk >= cur->rd_data0 + cur->rd_data)
342 			newn = &((*newn)->rb_right);
343 		else {
344 			spin_unlock(&sdp->sd_rindex_spin);
345 			return cur;
346 		}
347 	}
348 	spin_unlock(&sdp->sd_rindex_spin);
349 
350 	return NULL;
351 }
352 
353 /**
354  * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
355  * @sdp: The GFS2 superblock
356  *
357  * Returns: The first rgrp in the filesystem
358  */
359 
360 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
361 {
362 	const struct rb_node *n;
363 	struct gfs2_rgrpd *rgd;
364 
365 	spin_lock(&sdp->sd_rindex_spin);
366 	n = rb_first(&sdp->sd_rindex_tree);
367 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
368 	spin_unlock(&sdp->sd_rindex_spin);
369 
370 	return rgd;
371 }
372 
373 /**
374  * gfs2_rgrpd_get_next - get the next RG
375  * @rgd: A RG
376  *
377  * Returns: The next rgrp
378  */
379 
380 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
381 {
382 	struct gfs2_sbd *sdp = rgd->rd_sbd;
383 	const struct rb_node *n;
384 
385 	spin_lock(&sdp->sd_rindex_spin);
386 	n = rb_next(&rgd->rd_node);
387 	if (n == NULL)
388 		n = rb_first(&sdp->sd_rindex_tree);
389 
390 	if (unlikely(&rgd->rd_node == n)) {
391 		spin_unlock(&sdp->sd_rindex_spin);
392 		return NULL;
393 	}
394 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
395 	spin_unlock(&sdp->sd_rindex_spin);
396 	return rgd;
397 }
398 
399 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
400 {
401 	int x;
402 
403 	for (x = 0; x < rgd->rd_length; x++) {
404 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
405 		kfree(bi->bi_clone);
406 		bi->bi_clone = NULL;
407 	}
408 }
409 
410 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
411 {
412 	struct rb_node *n;
413 	struct gfs2_rgrpd *rgd;
414 	struct gfs2_glock *gl;
415 
416 	while ((n = rb_first(&sdp->sd_rindex_tree))) {
417 		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
418 		gl = rgd->rd_gl;
419 
420 		rb_erase(n, &sdp->sd_rindex_tree);
421 
422 		if (gl) {
423 			spin_lock(&gl->gl_spin);
424 			gl->gl_object = NULL;
425 			spin_unlock(&gl->gl_spin);
426 			gfs2_glock_add_to_lru(gl);
427 			gfs2_glock_put(gl);
428 		}
429 
430 		gfs2_free_clones(rgd);
431 		kfree(rgd->rd_bits);
432 		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
433 	}
434 }
435 
436 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
437 {
438 	printk(KERN_INFO "  ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
439 	printk(KERN_INFO "  ri_length = %u\n", rgd->rd_length);
440 	printk(KERN_INFO "  ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
441 	printk(KERN_INFO "  ri_data = %u\n", rgd->rd_data);
442 	printk(KERN_INFO "  ri_bitbytes = %u\n", rgd->rd_bitbytes);
443 }
444 
445 /**
446  * gfs2_compute_bitstructs - Compute the bitmap sizes
447  * @rgd: The resource group descriptor
448  *
449  * Calculates bitmap descriptors, one for each block that contains bitmap data
450  *
451  * Returns: errno
452  */
453 
454 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
455 {
456 	struct gfs2_sbd *sdp = rgd->rd_sbd;
457 	struct gfs2_bitmap *bi;
458 	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
459 	u32 bytes_left, bytes;
460 	int x;
461 
462 	if (!length)
463 		return -EINVAL;
464 
465 	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
466 	if (!rgd->rd_bits)
467 		return -ENOMEM;
468 
469 	bytes_left = rgd->rd_bitbytes;
470 
471 	for (x = 0; x < length; x++) {
472 		bi = rgd->rd_bits + x;
473 
474 		bi->bi_flags = 0;
475 		/* small rgrp; bitmap stored completely in header block */
476 		if (length == 1) {
477 			bytes = bytes_left;
478 			bi->bi_offset = sizeof(struct gfs2_rgrp);
479 			bi->bi_start = 0;
480 			bi->bi_len = bytes;
481 		/* header block */
482 		} else if (x == 0) {
483 			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
484 			bi->bi_offset = sizeof(struct gfs2_rgrp);
485 			bi->bi_start = 0;
486 			bi->bi_len = bytes;
487 		/* last block */
488 		} else if (x + 1 == length) {
489 			bytes = bytes_left;
490 			bi->bi_offset = sizeof(struct gfs2_meta_header);
491 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
492 			bi->bi_len = bytes;
493 		/* other blocks */
494 		} else {
495 			bytes = sdp->sd_sb.sb_bsize -
496 				sizeof(struct gfs2_meta_header);
497 			bi->bi_offset = sizeof(struct gfs2_meta_header);
498 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
499 			bi->bi_len = bytes;
500 		}
501 
502 		bytes_left -= bytes;
503 	}
504 
505 	if (bytes_left) {
506 		gfs2_consist_rgrpd(rgd);
507 		return -EIO;
508 	}
509 	bi = rgd->rd_bits + (length - 1);
510 	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
511 		if (gfs2_consist_rgrpd(rgd)) {
512 			gfs2_rindex_print(rgd);
513 			fs_err(sdp, "start=%u len=%u offset=%u\n",
514 			       bi->bi_start, bi->bi_len, bi->bi_offset);
515 		}
516 		return -EIO;
517 	}
518 
519 	return 0;
520 }
521 
522 /**
523  * gfs2_ri_total - Total up the file system space, according to the rindex.
524  *
525  */
526 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
527 {
528 	u64 total_data = 0;
529 	struct inode *inode = sdp->sd_rindex;
530 	struct gfs2_inode *ip = GFS2_I(inode);
531 	char buf[sizeof(struct gfs2_rindex)];
532 	struct file_ra_state ra_state;
533 	int error, rgrps;
534 
535 	mutex_lock(&sdp->sd_rindex_mutex);
536 	file_ra_state_init(&ra_state, inode->i_mapping);
537 	for (rgrps = 0;; rgrps++) {
538 		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
539 
540 		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
541 			break;
542 		error = gfs2_internal_read(ip, &ra_state, buf, &pos,
543 					   sizeof(struct gfs2_rindex));
544 		if (error != sizeof(struct gfs2_rindex))
545 			break;
546 		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
547 	}
548 	mutex_unlock(&sdp->sd_rindex_mutex);
549 	return total_data;
550 }
551 
552 static void rgd_insert(struct gfs2_rgrpd *rgd)
553 {
554 	struct gfs2_sbd *sdp = rgd->rd_sbd;
555 	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
556 
557 	/* Figure out where to put new node */
558 	while (*newn) {
559 		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
560 						  rd_node);
561 
562 		parent = *newn;
563 		if (rgd->rd_addr < cur->rd_addr)
564 			newn = &((*newn)->rb_left);
565 		else if (rgd->rd_addr > cur->rd_addr)
566 			newn = &((*newn)->rb_right);
567 		else
568 			return;
569 	}
570 
571 	rb_link_node(&rgd->rd_node, parent, newn);
572 	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
573 }
574 
575 /**
576  * read_rindex_entry - Pull in a new resource index entry from the disk
577  * @gl: The glock covering the rindex inode
578  *
579  * Returns: 0 on success, > 0 on EOF, error code otherwise
580  */
581 
582 static int read_rindex_entry(struct gfs2_inode *ip,
583 			     struct file_ra_state *ra_state)
584 {
585 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
586 	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
587 	struct gfs2_rindex buf;
588 	int error;
589 	struct gfs2_rgrpd *rgd;
590 
591 	if (pos >= i_size_read(&ip->i_inode))
592 		return 1;
593 
594 	error = gfs2_internal_read(ip, ra_state, (char *)&buf, &pos,
595 				   sizeof(struct gfs2_rindex));
596 
597 	if (error != sizeof(struct gfs2_rindex))
598 		return (error == 0) ? 1 : error;
599 
600 	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
601 	error = -ENOMEM;
602 	if (!rgd)
603 		return error;
604 
605 	rgd->rd_sbd = sdp;
606 	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
607 	rgd->rd_length = be32_to_cpu(buf.ri_length);
608 	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
609 	rgd->rd_data = be32_to_cpu(buf.ri_data);
610 	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
611 
612 	error = compute_bitstructs(rgd);
613 	if (error)
614 		goto fail;
615 
616 	error = gfs2_glock_get(sdp, rgd->rd_addr,
617 			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
618 	if (error)
619 		goto fail;
620 
621 	rgd->rd_gl->gl_object = rgd;
622 	rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
623 	if (rgd->rd_data > sdp->sd_max_rg_data)
624 		sdp->sd_max_rg_data = rgd->rd_data;
625 	spin_lock(&sdp->sd_rindex_spin);
626 	rgd_insert(rgd);
627 	sdp->sd_rgrps++;
628 	spin_unlock(&sdp->sd_rindex_spin);
629 	return error;
630 
631 fail:
632 	kfree(rgd->rd_bits);
633 	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
634 	return error;
635 }
636 
637 /**
638  * gfs2_ri_update - Pull in a new resource index from the disk
639  * @ip: pointer to the rindex inode
640  *
641  * Returns: 0 on successful update, error code otherwise
642  */
643 
644 static int gfs2_ri_update(struct gfs2_inode *ip)
645 {
646 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
647 	struct inode *inode = &ip->i_inode;
648 	struct file_ra_state ra_state;
649 	int error;
650 
651 	file_ra_state_init(&ra_state, inode->i_mapping);
652 	do {
653 		error = read_rindex_entry(ip, &ra_state);
654 	} while (error == 0);
655 
656 	if (error < 0)
657 		return error;
658 
659 	sdp->sd_rindex_uptodate = 1;
660 	return 0;
661 }
662 
663 /**
664  * gfs2_rindex_update - Update the rindex if required
665  * @sdp: The GFS2 superblock
666  *
667  * We grab a lock on the rindex inode to make sure that it doesn't
668  * change whilst we are performing an operation. We keep this lock
669  * for quite long periods of time compared to other locks. This
670  * doesn't matter, since it is shared and it is very, very rarely
671  * accessed in the exclusive mode (i.e. only when expanding the filesystem).
672  *
673  * This makes sure that we're using the latest copy of the resource index
674  * special file, which might have been updated if someone expanded the
675  * filesystem (via gfs2_grow utility), which adds new resource groups.
676  *
677  * Returns: 0 on succeess, error code otherwise
678  */
679 
680 int gfs2_rindex_update(struct gfs2_sbd *sdp)
681 {
682 	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
683 	struct gfs2_glock *gl = ip->i_gl;
684 	struct gfs2_holder ri_gh;
685 	int error = 0;
686 	int unlock_required = 0;
687 
688 	/* Read new copy from disk if we don't have the latest */
689 	if (!sdp->sd_rindex_uptodate) {
690 		mutex_lock(&sdp->sd_rindex_mutex);
691 		if (!gfs2_glock_is_locked_by_me(gl)) {
692 			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
693 			if (error)
694 				return error;
695 			unlock_required = 1;
696 		}
697 		if (!sdp->sd_rindex_uptodate)
698 			error = gfs2_ri_update(ip);
699 		if (unlock_required)
700 			gfs2_glock_dq_uninit(&ri_gh);
701 		mutex_unlock(&sdp->sd_rindex_mutex);
702 	}
703 
704 
705 	return error;
706 }
707 
708 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
709 {
710 	const struct gfs2_rgrp *str = buf;
711 	u32 rg_flags;
712 
713 	rg_flags = be32_to_cpu(str->rg_flags);
714 	rg_flags &= ~GFS2_RDF_MASK;
715 	rgd->rd_flags &= GFS2_RDF_MASK;
716 	rgd->rd_flags |= rg_flags;
717 	rgd->rd_free = be32_to_cpu(str->rg_free);
718 	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
719 	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
720 }
721 
722 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
723 {
724 	struct gfs2_rgrp *str = buf;
725 
726 	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
727 	str->rg_free = cpu_to_be32(rgd->rd_free);
728 	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
729 	str->__pad = cpu_to_be32(0);
730 	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
731 	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
732 }
733 
734 /**
735  * gfs2_rgrp_go_lock - Read in a RG's header and bitmaps
736  * @rgd: the struct gfs2_rgrpd describing the RG to read in
737  *
738  * Read in all of a Resource Group's header and bitmap blocks.
739  * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
740  *
741  * Returns: errno
742  */
743 
744 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
745 {
746 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
747 	struct gfs2_sbd *sdp = rgd->rd_sbd;
748 	struct gfs2_glock *gl = rgd->rd_gl;
749 	unsigned int length = rgd->rd_length;
750 	struct gfs2_bitmap *bi;
751 	unsigned int x, y;
752 	int error;
753 
754 	for (x = 0; x < length; x++) {
755 		bi = rgd->rd_bits + x;
756 		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
757 		if (error)
758 			goto fail;
759 	}
760 
761 	for (y = length; y--;) {
762 		bi = rgd->rd_bits + y;
763 		error = gfs2_meta_wait(sdp, bi->bi_bh);
764 		if (error)
765 			goto fail;
766 		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
767 					      GFS2_METATYPE_RG)) {
768 			error = -EIO;
769 			goto fail;
770 		}
771 	}
772 
773 	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
774 		for (x = 0; x < length; x++)
775 			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
776 		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
777 		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
778 		rgd->rd_free_clone = rgd->rd_free;
779 	}
780 
781 	return 0;
782 
783 fail:
784 	while (x--) {
785 		bi = rgd->rd_bits + x;
786 		brelse(bi->bi_bh);
787 		bi->bi_bh = NULL;
788 		gfs2_assert_warn(sdp, !bi->bi_clone);
789 	}
790 
791 	return error;
792 }
793 
794 /**
795  * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
796  * @rgd: the struct gfs2_rgrpd describing the RG to read in
797  *
798  */
799 
800 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
801 {
802 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
803 	int x, length = rgd->rd_length;
804 
805 	for (x = 0; x < length; x++) {
806 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
807 		brelse(bi->bi_bh);
808 		bi->bi_bh = NULL;
809 	}
810 
811 }
812 
813 void gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
814 			     struct buffer_head *bh,
815 			     const struct gfs2_bitmap *bi)
816 {
817 	struct super_block *sb = sdp->sd_vfs;
818 	struct block_device *bdev = sb->s_bdev;
819 	const unsigned int sects_per_blk = sdp->sd_sb.sb_bsize /
820 					   bdev_logical_block_size(sb->s_bdev);
821 	u64 blk;
822 	sector_t start = 0;
823 	sector_t nr_sects = 0;
824 	int rv;
825 	unsigned int x;
826 
827 	for (x = 0; x < bi->bi_len; x++) {
828 		const u8 *orig = bh->b_data + bi->bi_offset + x;
829 		const u8 *clone = bi->bi_clone + bi->bi_offset + x;
830 		u8 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
831 		diff &= 0x55;
832 		if (diff == 0)
833 			continue;
834 		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
835 		blk *= sects_per_blk; /* convert to sectors */
836 		while(diff) {
837 			if (diff & 1) {
838 				if (nr_sects == 0)
839 					goto start_new_extent;
840 				if ((start + nr_sects) != blk) {
841 					rv = blkdev_issue_discard(bdev, start,
842 							    nr_sects, GFP_NOFS,
843 							    0);
844 					if (rv)
845 						goto fail;
846 					nr_sects = 0;
847 start_new_extent:
848 					start = blk;
849 				}
850 				nr_sects += sects_per_blk;
851 			}
852 			diff >>= 2;
853 			blk += sects_per_blk;
854 		}
855 	}
856 	if (nr_sects) {
857 		rv = blkdev_issue_discard(bdev, start, nr_sects, GFP_NOFS, 0);
858 		if (rv)
859 			goto fail;
860 	}
861 	return;
862 fail:
863 	fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
864 	sdp->sd_args.ar_discard = 0;
865 }
866 
867 /**
868  * gfs2_qadata_get - get the struct gfs2_qadata structure for an inode
869  * @ip: the incore GFS2 inode structure
870  *
871  * Returns: the struct gfs2_qadata
872  */
873 
874 struct gfs2_qadata *gfs2_qadata_get(struct gfs2_inode *ip)
875 {
876 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
877 	int error;
878 	BUG_ON(ip->i_qadata != NULL);
879 	ip->i_qadata = kzalloc(sizeof(struct gfs2_qadata), GFP_NOFS);
880 	error = gfs2_rindex_update(sdp);
881 	if (error)
882 		fs_warn(sdp, "rindex update returns %d\n", error);
883 	return ip->i_qadata;
884 }
885 
886 /**
887  * gfs2_blkrsv_get - get the struct gfs2_blkreserv structure for an inode
888  * @ip: the incore GFS2 inode structure
889  *
890  * Returns: the struct gfs2_qadata
891  */
892 
893 static struct gfs2_blkreserv *gfs2_blkrsv_get(struct gfs2_inode *ip)
894 {
895 	BUG_ON(ip->i_res != NULL);
896 	ip->i_res = kzalloc(sizeof(struct gfs2_blkreserv), GFP_NOFS);
897 	return ip->i_res;
898 }
899 
900 /**
901  * try_rgrp_fit - See if a given reservation will fit in a given RG
902  * @rgd: the RG data
903  * @ip: the inode
904  *
905  * If there's room for the requested blocks to be allocated from the RG:
906  *
907  * Returns: 1 on success (it fits), 0 on failure (it doesn't fit)
908  */
909 
910 static int try_rgrp_fit(const struct gfs2_rgrpd *rgd, const struct gfs2_inode *ip)
911 {
912 	const struct gfs2_blkreserv *rs = ip->i_res;
913 
914 	if (rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR))
915 		return 0;
916 	if (rgd->rd_free_clone >= rs->rs_requested)
917 		return 1;
918 	return 0;
919 }
920 
921 static inline u32 gfs2_bi2rgd_blk(struct gfs2_bitmap *bi, u32 blk)
922 {
923 	return (bi->bi_start * GFS2_NBBY) + blk;
924 }
925 
926 /**
927  * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
928  * @rgd: The rgrp
929  *
930  * Returns: 0 if no error
931  *          The inode, if one has been found, in inode.
932  */
933 
934 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
935 {
936 	u32 goal = 0, block;
937 	u64 no_addr;
938 	struct gfs2_sbd *sdp = rgd->rd_sbd;
939 	struct gfs2_glock *gl;
940 	struct gfs2_inode *ip;
941 	int error;
942 	int found = 0;
943 	struct gfs2_bitmap *bi;
944 
945 	while (goal < rgd->rd_data) {
946 		down_write(&sdp->sd_log_flush_lock);
947 		block = rgblk_search(rgd, goal, GFS2_BLKST_UNLINKED, &bi);
948 		up_write(&sdp->sd_log_flush_lock);
949 		if (block == BFITNOENT)
950 			break;
951 
952 		block = gfs2_bi2rgd_blk(bi, block);
953 		/* rgblk_search can return a block < goal, so we need to
954 		   keep it marching forward. */
955 		no_addr = block + rgd->rd_data0;
956 		goal = max(block + 1, goal + 1);
957 		if (*last_unlinked != NO_BLOCK && no_addr <= *last_unlinked)
958 			continue;
959 		if (no_addr == skip)
960 			continue;
961 		*last_unlinked = no_addr;
962 
963 		error = gfs2_glock_get(sdp, no_addr, &gfs2_inode_glops, CREATE, &gl);
964 		if (error)
965 			continue;
966 
967 		/* If the inode is already in cache, we can ignore it here
968 		 * because the existing inode disposal code will deal with
969 		 * it when all refs have gone away. Accessing gl_object like
970 		 * this is not safe in general. Here it is ok because we do
971 		 * not dereference the pointer, and we only need an approx
972 		 * answer to whether it is NULL or not.
973 		 */
974 		ip = gl->gl_object;
975 
976 		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
977 			gfs2_glock_put(gl);
978 		else
979 			found++;
980 
981 		/* Limit reclaim to sensible number of tasks */
982 		if (found > NR_CPUS)
983 			return;
984 	}
985 
986 	rgd->rd_flags &= ~GFS2_RDF_CHECK;
987 	return;
988 }
989 
990 /**
991  * get_local_rgrp - Choose and lock a rgrp for allocation
992  * @ip: the inode to reserve space for
993  * @rgp: the chosen and locked rgrp
994  *
995  * Try to acquire rgrp in way which avoids contending with others.
996  *
997  * Returns: errno
998  */
999 
1000 static int get_local_rgrp(struct gfs2_inode *ip, u64 *last_unlinked)
1001 {
1002 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1003 	struct gfs2_rgrpd *rgd, *begin = NULL;
1004 	struct gfs2_blkreserv *rs = ip->i_res;
1005 	int error, rg_locked, flags = LM_FLAG_TRY;
1006 	int loops = 0;
1007 
1008 	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal))
1009 		rgd = begin = ip->i_rgd;
1010 	else
1011 		rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal);
1012 
1013 	if (rgd == NULL)
1014 		return -EBADSLT;
1015 
1016 	while (loops < 3) {
1017 		rg_locked = 0;
1018 
1019 		if (gfs2_glock_is_locked_by_me(rgd->rd_gl)) {
1020 			rg_locked = 1;
1021 			error = 0;
1022 		} else {
1023 			error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1024 						   flags, &rs->rs_rgd_gh);
1025 		}
1026 		switch (error) {
1027 		case 0:
1028 			if (try_rgrp_fit(rgd, ip)) {
1029 				ip->i_rgd = rgd;
1030 				return 0;
1031 			}
1032 			if (rgd->rd_flags & GFS2_RDF_CHECK)
1033 				try_rgrp_unlink(rgd, last_unlinked, ip->i_no_addr);
1034 			if (!rg_locked)
1035 				gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1036 			/* fall through */
1037 		case GLR_TRYFAILED:
1038 			rgd = gfs2_rgrpd_get_next(rgd);
1039 			if (rgd == begin) {
1040 				flags = 0;
1041 				loops++;
1042 			}
1043 			break;
1044 		default:
1045 			return error;
1046 		}
1047 	}
1048 
1049 	return -ENOSPC;
1050 }
1051 
1052 static void gfs2_blkrsv_put(struct gfs2_inode *ip)
1053 {
1054 	BUG_ON(ip->i_res == NULL);
1055 	kfree(ip->i_res);
1056 	ip->i_res = NULL;
1057 }
1058 
1059 /**
1060  * gfs2_inplace_reserve - Reserve space in the filesystem
1061  * @ip: the inode to reserve space for
1062  *
1063  * Returns: errno
1064  */
1065 
1066 int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested)
1067 {
1068 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1069 	struct gfs2_blkreserv *rs;
1070 	int error = 0;
1071 	u64 last_unlinked = NO_BLOCK;
1072 	int tries = 0;
1073 
1074 	rs = gfs2_blkrsv_get(ip);
1075 	if (!rs)
1076 		return -ENOMEM;
1077 
1078 	rs->rs_requested = requested;
1079 	if (gfs2_assert_warn(sdp, requested)) {
1080 		error = -EINVAL;
1081 		goto out;
1082 	}
1083 
1084 	do {
1085 		error = get_local_rgrp(ip, &last_unlinked);
1086 		if (error != -ENOSPC)
1087 			break;
1088 		/* Check that fs hasn't grown if writing to rindex */
1089 		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
1090 			error = gfs2_ri_update(ip);
1091 			if (error)
1092 				break;
1093 			continue;
1094 		}
1095 		/* Flushing the log may release space */
1096 		gfs2_log_flush(sdp, NULL);
1097 	} while (tries++ < 3);
1098 
1099 out:
1100 	if (error)
1101 		gfs2_blkrsv_put(ip);
1102 	return error;
1103 }
1104 
1105 /**
1106  * gfs2_inplace_release - release an inplace reservation
1107  * @ip: the inode the reservation was taken out on
1108  *
1109  * Release a reservation made by gfs2_inplace_reserve().
1110  */
1111 
1112 void gfs2_inplace_release(struct gfs2_inode *ip)
1113 {
1114 	struct gfs2_blkreserv *rs = ip->i_res;
1115 
1116 	if (rs->rs_rgd_gh.gh_gl)
1117 		gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1118 	gfs2_blkrsv_put(ip);
1119 }
1120 
1121 /**
1122  * gfs2_get_block_type - Check a block in a RG is of given type
1123  * @rgd: the resource group holding the block
1124  * @block: the block number
1125  *
1126  * Returns: The block type (GFS2_BLKST_*)
1127  */
1128 
1129 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
1130 {
1131 	struct gfs2_bitmap *bi = NULL;
1132 	u32 length, rgrp_block, buf_block;
1133 	unsigned int buf;
1134 	unsigned char type;
1135 
1136 	length = rgd->rd_length;
1137 	rgrp_block = block - rgd->rd_data0;
1138 
1139 	for (buf = 0; buf < length; buf++) {
1140 		bi = rgd->rd_bits + buf;
1141 		if (rgrp_block < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1142 			break;
1143 	}
1144 
1145 	gfs2_assert(rgd->rd_sbd, buf < length);
1146 	buf_block = rgrp_block - bi->bi_start * GFS2_NBBY;
1147 
1148 	type = gfs2_testbit(rgd, bi->bi_bh->b_data + bi->bi_offset,
1149 			   bi->bi_len, buf_block);
1150 
1151 	return type;
1152 }
1153 
1154 /**
1155  * rgblk_search - find a block in @state
1156  * @rgd: the resource group descriptor
1157  * @goal: the goal block within the RG (start here to search for avail block)
1158  * @state: GFS2_BLKST_XXX the before-allocation state to find
1159  * @dinode: TRUE if the first block we allocate is for a dinode
1160  * @rbi: address of the pointer to the bitmap containing the block found
1161  *
1162  * Walk rgrp's bitmap to find bits that represent a block in @state.
1163  *
1164  * This function never fails, because we wouldn't call it unless we
1165  * know (from reservation results, etc.) that a block is available.
1166  *
1167  * Scope of @goal is just within rgrp, not the whole filesystem.
1168  * Scope of @returned block is just within bitmap, not the whole filesystem.
1169  *
1170  * Returns: the block number found relative to the bitmap rbi
1171  */
1172 
1173 static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal,
1174 			unsigned char state,
1175 			struct gfs2_bitmap **rbi)
1176 {
1177 	struct gfs2_bitmap *bi = NULL;
1178 	const u32 length = rgd->rd_length;
1179 	u32 blk = BFITNOENT;
1180 	unsigned int buf, x;
1181 	const u8 *buffer = NULL;
1182 
1183 	*rbi = NULL;
1184 	/* Find bitmap block that contains bits for goal block */
1185 	for (buf = 0; buf < length; buf++) {
1186 		bi = rgd->rd_bits + buf;
1187 		/* Convert scope of "goal" from rgrp-wide to within found bit block */
1188 		if (goal < (bi->bi_start + bi->bi_len) * GFS2_NBBY) {
1189 			goal -= bi->bi_start * GFS2_NBBY;
1190 			goto do_search;
1191 		}
1192 	}
1193 	buf = 0;
1194 	goal = 0;
1195 
1196 do_search:
1197 	/* Search (up to entire) bitmap in this rgrp for allocatable block.
1198 	   "x <= length", instead of "x < length", because we typically start
1199 	   the search in the middle of a bit block, but if we can't find an
1200 	   allocatable block anywhere else, we want to be able wrap around and
1201 	   search in the first part of our first-searched bit block.  */
1202 	for (x = 0; x <= length; x++) {
1203 		bi = rgd->rd_bits + buf;
1204 
1205 		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1206 		    (state == GFS2_BLKST_FREE))
1207 			goto skip;
1208 
1209 		/* The GFS2_BLKST_UNLINKED state doesn't apply to the clone
1210 		   bitmaps, so we must search the originals for that. */
1211 		buffer = bi->bi_bh->b_data + bi->bi_offset;
1212 		WARN_ON(!buffer_uptodate(bi->bi_bh));
1213 		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1214 			buffer = bi->bi_clone + bi->bi_offset;
1215 
1216 		blk = gfs2_bitfit(buffer, bi->bi_len, goal, state);
1217 		if (blk != BFITNOENT)
1218 			break;
1219 
1220 		if ((goal == 0) && (state == GFS2_BLKST_FREE))
1221 			set_bit(GBF_FULL, &bi->bi_flags);
1222 
1223 		/* Try next bitmap block (wrap back to rgrp header if at end) */
1224 skip:
1225 		buf++;
1226 		buf %= length;
1227 		goal = 0;
1228 	}
1229 
1230 	if (blk != BFITNOENT)
1231 		*rbi = bi;
1232 
1233 	return blk;
1234 }
1235 
1236 /**
1237  * gfs2_alloc_extent - allocate an extent from a given bitmap
1238  * @rgd: the resource group descriptor
1239  * @bi: the bitmap within the rgrp
1240  * @blk: the block within the bitmap
1241  * @dinode: TRUE if the first block we allocate is for a dinode
1242  * @n: The extent length
1243  *
1244  * Add the found bitmap buffer to the transaction.
1245  * Set the found bits to @new_state to change block's allocation state.
1246  * Returns: starting block number of the extent (fs scope)
1247  */
1248 static u64 gfs2_alloc_extent(struct gfs2_rgrpd *rgd, struct gfs2_bitmap *bi,
1249 			     u32 blk, bool dinode, unsigned int *n)
1250 {
1251 	const unsigned int elen = *n;
1252 	u32 goal;
1253 	const u8 *buffer = NULL;
1254 
1255 	*n = 0;
1256 	buffer = bi->bi_bh->b_data + bi->bi_offset;
1257 	gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1258 	gfs2_setbit(rgd, bi->bi_bh->b_data, bi->bi_clone, bi->bi_offset,
1259 		    bi, blk, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1260 	(*n)++;
1261 	goal = blk;
1262 	while (*n < elen) {
1263 		goal++;
1264 		if (goal >= (bi->bi_len * GFS2_NBBY))
1265 			break;
1266 		if (gfs2_testbit(rgd, buffer, bi->bi_len, goal) !=
1267 		    GFS2_BLKST_FREE)
1268 			break;
1269 		gfs2_setbit(rgd, bi->bi_bh->b_data, bi->bi_clone, bi->bi_offset,
1270 			    bi, goal, GFS2_BLKST_USED);
1271 		(*n)++;
1272 	}
1273 	blk = gfs2_bi2rgd_blk(bi, blk);
1274 	rgd->rd_last_alloc = blk + *n - 1;
1275 	return rgd->rd_data0 + blk;
1276 }
1277 
1278 /**
1279  * rgblk_free - Change alloc state of given block(s)
1280  * @sdp: the filesystem
1281  * @bstart: the start of a run of blocks to free
1282  * @blen: the length of the block run (all must lie within ONE RG!)
1283  * @new_state: GFS2_BLKST_XXX the after-allocation block state
1284  *
1285  * Returns:  Resource group containing the block(s)
1286  */
1287 
1288 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
1289 				     u32 blen, unsigned char new_state)
1290 {
1291 	struct gfs2_rgrpd *rgd;
1292 	struct gfs2_bitmap *bi = NULL;
1293 	u32 length, rgrp_blk, buf_blk;
1294 	unsigned int buf;
1295 
1296 	rgd = gfs2_blk2rgrpd(sdp, bstart);
1297 	if (!rgd) {
1298 		if (gfs2_consist(sdp))
1299 			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
1300 		return NULL;
1301 	}
1302 
1303 	length = rgd->rd_length;
1304 
1305 	rgrp_blk = bstart - rgd->rd_data0;
1306 
1307 	while (blen--) {
1308 		for (buf = 0; buf < length; buf++) {
1309 			bi = rgd->rd_bits + buf;
1310 			if (rgrp_blk < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1311 				break;
1312 		}
1313 
1314 		gfs2_assert(rgd->rd_sbd, buf < length);
1315 
1316 		buf_blk = rgrp_blk - bi->bi_start * GFS2_NBBY;
1317 		rgrp_blk++;
1318 
1319 		if (!bi->bi_clone) {
1320 			bi->bi_clone = kmalloc(bi->bi_bh->b_size,
1321 					       GFP_NOFS | __GFP_NOFAIL);
1322 			memcpy(bi->bi_clone + bi->bi_offset,
1323 			       bi->bi_bh->b_data + bi->bi_offset,
1324 			       bi->bi_len);
1325 		}
1326 		gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1327 		gfs2_setbit(rgd, bi->bi_bh->b_data, NULL, bi->bi_offset,
1328 			    bi, buf_blk, new_state);
1329 	}
1330 
1331 	return rgd;
1332 }
1333 
1334 /**
1335  * gfs2_rgrp_dump - print out an rgrp
1336  * @seq: The iterator
1337  * @gl: The glock in question
1338  *
1339  */
1340 
1341 int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
1342 {
1343 	const struct gfs2_rgrpd *rgd = gl->gl_object;
1344 	if (rgd == NULL)
1345 		return 0;
1346 	gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u\n",
1347 		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
1348 		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes);
1349 	return 0;
1350 }
1351 
1352 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
1353 {
1354 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1355 	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
1356 		(unsigned long long)rgd->rd_addr);
1357 	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
1358 	gfs2_rgrp_dump(NULL, rgd->rd_gl);
1359 	rgd->rd_flags |= GFS2_RDF_ERROR;
1360 }
1361 
1362 /**
1363  * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
1364  * @ip: the inode to allocate the block for
1365  * @bn: Used to return the starting block number
1366  * @ndata: requested number of blocks/extent length (value/result)
1367  * @dinode: 1 if we're allocating a dinode block, else 0
1368  * @generation: the generation number of the inode
1369  *
1370  * Returns: 0 or error
1371  */
1372 
1373 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
1374 		      bool dinode, u64 *generation)
1375 {
1376 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1377 	struct buffer_head *dibh;
1378 	struct gfs2_rgrpd *rgd;
1379 	unsigned int ndata;
1380 	u32 goal, blk; /* block, within the rgrp scope */
1381 	u64 block; /* block, within the file system scope */
1382 	int error;
1383 	struct gfs2_bitmap *bi;
1384 
1385 	/* Only happens if there is a bug in gfs2, return something distinctive
1386 	 * to ensure that it is noticed.
1387 	 */
1388 	if (ip->i_res == NULL)
1389 		return -ECANCELED;
1390 
1391 	rgd = ip->i_rgd;
1392 
1393 	if (!dinode && rgrp_contains_block(rgd, ip->i_goal))
1394 		goal = ip->i_goal - rgd->rd_data0;
1395 	else
1396 		goal = rgd->rd_last_alloc;
1397 
1398 	blk = rgblk_search(rgd, goal, GFS2_BLKST_FREE, &bi);
1399 
1400 	/* Since all blocks are reserved in advance, this shouldn't happen */
1401 	if (blk == BFITNOENT)
1402 		goto rgrp_error;
1403 
1404 	block = gfs2_alloc_extent(rgd, bi, blk, dinode, nblocks);
1405 	ndata = *nblocks;
1406 	if (dinode)
1407 		ndata--;
1408 
1409 	if (!dinode) {
1410 		ip->i_goal = block + ndata - 1;
1411 		error = gfs2_meta_inode_buffer(ip, &dibh);
1412 		if (error == 0) {
1413 			struct gfs2_dinode *di =
1414 				(struct gfs2_dinode *)dibh->b_data;
1415 			gfs2_trans_add_bh(ip->i_gl, dibh, 1);
1416 			di->di_goal_meta = di->di_goal_data =
1417 				cpu_to_be64(ip->i_goal);
1418 			brelse(dibh);
1419 		}
1420 	}
1421 	if (rgd->rd_free < *nblocks)
1422 		goto rgrp_error;
1423 
1424 	rgd->rd_free -= *nblocks;
1425 	if (dinode) {
1426 		rgd->rd_dinodes++;
1427 		*generation = rgd->rd_igeneration++;
1428 		if (*generation == 0)
1429 			*generation = rgd->rd_igeneration++;
1430 	}
1431 
1432 	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1433 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1434 
1435 	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
1436 	if (dinode)
1437 		gfs2_trans_add_unrevoke(sdp, block, 1);
1438 
1439 	/*
1440 	 * This needs reviewing to see why we cannot do the quota change
1441 	 * at this point in the dinode case.
1442 	 */
1443 	if (ndata)
1444 		gfs2_quota_change(ip, ndata, ip->i_inode.i_uid,
1445 				  ip->i_inode.i_gid);
1446 
1447 	rgd->rd_free_clone -= *nblocks;
1448 	trace_gfs2_block_alloc(ip, block, *nblocks,
1449 			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1450 	*bn = block;
1451 	return 0;
1452 
1453 rgrp_error:
1454 	gfs2_rgrp_error(rgd);
1455 	return -EIO;
1456 }
1457 
1458 /**
1459  * __gfs2_free_blocks - free a contiguous run of block(s)
1460  * @ip: the inode these blocks are being freed from
1461  * @bstart: first block of a run of contiguous blocks
1462  * @blen: the length of the block run
1463  * @meta: 1 if the blocks represent metadata
1464  *
1465  */
1466 
1467 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
1468 {
1469 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1470 	struct gfs2_rgrpd *rgd;
1471 
1472 	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
1473 	if (!rgd)
1474 		return;
1475 	trace_gfs2_block_alloc(ip, bstart, blen, GFS2_BLKST_FREE);
1476 	rgd->rd_free += blen;
1477 
1478 	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1479 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1480 
1481 	/* Directories keep their data in the metadata address space */
1482 	if (meta || ip->i_depth)
1483 		gfs2_meta_wipe(ip, bstart, blen);
1484 }
1485 
1486 /**
1487  * gfs2_free_meta - free a contiguous run of data block(s)
1488  * @ip: the inode these blocks are being freed from
1489  * @bstart: first block of a run of contiguous blocks
1490  * @blen: the length of the block run
1491  *
1492  */
1493 
1494 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
1495 {
1496 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1497 
1498 	__gfs2_free_blocks(ip, bstart, blen, 1);
1499 	gfs2_statfs_change(sdp, 0, +blen, 0);
1500 	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
1501 }
1502 
1503 void gfs2_unlink_di(struct inode *inode)
1504 {
1505 	struct gfs2_inode *ip = GFS2_I(inode);
1506 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1507 	struct gfs2_rgrpd *rgd;
1508 	u64 blkno = ip->i_no_addr;
1509 
1510 	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
1511 	if (!rgd)
1512 		return;
1513 	trace_gfs2_block_alloc(ip, blkno, 1, GFS2_BLKST_UNLINKED);
1514 	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1515 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1516 }
1517 
1518 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
1519 {
1520 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1521 	struct gfs2_rgrpd *tmp_rgd;
1522 
1523 	tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
1524 	if (!tmp_rgd)
1525 		return;
1526 	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
1527 
1528 	if (!rgd->rd_dinodes)
1529 		gfs2_consist_rgrpd(rgd);
1530 	rgd->rd_dinodes--;
1531 	rgd->rd_free++;
1532 
1533 	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1534 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1535 
1536 	gfs2_statfs_change(sdp, 0, +1, -1);
1537 }
1538 
1539 
1540 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
1541 {
1542 	gfs2_free_uninit_di(rgd, ip->i_no_addr);
1543 	trace_gfs2_block_alloc(ip, ip->i_no_addr, 1, GFS2_BLKST_FREE);
1544 	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
1545 	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
1546 }
1547 
1548 /**
1549  * gfs2_check_blk_type - Check the type of a block
1550  * @sdp: The superblock
1551  * @no_addr: The block number to check
1552  * @type: The block type we are looking for
1553  *
1554  * Returns: 0 if the block type matches the expected type
1555  *          -ESTALE if it doesn't match
1556  *          or -ve errno if something went wrong while checking
1557  */
1558 
1559 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
1560 {
1561 	struct gfs2_rgrpd *rgd;
1562 	struct gfs2_holder rgd_gh;
1563 	int error;
1564 
1565 	error = gfs2_rindex_update(sdp);
1566 	if (error)
1567 		return error;
1568 
1569 	error = -EINVAL;
1570 	rgd = gfs2_blk2rgrpd(sdp, no_addr);
1571 	if (!rgd)
1572 		goto fail;
1573 
1574 	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
1575 	if (error)
1576 		goto fail;
1577 
1578 	if (gfs2_get_block_type(rgd, no_addr) != type)
1579 		error = -ESTALE;
1580 
1581 	gfs2_glock_dq_uninit(&rgd_gh);
1582 fail:
1583 	return error;
1584 }
1585 
1586 /**
1587  * gfs2_rlist_add - add a RG to a list of RGs
1588  * @ip: the inode
1589  * @rlist: the list of resource groups
1590  * @block: the block
1591  *
1592  * Figure out what RG a block belongs to and add that RG to the list
1593  *
1594  * FIXME: Don't use NOFAIL
1595  *
1596  */
1597 
1598 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
1599 		    u64 block)
1600 {
1601 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1602 	struct gfs2_rgrpd *rgd;
1603 	struct gfs2_rgrpd **tmp;
1604 	unsigned int new_space;
1605 	unsigned int x;
1606 
1607 	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
1608 		return;
1609 
1610 	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
1611 		rgd = ip->i_rgd;
1612 	else
1613 		rgd = gfs2_blk2rgrpd(sdp, block);
1614 	if (!rgd) {
1615 		fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
1616 		return;
1617 	}
1618 	ip->i_rgd = rgd;
1619 
1620 	for (x = 0; x < rlist->rl_rgrps; x++)
1621 		if (rlist->rl_rgd[x] == rgd)
1622 			return;
1623 
1624 	if (rlist->rl_rgrps == rlist->rl_space) {
1625 		new_space = rlist->rl_space + 10;
1626 
1627 		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
1628 			      GFP_NOFS | __GFP_NOFAIL);
1629 
1630 		if (rlist->rl_rgd) {
1631 			memcpy(tmp, rlist->rl_rgd,
1632 			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
1633 			kfree(rlist->rl_rgd);
1634 		}
1635 
1636 		rlist->rl_space = new_space;
1637 		rlist->rl_rgd = tmp;
1638 	}
1639 
1640 	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
1641 }
1642 
1643 /**
1644  * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
1645  *      and initialize an array of glock holders for them
1646  * @rlist: the list of resource groups
1647  * @state: the lock state to acquire the RG lock in
1648  * @flags: the modifier flags for the holder structures
1649  *
1650  * FIXME: Don't use NOFAIL
1651  *
1652  */
1653 
1654 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
1655 {
1656 	unsigned int x;
1657 
1658 	rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
1659 				GFP_NOFS | __GFP_NOFAIL);
1660 	for (x = 0; x < rlist->rl_rgrps; x++)
1661 		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
1662 				state, 0,
1663 				&rlist->rl_ghs[x]);
1664 }
1665 
1666 /**
1667  * gfs2_rlist_free - free a resource group list
1668  * @list: the list of resource groups
1669  *
1670  */
1671 
1672 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
1673 {
1674 	unsigned int x;
1675 
1676 	kfree(rlist->rl_rgd);
1677 
1678 	if (rlist->rl_ghs) {
1679 		for (x = 0; x < rlist->rl_rgrps; x++)
1680 			gfs2_holder_uninit(&rlist->rl_ghs[x]);
1681 		kfree(rlist->rl_ghs);
1682 	}
1683 }
1684 
1685