1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #include <linux/slab.h> 11 #include <linux/spinlock.h> 12 #include <linux/completion.h> 13 #include <linux/buffer_head.h> 14 #include <linux/fs.h> 15 #include <linux/gfs2_ondisk.h> 16 #include <linux/prefetch.h> 17 #include <linux/blkdev.h> 18 #include <linux/rbtree.h> 19 20 #include "gfs2.h" 21 #include "incore.h" 22 #include "glock.h" 23 #include "glops.h" 24 #include "lops.h" 25 #include "meta_io.h" 26 #include "quota.h" 27 #include "rgrp.h" 28 #include "super.h" 29 #include "trans.h" 30 #include "util.h" 31 #include "log.h" 32 #include "inode.h" 33 #include "trace_gfs2.h" 34 35 #define BFITNOENT ((u32)~0) 36 #define NO_BLOCK ((u64)~0) 37 38 #if BITS_PER_LONG == 32 39 #define LBITMASK (0x55555555UL) 40 #define LBITSKIP55 (0x55555555UL) 41 #define LBITSKIP00 (0x00000000UL) 42 #else 43 #define LBITMASK (0x5555555555555555UL) 44 #define LBITSKIP55 (0x5555555555555555UL) 45 #define LBITSKIP00 (0x0000000000000000UL) 46 #endif 47 48 /* 49 * These routines are used by the resource group routines (rgrp.c) 50 * to keep track of block allocation. Each block is represented by two 51 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. 52 * 53 * 0 = Free 54 * 1 = Used (not metadata) 55 * 2 = Unlinked (still in use) inode 56 * 3 = Used (metadata) 57 */ 58 59 static const char valid_change[16] = { 60 /* current */ 61 /* n */ 0, 1, 1, 1, 62 /* e */ 1, 0, 0, 0, 63 /* w */ 0, 0, 0, 1, 64 1, 0, 0, 0 65 }; 66 67 static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal, 68 unsigned char old_state, 69 struct gfs2_bitmap **rbi); 70 71 /** 72 * gfs2_setbit - Set a bit in the bitmaps 73 * @buffer: the buffer that holds the bitmaps 74 * @buflen: the length (in bytes) of the buffer 75 * @block: the block to set 76 * @new_state: the new state of the block 77 * 78 */ 79 80 static inline void gfs2_setbit(struct gfs2_rgrpd *rgd, unsigned char *buf1, 81 unsigned char *buf2, unsigned int offset, 82 struct gfs2_bitmap *bi, u32 block, 83 unsigned char new_state) 84 { 85 unsigned char *byte1, *byte2, *end, cur_state; 86 unsigned int buflen = bi->bi_len; 87 const unsigned int bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE; 88 89 byte1 = buf1 + offset + (block / GFS2_NBBY); 90 end = buf1 + offset + buflen; 91 92 BUG_ON(byte1 >= end); 93 94 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; 95 96 if (unlikely(!valid_change[new_state * 4 + cur_state])) { 97 printk(KERN_WARNING "GFS2: buf_blk = 0x%llx old_state=%d, " 98 "new_state=%d\n", 99 (unsigned long long)block, cur_state, new_state); 100 printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%lx\n", 101 (unsigned long long)rgd->rd_addr, 102 (unsigned long)bi->bi_start); 103 printk(KERN_WARNING "GFS2: bi_offset=0x%lx bi_len=0x%lx\n", 104 (unsigned long)bi->bi_offset, 105 (unsigned long)bi->bi_len); 106 dump_stack(); 107 gfs2_consist_rgrpd(rgd); 108 return; 109 } 110 *byte1 ^= (cur_state ^ new_state) << bit; 111 112 if (buf2) { 113 byte2 = buf2 + offset + (block / GFS2_NBBY); 114 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; 115 *byte2 ^= (cur_state ^ new_state) << bit; 116 } 117 } 118 119 /** 120 * gfs2_testbit - test a bit in the bitmaps 121 * @buffer: the buffer that holds the bitmaps 122 * @buflen: the length (in bytes) of the buffer 123 * @block: the block to read 124 * 125 */ 126 127 static inline unsigned char gfs2_testbit(struct gfs2_rgrpd *rgd, 128 const unsigned char *buffer, 129 unsigned int buflen, u32 block) 130 { 131 const unsigned char *byte, *end; 132 unsigned char cur_state; 133 unsigned int bit; 134 135 byte = buffer + (block / GFS2_NBBY); 136 bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE; 137 end = buffer + buflen; 138 139 gfs2_assert(rgd->rd_sbd, byte < end); 140 141 cur_state = (*byte >> bit) & GFS2_BIT_MASK; 142 143 return cur_state; 144 } 145 146 /** 147 * gfs2_bit_search 148 * @ptr: Pointer to bitmap data 149 * @mask: Mask to use (normally 0x55555.... but adjusted for search start) 150 * @state: The state we are searching for 151 * 152 * We xor the bitmap data with a patter which is the bitwise opposite 153 * of what we are looking for, this gives rise to a pattern of ones 154 * wherever there is a match. Since we have two bits per entry, we 155 * take this pattern, shift it down by one place and then and it with 156 * the original. All the even bit positions (0,2,4, etc) then represent 157 * successful matches, so we mask with 0x55555..... to remove the unwanted 158 * odd bit positions. 159 * 160 * This allows searching of a whole u64 at once (32 blocks) with a 161 * single test (on 64 bit arches). 162 */ 163 164 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) 165 { 166 u64 tmp; 167 static const u64 search[] = { 168 [0] = 0xffffffffffffffffULL, 169 [1] = 0xaaaaaaaaaaaaaaaaULL, 170 [2] = 0x5555555555555555ULL, 171 [3] = 0x0000000000000000ULL, 172 }; 173 tmp = le64_to_cpu(*ptr) ^ search[state]; 174 tmp &= (tmp >> 1); 175 tmp &= mask; 176 return tmp; 177 } 178 179 /** 180 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing 181 * a block in a given allocation state. 182 * @buffer: the buffer that holds the bitmaps 183 * @len: the length (in bytes) of the buffer 184 * @goal: start search at this block's bit-pair (within @buffer) 185 * @state: GFS2_BLKST_XXX the state of the block we're looking for. 186 * 187 * Scope of @goal and returned block number is only within this bitmap buffer, 188 * not entire rgrp or filesystem. @buffer will be offset from the actual 189 * beginning of a bitmap block buffer, skipping any header structures, but 190 * headers are always a multiple of 64 bits long so that the buffer is 191 * always aligned to a 64 bit boundary. 192 * 193 * The size of the buffer is in bytes, but is it assumed that it is 194 * always ok to read a complete multiple of 64 bits at the end 195 * of the block in case the end is no aligned to a natural boundary. 196 * 197 * Return: the block number (bitmap buffer scope) that was found 198 */ 199 200 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, 201 u32 goal, u8 state) 202 { 203 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); 204 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); 205 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); 206 u64 tmp; 207 u64 mask = 0x5555555555555555ULL; 208 u32 bit; 209 210 BUG_ON(state > 3); 211 212 /* Mask off bits we don't care about at the start of the search */ 213 mask <<= spoint; 214 tmp = gfs2_bit_search(ptr, mask, state); 215 ptr++; 216 while(tmp == 0 && ptr < end) { 217 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); 218 ptr++; 219 } 220 /* Mask off any bits which are more than len bytes from the start */ 221 if (ptr == end && (len & (sizeof(u64) - 1))) 222 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); 223 /* Didn't find anything, so return */ 224 if (tmp == 0) 225 return BFITNOENT; 226 ptr--; 227 bit = __ffs64(tmp); 228 bit /= 2; /* two bits per entry in the bitmap */ 229 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; 230 } 231 232 /** 233 * gfs2_bitcount - count the number of bits in a certain state 234 * @buffer: the buffer that holds the bitmaps 235 * @buflen: the length (in bytes) of the buffer 236 * @state: the state of the block we're looking for 237 * 238 * Returns: The number of bits 239 */ 240 241 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, 242 unsigned int buflen, u8 state) 243 { 244 const u8 *byte = buffer; 245 const u8 *end = buffer + buflen; 246 const u8 state1 = state << 2; 247 const u8 state2 = state << 4; 248 const u8 state3 = state << 6; 249 u32 count = 0; 250 251 for (; byte < end; byte++) { 252 if (((*byte) & 0x03) == state) 253 count++; 254 if (((*byte) & 0x0C) == state1) 255 count++; 256 if (((*byte) & 0x30) == state2) 257 count++; 258 if (((*byte) & 0xC0) == state3) 259 count++; 260 } 261 262 return count; 263 } 264 265 /** 266 * gfs2_rgrp_verify - Verify that a resource group is consistent 267 * @sdp: the filesystem 268 * @rgd: the rgrp 269 * 270 */ 271 272 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) 273 { 274 struct gfs2_sbd *sdp = rgd->rd_sbd; 275 struct gfs2_bitmap *bi = NULL; 276 u32 length = rgd->rd_length; 277 u32 count[4], tmp; 278 int buf, x; 279 280 memset(count, 0, 4 * sizeof(u32)); 281 282 /* Count # blocks in each of 4 possible allocation states */ 283 for (buf = 0; buf < length; buf++) { 284 bi = rgd->rd_bits + buf; 285 for (x = 0; x < 4; x++) 286 count[x] += gfs2_bitcount(rgd, 287 bi->bi_bh->b_data + 288 bi->bi_offset, 289 bi->bi_len, x); 290 } 291 292 if (count[0] != rgd->rd_free) { 293 if (gfs2_consist_rgrpd(rgd)) 294 fs_err(sdp, "free data mismatch: %u != %u\n", 295 count[0], rgd->rd_free); 296 return; 297 } 298 299 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; 300 if (count[1] != tmp) { 301 if (gfs2_consist_rgrpd(rgd)) 302 fs_err(sdp, "used data mismatch: %u != %u\n", 303 count[1], tmp); 304 return; 305 } 306 307 if (count[2] + count[3] != rgd->rd_dinodes) { 308 if (gfs2_consist_rgrpd(rgd)) 309 fs_err(sdp, "used metadata mismatch: %u != %u\n", 310 count[2] + count[3], rgd->rd_dinodes); 311 return; 312 } 313 } 314 315 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block) 316 { 317 u64 first = rgd->rd_data0; 318 u64 last = first + rgd->rd_data; 319 return first <= block && block < last; 320 } 321 322 /** 323 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number 324 * @sdp: The GFS2 superblock 325 * @n: The data block number 326 * 327 * Returns: The resource group, or NULL if not found 328 */ 329 330 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact) 331 { 332 struct rb_node *n, *next; 333 struct gfs2_rgrpd *cur; 334 335 spin_lock(&sdp->sd_rindex_spin); 336 n = sdp->sd_rindex_tree.rb_node; 337 while (n) { 338 cur = rb_entry(n, struct gfs2_rgrpd, rd_node); 339 next = NULL; 340 if (blk < cur->rd_addr) 341 next = n->rb_left; 342 else if (blk >= cur->rd_data0 + cur->rd_data) 343 next = n->rb_right; 344 if (next == NULL) { 345 spin_unlock(&sdp->sd_rindex_spin); 346 if (exact) { 347 if (blk < cur->rd_addr) 348 return NULL; 349 if (blk >= cur->rd_data0 + cur->rd_data) 350 return NULL; 351 } 352 return cur; 353 } 354 n = next; 355 } 356 spin_unlock(&sdp->sd_rindex_spin); 357 358 return NULL; 359 } 360 361 /** 362 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem 363 * @sdp: The GFS2 superblock 364 * 365 * Returns: The first rgrp in the filesystem 366 */ 367 368 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) 369 { 370 const struct rb_node *n; 371 struct gfs2_rgrpd *rgd; 372 373 spin_lock(&sdp->sd_rindex_spin); 374 n = rb_first(&sdp->sd_rindex_tree); 375 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 376 spin_unlock(&sdp->sd_rindex_spin); 377 378 return rgd; 379 } 380 381 /** 382 * gfs2_rgrpd_get_next - get the next RG 383 * @rgd: A RG 384 * 385 * Returns: The next rgrp 386 */ 387 388 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) 389 { 390 struct gfs2_sbd *sdp = rgd->rd_sbd; 391 const struct rb_node *n; 392 393 spin_lock(&sdp->sd_rindex_spin); 394 n = rb_next(&rgd->rd_node); 395 if (n == NULL) 396 n = rb_first(&sdp->sd_rindex_tree); 397 398 if (unlikely(&rgd->rd_node == n)) { 399 spin_unlock(&sdp->sd_rindex_spin); 400 return NULL; 401 } 402 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 403 spin_unlock(&sdp->sd_rindex_spin); 404 return rgd; 405 } 406 407 void gfs2_free_clones(struct gfs2_rgrpd *rgd) 408 { 409 int x; 410 411 for (x = 0; x < rgd->rd_length; x++) { 412 struct gfs2_bitmap *bi = rgd->rd_bits + x; 413 kfree(bi->bi_clone); 414 bi->bi_clone = NULL; 415 } 416 } 417 418 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) 419 { 420 struct rb_node *n; 421 struct gfs2_rgrpd *rgd; 422 struct gfs2_glock *gl; 423 424 while ((n = rb_first(&sdp->sd_rindex_tree))) { 425 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 426 gl = rgd->rd_gl; 427 428 rb_erase(n, &sdp->sd_rindex_tree); 429 430 if (gl) { 431 spin_lock(&gl->gl_spin); 432 gl->gl_object = NULL; 433 spin_unlock(&gl->gl_spin); 434 gfs2_glock_add_to_lru(gl); 435 gfs2_glock_put(gl); 436 } 437 438 gfs2_free_clones(rgd); 439 kfree(rgd->rd_bits); 440 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 441 } 442 } 443 444 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd) 445 { 446 printk(KERN_INFO " ri_addr = %llu\n", (unsigned long long)rgd->rd_addr); 447 printk(KERN_INFO " ri_length = %u\n", rgd->rd_length); 448 printk(KERN_INFO " ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0); 449 printk(KERN_INFO " ri_data = %u\n", rgd->rd_data); 450 printk(KERN_INFO " ri_bitbytes = %u\n", rgd->rd_bitbytes); 451 } 452 453 /** 454 * gfs2_compute_bitstructs - Compute the bitmap sizes 455 * @rgd: The resource group descriptor 456 * 457 * Calculates bitmap descriptors, one for each block that contains bitmap data 458 * 459 * Returns: errno 460 */ 461 462 static int compute_bitstructs(struct gfs2_rgrpd *rgd) 463 { 464 struct gfs2_sbd *sdp = rgd->rd_sbd; 465 struct gfs2_bitmap *bi; 466 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ 467 u32 bytes_left, bytes; 468 int x; 469 470 if (!length) 471 return -EINVAL; 472 473 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); 474 if (!rgd->rd_bits) 475 return -ENOMEM; 476 477 bytes_left = rgd->rd_bitbytes; 478 479 for (x = 0; x < length; x++) { 480 bi = rgd->rd_bits + x; 481 482 bi->bi_flags = 0; 483 /* small rgrp; bitmap stored completely in header block */ 484 if (length == 1) { 485 bytes = bytes_left; 486 bi->bi_offset = sizeof(struct gfs2_rgrp); 487 bi->bi_start = 0; 488 bi->bi_len = bytes; 489 /* header block */ 490 } else if (x == 0) { 491 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); 492 bi->bi_offset = sizeof(struct gfs2_rgrp); 493 bi->bi_start = 0; 494 bi->bi_len = bytes; 495 /* last block */ 496 } else if (x + 1 == length) { 497 bytes = bytes_left; 498 bi->bi_offset = sizeof(struct gfs2_meta_header); 499 bi->bi_start = rgd->rd_bitbytes - bytes_left; 500 bi->bi_len = bytes; 501 /* other blocks */ 502 } else { 503 bytes = sdp->sd_sb.sb_bsize - 504 sizeof(struct gfs2_meta_header); 505 bi->bi_offset = sizeof(struct gfs2_meta_header); 506 bi->bi_start = rgd->rd_bitbytes - bytes_left; 507 bi->bi_len = bytes; 508 } 509 510 bytes_left -= bytes; 511 } 512 513 if (bytes_left) { 514 gfs2_consist_rgrpd(rgd); 515 return -EIO; 516 } 517 bi = rgd->rd_bits + (length - 1); 518 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) { 519 if (gfs2_consist_rgrpd(rgd)) { 520 gfs2_rindex_print(rgd); 521 fs_err(sdp, "start=%u len=%u offset=%u\n", 522 bi->bi_start, bi->bi_len, bi->bi_offset); 523 } 524 return -EIO; 525 } 526 527 return 0; 528 } 529 530 /** 531 * gfs2_ri_total - Total up the file system space, according to the rindex. 532 * 533 */ 534 u64 gfs2_ri_total(struct gfs2_sbd *sdp) 535 { 536 u64 total_data = 0; 537 struct inode *inode = sdp->sd_rindex; 538 struct gfs2_inode *ip = GFS2_I(inode); 539 char buf[sizeof(struct gfs2_rindex)]; 540 struct file_ra_state ra_state; 541 int error, rgrps; 542 543 file_ra_state_init(&ra_state, inode->i_mapping); 544 for (rgrps = 0;; rgrps++) { 545 loff_t pos = rgrps * sizeof(struct gfs2_rindex); 546 547 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) 548 break; 549 error = gfs2_internal_read(ip, &ra_state, buf, &pos, 550 sizeof(struct gfs2_rindex)); 551 if (error != sizeof(struct gfs2_rindex)) 552 break; 553 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); 554 } 555 return total_data; 556 } 557 558 static int rgd_insert(struct gfs2_rgrpd *rgd) 559 { 560 struct gfs2_sbd *sdp = rgd->rd_sbd; 561 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; 562 563 /* Figure out where to put new node */ 564 while (*newn) { 565 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, 566 rd_node); 567 568 parent = *newn; 569 if (rgd->rd_addr < cur->rd_addr) 570 newn = &((*newn)->rb_left); 571 else if (rgd->rd_addr > cur->rd_addr) 572 newn = &((*newn)->rb_right); 573 else 574 return -EEXIST; 575 } 576 577 rb_link_node(&rgd->rd_node, parent, newn); 578 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); 579 sdp->sd_rgrps++; 580 return 0; 581 } 582 583 /** 584 * read_rindex_entry - Pull in a new resource index entry from the disk 585 * @gl: The glock covering the rindex inode 586 * 587 * Returns: 0 on success, > 0 on EOF, error code otherwise 588 */ 589 590 static int read_rindex_entry(struct gfs2_inode *ip, 591 struct file_ra_state *ra_state) 592 { 593 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 594 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); 595 struct gfs2_rindex buf; 596 int error; 597 struct gfs2_rgrpd *rgd; 598 599 if (pos >= i_size_read(&ip->i_inode)) 600 return 1; 601 602 error = gfs2_internal_read(ip, ra_state, (char *)&buf, &pos, 603 sizeof(struct gfs2_rindex)); 604 605 if (error != sizeof(struct gfs2_rindex)) 606 return (error == 0) ? 1 : error; 607 608 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); 609 error = -ENOMEM; 610 if (!rgd) 611 return error; 612 613 rgd->rd_sbd = sdp; 614 rgd->rd_addr = be64_to_cpu(buf.ri_addr); 615 rgd->rd_length = be32_to_cpu(buf.ri_length); 616 rgd->rd_data0 = be64_to_cpu(buf.ri_data0); 617 rgd->rd_data = be32_to_cpu(buf.ri_data); 618 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); 619 620 error = compute_bitstructs(rgd); 621 if (error) 622 goto fail; 623 624 error = gfs2_glock_get(sdp, rgd->rd_addr, 625 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); 626 if (error) 627 goto fail; 628 629 rgd->rd_gl->gl_object = rgd; 630 rgd->rd_flags &= ~GFS2_RDF_UPTODATE; 631 if (rgd->rd_data > sdp->sd_max_rg_data) 632 sdp->sd_max_rg_data = rgd->rd_data; 633 spin_lock(&sdp->sd_rindex_spin); 634 error = rgd_insert(rgd); 635 spin_unlock(&sdp->sd_rindex_spin); 636 if (!error) 637 return 0; 638 639 error = 0; /* someone else read in the rgrp; free it and ignore it */ 640 gfs2_glock_put(rgd->rd_gl); 641 642 fail: 643 kfree(rgd->rd_bits); 644 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 645 return error; 646 } 647 648 /** 649 * gfs2_ri_update - Pull in a new resource index from the disk 650 * @ip: pointer to the rindex inode 651 * 652 * Returns: 0 on successful update, error code otherwise 653 */ 654 655 static int gfs2_ri_update(struct gfs2_inode *ip) 656 { 657 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 658 struct inode *inode = &ip->i_inode; 659 struct file_ra_state ra_state; 660 int error; 661 662 file_ra_state_init(&ra_state, inode->i_mapping); 663 do { 664 error = read_rindex_entry(ip, &ra_state); 665 } while (error == 0); 666 667 if (error < 0) 668 return error; 669 670 sdp->sd_rindex_uptodate = 1; 671 return 0; 672 } 673 674 /** 675 * gfs2_rindex_update - Update the rindex if required 676 * @sdp: The GFS2 superblock 677 * 678 * We grab a lock on the rindex inode to make sure that it doesn't 679 * change whilst we are performing an operation. We keep this lock 680 * for quite long periods of time compared to other locks. This 681 * doesn't matter, since it is shared and it is very, very rarely 682 * accessed in the exclusive mode (i.e. only when expanding the filesystem). 683 * 684 * This makes sure that we're using the latest copy of the resource index 685 * special file, which might have been updated if someone expanded the 686 * filesystem (via gfs2_grow utility), which adds new resource groups. 687 * 688 * Returns: 0 on succeess, error code otherwise 689 */ 690 691 int gfs2_rindex_update(struct gfs2_sbd *sdp) 692 { 693 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); 694 struct gfs2_glock *gl = ip->i_gl; 695 struct gfs2_holder ri_gh; 696 int error = 0; 697 int unlock_required = 0; 698 699 /* Read new copy from disk if we don't have the latest */ 700 if (!sdp->sd_rindex_uptodate) { 701 if (!gfs2_glock_is_locked_by_me(gl)) { 702 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); 703 if (error) 704 return error; 705 unlock_required = 1; 706 } 707 if (!sdp->sd_rindex_uptodate) 708 error = gfs2_ri_update(ip); 709 if (unlock_required) 710 gfs2_glock_dq_uninit(&ri_gh); 711 } 712 713 return error; 714 } 715 716 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) 717 { 718 const struct gfs2_rgrp *str = buf; 719 u32 rg_flags; 720 721 rg_flags = be32_to_cpu(str->rg_flags); 722 rg_flags &= ~GFS2_RDF_MASK; 723 rgd->rd_flags &= GFS2_RDF_MASK; 724 rgd->rd_flags |= rg_flags; 725 rgd->rd_free = be32_to_cpu(str->rg_free); 726 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); 727 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); 728 } 729 730 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) 731 { 732 struct gfs2_rgrp *str = buf; 733 734 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); 735 str->rg_free = cpu_to_be32(rgd->rd_free); 736 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); 737 str->__pad = cpu_to_be32(0); 738 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); 739 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); 740 } 741 742 /** 743 * gfs2_rgrp_go_lock - Read in a RG's header and bitmaps 744 * @rgd: the struct gfs2_rgrpd describing the RG to read in 745 * 746 * Read in all of a Resource Group's header and bitmap blocks. 747 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps. 748 * 749 * Returns: errno 750 */ 751 752 int gfs2_rgrp_go_lock(struct gfs2_holder *gh) 753 { 754 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 755 struct gfs2_sbd *sdp = rgd->rd_sbd; 756 struct gfs2_glock *gl = rgd->rd_gl; 757 unsigned int length = rgd->rd_length; 758 struct gfs2_bitmap *bi; 759 unsigned int x, y; 760 int error; 761 762 for (x = 0; x < length; x++) { 763 bi = rgd->rd_bits + x; 764 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh); 765 if (error) 766 goto fail; 767 } 768 769 for (y = length; y--;) { 770 bi = rgd->rd_bits + y; 771 error = gfs2_meta_wait(sdp, bi->bi_bh); 772 if (error) 773 goto fail; 774 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : 775 GFS2_METATYPE_RG)) { 776 error = -EIO; 777 goto fail; 778 } 779 } 780 781 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) { 782 for (x = 0; x < length; x++) 783 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags); 784 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); 785 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 786 rgd->rd_free_clone = rgd->rd_free; 787 } 788 789 return 0; 790 791 fail: 792 while (x--) { 793 bi = rgd->rd_bits + x; 794 brelse(bi->bi_bh); 795 bi->bi_bh = NULL; 796 gfs2_assert_warn(sdp, !bi->bi_clone); 797 } 798 799 return error; 800 } 801 802 /** 803 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get() 804 * @rgd: the struct gfs2_rgrpd describing the RG to read in 805 * 806 */ 807 808 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh) 809 { 810 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 811 int x, length = rgd->rd_length; 812 813 for (x = 0; x < length; x++) { 814 struct gfs2_bitmap *bi = rgd->rd_bits + x; 815 brelse(bi->bi_bh); 816 bi->bi_bh = NULL; 817 } 818 819 } 820 821 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, 822 struct buffer_head *bh, 823 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed) 824 { 825 struct super_block *sb = sdp->sd_vfs; 826 struct block_device *bdev = sb->s_bdev; 827 const unsigned int sects_per_blk = sdp->sd_sb.sb_bsize / 828 bdev_logical_block_size(sb->s_bdev); 829 u64 blk; 830 sector_t start = 0; 831 sector_t nr_sects = 0; 832 int rv; 833 unsigned int x; 834 u32 trimmed = 0; 835 u8 diff; 836 837 for (x = 0; x < bi->bi_len; x++) { 838 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data; 839 clone += bi->bi_offset; 840 clone += x; 841 if (bh) { 842 const u8 *orig = bh->b_data + bi->bi_offset + x; 843 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); 844 } else { 845 diff = ~(*clone | (*clone >> 1)); 846 } 847 diff &= 0x55; 848 if (diff == 0) 849 continue; 850 blk = offset + ((bi->bi_start + x) * GFS2_NBBY); 851 blk *= sects_per_blk; /* convert to sectors */ 852 while(diff) { 853 if (diff & 1) { 854 if (nr_sects == 0) 855 goto start_new_extent; 856 if ((start + nr_sects) != blk) { 857 if (nr_sects >= minlen) { 858 rv = blkdev_issue_discard(bdev, 859 start, nr_sects, 860 GFP_NOFS, 0); 861 if (rv) 862 goto fail; 863 trimmed += nr_sects; 864 } 865 nr_sects = 0; 866 start_new_extent: 867 start = blk; 868 } 869 nr_sects += sects_per_blk; 870 } 871 diff >>= 2; 872 blk += sects_per_blk; 873 } 874 } 875 if (nr_sects >= minlen) { 876 rv = blkdev_issue_discard(bdev, start, nr_sects, GFP_NOFS, 0); 877 if (rv) 878 goto fail; 879 trimmed += nr_sects; 880 } 881 if (ptrimmed) 882 *ptrimmed = trimmed; 883 return 0; 884 885 fail: 886 if (sdp->sd_args.ar_discard) 887 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv); 888 sdp->sd_args.ar_discard = 0; 889 return -EIO; 890 } 891 892 /** 893 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem 894 * @filp: Any file on the filesystem 895 * @argp: Pointer to the arguments (also used to pass result) 896 * 897 * Returns: 0 on success, otherwise error code 898 */ 899 900 int gfs2_fitrim(struct file *filp, void __user *argp) 901 { 902 struct inode *inode = filp->f_dentry->d_inode; 903 struct gfs2_sbd *sdp = GFS2_SB(inode); 904 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev); 905 struct buffer_head *bh; 906 struct gfs2_rgrpd *rgd; 907 struct gfs2_rgrpd *rgd_end; 908 struct gfs2_holder gh; 909 struct fstrim_range r; 910 int ret = 0; 911 u64 amt; 912 u64 trimmed = 0; 913 unsigned int x; 914 915 if (!capable(CAP_SYS_ADMIN)) 916 return -EPERM; 917 918 if (!blk_queue_discard(q)) 919 return -EOPNOTSUPP; 920 921 if (argp == NULL) { 922 r.start = 0; 923 r.len = ULLONG_MAX; 924 r.minlen = 0; 925 } else if (copy_from_user(&r, argp, sizeof(r))) 926 return -EFAULT; 927 928 ret = gfs2_rindex_update(sdp); 929 if (ret) 930 return ret; 931 932 rgd = gfs2_blk2rgrpd(sdp, r.start, 0); 933 rgd_end = gfs2_blk2rgrpd(sdp, r.start + r.len, 0); 934 935 while (1) { 936 937 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh); 938 if (ret) 939 goto out; 940 941 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) { 942 /* Trim each bitmap in the rgrp */ 943 for (x = 0; x < rgd->rd_length; x++) { 944 struct gfs2_bitmap *bi = rgd->rd_bits + x; 945 ret = gfs2_rgrp_send_discards(sdp, rgd->rd_data0, NULL, bi, r.minlen, &amt); 946 if (ret) { 947 gfs2_glock_dq_uninit(&gh); 948 goto out; 949 } 950 trimmed += amt; 951 } 952 953 /* Mark rgrp as having been trimmed */ 954 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0); 955 if (ret == 0) { 956 bh = rgd->rd_bits[0].bi_bh; 957 rgd->rd_flags |= GFS2_RGF_TRIMMED; 958 gfs2_trans_add_bh(rgd->rd_gl, bh, 1); 959 gfs2_rgrp_out(rgd, bh->b_data); 960 gfs2_trans_end(sdp); 961 } 962 } 963 gfs2_glock_dq_uninit(&gh); 964 965 if (rgd == rgd_end) 966 break; 967 968 rgd = gfs2_rgrpd_get_next(rgd); 969 } 970 971 out: 972 r.len = trimmed << 9; 973 if (argp && copy_to_user(argp, &r, sizeof(r))) 974 return -EFAULT; 975 976 return ret; 977 } 978 979 /** 980 * gfs2_qadata_get - get the struct gfs2_qadata structure for an inode 981 * @ip: the incore GFS2 inode structure 982 * 983 * Returns: the struct gfs2_qadata 984 */ 985 986 struct gfs2_qadata *gfs2_qadata_get(struct gfs2_inode *ip) 987 { 988 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 989 int error; 990 BUG_ON(ip->i_qadata != NULL); 991 ip->i_qadata = kzalloc(sizeof(struct gfs2_qadata), GFP_NOFS); 992 error = gfs2_rindex_update(sdp); 993 if (error) 994 fs_warn(sdp, "rindex update returns %d\n", error); 995 return ip->i_qadata; 996 } 997 998 /** 999 * gfs2_blkrsv_get - get the struct gfs2_blkreserv structure for an inode 1000 * @ip: the incore GFS2 inode structure 1001 * 1002 * Returns: the struct gfs2_qadata 1003 */ 1004 1005 static struct gfs2_blkreserv *gfs2_blkrsv_get(struct gfs2_inode *ip) 1006 { 1007 BUG_ON(ip->i_res != NULL); 1008 ip->i_res = kzalloc(sizeof(struct gfs2_blkreserv), GFP_NOFS); 1009 return ip->i_res; 1010 } 1011 1012 /** 1013 * try_rgrp_fit - See if a given reservation will fit in a given RG 1014 * @rgd: the RG data 1015 * @ip: the inode 1016 * 1017 * If there's room for the requested blocks to be allocated from the RG: 1018 * 1019 * Returns: 1 on success (it fits), 0 on failure (it doesn't fit) 1020 */ 1021 1022 static int try_rgrp_fit(const struct gfs2_rgrpd *rgd, const struct gfs2_inode *ip) 1023 { 1024 const struct gfs2_blkreserv *rs = ip->i_res; 1025 1026 if (rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR)) 1027 return 0; 1028 if (rgd->rd_free_clone >= rs->rs_requested) 1029 return 1; 1030 return 0; 1031 } 1032 1033 static inline u32 gfs2_bi2rgd_blk(struct gfs2_bitmap *bi, u32 blk) 1034 { 1035 return (bi->bi_start * GFS2_NBBY) + blk; 1036 } 1037 1038 /** 1039 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes 1040 * @rgd: The rgrp 1041 * 1042 * Returns: 0 if no error 1043 * The inode, if one has been found, in inode. 1044 */ 1045 1046 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) 1047 { 1048 u32 goal = 0, block; 1049 u64 no_addr; 1050 struct gfs2_sbd *sdp = rgd->rd_sbd; 1051 struct gfs2_glock *gl; 1052 struct gfs2_inode *ip; 1053 int error; 1054 int found = 0; 1055 struct gfs2_bitmap *bi; 1056 1057 while (goal < rgd->rd_data) { 1058 down_write(&sdp->sd_log_flush_lock); 1059 block = rgblk_search(rgd, goal, GFS2_BLKST_UNLINKED, &bi); 1060 up_write(&sdp->sd_log_flush_lock); 1061 if (block == BFITNOENT) 1062 break; 1063 1064 block = gfs2_bi2rgd_blk(bi, block); 1065 /* rgblk_search can return a block < goal, so we need to 1066 keep it marching forward. */ 1067 no_addr = block + rgd->rd_data0; 1068 goal = max(block + 1, goal + 1); 1069 if (*last_unlinked != NO_BLOCK && no_addr <= *last_unlinked) 1070 continue; 1071 if (no_addr == skip) 1072 continue; 1073 *last_unlinked = no_addr; 1074 1075 error = gfs2_glock_get(sdp, no_addr, &gfs2_inode_glops, CREATE, &gl); 1076 if (error) 1077 continue; 1078 1079 /* If the inode is already in cache, we can ignore it here 1080 * because the existing inode disposal code will deal with 1081 * it when all refs have gone away. Accessing gl_object like 1082 * this is not safe in general. Here it is ok because we do 1083 * not dereference the pointer, and we only need an approx 1084 * answer to whether it is NULL or not. 1085 */ 1086 ip = gl->gl_object; 1087 1088 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0) 1089 gfs2_glock_put(gl); 1090 else 1091 found++; 1092 1093 /* Limit reclaim to sensible number of tasks */ 1094 if (found > NR_CPUS) 1095 return; 1096 } 1097 1098 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1099 return; 1100 } 1101 1102 /** 1103 * get_local_rgrp - Choose and lock a rgrp for allocation 1104 * @ip: the inode to reserve space for 1105 * @rgp: the chosen and locked rgrp 1106 * 1107 * Try to acquire rgrp in way which avoids contending with others. 1108 * 1109 * Returns: errno 1110 */ 1111 1112 static int get_local_rgrp(struct gfs2_inode *ip, u64 *last_unlinked) 1113 { 1114 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1115 struct gfs2_rgrpd *rgd, *begin = NULL; 1116 struct gfs2_blkreserv *rs = ip->i_res; 1117 int error, rg_locked, flags = LM_FLAG_TRY; 1118 int loops = 0; 1119 1120 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) 1121 rgd = begin = ip->i_rgd; 1122 else 1123 rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1); 1124 1125 if (rgd == NULL) 1126 return -EBADSLT; 1127 1128 while (loops < 3) { 1129 rg_locked = 0; 1130 1131 if (gfs2_glock_is_locked_by_me(rgd->rd_gl)) { 1132 rg_locked = 1; 1133 error = 0; 1134 } else { 1135 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 1136 flags, &rs->rs_rgd_gh); 1137 } 1138 switch (error) { 1139 case 0: 1140 if (try_rgrp_fit(rgd, ip)) { 1141 ip->i_rgd = rgd; 1142 return 0; 1143 } 1144 if (rgd->rd_flags & GFS2_RDF_CHECK) 1145 try_rgrp_unlink(rgd, last_unlinked, ip->i_no_addr); 1146 if (!rg_locked) 1147 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 1148 /* fall through */ 1149 case GLR_TRYFAILED: 1150 rgd = gfs2_rgrpd_get_next(rgd); 1151 if (rgd == begin) { 1152 flags = 0; 1153 loops++; 1154 } 1155 break; 1156 default: 1157 return error; 1158 } 1159 } 1160 1161 return -ENOSPC; 1162 } 1163 1164 static void gfs2_blkrsv_put(struct gfs2_inode *ip) 1165 { 1166 BUG_ON(ip->i_res == NULL); 1167 kfree(ip->i_res); 1168 ip->i_res = NULL; 1169 } 1170 1171 /** 1172 * gfs2_inplace_reserve - Reserve space in the filesystem 1173 * @ip: the inode to reserve space for 1174 * 1175 * Returns: errno 1176 */ 1177 1178 int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested) 1179 { 1180 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1181 struct gfs2_blkreserv *rs; 1182 int error = 0; 1183 u64 last_unlinked = NO_BLOCK; 1184 int tries = 0; 1185 1186 rs = gfs2_blkrsv_get(ip); 1187 if (!rs) 1188 return -ENOMEM; 1189 1190 rs->rs_requested = requested; 1191 if (gfs2_assert_warn(sdp, requested)) { 1192 error = -EINVAL; 1193 goto out; 1194 } 1195 1196 do { 1197 error = get_local_rgrp(ip, &last_unlinked); 1198 if (error != -ENOSPC) 1199 break; 1200 /* Check that fs hasn't grown if writing to rindex */ 1201 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { 1202 error = gfs2_ri_update(ip); 1203 if (error) 1204 break; 1205 continue; 1206 } 1207 /* Flushing the log may release space */ 1208 gfs2_log_flush(sdp, NULL); 1209 } while (tries++ < 3); 1210 1211 out: 1212 if (error) 1213 gfs2_blkrsv_put(ip); 1214 return error; 1215 } 1216 1217 /** 1218 * gfs2_inplace_release - release an inplace reservation 1219 * @ip: the inode the reservation was taken out on 1220 * 1221 * Release a reservation made by gfs2_inplace_reserve(). 1222 */ 1223 1224 void gfs2_inplace_release(struct gfs2_inode *ip) 1225 { 1226 struct gfs2_blkreserv *rs = ip->i_res; 1227 1228 if (rs->rs_rgd_gh.gh_gl) 1229 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 1230 gfs2_blkrsv_put(ip); 1231 } 1232 1233 /** 1234 * gfs2_get_block_type - Check a block in a RG is of given type 1235 * @rgd: the resource group holding the block 1236 * @block: the block number 1237 * 1238 * Returns: The block type (GFS2_BLKST_*) 1239 */ 1240 1241 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block) 1242 { 1243 struct gfs2_bitmap *bi = NULL; 1244 u32 length, rgrp_block, buf_block; 1245 unsigned int buf; 1246 unsigned char type; 1247 1248 length = rgd->rd_length; 1249 rgrp_block = block - rgd->rd_data0; 1250 1251 for (buf = 0; buf < length; buf++) { 1252 bi = rgd->rd_bits + buf; 1253 if (rgrp_block < (bi->bi_start + bi->bi_len) * GFS2_NBBY) 1254 break; 1255 } 1256 1257 gfs2_assert(rgd->rd_sbd, buf < length); 1258 buf_block = rgrp_block - bi->bi_start * GFS2_NBBY; 1259 1260 type = gfs2_testbit(rgd, bi->bi_bh->b_data + bi->bi_offset, 1261 bi->bi_len, buf_block); 1262 1263 return type; 1264 } 1265 1266 /** 1267 * rgblk_search - find a block in @state 1268 * @rgd: the resource group descriptor 1269 * @goal: the goal block within the RG (start here to search for avail block) 1270 * @state: GFS2_BLKST_XXX the before-allocation state to find 1271 * @dinode: TRUE if the first block we allocate is for a dinode 1272 * @rbi: address of the pointer to the bitmap containing the block found 1273 * 1274 * Walk rgrp's bitmap to find bits that represent a block in @state. 1275 * 1276 * This function never fails, because we wouldn't call it unless we 1277 * know (from reservation results, etc.) that a block is available. 1278 * 1279 * Scope of @goal is just within rgrp, not the whole filesystem. 1280 * Scope of @returned block is just within bitmap, not the whole filesystem. 1281 * 1282 * Returns: the block number found relative to the bitmap rbi 1283 */ 1284 1285 static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal, 1286 unsigned char state, 1287 struct gfs2_bitmap **rbi) 1288 { 1289 struct gfs2_bitmap *bi = NULL; 1290 const u32 length = rgd->rd_length; 1291 u32 blk = BFITNOENT; 1292 unsigned int buf, x; 1293 const u8 *buffer = NULL; 1294 1295 *rbi = NULL; 1296 /* Find bitmap block that contains bits for goal block */ 1297 for (buf = 0; buf < length; buf++) { 1298 bi = rgd->rd_bits + buf; 1299 /* Convert scope of "goal" from rgrp-wide to within found bit block */ 1300 if (goal < (bi->bi_start + bi->bi_len) * GFS2_NBBY) { 1301 goal -= bi->bi_start * GFS2_NBBY; 1302 goto do_search; 1303 } 1304 } 1305 buf = 0; 1306 goal = 0; 1307 1308 do_search: 1309 /* Search (up to entire) bitmap in this rgrp for allocatable block. 1310 "x <= length", instead of "x < length", because we typically start 1311 the search in the middle of a bit block, but if we can't find an 1312 allocatable block anywhere else, we want to be able wrap around and 1313 search in the first part of our first-searched bit block. */ 1314 for (x = 0; x <= length; x++) { 1315 bi = rgd->rd_bits + buf; 1316 1317 if (test_bit(GBF_FULL, &bi->bi_flags) && 1318 (state == GFS2_BLKST_FREE)) 1319 goto skip; 1320 1321 /* The GFS2_BLKST_UNLINKED state doesn't apply to the clone 1322 bitmaps, so we must search the originals for that. */ 1323 buffer = bi->bi_bh->b_data + bi->bi_offset; 1324 WARN_ON(!buffer_uptodate(bi->bi_bh)); 1325 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone) 1326 buffer = bi->bi_clone + bi->bi_offset; 1327 1328 blk = gfs2_bitfit(buffer, bi->bi_len, goal, state); 1329 if (blk != BFITNOENT) 1330 break; 1331 1332 if ((goal == 0) && (state == GFS2_BLKST_FREE)) 1333 set_bit(GBF_FULL, &bi->bi_flags); 1334 1335 /* Try next bitmap block (wrap back to rgrp header if at end) */ 1336 skip: 1337 buf++; 1338 buf %= length; 1339 goal = 0; 1340 } 1341 1342 if (blk != BFITNOENT) 1343 *rbi = bi; 1344 1345 return blk; 1346 } 1347 1348 /** 1349 * gfs2_alloc_extent - allocate an extent from a given bitmap 1350 * @rgd: the resource group descriptor 1351 * @bi: the bitmap within the rgrp 1352 * @blk: the block within the bitmap 1353 * @dinode: TRUE if the first block we allocate is for a dinode 1354 * @n: The extent length 1355 * 1356 * Add the found bitmap buffer to the transaction. 1357 * Set the found bits to @new_state to change block's allocation state. 1358 * Returns: starting block number of the extent (fs scope) 1359 */ 1360 static u64 gfs2_alloc_extent(struct gfs2_rgrpd *rgd, struct gfs2_bitmap *bi, 1361 u32 blk, bool dinode, unsigned int *n) 1362 { 1363 const unsigned int elen = *n; 1364 u32 goal; 1365 const u8 *buffer = NULL; 1366 1367 *n = 0; 1368 buffer = bi->bi_bh->b_data + bi->bi_offset; 1369 gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1); 1370 gfs2_setbit(rgd, bi->bi_bh->b_data, bi->bi_clone, bi->bi_offset, 1371 bi, blk, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 1372 (*n)++; 1373 goal = blk; 1374 while (*n < elen) { 1375 goal++; 1376 if (goal >= (bi->bi_len * GFS2_NBBY)) 1377 break; 1378 if (gfs2_testbit(rgd, buffer, bi->bi_len, goal) != 1379 GFS2_BLKST_FREE) 1380 break; 1381 gfs2_setbit(rgd, bi->bi_bh->b_data, bi->bi_clone, bi->bi_offset, 1382 bi, goal, GFS2_BLKST_USED); 1383 (*n)++; 1384 } 1385 blk = gfs2_bi2rgd_blk(bi, blk); 1386 rgd->rd_last_alloc = blk + *n - 1; 1387 return rgd->rd_data0 + blk; 1388 } 1389 1390 /** 1391 * rgblk_free - Change alloc state of given block(s) 1392 * @sdp: the filesystem 1393 * @bstart: the start of a run of blocks to free 1394 * @blen: the length of the block run (all must lie within ONE RG!) 1395 * @new_state: GFS2_BLKST_XXX the after-allocation block state 1396 * 1397 * Returns: Resource group containing the block(s) 1398 */ 1399 1400 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart, 1401 u32 blen, unsigned char new_state) 1402 { 1403 struct gfs2_rgrpd *rgd; 1404 struct gfs2_bitmap *bi = NULL; 1405 u32 length, rgrp_blk, buf_blk; 1406 unsigned int buf; 1407 1408 rgd = gfs2_blk2rgrpd(sdp, bstart, 1); 1409 if (!rgd) { 1410 if (gfs2_consist(sdp)) 1411 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart); 1412 return NULL; 1413 } 1414 1415 length = rgd->rd_length; 1416 1417 rgrp_blk = bstart - rgd->rd_data0; 1418 1419 while (blen--) { 1420 for (buf = 0; buf < length; buf++) { 1421 bi = rgd->rd_bits + buf; 1422 if (rgrp_blk < (bi->bi_start + bi->bi_len) * GFS2_NBBY) 1423 break; 1424 } 1425 1426 gfs2_assert(rgd->rd_sbd, buf < length); 1427 1428 buf_blk = rgrp_blk - bi->bi_start * GFS2_NBBY; 1429 rgrp_blk++; 1430 1431 if (!bi->bi_clone) { 1432 bi->bi_clone = kmalloc(bi->bi_bh->b_size, 1433 GFP_NOFS | __GFP_NOFAIL); 1434 memcpy(bi->bi_clone + bi->bi_offset, 1435 bi->bi_bh->b_data + bi->bi_offset, 1436 bi->bi_len); 1437 } 1438 gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1); 1439 gfs2_setbit(rgd, bi->bi_bh->b_data, NULL, bi->bi_offset, 1440 bi, buf_blk, new_state); 1441 } 1442 1443 return rgd; 1444 } 1445 1446 /** 1447 * gfs2_rgrp_dump - print out an rgrp 1448 * @seq: The iterator 1449 * @gl: The glock in question 1450 * 1451 */ 1452 1453 int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl) 1454 { 1455 const struct gfs2_rgrpd *rgd = gl->gl_object; 1456 if (rgd == NULL) 1457 return 0; 1458 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u\n", 1459 (unsigned long long)rgd->rd_addr, rgd->rd_flags, 1460 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes); 1461 return 0; 1462 } 1463 1464 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) 1465 { 1466 struct gfs2_sbd *sdp = rgd->rd_sbd; 1467 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", 1468 (unsigned long long)rgd->rd_addr); 1469 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); 1470 gfs2_rgrp_dump(NULL, rgd->rd_gl); 1471 rgd->rd_flags |= GFS2_RDF_ERROR; 1472 } 1473 1474 /** 1475 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode 1476 * @ip: the inode to allocate the block for 1477 * @bn: Used to return the starting block number 1478 * @ndata: requested number of blocks/extent length (value/result) 1479 * @dinode: 1 if we're allocating a dinode block, else 0 1480 * @generation: the generation number of the inode 1481 * 1482 * Returns: 0 or error 1483 */ 1484 1485 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks, 1486 bool dinode, u64 *generation) 1487 { 1488 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1489 struct buffer_head *dibh; 1490 struct gfs2_rgrpd *rgd; 1491 unsigned int ndata; 1492 u32 goal, blk; /* block, within the rgrp scope */ 1493 u64 block; /* block, within the file system scope */ 1494 int error; 1495 struct gfs2_bitmap *bi; 1496 1497 /* Only happens if there is a bug in gfs2, return something distinctive 1498 * to ensure that it is noticed. 1499 */ 1500 if (ip->i_res == NULL) 1501 return -ECANCELED; 1502 1503 rgd = ip->i_rgd; 1504 1505 if (!dinode && rgrp_contains_block(rgd, ip->i_goal)) 1506 goal = ip->i_goal - rgd->rd_data0; 1507 else 1508 goal = rgd->rd_last_alloc; 1509 1510 blk = rgblk_search(rgd, goal, GFS2_BLKST_FREE, &bi); 1511 1512 /* Since all blocks are reserved in advance, this shouldn't happen */ 1513 if (blk == BFITNOENT) 1514 goto rgrp_error; 1515 1516 block = gfs2_alloc_extent(rgd, bi, blk, dinode, nblocks); 1517 ndata = *nblocks; 1518 if (dinode) 1519 ndata--; 1520 1521 if (!dinode) { 1522 ip->i_goal = block + ndata - 1; 1523 error = gfs2_meta_inode_buffer(ip, &dibh); 1524 if (error == 0) { 1525 struct gfs2_dinode *di = 1526 (struct gfs2_dinode *)dibh->b_data; 1527 gfs2_trans_add_bh(ip->i_gl, dibh, 1); 1528 di->di_goal_meta = di->di_goal_data = 1529 cpu_to_be64(ip->i_goal); 1530 brelse(dibh); 1531 } 1532 } 1533 if (rgd->rd_free < *nblocks) 1534 goto rgrp_error; 1535 1536 rgd->rd_free -= *nblocks; 1537 if (dinode) { 1538 rgd->rd_dinodes++; 1539 *generation = rgd->rd_igeneration++; 1540 if (*generation == 0) 1541 *generation = rgd->rd_igeneration++; 1542 } 1543 1544 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); 1545 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 1546 1547 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0); 1548 if (dinode) 1549 gfs2_trans_add_unrevoke(sdp, block, 1); 1550 1551 /* 1552 * This needs reviewing to see why we cannot do the quota change 1553 * at this point in the dinode case. 1554 */ 1555 if (ndata) 1556 gfs2_quota_change(ip, ndata, ip->i_inode.i_uid, 1557 ip->i_inode.i_gid); 1558 1559 rgd->rd_free_clone -= *nblocks; 1560 trace_gfs2_block_alloc(ip, block, *nblocks, 1561 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 1562 *bn = block; 1563 return 0; 1564 1565 rgrp_error: 1566 gfs2_rgrp_error(rgd); 1567 return -EIO; 1568 } 1569 1570 /** 1571 * __gfs2_free_blocks - free a contiguous run of block(s) 1572 * @ip: the inode these blocks are being freed from 1573 * @bstart: first block of a run of contiguous blocks 1574 * @blen: the length of the block run 1575 * @meta: 1 if the blocks represent metadata 1576 * 1577 */ 1578 1579 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta) 1580 { 1581 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1582 struct gfs2_rgrpd *rgd; 1583 1584 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE); 1585 if (!rgd) 1586 return; 1587 trace_gfs2_block_alloc(ip, bstart, blen, GFS2_BLKST_FREE); 1588 rgd->rd_free += blen; 1589 rgd->rd_flags &= ~GFS2_RGF_TRIMMED; 1590 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); 1591 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 1592 1593 /* Directories keep their data in the metadata address space */ 1594 if (meta || ip->i_depth) 1595 gfs2_meta_wipe(ip, bstart, blen); 1596 } 1597 1598 /** 1599 * gfs2_free_meta - free a contiguous run of data block(s) 1600 * @ip: the inode these blocks are being freed from 1601 * @bstart: first block of a run of contiguous blocks 1602 * @blen: the length of the block run 1603 * 1604 */ 1605 1606 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen) 1607 { 1608 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1609 1610 __gfs2_free_blocks(ip, bstart, blen, 1); 1611 gfs2_statfs_change(sdp, 0, +blen, 0); 1612 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); 1613 } 1614 1615 void gfs2_unlink_di(struct inode *inode) 1616 { 1617 struct gfs2_inode *ip = GFS2_I(inode); 1618 struct gfs2_sbd *sdp = GFS2_SB(inode); 1619 struct gfs2_rgrpd *rgd; 1620 u64 blkno = ip->i_no_addr; 1621 1622 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED); 1623 if (!rgd) 1624 return; 1625 trace_gfs2_block_alloc(ip, blkno, 1, GFS2_BLKST_UNLINKED); 1626 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); 1627 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 1628 } 1629 1630 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno) 1631 { 1632 struct gfs2_sbd *sdp = rgd->rd_sbd; 1633 struct gfs2_rgrpd *tmp_rgd; 1634 1635 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE); 1636 if (!tmp_rgd) 1637 return; 1638 gfs2_assert_withdraw(sdp, rgd == tmp_rgd); 1639 1640 if (!rgd->rd_dinodes) 1641 gfs2_consist_rgrpd(rgd); 1642 rgd->rd_dinodes--; 1643 rgd->rd_free++; 1644 1645 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); 1646 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 1647 1648 gfs2_statfs_change(sdp, 0, +1, -1); 1649 } 1650 1651 1652 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) 1653 { 1654 gfs2_free_uninit_di(rgd, ip->i_no_addr); 1655 trace_gfs2_block_alloc(ip, ip->i_no_addr, 1, GFS2_BLKST_FREE); 1656 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); 1657 gfs2_meta_wipe(ip, ip->i_no_addr, 1); 1658 } 1659 1660 /** 1661 * gfs2_check_blk_type - Check the type of a block 1662 * @sdp: The superblock 1663 * @no_addr: The block number to check 1664 * @type: The block type we are looking for 1665 * 1666 * Returns: 0 if the block type matches the expected type 1667 * -ESTALE if it doesn't match 1668 * or -ve errno if something went wrong while checking 1669 */ 1670 1671 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) 1672 { 1673 struct gfs2_rgrpd *rgd; 1674 struct gfs2_holder rgd_gh; 1675 int error = -EINVAL; 1676 1677 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1); 1678 if (!rgd) 1679 goto fail; 1680 1681 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); 1682 if (error) 1683 goto fail; 1684 1685 if (gfs2_get_block_type(rgd, no_addr) != type) 1686 error = -ESTALE; 1687 1688 gfs2_glock_dq_uninit(&rgd_gh); 1689 fail: 1690 return error; 1691 } 1692 1693 /** 1694 * gfs2_rlist_add - add a RG to a list of RGs 1695 * @ip: the inode 1696 * @rlist: the list of resource groups 1697 * @block: the block 1698 * 1699 * Figure out what RG a block belongs to and add that RG to the list 1700 * 1701 * FIXME: Don't use NOFAIL 1702 * 1703 */ 1704 1705 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, 1706 u64 block) 1707 { 1708 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1709 struct gfs2_rgrpd *rgd; 1710 struct gfs2_rgrpd **tmp; 1711 unsigned int new_space; 1712 unsigned int x; 1713 1714 if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) 1715 return; 1716 1717 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block)) 1718 rgd = ip->i_rgd; 1719 else 1720 rgd = gfs2_blk2rgrpd(sdp, block, 1); 1721 if (!rgd) { 1722 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block); 1723 return; 1724 } 1725 ip->i_rgd = rgd; 1726 1727 for (x = 0; x < rlist->rl_rgrps; x++) 1728 if (rlist->rl_rgd[x] == rgd) 1729 return; 1730 1731 if (rlist->rl_rgrps == rlist->rl_space) { 1732 new_space = rlist->rl_space + 10; 1733 1734 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), 1735 GFP_NOFS | __GFP_NOFAIL); 1736 1737 if (rlist->rl_rgd) { 1738 memcpy(tmp, rlist->rl_rgd, 1739 rlist->rl_space * sizeof(struct gfs2_rgrpd *)); 1740 kfree(rlist->rl_rgd); 1741 } 1742 1743 rlist->rl_space = new_space; 1744 rlist->rl_rgd = tmp; 1745 } 1746 1747 rlist->rl_rgd[rlist->rl_rgrps++] = rgd; 1748 } 1749 1750 /** 1751 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate 1752 * and initialize an array of glock holders for them 1753 * @rlist: the list of resource groups 1754 * @state: the lock state to acquire the RG lock in 1755 * @flags: the modifier flags for the holder structures 1756 * 1757 * FIXME: Don't use NOFAIL 1758 * 1759 */ 1760 1761 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state) 1762 { 1763 unsigned int x; 1764 1765 rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder), 1766 GFP_NOFS | __GFP_NOFAIL); 1767 for (x = 0; x < rlist->rl_rgrps; x++) 1768 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, 1769 state, 0, 1770 &rlist->rl_ghs[x]); 1771 } 1772 1773 /** 1774 * gfs2_rlist_free - free a resource group list 1775 * @list: the list of resource groups 1776 * 1777 */ 1778 1779 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) 1780 { 1781 unsigned int x; 1782 1783 kfree(rlist->rl_rgd); 1784 1785 if (rlist->rl_ghs) { 1786 for (x = 0; x < rlist->rl_rgrps; x++) 1787 gfs2_holder_uninit(&rlist->rl_ghs[x]); 1788 kfree(rlist->rl_ghs); 1789 } 1790 } 1791 1792