1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #include <linux/slab.h> 11 #include <linux/spinlock.h> 12 #include <linux/completion.h> 13 #include <linux/buffer_head.h> 14 #include <linux/fs.h> 15 #include <linux/gfs2_ondisk.h> 16 #include <linux/prefetch.h> 17 #include <linux/blkdev.h> 18 #include <linux/rbtree.h> 19 #include <linux/random.h> 20 21 #include "gfs2.h" 22 #include "incore.h" 23 #include "glock.h" 24 #include "glops.h" 25 #include "lops.h" 26 #include "meta_io.h" 27 #include "quota.h" 28 #include "rgrp.h" 29 #include "super.h" 30 #include "trans.h" 31 #include "util.h" 32 #include "log.h" 33 #include "inode.h" 34 #include "trace_gfs2.h" 35 36 #define BFITNOENT ((u32)~0) 37 #define NO_BLOCK ((u64)~0) 38 39 #if BITS_PER_LONG == 32 40 #define LBITMASK (0x55555555UL) 41 #define LBITSKIP55 (0x55555555UL) 42 #define LBITSKIP00 (0x00000000UL) 43 #else 44 #define LBITMASK (0x5555555555555555UL) 45 #define LBITSKIP55 (0x5555555555555555UL) 46 #define LBITSKIP00 (0x0000000000000000UL) 47 #endif 48 49 /* 50 * These routines are used by the resource group routines (rgrp.c) 51 * to keep track of block allocation. Each block is represented by two 52 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. 53 * 54 * 0 = Free 55 * 1 = Used (not metadata) 56 * 2 = Unlinked (still in use) inode 57 * 3 = Used (metadata) 58 */ 59 60 struct gfs2_extent { 61 struct gfs2_rbm rbm; 62 u32 len; 63 }; 64 65 static const char valid_change[16] = { 66 /* current */ 67 /* n */ 0, 1, 1, 1, 68 /* e */ 1, 0, 0, 0, 69 /* w */ 0, 0, 0, 1, 70 1, 0, 0, 0 71 }; 72 73 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 74 const struct gfs2_inode *ip, bool nowrap, 75 const struct gfs2_alloc_parms *ap); 76 77 78 /** 79 * gfs2_setbit - Set a bit in the bitmaps 80 * @rbm: The position of the bit to set 81 * @do_clone: Also set the clone bitmap, if it exists 82 * @new_state: the new state of the block 83 * 84 */ 85 86 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone, 87 unsigned char new_state) 88 { 89 unsigned char *byte1, *byte2, *end, cur_state; 90 struct gfs2_bitmap *bi = rbm_bi(rbm); 91 unsigned int buflen = bi->bi_len; 92 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 93 94 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY); 95 end = bi->bi_bh->b_data + bi->bi_offset + buflen; 96 97 BUG_ON(byte1 >= end); 98 99 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; 100 101 if (unlikely(!valid_change[new_state * 4 + cur_state])) { 102 printk(KERN_WARNING "GFS2: buf_blk = 0x%x old_state=%d, " 103 "new_state=%d\n", rbm->offset, cur_state, new_state); 104 printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%x\n", 105 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start); 106 printk(KERN_WARNING "GFS2: bi_offset=0x%x bi_len=0x%x\n", 107 bi->bi_offset, bi->bi_len); 108 dump_stack(); 109 gfs2_consist_rgrpd(rbm->rgd); 110 return; 111 } 112 *byte1 ^= (cur_state ^ new_state) << bit; 113 114 if (do_clone && bi->bi_clone) { 115 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY); 116 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; 117 *byte2 ^= (cur_state ^ new_state) << bit; 118 } 119 } 120 121 /** 122 * gfs2_testbit - test a bit in the bitmaps 123 * @rbm: The bit to test 124 * 125 * Returns: The two bit block state of the requested bit 126 */ 127 128 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm) 129 { 130 struct gfs2_bitmap *bi = rbm_bi(rbm); 131 const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset; 132 const u8 *byte; 133 unsigned int bit; 134 135 byte = buffer + (rbm->offset / GFS2_NBBY); 136 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 137 138 return (*byte >> bit) & GFS2_BIT_MASK; 139 } 140 141 /** 142 * gfs2_bit_search 143 * @ptr: Pointer to bitmap data 144 * @mask: Mask to use (normally 0x55555.... but adjusted for search start) 145 * @state: The state we are searching for 146 * 147 * We xor the bitmap data with a patter which is the bitwise opposite 148 * of what we are looking for, this gives rise to a pattern of ones 149 * wherever there is a match. Since we have two bits per entry, we 150 * take this pattern, shift it down by one place and then and it with 151 * the original. All the even bit positions (0,2,4, etc) then represent 152 * successful matches, so we mask with 0x55555..... to remove the unwanted 153 * odd bit positions. 154 * 155 * This allows searching of a whole u64 at once (32 blocks) with a 156 * single test (on 64 bit arches). 157 */ 158 159 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) 160 { 161 u64 tmp; 162 static const u64 search[] = { 163 [0] = 0xffffffffffffffffULL, 164 [1] = 0xaaaaaaaaaaaaaaaaULL, 165 [2] = 0x5555555555555555ULL, 166 [3] = 0x0000000000000000ULL, 167 }; 168 tmp = le64_to_cpu(*ptr) ^ search[state]; 169 tmp &= (tmp >> 1); 170 tmp &= mask; 171 return tmp; 172 } 173 174 /** 175 * rs_cmp - multi-block reservation range compare 176 * @blk: absolute file system block number of the new reservation 177 * @len: number of blocks in the new reservation 178 * @rs: existing reservation to compare against 179 * 180 * returns: 1 if the block range is beyond the reach of the reservation 181 * -1 if the block range is before the start of the reservation 182 * 0 if the block range overlaps with the reservation 183 */ 184 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs) 185 { 186 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm); 187 188 if (blk >= startblk + rs->rs_free) 189 return 1; 190 if (blk + len - 1 < startblk) 191 return -1; 192 return 0; 193 } 194 195 /** 196 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing 197 * a block in a given allocation state. 198 * @buf: the buffer that holds the bitmaps 199 * @len: the length (in bytes) of the buffer 200 * @goal: start search at this block's bit-pair (within @buffer) 201 * @state: GFS2_BLKST_XXX the state of the block we're looking for. 202 * 203 * Scope of @goal and returned block number is only within this bitmap buffer, 204 * not entire rgrp or filesystem. @buffer will be offset from the actual 205 * beginning of a bitmap block buffer, skipping any header structures, but 206 * headers are always a multiple of 64 bits long so that the buffer is 207 * always aligned to a 64 bit boundary. 208 * 209 * The size of the buffer is in bytes, but is it assumed that it is 210 * always ok to read a complete multiple of 64 bits at the end 211 * of the block in case the end is no aligned to a natural boundary. 212 * 213 * Return: the block number (bitmap buffer scope) that was found 214 */ 215 216 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, 217 u32 goal, u8 state) 218 { 219 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); 220 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); 221 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); 222 u64 tmp; 223 u64 mask = 0x5555555555555555ULL; 224 u32 bit; 225 226 /* Mask off bits we don't care about at the start of the search */ 227 mask <<= spoint; 228 tmp = gfs2_bit_search(ptr, mask, state); 229 ptr++; 230 while(tmp == 0 && ptr < end) { 231 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); 232 ptr++; 233 } 234 /* Mask off any bits which are more than len bytes from the start */ 235 if (ptr == end && (len & (sizeof(u64) - 1))) 236 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); 237 /* Didn't find anything, so return */ 238 if (tmp == 0) 239 return BFITNOENT; 240 ptr--; 241 bit = __ffs64(tmp); 242 bit /= 2; /* two bits per entry in the bitmap */ 243 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; 244 } 245 246 /** 247 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number 248 * @rbm: The rbm with rgd already set correctly 249 * @block: The block number (filesystem relative) 250 * 251 * This sets the bi and offset members of an rbm based on a 252 * resource group and a filesystem relative block number. The 253 * resource group must be set in the rbm on entry, the bi and 254 * offset members will be set by this function. 255 * 256 * Returns: 0 on success, or an error code 257 */ 258 259 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block) 260 { 261 u64 rblock = block - rbm->rgd->rd_data0; 262 263 if (WARN_ON_ONCE(rblock > UINT_MAX)) 264 return -EINVAL; 265 if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data) 266 return -E2BIG; 267 268 rbm->bii = 0; 269 rbm->offset = (u32)(rblock); 270 /* Check if the block is within the first block */ 271 if (rbm->offset < rbm_bi(rbm)->bi_blocks) 272 return 0; 273 274 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */ 275 rbm->offset += (sizeof(struct gfs2_rgrp) - 276 sizeof(struct gfs2_meta_header)) * GFS2_NBBY; 277 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 278 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 279 return 0; 280 } 281 282 /** 283 * gfs2_rbm_incr - increment an rbm structure 284 * @rbm: The rbm with rgd already set correctly 285 * 286 * This function takes an existing rbm structure and increments it to the next 287 * viable block offset. 288 * 289 * Returns: If incrementing the offset would cause the rbm to go past the 290 * end of the rgrp, true is returned, otherwise false. 291 * 292 */ 293 294 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm) 295 { 296 if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */ 297 rbm->offset++; 298 return false; 299 } 300 if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */ 301 return true; 302 303 rbm->offset = 0; 304 rbm->bii++; 305 return false; 306 } 307 308 /** 309 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned 310 * @rbm: Position to search (value/result) 311 * @n_unaligned: Number of unaligned blocks to check 312 * @len: Decremented for each block found (terminate on zero) 313 * 314 * Returns: true if a non-free block is encountered 315 */ 316 317 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len) 318 { 319 u32 n; 320 u8 res; 321 322 for (n = 0; n < n_unaligned; n++) { 323 res = gfs2_testbit(rbm); 324 if (res != GFS2_BLKST_FREE) 325 return true; 326 (*len)--; 327 if (*len == 0) 328 return true; 329 if (gfs2_rbm_incr(rbm)) 330 return true; 331 } 332 333 return false; 334 } 335 336 /** 337 * gfs2_free_extlen - Return extent length of free blocks 338 * @rbm: Starting position 339 * @len: Max length to check 340 * 341 * Starting at the block specified by the rbm, see how many free blocks 342 * there are, not reading more than len blocks ahead. This can be done 343 * using memchr_inv when the blocks are byte aligned, but has to be done 344 * on a block by block basis in case of unaligned blocks. Also this 345 * function can cope with bitmap boundaries (although it must stop on 346 * a resource group boundary) 347 * 348 * Returns: Number of free blocks in the extent 349 */ 350 351 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len) 352 { 353 struct gfs2_rbm rbm = *rrbm; 354 u32 n_unaligned = rbm.offset & 3; 355 u32 size = len; 356 u32 bytes; 357 u32 chunk_size; 358 u8 *ptr, *start, *end; 359 u64 block; 360 struct gfs2_bitmap *bi; 361 362 if (n_unaligned && 363 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len)) 364 goto out; 365 366 n_unaligned = len & 3; 367 /* Start is now byte aligned */ 368 while (len > 3) { 369 bi = rbm_bi(&rbm); 370 start = bi->bi_bh->b_data; 371 if (bi->bi_clone) 372 start = bi->bi_clone; 373 end = start + bi->bi_bh->b_size; 374 start += bi->bi_offset; 375 BUG_ON(rbm.offset & 3); 376 start += (rbm.offset / GFS2_NBBY); 377 bytes = min_t(u32, len / GFS2_NBBY, (end - start)); 378 ptr = memchr_inv(start, 0, bytes); 379 chunk_size = ((ptr == NULL) ? bytes : (ptr - start)); 380 chunk_size *= GFS2_NBBY; 381 BUG_ON(len < chunk_size); 382 len -= chunk_size; 383 block = gfs2_rbm_to_block(&rbm); 384 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) { 385 n_unaligned = 0; 386 break; 387 } 388 if (ptr) { 389 n_unaligned = 3; 390 break; 391 } 392 n_unaligned = len & 3; 393 } 394 395 /* Deal with any bits left over at the end */ 396 if (n_unaligned) 397 gfs2_unaligned_extlen(&rbm, n_unaligned, &len); 398 out: 399 return size - len; 400 } 401 402 /** 403 * gfs2_bitcount - count the number of bits in a certain state 404 * @rgd: the resource group descriptor 405 * @buffer: the buffer that holds the bitmaps 406 * @buflen: the length (in bytes) of the buffer 407 * @state: the state of the block we're looking for 408 * 409 * Returns: The number of bits 410 */ 411 412 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, 413 unsigned int buflen, u8 state) 414 { 415 const u8 *byte = buffer; 416 const u8 *end = buffer + buflen; 417 const u8 state1 = state << 2; 418 const u8 state2 = state << 4; 419 const u8 state3 = state << 6; 420 u32 count = 0; 421 422 for (; byte < end; byte++) { 423 if (((*byte) & 0x03) == state) 424 count++; 425 if (((*byte) & 0x0C) == state1) 426 count++; 427 if (((*byte) & 0x30) == state2) 428 count++; 429 if (((*byte) & 0xC0) == state3) 430 count++; 431 } 432 433 return count; 434 } 435 436 /** 437 * gfs2_rgrp_verify - Verify that a resource group is consistent 438 * @rgd: the rgrp 439 * 440 */ 441 442 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) 443 { 444 struct gfs2_sbd *sdp = rgd->rd_sbd; 445 struct gfs2_bitmap *bi = NULL; 446 u32 length = rgd->rd_length; 447 u32 count[4], tmp; 448 int buf, x; 449 450 memset(count, 0, 4 * sizeof(u32)); 451 452 /* Count # blocks in each of 4 possible allocation states */ 453 for (buf = 0; buf < length; buf++) { 454 bi = rgd->rd_bits + buf; 455 for (x = 0; x < 4; x++) 456 count[x] += gfs2_bitcount(rgd, 457 bi->bi_bh->b_data + 458 bi->bi_offset, 459 bi->bi_len, x); 460 } 461 462 if (count[0] != rgd->rd_free) { 463 if (gfs2_consist_rgrpd(rgd)) 464 fs_err(sdp, "free data mismatch: %u != %u\n", 465 count[0], rgd->rd_free); 466 return; 467 } 468 469 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; 470 if (count[1] != tmp) { 471 if (gfs2_consist_rgrpd(rgd)) 472 fs_err(sdp, "used data mismatch: %u != %u\n", 473 count[1], tmp); 474 return; 475 } 476 477 if (count[2] + count[3] != rgd->rd_dinodes) { 478 if (gfs2_consist_rgrpd(rgd)) 479 fs_err(sdp, "used metadata mismatch: %u != %u\n", 480 count[2] + count[3], rgd->rd_dinodes); 481 return; 482 } 483 } 484 485 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block) 486 { 487 u64 first = rgd->rd_data0; 488 u64 last = first + rgd->rd_data; 489 return first <= block && block < last; 490 } 491 492 /** 493 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number 494 * @sdp: The GFS2 superblock 495 * @blk: The data block number 496 * @exact: True if this needs to be an exact match 497 * 498 * Returns: The resource group, or NULL if not found 499 */ 500 501 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact) 502 { 503 struct rb_node *n, *next; 504 struct gfs2_rgrpd *cur; 505 506 spin_lock(&sdp->sd_rindex_spin); 507 n = sdp->sd_rindex_tree.rb_node; 508 while (n) { 509 cur = rb_entry(n, struct gfs2_rgrpd, rd_node); 510 next = NULL; 511 if (blk < cur->rd_addr) 512 next = n->rb_left; 513 else if (blk >= cur->rd_data0 + cur->rd_data) 514 next = n->rb_right; 515 if (next == NULL) { 516 spin_unlock(&sdp->sd_rindex_spin); 517 if (exact) { 518 if (blk < cur->rd_addr) 519 return NULL; 520 if (blk >= cur->rd_data0 + cur->rd_data) 521 return NULL; 522 } 523 return cur; 524 } 525 n = next; 526 } 527 spin_unlock(&sdp->sd_rindex_spin); 528 529 return NULL; 530 } 531 532 /** 533 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem 534 * @sdp: The GFS2 superblock 535 * 536 * Returns: The first rgrp in the filesystem 537 */ 538 539 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) 540 { 541 const struct rb_node *n; 542 struct gfs2_rgrpd *rgd; 543 544 spin_lock(&sdp->sd_rindex_spin); 545 n = rb_first(&sdp->sd_rindex_tree); 546 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 547 spin_unlock(&sdp->sd_rindex_spin); 548 549 return rgd; 550 } 551 552 /** 553 * gfs2_rgrpd_get_next - get the next RG 554 * @rgd: the resource group descriptor 555 * 556 * Returns: The next rgrp 557 */ 558 559 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) 560 { 561 struct gfs2_sbd *sdp = rgd->rd_sbd; 562 const struct rb_node *n; 563 564 spin_lock(&sdp->sd_rindex_spin); 565 n = rb_next(&rgd->rd_node); 566 if (n == NULL) 567 n = rb_first(&sdp->sd_rindex_tree); 568 569 if (unlikely(&rgd->rd_node == n)) { 570 spin_unlock(&sdp->sd_rindex_spin); 571 return NULL; 572 } 573 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 574 spin_unlock(&sdp->sd_rindex_spin); 575 return rgd; 576 } 577 578 void gfs2_free_clones(struct gfs2_rgrpd *rgd) 579 { 580 int x; 581 582 for (x = 0; x < rgd->rd_length; x++) { 583 struct gfs2_bitmap *bi = rgd->rd_bits + x; 584 kfree(bi->bi_clone); 585 bi->bi_clone = NULL; 586 } 587 } 588 589 /** 590 * gfs2_rs_alloc - make sure we have a reservation assigned to the inode 591 * @ip: the inode for this reservation 592 */ 593 int gfs2_rs_alloc(struct gfs2_inode *ip) 594 { 595 int error = 0; 596 597 down_write(&ip->i_rw_mutex); 598 if (ip->i_res) 599 goto out; 600 601 ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS); 602 if (!ip->i_res) { 603 error = -ENOMEM; 604 goto out; 605 } 606 607 RB_CLEAR_NODE(&ip->i_res->rs_node); 608 out: 609 up_write(&ip->i_rw_mutex); 610 return error; 611 } 612 613 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs) 614 { 615 gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n", 616 (unsigned long long)rs->rs_inum, 617 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm), 618 rs->rs_rbm.offset, rs->rs_free); 619 } 620 621 /** 622 * __rs_deltree - remove a multi-block reservation from the rgd tree 623 * @rs: The reservation to remove 624 * 625 */ 626 static void __rs_deltree(struct gfs2_blkreserv *rs) 627 { 628 struct gfs2_rgrpd *rgd; 629 630 if (!gfs2_rs_active(rs)) 631 return; 632 633 rgd = rs->rs_rbm.rgd; 634 trace_gfs2_rs(rs, TRACE_RS_TREEDEL); 635 rb_erase(&rs->rs_node, &rgd->rd_rstree); 636 RB_CLEAR_NODE(&rs->rs_node); 637 638 if (rs->rs_free) { 639 struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm); 640 641 /* return reserved blocks to the rgrp */ 642 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free); 643 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free; 644 /* The rgrp extent failure point is likely not to increase; 645 it will only do so if the freed blocks are somehow 646 contiguous with a span of free blocks that follows. Still, 647 it will force the number to be recalculated later. */ 648 rgd->rd_extfail_pt += rs->rs_free; 649 rs->rs_free = 0; 650 clear_bit(GBF_FULL, &bi->bi_flags); 651 } 652 } 653 654 /** 655 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree 656 * @rs: The reservation to remove 657 * 658 */ 659 void gfs2_rs_deltree(struct gfs2_blkreserv *rs) 660 { 661 struct gfs2_rgrpd *rgd; 662 663 rgd = rs->rs_rbm.rgd; 664 if (rgd) { 665 spin_lock(&rgd->rd_rsspin); 666 __rs_deltree(rs); 667 spin_unlock(&rgd->rd_rsspin); 668 } 669 } 670 671 /** 672 * gfs2_rs_delete - delete a multi-block reservation 673 * @ip: The inode for this reservation 674 * @wcount: The inode's write count, or NULL 675 * 676 */ 677 void gfs2_rs_delete(struct gfs2_inode *ip, atomic_t *wcount) 678 { 679 down_write(&ip->i_rw_mutex); 680 if (ip->i_res && ((wcount == NULL) || (atomic_read(wcount) <= 1))) { 681 gfs2_rs_deltree(ip->i_res); 682 BUG_ON(ip->i_res->rs_free); 683 kmem_cache_free(gfs2_rsrv_cachep, ip->i_res); 684 ip->i_res = NULL; 685 } 686 up_write(&ip->i_rw_mutex); 687 } 688 689 /** 690 * return_all_reservations - return all reserved blocks back to the rgrp. 691 * @rgd: the rgrp that needs its space back 692 * 693 * We previously reserved a bunch of blocks for allocation. Now we need to 694 * give them back. This leave the reservation structures in tact, but removes 695 * all of their corresponding "no-fly zones". 696 */ 697 static void return_all_reservations(struct gfs2_rgrpd *rgd) 698 { 699 struct rb_node *n; 700 struct gfs2_blkreserv *rs; 701 702 spin_lock(&rgd->rd_rsspin); 703 while ((n = rb_first(&rgd->rd_rstree))) { 704 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 705 __rs_deltree(rs); 706 } 707 spin_unlock(&rgd->rd_rsspin); 708 } 709 710 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) 711 { 712 struct rb_node *n; 713 struct gfs2_rgrpd *rgd; 714 struct gfs2_glock *gl; 715 716 while ((n = rb_first(&sdp->sd_rindex_tree))) { 717 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 718 gl = rgd->rd_gl; 719 720 rb_erase(n, &sdp->sd_rindex_tree); 721 722 if (gl) { 723 spin_lock(&gl->gl_spin); 724 gl->gl_object = NULL; 725 spin_unlock(&gl->gl_spin); 726 gfs2_glock_add_to_lru(gl); 727 gfs2_glock_put(gl); 728 } 729 730 gfs2_free_clones(rgd); 731 kfree(rgd->rd_bits); 732 return_all_reservations(rgd); 733 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 734 } 735 } 736 737 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd) 738 { 739 printk(KERN_INFO " ri_addr = %llu\n", (unsigned long long)rgd->rd_addr); 740 printk(KERN_INFO " ri_length = %u\n", rgd->rd_length); 741 printk(KERN_INFO " ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0); 742 printk(KERN_INFO " ri_data = %u\n", rgd->rd_data); 743 printk(KERN_INFO " ri_bitbytes = %u\n", rgd->rd_bitbytes); 744 } 745 746 /** 747 * gfs2_compute_bitstructs - Compute the bitmap sizes 748 * @rgd: The resource group descriptor 749 * 750 * Calculates bitmap descriptors, one for each block that contains bitmap data 751 * 752 * Returns: errno 753 */ 754 755 static int compute_bitstructs(struct gfs2_rgrpd *rgd) 756 { 757 struct gfs2_sbd *sdp = rgd->rd_sbd; 758 struct gfs2_bitmap *bi; 759 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ 760 u32 bytes_left, bytes; 761 int x; 762 763 if (!length) 764 return -EINVAL; 765 766 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); 767 if (!rgd->rd_bits) 768 return -ENOMEM; 769 770 bytes_left = rgd->rd_bitbytes; 771 772 for (x = 0; x < length; x++) { 773 bi = rgd->rd_bits + x; 774 775 bi->bi_flags = 0; 776 /* small rgrp; bitmap stored completely in header block */ 777 if (length == 1) { 778 bytes = bytes_left; 779 bi->bi_offset = sizeof(struct gfs2_rgrp); 780 bi->bi_start = 0; 781 bi->bi_len = bytes; 782 bi->bi_blocks = bytes * GFS2_NBBY; 783 /* header block */ 784 } else if (x == 0) { 785 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); 786 bi->bi_offset = sizeof(struct gfs2_rgrp); 787 bi->bi_start = 0; 788 bi->bi_len = bytes; 789 bi->bi_blocks = bytes * GFS2_NBBY; 790 /* last block */ 791 } else if (x + 1 == length) { 792 bytes = bytes_left; 793 bi->bi_offset = sizeof(struct gfs2_meta_header); 794 bi->bi_start = rgd->rd_bitbytes - bytes_left; 795 bi->bi_len = bytes; 796 bi->bi_blocks = bytes * GFS2_NBBY; 797 /* other blocks */ 798 } else { 799 bytes = sdp->sd_sb.sb_bsize - 800 sizeof(struct gfs2_meta_header); 801 bi->bi_offset = sizeof(struct gfs2_meta_header); 802 bi->bi_start = rgd->rd_bitbytes - bytes_left; 803 bi->bi_len = bytes; 804 bi->bi_blocks = bytes * GFS2_NBBY; 805 } 806 807 bytes_left -= bytes; 808 } 809 810 if (bytes_left) { 811 gfs2_consist_rgrpd(rgd); 812 return -EIO; 813 } 814 bi = rgd->rd_bits + (length - 1); 815 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) { 816 if (gfs2_consist_rgrpd(rgd)) { 817 gfs2_rindex_print(rgd); 818 fs_err(sdp, "start=%u len=%u offset=%u\n", 819 bi->bi_start, bi->bi_len, bi->bi_offset); 820 } 821 return -EIO; 822 } 823 824 return 0; 825 } 826 827 /** 828 * gfs2_ri_total - Total up the file system space, according to the rindex. 829 * @sdp: the filesystem 830 * 831 */ 832 u64 gfs2_ri_total(struct gfs2_sbd *sdp) 833 { 834 u64 total_data = 0; 835 struct inode *inode = sdp->sd_rindex; 836 struct gfs2_inode *ip = GFS2_I(inode); 837 char buf[sizeof(struct gfs2_rindex)]; 838 int error, rgrps; 839 840 for (rgrps = 0;; rgrps++) { 841 loff_t pos = rgrps * sizeof(struct gfs2_rindex); 842 843 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) 844 break; 845 error = gfs2_internal_read(ip, buf, &pos, 846 sizeof(struct gfs2_rindex)); 847 if (error != sizeof(struct gfs2_rindex)) 848 break; 849 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); 850 } 851 return total_data; 852 } 853 854 static int rgd_insert(struct gfs2_rgrpd *rgd) 855 { 856 struct gfs2_sbd *sdp = rgd->rd_sbd; 857 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; 858 859 /* Figure out where to put new node */ 860 while (*newn) { 861 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, 862 rd_node); 863 864 parent = *newn; 865 if (rgd->rd_addr < cur->rd_addr) 866 newn = &((*newn)->rb_left); 867 else if (rgd->rd_addr > cur->rd_addr) 868 newn = &((*newn)->rb_right); 869 else 870 return -EEXIST; 871 } 872 873 rb_link_node(&rgd->rd_node, parent, newn); 874 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); 875 sdp->sd_rgrps++; 876 return 0; 877 } 878 879 /** 880 * read_rindex_entry - Pull in a new resource index entry from the disk 881 * @ip: Pointer to the rindex inode 882 * 883 * Returns: 0 on success, > 0 on EOF, error code otherwise 884 */ 885 886 static int read_rindex_entry(struct gfs2_inode *ip) 887 { 888 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 889 const unsigned bsize = sdp->sd_sb.sb_bsize; 890 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); 891 struct gfs2_rindex buf; 892 int error; 893 struct gfs2_rgrpd *rgd; 894 895 if (pos >= i_size_read(&ip->i_inode)) 896 return 1; 897 898 error = gfs2_internal_read(ip, (char *)&buf, &pos, 899 sizeof(struct gfs2_rindex)); 900 901 if (error != sizeof(struct gfs2_rindex)) 902 return (error == 0) ? 1 : error; 903 904 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); 905 error = -ENOMEM; 906 if (!rgd) 907 return error; 908 909 rgd->rd_sbd = sdp; 910 rgd->rd_addr = be64_to_cpu(buf.ri_addr); 911 rgd->rd_length = be32_to_cpu(buf.ri_length); 912 rgd->rd_data0 = be64_to_cpu(buf.ri_data0); 913 rgd->rd_data = be32_to_cpu(buf.ri_data); 914 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); 915 spin_lock_init(&rgd->rd_rsspin); 916 917 error = compute_bitstructs(rgd); 918 if (error) 919 goto fail; 920 921 error = gfs2_glock_get(sdp, rgd->rd_addr, 922 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); 923 if (error) 924 goto fail; 925 926 rgd->rd_gl->gl_object = rgd; 927 rgd->rd_gl->gl_vm.start = rgd->rd_addr * bsize; 928 rgd->rd_gl->gl_vm.end = rgd->rd_gl->gl_vm.start + (rgd->rd_length * bsize) - 1; 929 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr; 930 rgd->rd_flags &= ~GFS2_RDF_UPTODATE; 931 if (rgd->rd_data > sdp->sd_max_rg_data) 932 sdp->sd_max_rg_data = rgd->rd_data; 933 spin_lock(&sdp->sd_rindex_spin); 934 error = rgd_insert(rgd); 935 spin_unlock(&sdp->sd_rindex_spin); 936 if (!error) 937 return 0; 938 939 error = 0; /* someone else read in the rgrp; free it and ignore it */ 940 gfs2_glock_put(rgd->rd_gl); 941 942 fail: 943 kfree(rgd->rd_bits); 944 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 945 return error; 946 } 947 948 /** 949 * gfs2_ri_update - Pull in a new resource index from the disk 950 * @ip: pointer to the rindex inode 951 * 952 * Returns: 0 on successful update, error code otherwise 953 */ 954 955 static int gfs2_ri_update(struct gfs2_inode *ip) 956 { 957 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 958 int error; 959 960 do { 961 error = read_rindex_entry(ip); 962 } while (error == 0); 963 964 if (error < 0) 965 return error; 966 967 sdp->sd_rindex_uptodate = 1; 968 return 0; 969 } 970 971 /** 972 * gfs2_rindex_update - Update the rindex if required 973 * @sdp: The GFS2 superblock 974 * 975 * We grab a lock on the rindex inode to make sure that it doesn't 976 * change whilst we are performing an operation. We keep this lock 977 * for quite long periods of time compared to other locks. This 978 * doesn't matter, since it is shared and it is very, very rarely 979 * accessed in the exclusive mode (i.e. only when expanding the filesystem). 980 * 981 * This makes sure that we're using the latest copy of the resource index 982 * special file, which might have been updated if someone expanded the 983 * filesystem (via gfs2_grow utility), which adds new resource groups. 984 * 985 * Returns: 0 on succeess, error code otherwise 986 */ 987 988 int gfs2_rindex_update(struct gfs2_sbd *sdp) 989 { 990 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); 991 struct gfs2_glock *gl = ip->i_gl; 992 struct gfs2_holder ri_gh; 993 int error = 0; 994 int unlock_required = 0; 995 996 /* Read new copy from disk if we don't have the latest */ 997 if (!sdp->sd_rindex_uptodate) { 998 if (!gfs2_glock_is_locked_by_me(gl)) { 999 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); 1000 if (error) 1001 return error; 1002 unlock_required = 1; 1003 } 1004 if (!sdp->sd_rindex_uptodate) 1005 error = gfs2_ri_update(ip); 1006 if (unlock_required) 1007 gfs2_glock_dq_uninit(&ri_gh); 1008 } 1009 1010 return error; 1011 } 1012 1013 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) 1014 { 1015 const struct gfs2_rgrp *str = buf; 1016 u32 rg_flags; 1017 1018 rg_flags = be32_to_cpu(str->rg_flags); 1019 rg_flags &= ~GFS2_RDF_MASK; 1020 rgd->rd_flags &= GFS2_RDF_MASK; 1021 rgd->rd_flags |= rg_flags; 1022 rgd->rd_free = be32_to_cpu(str->rg_free); 1023 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); 1024 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); 1025 } 1026 1027 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) 1028 { 1029 struct gfs2_rgrp *str = buf; 1030 1031 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); 1032 str->rg_free = cpu_to_be32(rgd->rd_free); 1033 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); 1034 str->__pad = cpu_to_be32(0); 1035 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); 1036 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); 1037 } 1038 1039 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd) 1040 { 1041 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1042 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data; 1043 1044 if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free || 1045 rgl->rl_dinodes != str->rg_dinodes || 1046 rgl->rl_igeneration != str->rg_igeneration) 1047 return 0; 1048 return 1; 1049 } 1050 1051 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf) 1052 { 1053 const struct gfs2_rgrp *str = buf; 1054 1055 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC); 1056 rgl->rl_flags = str->rg_flags; 1057 rgl->rl_free = str->rg_free; 1058 rgl->rl_dinodes = str->rg_dinodes; 1059 rgl->rl_igeneration = str->rg_igeneration; 1060 rgl->__pad = 0UL; 1061 } 1062 1063 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change) 1064 { 1065 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1066 u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change; 1067 rgl->rl_unlinked = cpu_to_be32(unlinked); 1068 } 1069 1070 static u32 count_unlinked(struct gfs2_rgrpd *rgd) 1071 { 1072 struct gfs2_bitmap *bi; 1073 const u32 length = rgd->rd_length; 1074 const u8 *buffer = NULL; 1075 u32 i, goal, count = 0; 1076 1077 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) { 1078 goal = 0; 1079 buffer = bi->bi_bh->b_data + bi->bi_offset; 1080 WARN_ON(!buffer_uptodate(bi->bi_bh)); 1081 while (goal < bi->bi_len * GFS2_NBBY) { 1082 goal = gfs2_bitfit(buffer, bi->bi_len, goal, 1083 GFS2_BLKST_UNLINKED); 1084 if (goal == BFITNOENT) 1085 break; 1086 count++; 1087 goal++; 1088 } 1089 } 1090 1091 return count; 1092 } 1093 1094 1095 /** 1096 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps 1097 * @rgd: the struct gfs2_rgrpd describing the RG to read in 1098 * 1099 * Read in all of a Resource Group's header and bitmap blocks. 1100 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps. 1101 * 1102 * Returns: errno 1103 */ 1104 1105 int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd) 1106 { 1107 struct gfs2_sbd *sdp = rgd->rd_sbd; 1108 struct gfs2_glock *gl = rgd->rd_gl; 1109 unsigned int length = rgd->rd_length; 1110 struct gfs2_bitmap *bi; 1111 unsigned int x, y; 1112 int error; 1113 1114 if (rgd->rd_bits[0].bi_bh != NULL) 1115 return 0; 1116 1117 for (x = 0; x < length; x++) { 1118 bi = rgd->rd_bits + x; 1119 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh); 1120 if (error) 1121 goto fail; 1122 } 1123 1124 for (y = length; y--;) { 1125 bi = rgd->rd_bits + y; 1126 error = gfs2_meta_wait(sdp, bi->bi_bh); 1127 if (error) 1128 goto fail; 1129 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : 1130 GFS2_METATYPE_RG)) { 1131 error = -EIO; 1132 goto fail; 1133 } 1134 } 1135 1136 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) { 1137 for (x = 0; x < length; x++) 1138 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags); 1139 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); 1140 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1141 rgd->rd_free_clone = rgd->rd_free; 1142 /* max out the rgrp allocation failure point */ 1143 rgd->rd_extfail_pt = rgd->rd_free; 1144 } 1145 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) { 1146 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd)); 1147 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, 1148 rgd->rd_bits[0].bi_bh->b_data); 1149 } 1150 else if (sdp->sd_args.ar_rgrplvb) { 1151 if (!gfs2_rgrp_lvb_valid(rgd)){ 1152 gfs2_consist_rgrpd(rgd); 1153 error = -EIO; 1154 goto fail; 1155 } 1156 if (rgd->rd_rgl->rl_unlinked == 0) 1157 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1158 } 1159 return 0; 1160 1161 fail: 1162 while (x--) { 1163 bi = rgd->rd_bits + x; 1164 brelse(bi->bi_bh); 1165 bi->bi_bh = NULL; 1166 gfs2_assert_warn(sdp, !bi->bi_clone); 1167 } 1168 1169 return error; 1170 } 1171 1172 int update_rgrp_lvb(struct gfs2_rgrpd *rgd) 1173 { 1174 u32 rl_flags; 1175 1176 if (rgd->rd_flags & GFS2_RDF_UPTODATE) 1177 return 0; 1178 1179 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) 1180 return gfs2_rgrp_bh_get(rgd); 1181 1182 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags); 1183 rl_flags &= ~GFS2_RDF_MASK; 1184 rgd->rd_flags &= GFS2_RDF_MASK; 1185 rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1186 if (rgd->rd_rgl->rl_unlinked == 0) 1187 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1188 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free); 1189 rgd->rd_free_clone = rgd->rd_free; 1190 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes); 1191 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration); 1192 return 0; 1193 } 1194 1195 int gfs2_rgrp_go_lock(struct gfs2_holder *gh) 1196 { 1197 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1198 struct gfs2_sbd *sdp = rgd->rd_sbd; 1199 1200 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb) 1201 return 0; 1202 return gfs2_rgrp_bh_get(rgd); 1203 } 1204 1205 /** 1206 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get() 1207 * @gh: The glock holder for the resource group 1208 * 1209 */ 1210 1211 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh) 1212 { 1213 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1214 int x, length = rgd->rd_length; 1215 1216 for (x = 0; x < length; x++) { 1217 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1218 if (bi->bi_bh) { 1219 brelse(bi->bi_bh); 1220 bi->bi_bh = NULL; 1221 } 1222 } 1223 1224 } 1225 1226 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, 1227 struct buffer_head *bh, 1228 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed) 1229 { 1230 struct super_block *sb = sdp->sd_vfs; 1231 u64 blk; 1232 sector_t start = 0; 1233 sector_t nr_blks = 0; 1234 int rv; 1235 unsigned int x; 1236 u32 trimmed = 0; 1237 u8 diff; 1238 1239 for (x = 0; x < bi->bi_len; x++) { 1240 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data; 1241 clone += bi->bi_offset; 1242 clone += x; 1243 if (bh) { 1244 const u8 *orig = bh->b_data + bi->bi_offset + x; 1245 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); 1246 } else { 1247 diff = ~(*clone | (*clone >> 1)); 1248 } 1249 diff &= 0x55; 1250 if (diff == 0) 1251 continue; 1252 blk = offset + ((bi->bi_start + x) * GFS2_NBBY); 1253 while(diff) { 1254 if (diff & 1) { 1255 if (nr_blks == 0) 1256 goto start_new_extent; 1257 if ((start + nr_blks) != blk) { 1258 if (nr_blks >= minlen) { 1259 rv = sb_issue_discard(sb, 1260 start, nr_blks, 1261 GFP_NOFS, 0); 1262 if (rv) 1263 goto fail; 1264 trimmed += nr_blks; 1265 } 1266 nr_blks = 0; 1267 start_new_extent: 1268 start = blk; 1269 } 1270 nr_blks++; 1271 } 1272 diff >>= 2; 1273 blk++; 1274 } 1275 } 1276 if (nr_blks >= minlen) { 1277 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0); 1278 if (rv) 1279 goto fail; 1280 trimmed += nr_blks; 1281 } 1282 if (ptrimmed) 1283 *ptrimmed = trimmed; 1284 return 0; 1285 1286 fail: 1287 if (sdp->sd_args.ar_discard) 1288 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv); 1289 sdp->sd_args.ar_discard = 0; 1290 return -EIO; 1291 } 1292 1293 /** 1294 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem 1295 * @filp: Any file on the filesystem 1296 * @argp: Pointer to the arguments (also used to pass result) 1297 * 1298 * Returns: 0 on success, otherwise error code 1299 */ 1300 1301 int gfs2_fitrim(struct file *filp, void __user *argp) 1302 { 1303 struct inode *inode = file_inode(filp); 1304 struct gfs2_sbd *sdp = GFS2_SB(inode); 1305 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev); 1306 struct buffer_head *bh; 1307 struct gfs2_rgrpd *rgd; 1308 struct gfs2_rgrpd *rgd_end; 1309 struct gfs2_holder gh; 1310 struct fstrim_range r; 1311 int ret = 0; 1312 u64 amt; 1313 u64 trimmed = 0; 1314 u64 start, end, minlen; 1315 unsigned int x; 1316 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift; 1317 1318 if (!capable(CAP_SYS_ADMIN)) 1319 return -EPERM; 1320 1321 if (!blk_queue_discard(q)) 1322 return -EOPNOTSUPP; 1323 1324 if (copy_from_user(&r, argp, sizeof(r))) 1325 return -EFAULT; 1326 1327 ret = gfs2_rindex_update(sdp); 1328 if (ret) 1329 return ret; 1330 1331 start = r.start >> bs_shift; 1332 end = start + (r.len >> bs_shift); 1333 minlen = max_t(u64, r.minlen, 1334 q->limits.discard_granularity) >> bs_shift; 1335 1336 if (end <= start || minlen > sdp->sd_max_rg_data) 1337 return -EINVAL; 1338 1339 rgd = gfs2_blk2rgrpd(sdp, start, 0); 1340 rgd_end = gfs2_blk2rgrpd(sdp, end, 0); 1341 1342 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end)) 1343 && (start > rgd_end->rd_data0 + rgd_end->rd_data)) 1344 return -EINVAL; /* start is beyond the end of the fs */ 1345 1346 while (1) { 1347 1348 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh); 1349 if (ret) 1350 goto out; 1351 1352 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) { 1353 /* Trim each bitmap in the rgrp */ 1354 for (x = 0; x < rgd->rd_length; x++) { 1355 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1356 ret = gfs2_rgrp_send_discards(sdp, 1357 rgd->rd_data0, NULL, bi, minlen, 1358 &amt); 1359 if (ret) { 1360 gfs2_glock_dq_uninit(&gh); 1361 goto out; 1362 } 1363 trimmed += amt; 1364 } 1365 1366 /* Mark rgrp as having been trimmed */ 1367 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0); 1368 if (ret == 0) { 1369 bh = rgd->rd_bits[0].bi_bh; 1370 rgd->rd_flags |= GFS2_RGF_TRIMMED; 1371 gfs2_trans_add_meta(rgd->rd_gl, bh); 1372 gfs2_rgrp_out(rgd, bh->b_data); 1373 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data); 1374 gfs2_trans_end(sdp); 1375 } 1376 } 1377 gfs2_glock_dq_uninit(&gh); 1378 1379 if (rgd == rgd_end) 1380 break; 1381 1382 rgd = gfs2_rgrpd_get_next(rgd); 1383 } 1384 1385 out: 1386 r.len = trimmed << bs_shift; 1387 if (copy_to_user(argp, &r, sizeof(r))) 1388 return -EFAULT; 1389 1390 return ret; 1391 } 1392 1393 /** 1394 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree 1395 * @ip: the inode structure 1396 * 1397 */ 1398 static void rs_insert(struct gfs2_inode *ip) 1399 { 1400 struct rb_node **newn, *parent = NULL; 1401 int rc; 1402 struct gfs2_blkreserv *rs = ip->i_res; 1403 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd; 1404 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm); 1405 1406 BUG_ON(gfs2_rs_active(rs)); 1407 1408 spin_lock(&rgd->rd_rsspin); 1409 newn = &rgd->rd_rstree.rb_node; 1410 while (*newn) { 1411 struct gfs2_blkreserv *cur = 1412 rb_entry(*newn, struct gfs2_blkreserv, rs_node); 1413 1414 parent = *newn; 1415 rc = rs_cmp(fsblock, rs->rs_free, cur); 1416 if (rc > 0) 1417 newn = &((*newn)->rb_right); 1418 else if (rc < 0) 1419 newn = &((*newn)->rb_left); 1420 else { 1421 spin_unlock(&rgd->rd_rsspin); 1422 WARN_ON(1); 1423 return; 1424 } 1425 } 1426 1427 rb_link_node(&rs->rs_node, parent, newn); 1428 rb_insert_color(&rs->rs_node, &rgd->rd_rstree); 1429 1430 /* Do our rgrp accounting for the reservation */ 1431 rgd->rd_reserved += rs->rs_free; /* blocks reserved */ 1432 spin_unlock(&rgd->rd_rsspin); 1433 trace_gfs2_rs(rs, TRACE_RS_INSERT); 1434 } 1435 1436 /** 1437 * rg_mblk_search - find a group of multiple free blocks to form a reservation 1438 * @rgd: the resource group descriptor 1439 * @ip: pointer to the inode for which we're reserving blocks 1440 * @ap: the allocation parameters 1441 * 1442 */ 1443 1444 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip, 1445 const struct gfs2_alloc_parms *ap) 1446 { 1447 struct gfs2_rbm rbm = { .rgd = rgd, }; 1448 u64 goal; 1449 struct gfs2_blkreserv *rs = ip->i_res; 1450 u32 extlen; 1451 u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved; 1452 int ret; 1453 struct inode *inode = &ip->i_inode; 1454 1455 if (S_ISDIR(inode->i_mode)) 1456 extlen = 1; 1457 else { 1458 extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target); 1459 extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks); 1460 } 1461 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen)) 1462 return; 1463 1464 /* Find bitmap block that contains bits for goal block */ 1465 if (rgrp_contains_block(rgd, ip->i_goal)) 1466 goal = ip->i_goal; 1467 else 1468 goal = rgd->rd_last_alloc + rgd->rd_data0; 1469 1470 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal))) 1471 return; 1472 1473 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true, ap); 1474 if (ret == 0) { 1475 rs->rs_rbm = rbm; 1476 rs->rs_free = extlen; 1477 rs->rs_inum = ip->i_no_addr; 1478 rs_insert(ip); 1479 } else { 1480 if (goal == rgd->rd_last_alloc + rgd->rd_data0) 1481 rgd->rd_last_alloc = 0; 1482 } 1483 } 1484 1485 /** 1486 * gfs2_next_unreserved_block - Return next block that is not reserved 1487 * @rgd: The resource group 1488 * @block: The starting block 1489 * @length: The required length 1490 * @ip: Ignore any reservations for this inode 1491 * 1492 * If the block does not appear in any reservation, then return the 1493 * block number unchanged. If it does appear in the reservation, then 1494 * keep looking through the tree of reservations in order to find the 1495 * first block number which is not reserved. 1496 */ 1497 1498 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block, 1499 u32 length, 1500 const struct gfs2_inode *ip) 1501 { 1502 struct gfs2_blkreserv *rs; 1503 struct rb_node *n; 1504 int rc; 1505 1506 spin_lock(&rgd->rd_rsspin); 1507 n = rgd->rd_rstree.rb_node; 1508 while (n) { 1509 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1510 rc = rs_cmp(block, length, rs); 1511 if (rc < 0) 1512 n = n->rb_left; 1513 else if (rc > 0) 1514 n = n->rb_right; 1515 else 1516 break; 1517 } 1518 1519 if (n) { 1520 while ((rs_cmp(block, length, rs) == 0) && (ip->i_res != rs)) { 1521 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free; 1522 n = n->rb_right; 1523 if (n == NULL) 1524 break; 1525 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1526 } 1527 } 1528 1529 spin_unlock(&rgd->rd_rsspin); 1530 return block; 1531 } 1532 1533 /** 1534 * gfs2_reservation_check_and_update - Check for reservations during block alloc 1535 * @rbm: The current position in the resource group 1536 * @ip: The inode for which we are searching for blocks 1537 * @minext: The minimum extent length 1538 * @maxext: A pointer to the maximum extent structure 1539 * 1540 * This checks the current position in the rgrp to see whether there is 1541 * a reservation covering this block. If not then this function is a 1542 * no-op. If there is, then the position is moved to the end of the 1543 * contiguous reservation(s) so that we are pointing at the first 1544 * non-reserved block. 1545 * 1546 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error 1547 */ 1548 1549 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm, 1550 const struct gfs2_inode *ip, 1551 u32 minext, 1552 struct gfs2_extent *maxext) 1553 { 1554 u64 block = gfs2_rbm_to_block(rbm); 1555 u32 extlen = 1; 1556 u64 nblock; 1557 int ret; 1558 1559 /* 1560 * If we have a minimum extent length, then skip over any extent 1561 * which is less than the min extent length in size. 1562 */ 1563 if (minext) { 1564 extlen = gfs2_free_extlen(rbm, minext); 1565 if (extlen <= maxext->len) 1566 goto fail; 1567 } 1568 1569 /* 1570 * Check the extent which has been found against the reservations 1571 * and skip if parts of it are already reserved 1572 */ 1573 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip); 1574 if (nblock == block) { 1575 if (!minext || extlen >= minext) 1576 return 0; 1577 1578 if (extlen > maxext->len) { 1579 maxext->len = extlen; 1580 maxext->rbm = *rbm; 1581 } 1582 fail: 1583 nblock = block + extlen; 1584 } 1585 ret = gfs2_rbm_from_block(rbm, nblock); 1586 if (ret < 0) 1587 return ret; 1588 return 1; 1589 } 1590 1591 /** 1592 * gfs2_rbm_find - Look for blocks of a particular state 1593 * @rbm: Value/result starting position and final position 1594 * @state: The state which we want to find 1595 * @minext: Pointer to the requested extent length (NULL for a single block) 1596 * This is updated to be the actual reservation size. 1597 * @ip: If set, check for reservations 1598 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping 1599 * around until we've reached the starting point. 1600 * @ap: the allocation parameters 1601 * 1602 * Side effects: 1603 * - If looking for free blocks, we set GBF_FULL on each bitmap which 1604 * has no free blocks in it. 1605 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which 1606 * has come up short on a free block search. 1607 * 1608 * Returns: 0 on success, -ENOSPC if there is no block of the requested state 1609 */ 1610 1611 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 1612 const struct gfs2_inode *ip, bool nowrap, 1613 const struct gfs2_alloc_parms *ap) 1614 { 1615 struct buffer_head *bh; 1616 int initial_bii; 1617 u32 initial_offset; 1618 int first_bii = rbm->bii; 1619 u32 first_offset = rbm->offset; 1620 u32 offset; 1621 u8 *buffer; 1622 int n = 0; 1623 int iters = rbm->rgd->rd_length; 1624 int ret; 1625 struct gfs2_bitmap *bi; 1626 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, }; 1627 1628 /* If we are not starting at the beginning of a bitmap, then we 1629 * need to add one to the bitmap count to ensure that we search 1630 * the starting bitmap twice. 1631 */ 1632 if (rbm->offset != 0) 1633 iters++; 1634 1635 while(1) { 1636 bi = rbm_bi(rbm); 1637 if (test_bit(GBF_FULL, &bi->bi_flags) && 1638 (state == GFS2_BLKST_FREE)) 1639 goto next_bitmap; 1640 1641 bh = bi->bi_bh; 1642 buffer = bh->b_data + bi->bi_offset; 1643 WARN_ON(!buffer_uptodate(bh)); 1644 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone) 1645 buffer = bi->bi_clone + bi->bi_offset; 1646 initial_offset = rbm->offset; 1647 offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state); 1648 if (offset == BFITNOENT) 1649 goto bitmap_full; 1650 rbm->offset = offset; 1651 if (ip == NULL) 1652 return 0; 1653 1654 initial_bii = rbm->bii; 1655 ret = gfs2_reservation_check_and_update(rbm, ip, 1656 minext ? *minext : 0, 1657 &maxext); 1658 if (ret == 0) 1659 return 0; 1660 if (ret > 0) { 1661 n += (rbm->bii - initial_bii); 1662 goto next_iter; 1663 } 1664 if (ret == -E2BIG) { 1665 rbm->bii = 0; 1666 rbm->offset = 0; 1667 n += (rbm->bii - initial_bii); 1668 goto res_covered_end_of_rgrp; 1669 } 1670 return ret; 1671 1672 bitmap_full: /* Mark bitmap as full and fall through */ 1673 if ((state == GFS2_BLKST_FREE) && initial_offset == 0) { 1674 struct gfs2_bitmap *bi = rbm_bi(rbm); 1675 set_bit(GBF_FULL, &bi->bi_flags); 1676 } 1677 1678 next_bitmap: /* Find next bitmap in the rgrp */ 1679 rbm->offset = 0; 1680 rbm->bii++; 1681 if (rbm->bii == rbm->rgd->rd_length) 1682 rbm->bii = 0; 1683 res_covered_end_of_rgrp: 1684 if ((rbm->bii == 0) && nowrap) 1685 break; 1686 n++; 1687 next_iter: 1688 if (n >= iters) 1689 break; 1690 } 1691 1692 if (minext == NULL || state != GFS2_BLKST_FREE) 1693 return -ENOSPC; 1694 1695 /* If the extent was too small, and it's smaller than the smallest 1696 to have failed before, remember for future reference that it's 1697 useless to search this rgrp again for this amount or more. */ 1698 if ((first_offset == 0) && (first_bii == 0) && 1699 (*minext < rbm->rgd->rd_extfail_pt)) 1700 rbm->rgd->rd_extfail_pt = *minext; 1701 1702 /* If the maximum extent we found is big enough to fulfill the 1703 minimum requirements, use it anyway. */ 1704 if (maxext.len) { 1705 *rbm = maxext.rbm; 1706 *minext = maxext.len; 1707 return 0; 1708 } 1709 1710 return -ENOSPC; 1711 } 1712 1713 /** 1714 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes 1715 * @rgd: The rgrp 1716 * @last_unlinked: block address of the last dinode we unlinked 1717 * @skip: block address we should explicitly not unlink 1718 * 1719 * Returns: 0 if no error 1720 * The inode, if one has been found, in inode. 1721 */ 1722 1723 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) 1724 { 1725 u64 block; 1726 struct gfs2_sbd *sdp = rgd->rd_sbd; 1727 struct gfs2_glock *gl; 1728 struct gfs2_inode *ip; 1729 int error; 1730 int found = 0; 1731 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 }; 1732 1733 while (1) { 1734 down_write(&sdp->sd_log_flush_lock); 1735 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL, 1736 true, NULL); 1737 up_write(&sdp->sd_log_flush_lock); 1738 if (error == -ENOSPC) 1739 break; 1740 if (WARN_ON_ONCE(error)) 1741 break; 1742 1743 block = gfs2_rbm_to_block(&rbm); 1744 if (gfs2_rbm_from_block(&rbm, block + 1)) 1745 break; 1746 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked) 1747 continue; 1748 if (block == skip) 1749 continue; 1750 *last_unlinked = block; 1751 1752 error = gfs2_glock_get(sdp, block, &gfs2_inode_glops, CREATE, &gl); 1753 if (error) 1754 continue; 1755 1756 /* If the inode is already in cache, we can ignore it here 1757 * because the existing inode disposal code will deal with 1758 * it when all refs have gone away. Accessing gl_object like 1759 * this is not safe in general. Here it is ok because we do 1760 * not dereference the pointer, and we only need an approx 1761 * answer to whether it is NULL or not. 1762 */ 1763 ip = gl->gl_object; 1764 1765 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0) 1766 gfs2_glock_put(gl); 1767 else 1768 found++; 1769 1770 /* Limit reclaim to sensible number of tasks */ 1771 if (found > NR_CPUS) 1772 return; 1773 } 1774 1775 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1776 return; 1777 } 1778 1779 /** 1780 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested 1781 * @rgd: The rgrp in question 1782 * @loops: An indication of how picky we can be (0=very, 1=less so) 1783 * 1784 * This function uses the recently added glock statistics in order to 1785 * figure out whether a parciular resource group is suffering from 1786 * contention from multiple nodes. This is done purely on the basis 1787 * of timings, since this is the only data we have to work with and 1788 * our aim here is to reject a resource group which is highly contended 1789 * but (very important) not to do this too often in order to ensure that 1790 * we do not land up introducing fragmentation by changing resource 1791 * groups when not actually required. 1792 * 1793 * The calculation is fairly simple, we want to know whether the SRTTB 1794 * (i.e. smoothed round trip time for blocking operations) to acquire 1795 * the lock for this rgrp's glock is significantly greater than the 1796 * time taken for resource groups on average. We introduce a margin in 1797 * the form of the variable @var which is computed as the sum of the two 1798 * respective variences, and multiplied by a factor depending on @loops 1799 * and whether we have a lot of data to base the decision on. This is 1800 * then tested against the square difference of the means in order to 1801 * decide whether the result is statistically significant or not. 1802 * 1803 * Returns: A boolean verdict on the congestion status 1804 */ 1805 1806 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops) 1807 { 1808 const struct gfs2_glock *gl = rgd->rd_gl; 1809 const struct gfs2_sbd *sdp = gl->gl_sbd; 1810 struct gfs2_lkstats *st; 1811 s64 r_dcount, l_dcount; 1812 s64 r_srttb, l_srttb; 1813 s64 srttb_diff; 1814 s64 sqr_diff; 1815 s64 var; 1816 1817 preempt_disable(); 1818 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP]; 1819 r_srttb = st->stats[GFS2_LKS_SRTTB]; 1820 r_dcount = st->stats[GFS2_LKS_DCOUNT]; 1821 var = st->stats[GFS2_LKS_SRTTVARB] + 1822 gl->gl_stats.stats[GFS2_LKS_SRTTVARB]; 1823 preempt_enable(); 1824 1825 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB]; 1826 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT]; 1827 1828 if ((l_dcount < 1) || (r_dcount < 1) || (r_srttb == 0)) 1829 return false; 1830 1831 srttb_diff = r_srttb - l_srttb; 1832 sqr_diff = srttb_diff * srttb_diff; 1833 1834 var *= 2; 1835 if (l_dcount < 8 || r_dcount < 8) 1836 var *= 2; 1837 if (loops == 1) 1838 var *= 2; 1839 1840 return ((srttb_diff < 0) && (sqr_diff > var)); 1841 } 1842 1843 /** 1844 * gfs2_rgrp_used_recently 1845 * @rs: The block reservation with the rgrp to test 1846 * @msecs: The time limit in milliseconds 1847 * 1848 * Returns: True if the rgrp glock has been used within the time limit 1849 */ 1850 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs, 1851 u64 msecs) 1852 { 1853 u64 tdiff; 1854 1855 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(), 1856 rs->rs_rbm.rgd->rd_gl->gl_dstamp)); 1857 1858 return tdiff > (msecs * 1000 * 1000); 1859 } 1860 1861 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip) 1862 { 1863 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1864 u32 skip; 1865 1866 get_random_bytes(&skip, sizeof(skip)); 1867 return skip % sdp->sd_rgrps; 1868 } 1869 1870 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin) 1871 { 1872 struct gfs2_rgrpd *rgd = *pos; 1873 struct gfs2_sbd *sdp = rgd->rd_sbd; 1874 1875 rgd = gfs2_rgrpd_get_next(rgd); 1876 if (rgd == NULL) 1877 rgd = gfs2_rgrpd_get_first(sdp); 1878 *pos = rgd; 1879 if (rgd != begin) /* If we didn't wrap */ 1880 return true; 1881 return false; 1882 } 1883 1884 /** 1885 * gfs2_inplace_reserve - Reserve space in the filesystem 1886 * @ip: the inode to reserve space for 1887 * @ap: the allocation parameters 1888 * 1889 * Returns: errno 1890 */ 1891 1892 int gfs2_inplace_reserve(struct gfs2_inode *ip, const struct gfs2_alloc_parms *ap) 1893 { 1894 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1895 struct gfs2_rgrpd *begin = NULL; 1896 struct gfs2_blkreserv *rs = ip->i_res; 1897 int error = 0, rg_locked, flags = 0; 1898 u64 last_unlinked = NO_BLOCK; 1899 int loops = 0; 1900 u32 skip = 0; 1901 1902 if (sdp->sd_args.ar_rgrplvb) 1903 flags |= GL_SKIP; 1904 if (gfs2_assert_warn(sdp, ap->target)) 1905 return -EINVAL; 1906 if (gfs2_rs_active(rs)) { 1907 begin = rs->rs_rbm.rgd; 1908 } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) { 1909 rs->rs_rbm.rgd = begin = ip->i_rgd; 1910 } else { 1911 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1); 1912 } 1913 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV)) 1914 skip = gfs2_orlov_skip(ip); 1915 if (rs->rs_rbm.rgd == NULL) 1916 return -EBADSLT; 1917 1918 while (loops < 3) { 1919 rg_locked = 1; 1920 1921 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) { 1922 rg_locked = 0; 1923 if (skip && skip--) 1924 goto next_rgrp; 1925 if (!gfs2_rs_active(rs) && (loops < 2) && 1926 gfs2_rgrp_used_recently(rs, 1000) && 1927 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 1928 goto next_rgrp; 1929 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl, 1930 LM_ST_EXCLUSIVE, flags, 1931 &rs->rs_rgd_gh); 1932 if (unlikely(error)) 1933 return error; 1934 if (!gfs2_rs_active(rs) && (loops < 2) && 1935 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 1936 goto skip_rgrp; 1937 if (sdp->sd_args.ar_rgrplvb) { 1938 error = update_rgrp_lvb(rs->rs_rbm.rgd); 1939 if (unlikely(error)) { 1940 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 1941 return error; 1942 } 1943 } 1944 } 1945 1946 /* Skip unuseable resource groups */ 1947 if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | 1948 GFS2_RDF_ERROR)) || 1949 (ap->target > rs->rs_rbm.rgd->rd_extfail_pt)) 1950 goto skip_rgrp; 1951 1952 if (sdp->sd_args.ar_rgrplvb) 1953 gfs2_rgrp_bh_get(rs->rs_rbm.rgd); 1954 1955 /* Get a reservation if we don't already have one */ 1956 if (!gfs2_rs_active(rs)) 1957 rg_mblk_search(rs->rs_rbm.rgd, ip, ap); 1958 1959 /* Skip rgrps when we can't get a reservation on first pass */ 1960 if (!gfs2_rs_active(rs) && (loops < 1)) 1961 goto check_rgrp; 1962 1963 /* If rgrp has enough free space, use it */ 1964 if (rs->rs_rbm.rgd->rd_free_clone >= ap->target) { 1965 ip->i_rgd = rs->rs_rbm.rgd; 1966 return 0; 1967 } 1968 1969 check_rgrp: 1970 /* Check for unlinked inodes which can be reclaimed */ 1971 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK) 1972 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked, 1973 ip->i_no_addr); 1974 skip_rgrp: 1975 /* Drop reservation, if we couldn't use reserved rgrp */ 1976 if (gfs2_rs_active(rs)) 1977 gfs2_rs_deltree(rs); 1978 1979 /* Unlock rgrp if required */ 1980 if (!rg_locked) 1981 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 1982 next_rgrp: 1983 /* Find the next rgrp, and continue looking */ 1984 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin)) 1985 continue; 1986 if (skip) 1987 continue; 1988 1989 /* If we've scanned all the rgrps, but found no free blocks 1990 * then this checks for some less likely conditions before 1991 * trying again. 1992 */ 1993 loops++; 1994 /* Check that fs hasn't grown if writing to rindex */ 1995 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { 1996 error = gfs2_ri_update(ip); 1997 if (error) 1998 return error; 1999 } 2000 /* Flushing the log may release space */ 2001 if (loops == 2) 2002 gfs2_log_flush(sdp, NULL); 2003 } 2004 2005 return -ENOSPC; 2006 } 2007 2008 /** 2009 * gfs2_inplace_release - release an inplace reservation 2010 * @ip: the inode the reservation was taken out on 2011 * 2012 * Release a reservation made by gfs2_inplace_reserve(). 2013 */ 2014 2015 void gfs2_inplace_release(struct gfs2_inode *ip) 2016 { 2017 struct gfs2_blkreserv *rs = ip->i_res; 2018 2019 if (rs->rs_rgd_gh.gh_gl) 2020 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 2021 } 2022 2023 /** 2024 * gfs2_get_block_type - Check a block in a RG is of given type 2025 * @rgd: the resource group holding the block 2026 * @block: the block number 2027 * 2028 * Returns: The block type (GFS2_BLKST_*) 2029 */ 2030 2031 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block) 2032 { 2033 struct gfs2_rbm rbm = { .rgd = rgd, }; 2034 int ret; 2035 2036 ret = gfs2_rbm_from_block(&rbm, block); 2037 WARN_ON_ONCE(ret != 0); 2038 2039 return gfs2_testbit(&rbm); 2040 } 2041 2042 2043 /** 2044 * gfs2_alloc_extent - allocate an extent from a given bitmap 2045 * @rbm: the resource group information 2046 * @dinode: TRUE if the first block we allocate is for a dinode 2047 * @n: The extent length (value/result) 2048 * 2049 * Add the bitmap buffer to the transaction. 2050 * Set the found bits to @new_state to change block's allocation state. 2051 */ 2052 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode, 2053 unsigned int *n) 2054 { 2055 struct gfs2_rbm pos = { .rgd = rbm->rgd, }; 2056 const unsigned int elen = *n; 2057 u64 block; 2058 int ret; 2059 2060 *n = 1; 2061 block = gfs2_rbm_to_block(rbm); 2062 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh); 2063 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2064 block++; 2065 while (*n < elen) { 2066 ret = gfs2_rbm_from_block(&pos, block); 2067 if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE) 2068 break; 2069 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh); 2070 gfs2_setbit(&pos, true, GFS2_BLKST_USED); 2071 (*n)++; 2072 block++; 2073 } 2074 } 2075 2076 /** 2077 * rgblk_free - Change alloc state of given block(s) 2078 * @sdp: the filesystem 2079 * @bstart: the start of a run of blocks to free 2080 * @blen: the length of the block run (all must lie within ONE RG!) 2081 * @new_state: GFS2_BLKST_XXX the after-allocation block state 2082 * 2083 * Returns: Resource group containing the block(s) 2084 */ 2085 2086 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart, 2087 u32 blen, unsigned char new_state) 2088 { 2089 struct gfs2_rbm rbm; 2090 struct gfs2_bitmap *bi; 2091 2092 rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1); 2093 if (!rbm.rgd) { 2094 if (gfs2_consist(sdp)) 2095 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart); 2096 return NULL; 2097 } 2098 2099 while (blen--) { 2100 gfs2_rbm_from_block(&rbm, bstart); 2101 bi = rbm_bi(&rbm); 2102 bstart++; 2103 if (!bi->bi_clone) { 2104 bi->bi_clone = kmalloc(bi->bi_bh->b_size, 2105 GFP_NOFS | __GFP_NOFAIL); 2106 memcpy(bi->bi_clone + bi->bi_offset, 2107 bi->bi_bh->b_data + bi->bi_offset, bi->bi_len); 2108 } 2109 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh); 2110 gfs2_setbit(&rbm, false, new_state); 2111 } 2112 2113 return rbm.rgd; 2114 } 2115 2116 /** 2117 * gfs2_rgrp_dump - print out an rgrp 2118 * @seq: The iterator 2119 * @gl: The glock in question 2120 * 2121 */ 2122 2123 void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl) 2124 { 2125 struct gfs2_rgrpd *rgd = gl->gl_object; 2126 struct gfs2_blkreserv *trs; 2127 const struct rb_node *n; 2128 2129 if (rgd == NULL) 2130 return; 2131 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n", 2132 (unsigned long long)rgd->rd_addr, rgd->rd_flags, 2133 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes, 2134 rgd->rd_reserved, rgd->rd_extfail_pt); 2135 spin_lock(&rgd->rd_rsspin); 2136 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) { 2137 trs = rb_entry(n, struct gfs2_blkreserv, rs_node); 2138 dump_rs(seq, trs); 2139 } 2140 spin_unlock(&rgd->rd_rsspin); 2141 } 2142 2143 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) 2144 { 2145 struct gfs2_sbd *sdp = rgd->rd_sbd; 2146 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", 2147 (unsigned long long)rgd->rd_addr); 2148 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); 2149 gfs2_rgrp_dump(NULL, rgd->rd_gl); 2150 rgd->rd_flags |= GFS2_RDF_ERROR; 2151 } 2152 2153 /** 2154 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation 2155 * @ip: The inode we have just allocated blocks for 2156 * @rbm: The start of the allocated blocks 2157 * @len: The extent length 2158 * 2159 * Adjusts a reservation after an allocation has taken place. If the 2160 * reservation does not match the allocation, or if it is now empty 2161 * then it is removed. 2162 */ 2163 2164 static void gfs2_adjust_reservation(struct gfs2_inode *ip, 2165 const struct gfs2_rbm *rbm, unsigned len) 2166 { 2167 struct gfs2_blkreserv *rs = ip->i_res; 2168 struct gfs2_rgrpd *rgd = rbm->rgd; 2169 unsigned rlen; 2170 u64 block; 2171 int ret; 2172 2173 spin_lock(&rgd->rd_rsspin); 2174 if (gfs2_rs_active(rs)) { 2175 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) { 2176 block = gfs2_rbm_to_block(rbm); 2177 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len); 2178 rlen = min(rs->rs_free, len); 2179 rs->rs_free -= rlen; 2180 rgd->rd_reserved -= rlen; 2181 trace_gfs2_rs(rs, TRACE_RS_CLAIM); 2182 if (rs->rs_free && !ret) 2183 goto out; 2184 } 2185 __rs_deltree(rs); 2186 } 2187 out: 2188 spin_unlock(&rgd->rd_rsspin); 2189 } 2190 2191 /** 2192 * gfs2_set_alloc_start - Set starting point for block allocation 2193 * @rbm: The rbm which will be set to the required location 2194 * @ip: The gfs2 inode 2195 * @dinode: Flag to say if allocation includes a new inode 2196 * 2197 * This sets the starting point from the reservation if one is active 2198 * otherwise it falls back to guessing a start point based on the 2199 * inode's goal block or the last allocation point in the rgrp. 2200 */ 2201 2202 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm, 2203 const struct gfs2_inode *ip, bool dinode) 2204 { 2205 u64 goal; 2206 2207 if (gfs2_rs_active(ip->i_res)) { 2208 *rbm = ip->i_res->rs_rbm; 2209 return; 2210 } 2211 2212 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal)) 2213 goal = ip->i_goal; 2214 else 2215 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0; 2216 2217 gfs2_rbm_from_block(rbm, goal); 2218 } 2219 2220 /** 2221 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode 2222 * @ip: the inode to allocate the block for 2223 * @bn: Used to return the starting block number 2224 * @nblocks: requested number of blocks/extent length (value/result) 2225 * @dinode: 1 if we're allocating a dinode block, else 0 2226 * @generation: the generation number of the inode 2227 * 2228 * Returns: 0 or error 2229 */ 2230 2231 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks, 2232 bool dinode, u64 *generation) 2233 { 2234 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2235 struct buffer_head *dibh; 2236 struct gfs2_rbm rbm = { .rgd = ip->i_rgd, }; 2237 unsigned int ndata; 2238 u64 block; /* block, within the file system scope */ 2239 int error; 2240 2241 gfs2_set_alloc_start(&rbm, ip, dinode); 2242 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false, NULL); 2243 2244 if (error == -ENOSPC) { 2245 gfs2_set_alloc_start(&rbm, ip, dinode); 2246 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false, 2247 NULL); 2248 } 2249 2250 /* Since all blocks are reserved in advance, this shouldn't happen */ 2251 if (error) { 2252 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n", 2253 (unsigned long long)ip->i_no_addr, error, *nblocks, 2254 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags), 2255 rbm.rgd->rd_extfail_pt); 2256 goto rgrp_error; 2257 } 2258 2259 gfs2_alloc_extent(&rbm, dinode, nblocks); 2260 block = gfs2_rbm_to_block(&rbm); 2261 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0; 2262 if (gfs2_rs_active(ip->i_res)) 2263 gfs2_adjust_reservation(ip, &rbm, *nblocks); 2264 ndata = *nblocks; 2265 if (dinode) 2266 ndata--; 2267 2268 if (!dinode) { 2269 ip->i_goal = block + ndata - 1; 2270 error = gfs2_meta_inode_buffer(ip, &dibh); 2271 if (error == 0) { 2272 struct gfs2_dinode *di = 2273 (struct gfs2_dinode *)dibh->b_data; 2274 gfs2_trans_add_meta(ip->i_gl, dibh); 2275 di->di_goal_meta = di->di_goal_data = 2276 cpu_to_be64(ip->i_goal); 2277 brelse(dibh); 2278 } 2279 } 2280 if (rbm.rgd->rd_free < *nblocks) { 2281 printk(KERN_WARNING "nblocks=%u\n", *nblocks); 2282 goto rgrp_error; 2283 } 2284 2285 rbm.rgd->rd_free -= *nblocks; 2286 if (dinode) { 2287 rbm.rgd->rd_dinodes++; 2288 *generation = rbm.rgd->rd_igeneration++; 2289 if (*generation == 0) 2290 *generation = rbm.rgd->rd_igeneration++; 2291 } 2292 2293 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh); 2294 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data); 2295 gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data); 2296 2297 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0); 2298 if (dinode) 2299 gfs2_trans_add_unrevoke(sdp, block, 1); 2300 2301 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid); 2302 2303 rbm.rgd->rd_free_clone -= *nblocks; 2304 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks, 2305 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2306 *bn = block; 2307 return 0; 2308 2309 rgrp_error: 2310 gfs2_rgrp_error(rbm.rgd); 2311 return -EIO; 2312 } 2313 2314 /** 2315 * __gfs2_free_blocks - free a contiguous run of block(s) 2316 * @ip: the inode these blocks are being freed from 2317 * @bstart: first block of a run of contiguous blocks 2318 * @blen: the length of the block run 2319 * @meta: 1 if the blocks represent metadata 2320 * 2321 */ 2322 2323 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta) 2324 { 2325 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2326 struct gfs2_rgrpd *rgd; 2327 2328 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE); 2329 if (!rgd) 2330 return; 2331 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE); 2332 rgd->rd_free += blen; 2333 rgd->rd_flags &= ~GFS2_RGF_TRIMMED; 2334 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2335 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2336 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2337 2338 /* Directories keep their data in the metadata address space */ 2339 if (meta || ip->i_depth) 2340 gfs2_meta_wipe(ip, bstart, blen); 2341 } 2342 2343 /** 2344 * gfs2_free_meta - free a contiguous run of data block(s) 2345 * @ip: the inode these blocks are being freed from 2346 * @bstart: first block of a run of contiguous blocks 2347 * @blen: the length of the block run 2348 * 2349 */ 2350 2351 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen) 2352 { 2353 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2354 2355 __gfs2_free_blocks(ip, bstart, blen, 1); 2356 gfs2_statfs_change(sdp, 0, +blen, 0); 2357 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); 2358 } 2359 2360 void gfs2_unlink_di(struct inode *inode) 2361 { 2362 struct gfs2_inode *ip = GFS2_I(inode); 2363 struct gfs2_sbd *sdp = GFS2_SB(inode); 2364 struct gfs2_rgrpd *rgd; 2365 u64 blkno = ip->i_no_addr; 2366 2367 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED); 2368 if (!rgd) 2369 return; 2370 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2371 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2372 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2373 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2374 update_rgrp_lvb_unlinked(rgd, 1); 2375 } 2376 2377 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno) 2378 { 2379 struct gfs2_sbd *sdp = rgd->rd_sbd; 2380 struct gfs2_rgrpd *tmp_rgd; 2381 2382 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE); 2383 if (!tmp_rgd) 2384 return; 2385 gfs2_assert_withdraw(sdp, rgd == tmp_rgd); 2386 2387 if (!rgd->rd_dinodes) 2388 gfs2_consist_rgrpd(rgd); 2389 rgd->rd_dinodes--; 2390 rgd->rd_free++; 2391 2392 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2393 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2394 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2395 update_rgrp_lvb_unlinked(rgd, -1); 2396 2397 gfs2_statfs_change(sdp, 0, +1, -1); 2398 } 2399 2400 2401 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) 2402 { 2403 gfs2_free_uninit_di(rgd, ip->i_no_addr); 2404 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2405 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); 2406 gfs2_meta_wipe(ip, ip->i_no_addr, 1); 2407 } 2408 2409 /** 2410 * gfs2_check_blk_type - Check the type of a block 2411 * @sdp: The superblock 2412 * @no_addr: The block number to check 2413 * @type: The block type we are looking for 2414 * 2415 * Returns: 0 if the block type matches the expected type 2416 * -ESTALE if it doesn't match 2417 * or -ve errno if something went wrong while checking 2418 */ 2419 2420 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) 2421 { 2422 struct gfs2_rgrpd *rgd; 2423 struct gfs2_holder rgd_gh; 2424 int error = -EINVAL; 2425 2426 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1); 2427 if (!rgd) 2428 goto fail; 2429 2430 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); 2431 if (error) 2432 goto fail; 2433 2434 if (gfs2_get_block_type(rgd, no_addr) != type) 2435 error = -ESTALE; 2436 2437 gfs2_glock_dq_uninit(&rgd_gh); 2438 fail: 2439 return error; 2440 } 2441 2442 /** 2443 * gfs2_rlist_add - add a RG to a list of RGs 2444 * @ip: the inode 2445 * @rlist: the list of resource groups 2446 * @block: the block 2447 * 2448 * Figure out what RG a block belongs to and add that RG to the list 2449 * 2450 * FIXME: Don't use NOFAIL 2451 * 2452 */ 2453 2454 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, 2455 u64 block) 2456 { 2457 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2458 struct gfs2_rgrpd *rgd; 2459 struct gfs2_rgrpd **tmp; 2460 unsigned int new_space; 2461 unsigned int x; 2462 2463 if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) 2464 return; 2465 2466 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block)) 2467 rgd = ip->i_rgd; 2468 else 2469 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2470 if (!rgd) { 2471 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block); 2472 return; 2473 } 2474 ip->i_rgd = rgd; 2475 2476 for (x = 0; x < rlist->rl_rgrps; x++) 2477 if (rlist->rl_rgd[x] == rgd) 2478 return; 2479 2480 if (rlist->rl_rgrps == rlist->rl_space) { 2481 new_space = rlist->rl_space + 10; 2482 2483 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), 2484 GFP_NOFS | __GFP_NOFAIL); 2485 2486 if (rlist->rl_rgd) { 2487 memcpy(tmp, rlist->rl_rgd, 2488 rlist->rl_space * sizeof(struct gfs2_rgrpd *)); 2489 kfree(rlist->rl_rgd); 2490 } 2491 2492 rlist->rl_space = new_space; 2493 rlist->rl_rgd = tmp; 2494 } 2495 2496 rlist->rl_rgd[rlist->rl_rgrps++] = rgd; 2497 } 2498 2499 /** 2500 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate 2501 * and initialize an array of glock holders for them 2502 * @rlist: the list of resource groups 2503 * @state: the lock state to acquire the RG lock in 2504 * 2505 * FIXME: Don't use NOFAIL 2506 * 2507 */ 2508 2509 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state) 2510 { 2511 unsigned int x; 2512 2513 rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder), 2514 GFP_NOFS | __GFP_NOFAIL); 2515 for (x = 0; x < rlist->rl_rgrps; x++) 2516 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, 2517 state, 0, 2518 &rlist->rl_ghs[x]); 2519 } 2520 2521 /** 2522 * gfs2_rlist_free - free a resource group list 2523 * @list: the list of resource groups 2524 * 2525 */ 2526 2527 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) 2528 { 2529 unsigned int x; 2530 2531 kfree(rlist->rl_rgd); 2532 2533 if (rlist->rl_ghs) { 2534 for (x = 0; x < rlist->rl_rgrps; x++) 2535 gfs2_holder_uninit(&rlist->rl_ghs[x]); 2536 kfree(rlist->rl_ghs); 2537 rlist->rl_ghs = NULL; 2538 } 2539 } 2540 2541