1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/slab.h> 10 #include <linux/spinlock.h> 11 #include <linux/completion.h> 12 #include <linux/buffer_head.h> 13 #include <linux/fs.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/prefetch.h> 16 #include <linux/blkdev.h> 17 #include <linux/rbtree.h> 18 #include <linux/random.h> 19 20 #include "gfs2.h" 21 #include "incore.h" 22 #include "glock.h" 23 #include "glops.h" 24 #include "lops.h" 25 #include "meta_io.h" 26 #include "quota.h" 27 #include "rgrp.h" 28 #include "super.h" 29 #include "trans.h" 30 #include "util.h" 31 #include "log.h" 32 #include "inode.h" 33 #include "trace_gfs2.h" 34 #include "dir.h" 35 36 #define BFITNOENT ((u32)~0) 37 #define NO_BLOCK ((u64)~0) 38 39 /* 40 * These routines are used by the resource group routines (rgrp.c) 41 * to keep track of block allocation. Each block is represented by two 42 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. 43 * 44 * 0 = Free 45 * 1 = Used (not metadata) 46 * 2 = Unlinked (still in use) inode 47 * 3 = Used (metadata) 48 */ 49 50 struct gfs2_extent { 51 struct gfs2_rbm rbm; 52 u32 len; 53 }; 54 55 static const char valid_change[16] = { 56 /* current */ 57 /* n */ 0, 1, 1, 1, 58 /* e */ 1, 0, 0, 0, 59 /* w */ 0, 0, 0, 1, 60 1, 0, 0, 0 61 }; 62 63 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 64 const struct gfs2_inode *ip, bool nowrap); 65 66 67 /** 68 * gfs2_setbit - Set a bit in the bitmaps 69 * @rbm: The position of the bit to set 70 * @do_clone: Also set the clone bitmap, if it exists 71 * @new_state: the new state of the block 72 * 73 */ 74 75 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone, 76 unsigned char new_state) 77 { 78 unsigned char *byte1, *byte2, *end, cur_state; 79 struct gfs2_bitmap *bi = rbm_bi(rbm); 80 unsigned int buflen = bi->bi_bytes; 81 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 82 83 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY); 84 end = bi->bi_bh->b_data + bi->bi_offset + buflen; 85 86 BUG_ON(byte1 >= end); 87 88 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; 89 90 if (unlikely(!valid_change[new_state * 4 + cur_state])) { 91 struct gfs2_sbd *sdp = rbm->rgd->rd_sbd; 92 93 fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n", 94 rbm->offset, cur_state, new_state); 95 fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n", 96 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start, 97 (unsigned long long)bi->bi_bh->b_blocknr); 98 fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n", 99 bi->bi_offset, bi->bi_bytes, 100 (unsigned long long)gfs2_rbm_to_block(rbm)); 101 dump_stack(); 102 gfs2_consist_rgrpd(rbm->rgd); 103 return; 104 } 105 *byte1 ^= (cur_state ^ new_state) << bit; 106 107 if (do_clone && bi->bi_clone) { 108 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY); 109 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; 110 *byte2 ^= (cur_state ^ new_state) << bit; 111 } 112 } 113 114 /** 115 * gfs2_testbit - test a bit in the bitmaps 116 * @rbm: The bit to test 117 * @use_clone: If true, test the clone bitmap, not the official bitmap. 118 * 119 * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps, 120 * not the "real" bitmaps, to avoid allocating recently freed blocks. 121 * 122 * Returns: The two bit block state of the requested bit 123 */ 124 125 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone) 126 { 127 struct gfs2_bitmap *bi = rbm_bi(rbm); 128 const u8 *buffer; 129 const u8 *byte; 130 unsigned int bit; 131 132 if (use_clone && bi->bi_clone) 133 buffer = bi->bi_clone; 134 else 135 buffer = bi->bi_bh->b_data; 136 buffer += bi->bi_offset; 137 byte = buffer + (rbm->offset / GFS2_NBBY); 138 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 139 140 return (*byte >> bit) & GFS2_BIT_MASK; 141 } 142 143 /** 144 * gfs2_bit_search 145 * @ptr: Pointer to bitmap data 146 * @mask: Mask to use (normally 0x55555.... but adjusted for search start) 147 * @state: The state we are searching for 148 * 149 * We xor the bitmap data with a patter which is the bitwise opposite 150 * of what we are looking for, this gives rise to a pattern of ones 151 * wherever there is a match. Since we have two bits per entry, we 152 * take this pattern, shift it down by one place and then and it with 153 * the original. All the even bit positions (0,2,4, etc) then represent 154 * successful matches, so we mask with 0x55555..... to remove the unwanted 155 * odd bit positions. 156 * 157 * This allows searching of a whole u64 at once (32 blocks) with a 158 * single test (on 64 bit arches). 159 */ 160 161 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) 162 { 163 u64 tmp; 164 static const u64 search[] = { 165 [0] = 0xffffffffffffffffULL, 166 [1] = 0xaaaaaaaaaaaaaaaaULL, 167 [2] = 0x5555555555555555ULL, 168 [3] = 0x0000000000000000ULL, 169 }; 170 tmp = le64_to_cpu(*ptr) ^ search[state]; 171 tmp &= (tmp >> 1); 172 tmp &= mask; 173 return tmp; 174 } 175 176 /** 177 * rs_cmp - multi-block reservation range compare 178 * @blk: absolute file system block number of the new reservation 179 * @len: number of blocks in the new reservation 180 * @rs: existing reservation to compare against 181 * 182 * returns: 1 if the block range is beyond the reach of the reservation 183 * -1 if the block range is before the start of the reservation 184 * 0 if the block range overlaps with the reservation 185 */ 186 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs) 187 { 188 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm); 189 190 if (blk >= startblk + rs->rs_free) 191 return 1; 192 if (blk + len - 1 < startblk) 193 return -1; 194 return 0; 195 } 196 197 /** 198 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing 199 * a block in a given allocation state. 200 * @buf: the buffer that holds the bitmaps 201 * @len: the length (in bytes) of the buffer 202 * @goal: start search at this block's bit-pair (within @buffer) 203 * @state: GFS2_BLKST_XXX the state of the block we're looking for. 204 * 205 * Scope of @goal and returned block number is only within this bitmap buffer, 206 * not entire rgrp or filesystem. @buffer will be offset from the actual 207 * beginning of a bitmap block buffer, skipping any header structures, but 208 * headers are always a multiple of 64 bits long so that the buffer is 209 * always aligned to a 64 bit boundary. 210 * 211 * The size of the buffer is in bytes, but is it assumed that it is 212 * always ok to read a complete multiple of 64 bits at the end 213 * of the block in case the end is no aligned to a natural boundary. 214 * 215 * Return: the block number (bitmap buffer scope) that was found 216 */ 217 218 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, 219 u32 goal, u8 state) 220 { 221 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); 222 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); 223 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); 224 u64 tmp; 225 u64 mask = 0x5555555555555555ULL; 226 u32 bit; 227 228 /* Mask off bits we don't care about at the start of the search */ 229 mask <<= spoint; 230 tmp = gfs2_bit_search(ptr, mask, state); 231 ptr++; 232 while(tmp == 0 && ptr < end) { 233 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); 234 ptr++; 235 } 236 /* Mask off any bits which are more than len bytes from the start */ 237 if (ptr == end && (len & (sizeof(u64) - 1))) 238 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); 239 /* Didn't find anything, so return */ 240 if (tmp == 0) 241 return BFITNOENT; 242 ptr--; 243 bit = __ffs64(tmp); 244 bit /= 2; /* two bits per entry in the bitmap */ 245 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; 246 } 247 248 /** 249 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number 250 * @rbm: The rbm with rgd already set correctly 251 * @block: The block number (filesystem relative) 252 * 253 * This sets the bi and offset members of an rbm based on a 254 * resource group and a filesystem relative block number. The 255 * resource group must be set in the rbm on entry, the bi and 256 * offset members will be set by this function. 257 * 258 * Returns: 0 on success, or an error code 259 */ 260 261 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block) 262 { 263 if (!rgrp_contains_block(rbm->rgd, block)) 264 return -E2BIG; 265 rbm->bii = 0; 266 rbm->offset = block - rbm->rgd->rd_data0; 267 /* Check if the block is within the first block */ 268 if (rbm->offset < rbm_bi(rbm)->bi_blocks) 269 return 0; 270 271 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */ 272 rbm->offset += (sizeof(struct gfs2_rgrp) - 273 sizeof(struct gfs2_meta_header)) * GFS2_NBBY; 274 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 275 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 276 return 0; 277 } 278 279 /** 280 * gfs2_rbm_incr - increment an rbm structure 281 * @rbm: The rbm with rgd already set correctly 282 * 283 * This function takes an existing rbm structure and increments it to the next 284 * viable block offset. 285 * 286 * Returns: If incrementing the offset would cause the rbm to go past the 287 * end of the rgrp, true is returned, otherwise false. 288 * 289 */ 290 291 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm) 292 { 293 if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */ 294 rbm->offset++; 295 return false; 296 } 297 if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */ 298 return true; 299 300 rbm->offset = 0; 301 rbm->bii++; 302 return false; 303 } 304 305 /** 306 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned 307 * @rbm: Position to search (value/result) 308 * @n_unaligned: Number of unaligned blocks to check 309 * @len: Decremented for each block found (terminate on zero) 310 * 311 * Returns: true if a non-free block is encountered 312 */ 313 314 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len) 315 { 316 u32 n; 317 u8 res; 318 319 for (n = 0; n < n_unaligned; n++) { 320 res = gfs2_testbit(rbm, true); 321 if (res != GFS2_BLKST_FREE) 322 return true; 323 (*len)--; 324 if (*len == 0) 325 return true; 326 if (gfs2_rbm_incr(rbm)) 327 return true; 328 } 329 330 return false; 331 } 332 333 /** 334 * gfs2_free_extlen - Return extent length of free blocks 335 * @rrbm: Starting position 336 * @len: Max length to check 337 * 338 * Starting at the block specified by the rbm, see how many free blocks 339 * there are, not reading more than len blocks ahead. This can be done 340 * using memchr_inv when the blocks are byte aligned, but has to be done 341 * on a block by block basis in case of unaligned blocks. Also this 342 * function can cope with bitmap boundaries (although it must stop on 343 * a resource group boundary) 344 * 345 * Returns: Number of free blocks in the extent 346 */ 347 348 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len) 349 { 350 struct gfs2_rbm rbm = *rrbm; 351 u32 n_unaligned = rbm.offset & 3; 352 u32 size = len; 353 u32 bytes; 354 u32 chunk_size; 355 u8 *ptr, *start, *end; 356 u64 block; 357 struct gfs2_bitmap *bi; 358 359 if (n_unaligned && 360 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len)) 361 goto out; 362 363 n_unaligned = len & 3; 364 /* Start is now byte aligned */ 365 while (len > 3) { 366 bi = rbm_bi(&rbm); 367 start = bi->bi_bh->b_data; 368 if (bi->bi_clone) 369 start = bi->bi_clone; 370 start += bi->bi_offset; 371 end = start + bi->bi_bytes; 372 BUG_ON(rbm.offset & 3); 373 start += (rbm.offset / GFS2_NBBY); 374 bytes = min_t(u32, len / GFS2_NBBY, (end - start)); 375 ptr = memchr_inv(start, 0, bytes); 376 chunk_size = ((ptr == NULL) ? bytes : (ptr - start)); 377 chunk_size *= GFS2_NBBY; 378 BUG_ON(len < chunk_size); 379 len -= chunk_size; 380 block = gfs2_rbm_to_block(&rbm); 381 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) { 382 n_unaligned = 0; 383 break; 384 } 385 if (ptr) { 386 n_unaligned = 3; 387 break; 388 } 389 n_unaligned = len & 3; 390 } 391 392 /* Deal with any bits left over at the end */ 393 if (n_unaligned) 394 gfs2_unaligned_extlen(&rbm, n_unaligned, &len); 395 out: 396 return size - len; 397 } 398 399 /** 400 * gfs2_bitcount - count the number of bits in a certain state 401 * @rgd: the resource group descriptor 402 * @buffer: the buffer that holds the bitmaps 403 * @buflen: the length (in bytes) of the buffer 404 * @state: the state of the block we're looking for 405 * 406 * Returns: The number of bits 407 */ 408 409 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, 410 unsigned int buflen, u8 state) 411 { 412 const u8 *byte = buffer; 413 const u8 *end = buffer + buflen; 414 const u8 state1 = state << 2; 415 const u8 state2 = state << 4; 416 const u8 state3 = state << 6; 417 u32 count = 0; 418 419 for (; byte < end; byte++) { 420 if (((*byte) & 0x03) == state) 421 count++; 422 if (((*byte) & 0x0C) == state1) 423 count++; 424 if (((*byte) & 0x30) == state2) 425 count++; 426 if (((*byte) & 0xC0) == state3) 427 count++; 428 } 429 430 return count; 431 } 432 433 /** 434 * gfs2_rgrp_verify - Verify that a resource group is consistent 435 * @rgd: the rgrp 436 * 437 */ 438 439 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) 440 { 441 struct gfs2_sbd *sdp = rgd->rd_sbd; 442 struct gfs2_bitmap *bi = NULL; 443 u32 length = rgd->rd_length; 444 u32 count[4], tmp; 445 int buf, x; 446 447 memset(count, 0, 4 * sizeof(u32)); 448 449 /* Count # blocks in each of 4 possible allocation states */ 450 for (buf = 0; buf < length; buf++) { 451 bi = rgd->rd_bits + buf; 452 for (x = 0; x < 4; x++) 453 count[x] += gfs2_bitcount(rgd, 454 bi->bi_bh->b_data + 455 bi->bi_offset, 456 bi->bi_bytes, x); 457 } 458 459 if (count[0] != rgd->rd_free) { 460 gfs2_lm(sdp, "free data mismatch: %u != %u\n", 461 count[0], rgd->rd_free); 462 gfs2_consist_rgrpd(rgd); 463 return; 464 } 465 466 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; 467 if (count[1] != tmp) { 468 gfs2_lm(sdp, "used data mismatch: %u != %u\n", 469 count[1], tmp); 470 gfs2_consist_rgrpd(rgd); 471 return; 472 } 473 474 if (count[2] + count[3] != rgd->rd_dinodes) { 475 gfs2_lm(sdp, "used metadata mismatch: %u != %u\n", 476 count[2] + count[3], rgd->rd_dinodes); 477 gfs2_consist_rgrpd(rgd); 478 return; 479 } 480 } 481 482 /** 483 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number 484 * @sdp: The GFS2 superblock 485 * @blk: The data block number 486 * @exact: True if this needs to be an exact match 487 * 488 * The @exact argument should be set to true by most callers. The exception 489 * is when we need to match blocks which are not represented by the rgrp 490 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are 491 * there for alignment purposes. Another way of looking at it is that @exact 492 * matches only valid data/metadata blocks, but with @exact false, it will 493 * match any block within the extent of the rgrp. 494 * 495 * Returns: The resource group, or NULL if not found 496 */ 497 498 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact) 499 { 500 struct rb_node *n, *next; 501 struct gfs2_rgrpd *cur; 502 503 spin_lock(&sdp->sd_rindex_spin); 504 n = sdp->sd_rindex_tree.rb_node; 505 while (n) { 506 cur = rb_entry(n, struct gfs2_rgrpd, rd_node); 507 next = NULL; 508 if (blk < cur->rd_addr) 509 next = n->rb_left; 510 else if (blk >= cur->rd_data0 + cur->rd_data) 511 next = n->rb_right; 512 if (next == NULL) { 513 spin_unlock(&sdp->sd_rindex_spin); 514 if (exact) { 515 if (blk < cur->rd_addr) 516 return NULL; 517 if (blk >= cur->rd_data0 + cur->rd_data) 518 return NULL; 519 } 520 return cur; 521 } 522 n = next; 523 } 524 spin_unlock(&sdp->sd_rindex_spin); 525 526 return NULL; 527 } 528 529 /** 530 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem 531 * @sdp: The GFS2 superblock 532 * 533 * Returns: The first rgrp in the filesystem 534 */ 535 536 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) 537 { 538 const struct rb_node *n; 539 struct gfs2_rgrpd *rgd; 540 541 spin_lock(&sdp->sd_rindex_spin); 542 n = rb_first(&sdp->sd_rindex_tree); 543 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 544 spin_unlock(&sdp->sd_rindex_spin); 545 546 return rgd; 547 } 548 549 /** 550 * gfs2_rgrpd_get_next - get the next RG 551 * @rgd: the resource group descriptor 552 * 553 * Returns: The next rgrp 554 */ 555 556 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) 557 { 558 struct gfs2_sbd *sdp = rgd->rd_sbd; 559 const struct rb_node *n; 560 561 spin_lock(&sdp->sd_rindex_spin); 562 n = rb_next(&rgd->rd_node); 563 if (n == NULL) 564 n = rb_first(&sdp->sd_rindex_tree); 565 566 if (unlikely(&rgd->rd_node == n)) { 567 spin_unlock(&sdp->sd_rindex_spin); 568 return NULL; 569 } 570 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 571 spin_unlock(&sdp->sd_rindex_spin); 572 return rgd; 573 } 574 575 void check_and_update_goal(struct gfs2_inode *ip) 576 { 577 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 578 if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL) 579 ip->i_goal = ip->i_no_addr; 580 } 581 582 void gfs2_free_clones(struct gfs2_rgrpd *rgd) 583 { 584 int x; 585 586 for (x = 0; x < rgd->rd_length; x++) { 587 struct gfs2_bitmap *bi = rgd->rd_bits + x; 588 kfree(bi->bi_clone); 589 bi->bi_clone = NULL; 590 } 591 } 592 593 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs, 594 const char *fs_id_buf) 595 { 596 struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res); 597 598 gfs2_print_dbg(seq, "%s B: n:%llu s:%llu b:%u f:%u\n", fs_id_buf, 599 (unsigned long long)ip->i_no_addr, 600 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm), 601 rs->rs_rbm.offset, rs->rs_free); 602 } 603 604 /** 605 * __rs_deltree - remove a multi-block reservation from the rgd tree 606 * @rs: The reservation to remove 607 * 608 */ 609 static void __rs_deltree(struct gfs2_blkreserv *rs) 610 { 611 struct gfs2_rgrpd *rgd; 612 613 if (!gfs2_rs_active(rs)) 614 return; 615 616 rgd = rs->rs_rbm.rgd; 617 trace_gfs2_rs(rs, TRACE_RS_TREEDEL); 618 rb_erase(&rs->rs_node, &rgd->rd_rstree); 619 RB_CLEAR_NODE(&rs->rs_node); 620 621 if (rs->rs_free) { 622 u64 last_block = gfs2_rbm_to_block(&rs->rs_rbm) + 623 rs->rs_free - 1; 624 struct gfs2_rbm last_rbm = { .rgd = rs->rs_rbm.rgd, }; 625 struct gfs2_bitmap *start, *last; 626 627 /* return reserved blocks to the rgrp */ 628 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free); 629 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free; 630 /* The rgrp extent failure point is likely not to increase; 631 it will only do so if the freed blocks are somehow 632 contiguous with a span of free blocks that follows. Still, 633 it will force the number to be recalculated later. */ 634 rgd->rd_extfail_pt += rs->rs_free; 635 rs->rs_free = 0; 636 if (gfs2_rbm_from_block(&last_rbm, last_block)) 637 return; 638 start = rbm_bi(&rs->rs_rbm); 639 last = rbm_bi(&last_rbm); 640 do 641 clear_bit(GBF_FULL, &start->bi_flags); 642 while (start++ != last); 643 } 644 } 645 646 /** 647 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree 648 * @rs: The reservation to remove 649 * 650 */ 651 void gfs2_rs_deltree(struct gfs2_blkreserv *rs) 652 { 653 struct gfs2_rgrpd *rgd; 654 655 rgd = rs->rs_rbm.rgd; 656 if (rgd) { 657 spin_lock(&rgd->rd_rsspin); 658 __rs_deltree(rs); 659 BUG_ON(rs->rs_free); 660 spin_unlock(&rgd->rd_rsspin); 661 } 662 } 663 664 /** 665 * gfs2_rs_delete - delete a multi-block reservation 666 * @ip: The inode for this reservation 667 * @wcount: The inode's write count, or NULL 668 * 669 */ 670 void gfs2_rs_delete(struct gfs2_inode *ip, atomic_t *wcount) 671 { 672 down_write(&ip->i_rw_mutex); 673 if ((wcount == NULL) || (atomic_read(wcount) <= 1)) 674 gfs2_rs_deltree(&ip->i_res); 675 up_write(&ip->i_rw_mutex); 676 } 677 678 /** 679 * return_all_reservations - return all reserved blocks back to the rgrp. 680 * @rgd: the rgrp that needs its space back 681 * 682 * We previously reserved a bunch of blocks for allocation. Now we need to 683 * give them back. This leave the reservation structures in tact, but removes 684 * all of their corresponding "no-fly zones". 685 */ 686 static void return_all_reservations(struct gfs2_rgrpd *rgd) 687 { 688 struct rb_node *n; 689 struct gfs2_blkreserv *rs; 690 691 spin_lock(&rgd->rd_rsspin); 692 while ((n = rb_first(&rgd->rd_rstree))) { 693 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 694 __rs_deltree(rs); 695 } 696 spin_unlock(&rgd->rd_rsspin); 697 } 698 699 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) 700 { 701 struct rb_node *n; 702 struct gfs2_rgrpd *rgd; 703 struct gfs2_glock *gl; 704 705 while ((n = rb_first(&sdp->sd_rindex_tree))) { 706 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 707 gl = rgd->rd_gl; 708 709 rb_erase(n, &sdp->sd_rindex_tree); 710 711 if (gl) { 712 if (gl->gl_state != LM_ST_UNLOCKED) { 713 gfs2_glock_cb(gl, LM_ST_UNLOCKED); 714 flush_delayed_work(&gl->gl_work); 715 } 716 gfs2_rgrp_brelse(rgd); 717 glock_clear_object(gl, rgd); 718 gfs2_glock_put(gl); 719 } 720 721 gfs2_free_clones(rgd); 722 return_all_reservations(rgd); 723 kfree(rgd->rd_bits); 724 rgd->rd_bits = NULL; 725 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 726 } 727 } 728 729 /** 730 * gfs2_compute_bitstructs - Compute the bitmap sizes 731 * @rgd: The resource group descriptor 732 * 733 * Calculates bitmap descriptors, one for each block that contains bitmap data 734 * 735 * Returns: errno 736 */ 737 738 static int compute_bitstructs(struct gfs2_rgrpd *rgd) 739 { 740 struct gfs2_sbd *sdp = rgd->rd_sbd; 741 struct gfs2_bitmap *bi; 742 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ 743 u32 bytes_left, bytes; 744 int x; 745 746 if (!length) 747 return -EINVAL; 748 749 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); 750 if (!rgd->rd_bits) 751 return -ENOMEM; 752 753 bytes_left = rgd->rd_bitbytes; 754 755 for (x = 0; x < length; x++) { 756 bi = rgd->rd_bits + x; 757 758 bi->bi_flags = 0; 759 /* small rgrp; bitmap stored completely in header block */ 760 if (length == 1) { 761 bytes = bytes_left; 762 bi->bi_offset = sizeof(struct gfs2_rgrp); 763 bi->bi_start = 0; 764 bi->bi_bytes = bytes; 765 bi->bi_blocks = bytes * GFS2_NBBY; 766 /* header block */ 767 } else if (x == 0) { 768 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); 769 bi->bi_offset = sizeof(struct gfs2_rgrp); 770 bi->bi_start = 0; 771 bi->bi_bytes = bytes; 772 bi->bi_blocks = bytes * GFS2_NBBY; 773 /* last block */ 774 } else if (x + 1 == length) { 775 bytes = bytes_left; 776 bi->bi_offset = sizeof(struct gfs2_meta_header); 777 bi->bi_start = rgd->rd_bitbytes - bytes_left; 778 bi->bi_bytes = bytes; 779 bi->bi_blocks = bytes * GFS2_NBBY; 780 /* other blocks */ 781 } else { 782 bytes = sdp->sd_sb.sb_bsize - 783 sizeof(struct gfs2_meta_header); 784 bi->bi_offset = sizeof(struct gfs2_meta_header); 785 bi->bi_start = rgd->rd_bitbytes - bytes_left; 786 bi->bi_bytes = bytes; 787 bi->bi_blocks = bytes * GFS2_NBBY; 788 } 789 790 bytes_left -= bytes; 791 } 792 793 if (bytes_left) { 794 gfs2_consist_rgrpd(rgd); 795 return -EIO; 796 } 797 bi = rgd->rd_bits + (length - 1); 798 if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) { 799 gfs2_lm(sdp, 800 "ri_addr = %llu\n" 801 "ri_length = %u\n" 802 "ri_data0 = %llu\n" 803 "ri_data = %u\n" 804 "ri_bitbytes = %u\n" 805 "start=%u len=%u offset=%u\n", 806 (unsigned long long)rgd->rd_addr, 807 rgd->rd_length, 808 (unsigned long long)rgd->rd_data0, 809 rgd->rd_data, 810 rgd->rd_bitbytes, 811 bi->bi_start, bi->bi_bytes, bi->bi_offset); 812 gfs2_consist_rgrpd(rgd); 813 return -EIO; 814 } 815 816 return 0; 817 } 818 819 /** 820 * gfs2_ri_total - Total up the file system space, according to the rindex. 821 * @sdp: the filesystem 822 * 823 */ 824 u64 gfs2_ri_total(struct gfs2_sbd *sdp) 825 { 826 u64 total_data = 0; 827 struct inode *inode = sdp->sd_rindex; 828 struct gfs2_inode *ip = GFS2_I(inode); 829 char buf[sizeof(struct gfs2_rindex)]; 830 int error, rgrps; 831 832 for (rgrps = 0;; rgrps++) { 833 loff_t pos = rgrps * sizeof(struct gfs2_rindex); 834 835 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) 836 break; 837 error = gfs2_internal_read(ip, buf, &pos, 838 sizeof(struct gfs2_rindex)); 839 if (error != sizeof(struct gfs2_rindex)) 840 break; 841 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); 842 } 843 return total_data; 844 } 845 846 static int rgd_insert(struct gfs2_rgrpd *rgd) 847 { 848 struct gfs2_sbd *sdp = rgd->rd_sbd; 849 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; 850 851 /* Figure out where to put new node */ 852 while (*newn) { 853 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, 854 rd_node); 855 856 parent = *newn; 857 if (rgd->rd_addr < cur->rd_addr) 858 newn = &((*newn)->rb_left); 859 else if (rgd->rd_addr > cur->rd_addr) 860 newn = &((*newn)->rb_right); 861 else 862 return -EEXIST; 863 } 864 865 rb_link_node(&rgd->rd_node, parent, newn); 866 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); 867 sdp->sd_rgrps++; 868 return 0; 869 } 870 871 /** 872 * read_rindex_entry - Pull in a new resource index entry from the disk 873 * @ip: Pointer to the rindex inode 874 * 875 * Returns: 0 on success, > 0 on EOF, error code otherwise 876 */ 877 878 static int read_rindex_entry(struct gfs2_inode *ip) 879 { 880 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 881 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); 882 struct gfs2_rindex buf; 883 int error; 884 struct gfs2_rgrpd *rgd; 885 886 if (pos >= i_size_read(&ip->i_inode)) 887 return 1; 888 889 error = gfs2_internal_read(ip, (char *)&buf, &pos, 890 sizeof(struct gfs2_rindex)); 891 892 if (error != sizeof(struct gfs2_rindex)) 893 return (error == 0) ? 1 : error; 894 895 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); 896 error = -ENOMEM; 897 if (!rgd) 898 return error; 899 900 rgd->rd_sbd = sdp; 901 rgd->rd_addr = be64_to_cpu(buf.ri_addr); 902 rgd->rd_length = be32_to_cpu(buf.ri_length); 903 rgd->rd_data0 = be64_to_cpu(buf.ri_data0); 904 rgd->rd_data = be32_to_cpu(buf.ri_data); 905 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); 906 spin_lock_init(&rgd->rd_rsspin); 907 908 error = compute_bitstructs(rgd); 909 if (error) 910 goto fail; 911 912 error = gfs2_glock_get(sdp, rgd->rd_addr, 913 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); 914 if (error) 915 goto fail; 916 917 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr; 918 rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED); 919 if (rgd->rd_data > sdp->sd_max_rg_data) 920 sdp->sd_max_rg_data = rgd->rd_data; 921 spin_lock(&sdp->sd_rindex_spin); 922 error = rgd_insert(rgd); 923 spin_unlock(&sdp->sd_rindex_spin); 924 if (!error) { 925 glock_set_object(rgd->rd_gl, rgd); 926 return 0; 927 } 928 929 error = 0; /* someone else read in the rgrp; free it and ignore it */ 930 gfs2_glock_put(rgd->rd_gl); 931 932 fail: 933 kfree(rgd->rd_bits); 934 rgd->rd_bits = NULL; 935 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 936 return error; 937 } 938 939 /** 940 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use 941 * @sdp: the GFS2 superblock 942 * 943 * The purpose of this function is to select a subset of the resource groups 944 * and mark them as PREFERRED. We do it in such a way that each node prefers 945 * to use a unique set of rgrps to minimize glock contention. 946 */ 947 static void set_rgrp_preferences(struct gfs2_sbd *sdp) 948 { 949 struct gfs2_rgrpd *rgd, *first; 950 int i; 951 952 /* Skip an initial number of rgrps, based on this node's journal ID. 953 That should start each node out on its own set. */ 954 rgd = gfs2_rgrpd_get_first(sdp); 955 for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++) 956 rgd = gfs2_rgrpd_get_next(rgd); 957 first = rgd; 958 959 do { 960 rgd->rd_flags |= GFS2_RDF_PREFERRED; 961 for (i = 0; i < sdp->sd_journals; i++) { 962 rgd = gfs2_rgrpd_get_next(rgd); 963 if (!rgd || rgd == first) 964 break; 965 } 966 } while (rgd && rgd != first); 967 } 968 969 /** 970 * gfs2_ri_update - Pull in a new resource index from the disk 971 * @ip: pointer to the rindex inode 972 * 973 * Returns: 0 on successful update, error code otherwise 974 */ 975 976 static int gfs2_ri_update(struct gfs2_inode *ip) 977 { 978 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 979 int error; 980 981 do { 982 error = read_rindex_entry(ip); 983 } while (error == 0); 984 985 if (error < 0) 986 return error; 987 988 if (RB_EMPTY_ROOT(&sdp->sd_rindex_tree)) { 989 fs_err(sdp, "no resource groups found in the file system.\n"); 990 return -ENOENT; 991 } 992 set_rgrp_preferences(sdp); 993 994 sdp->sd_rindex_uptodate = 1; 995 return 0; 996 } 997 998 /** 999 * gfs2_rindex_update - Update the rindex if required 1000 * @sdp: The GFS2 superblock 1001 * 1002 * We grab a lock on the rindex inode to make sure that it doesn't 1003 * change whilst we are performing an operation. We keep this lock 1004 * for quite long periods of time compared to other locks. This 1005 * doesn't matter, since it is shared and it is very, very rarely 1006 * accessed in the exclusive mode (i.e. only when expanding the filesystem). 1007 * 1008 * This makes sure that we're using the latest copy of the resource index 1009 * special file, which might have been updated if someone expanded the 1010 * filesystem (via gfs2_grow utility), which adds new resource groups. 1011 * 1012 * Returns: 0 on succeess, error code otherwise 1013 */ 1014 1015 int gfs2_rindex_update(struct gfs2_sbd *sdp) 1016 { 1017 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); 1018 struct gfs2_glock *gl = ip->i_gl; 1019 struct gfs2_holder ri_gh; 1020 int error = 0; 1021 int unlock_required = 0; 1022 1023 /* Read new copy from disk if we don't have the latest */ 1024 if (!sdp->sd_rindex_uptodate) { 1025 if (!gfs2_glock_is_locked_by_me(gl)) { 1026 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); 1027 if (error) 1028 return error; 1029 unlock_required = 1; 1030 } 1031 if (!sdp->sd_rindex_uptodate) 1032 error = gfs2_ri_update(ip); 1033 if (unlock_required) 1034 gfs2_glock_dq_uninit(&ri_gh); 1035 } 1036 1037 return error; 1038 } 1039 1040 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) 1041 { 1042 const struct gfs2_rgrp *str = buf; 1043 u32 rg_flags; 1044 1045 rg_flags = be32_to_cpu(str->rg_flags); 1046 rg_flags &= ~GFS2_RDF_MASK; 1047 rgd->rd_flags &= GFS2_RDF_MASK; 1048 rgd->rd_flags |= rg_flags; 1049 rgd->rd_free = be32_to_cpu(str->rg_free); 1050 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); 1051 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); 1052 /* rd_data0, rd_data and rd_bitbytes already set from rindex */ 1053 } 1054 1055 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf) 1056 { 1057 const struct gfs2_rgrp *str = buf; 1058 1059 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC); 1060 rgl->rl_flags = str->rg_flags; 1061 rgl->rl_free = str->rg_free; 1062 rgl->rl_dinodes = str->rg_dinodes; 1063 rgl->rl_igeneration = str->rg_igeneration; 1064 rgl->__pad = 0UL; 1065 } 1066 1067 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) 1068 { 1069 struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd); 1070 struct gfs2_rgrp *str = buf; 1071 u32 crc; 1072 1073 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); 1074 str->rg_free = cpu_to_be32(rgd->rd_free); 1075 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); 1076 if (next == NULL) 1077 str->rg_skip = 0; 1078 else if (next->rd_addr > rgd->rd_addr) 1079 str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr); 1080 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); 1081 str->rg_data0 = cpu_to_be64(rgd->rd_data0); 1082 str->rg_data = cpu_to_be32(rgd->rd_data); 1083 str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes); 1084 str->rg_crc = 0; 1085 crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp)); 1086 str->rg_crc = cpu_to_be32(crc); 1087 1088 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); 1089 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf); 1090 } 1091 1092 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd) 1093 { 1094 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1095 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data; 1096 struct gfs2_sbd *sdp = rgd->rd_sbd; 1097 int valid = 1; 1098 1099 if (rgl->rl_flags != str->rg_flags) { 1100 fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u", 1101 (unsigned long long)rgd->rd_addr, 1102 be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags)); 1103 valid = 0; 1104 } 1105 if (rgl->rl_free != str->rg_free) { 1106 fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u", 1107 (unsigned long long)rgd->rd_addr, 1108 be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free)); 1109 valid = 0; 1110 } 1111 if (rgl->rl_dinodes != str->rg_dinodes) { 1112 fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u", 1113 (unsigned long long)rgd->rd_addr, 1114 be32_to_cpu(rgl->rl_dinodes), 1115 be32_to_cpu(str->rg_dinodes)); 1116 valid = 0; 1117 } 1118 if (rgl->rl_igeneration != str->rg_igeneration) { 1119 fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu", 1120 (unsigned long long)rgd->rd_addr, 1121 (unsigned long long)be64_to_cpu(rgl->rl_igeneration), 1122 (unsigned long long)be64_to_cpu(str->rg_igeneration)); 1123 valid = 0; 1124 } 1125 return valid; 1126 } 1127 1128 static u32 count_unlinked(struct gfs2_rgrpd *rgd) 1129 { 1130 struct gfs2_bitmap *bi; 1131 const u32 length = rgd->rd_length; 1132 const u8 *buffer = NULL; 1133 u32 i, goal, count = 0; 1134 1135 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) { 1136 goal = 0; 1137 buffer = bi->bi_bh->b_data + bi->bi_offset; 1138 WARN_ON(!buffer_uptodate(bi->bi_bh)); 1139 while (goal < bi->bi_blocks) { 1140 goal = gfs2_bitfit(buffer, bi->bi_bytes, goal, 1141 GFS2_BLKST_UNLINKED); 1142 if (goal == BFITNOENT) 1143 break; 1144 count++; 1145 goal++; 1146 } 1147 } 1148 1149 return count; 1150 } 1151 1152 1153 /** 1154 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps 1155 * @rgd: the struct gfs2_rgrpd describing the RG to read in 1156 * 1157 * Read in all of a Resource Group's header and bitmap blocks. 1158 * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps. 1159 * 1160 * Returns: errno 1161 */ 1162 1163 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd) 1164 { 1165 struct gfs2_sbd *sdp = rgd->rd_sbd; 1166 struct gfs2_glock *gl = rgd->rd_gl; 1167 unsigned int length = rgd->rd_length; 1168 struct gfs2_bitmap *bi; 1169 unsigned int x, y; 1170 int error; 1171 1172 if (rgd->rd_bits[0].bi_bh != NULL) 1173 return 0; 1174 1175 for (x = 0; x < length; x++) { 1176 bi = rgd->rd_bits + x; 1177 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh); 1178 if (error) 1179 goto fail; 1180 } 1181 1182 for (y = length; y--;) { 1183 bi = rgd->rd_bits + y; 1184 error = gfs2_meta_wait(sdp, bi->bi_bh); 1185 if (error) 1186 goto fail; 1187 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : 1188 GFS2_METATYPE_RG)) { 1189 error = -EIO; 1190 goto fail; 1191 } 1192 } 1193 1194 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) { 1195 for (x = 0; x < length; x++) 1196 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags); 1197 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); 1198 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1199 rgd->rd_free_clone = rgd->rd_free; 1200 /* max out the rgrp allocation failure point */ 1201 rgd->rd_extfail_pt = rgd->rd_free; 1202 } 1203 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) { 1204 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd)); 1205 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, 1206 rgd->rd_bits[0].bi_bh->b_data); 1207 } 1208 else if (sdp->sd_args.ar_rgrplvb) { 1209 if (!gfs2_rgrp_lvb_valid(rgd)){ 1210 gfs2_consist_rgrpd(rgd); 1211 error = -EIO; 1212 goto fail; 1213 } 1214 if (rgd->rd_rgl->rl_unlinked == 0) 1215 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1216 } 1217 return 0; 1218 1219 fail: 1220 while (x--) { 1221 bi = rgd->rd_bits + x; 1222 brelse(bi->bi_bh); 1223 bi->bi_bh = NULL; 1224 gfs2_assert_warn(sdp, !bi->bi_clone); 1225 } 1226 1227 return error; 1228 } 1229 1230 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd) 1231 { 1232 u32 rl_flags; 1233 1234 if (rgd->rd_flags & GFS2_RDF_UPTODATE) 1235 return 0; 1236 1237 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) 1238 return gfs2_rgrp_bh_get(rgd); 1239 1240 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags); 1241 rl_flags &= ~GFS2_RDF_MASK; 1242 rgd->rd_flags &= GFS2_RDF_MASK; 1243 rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK); 1244 if (rgd->rd_rgl->rl_unlinked == 0) 1245 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1246 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free); 1247 rgd->rd_free_clone = rgd->rd_free; 1248 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes); 1249 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration); 1250 return 0; 1251 } 1252 1253 int gfs2_rgrp_go_lock(struct gfs2_holder *gh) 1254 { 1255 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1256 struct gfs2_sbd *sdp = rgd->rd_sbd; 1257 1258 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb) 1259 return 0; 1260 return gfs2_rgrp_bh_get(rgd); 1261 } 1262 1263 /** 1264 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get() 1265 * @rgd: The resource group 1266 * 1267 */ 1268 1269 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd) 1270 { 1271 int x, length = rgd->rd_length; 1272 1273 for (x = 0; x < length; x++) { 1274 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1275 if (bi->bi_bh) { 1276 brelse(bi->bi_bh); 1277 bi->bi_bh = NULL; 1278 } 1279 } 1280 } 1281 1282 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, 1283 struct buffer_head *bh, 1284 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed) 1285 { 1286 struct super_block *sb = sdp->sd_vfs; 1287 u64 blk; 1288 sector_t start = 0; 1289 sector_t nr_blks = 0; 1290 int rv; 1291 unsigned int x; 1292 u32 trimmed = 0; 1293 u8 diff; 1294 1295 for (x = 0; x < bi->bi_bytes; x++) { 1296 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data; 1297 clone += bi->bi_offset; 1298 clone += x; 1299 if (bh) { 1300 const u8 *orig = bh->b_data + bi->bi_offset + x; 1301 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); 1302 } else { 1303 diff = ~(*clone | (*clone >> 1)); 1304 } 1305 diff &= 0x55; 1306 if (diff == 0) 1307 continue; 1308 blk = offset + ((bi->bi_start + x) * GFS2_NBBY); 1309 while(diff) { 1310 if (diff & 1) { 1311 if (nr_blks == 0) 1312 goto start_new_extent; 1313 if ((start + nr_blks) != blk) { 1314 if (nr_blks >= minlen) { 1315 rv = sb_issue_discard(sb, 1316 start, nr_blks, 1317 GFP_NOFS, 0); 1318 if (rv) 1319 goto fail; 1320 trimmed += nr_blks; 1321 } 1322 nr_blks = 0; 1323 start_new_extent: 1324 start = blk; 1325 } 1326 nr_blks++; 1327 } 1328 diff >>= 2; 1329 blk++; 1330 } 1331 } 1332 if (nr_blks >= minlen) { 1333 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0); 1334 if (rv) 1335 goto fail; 1336 trimmed += nr_blks; 1337 } 1338 if (ptrimmed) 1339 *ptrimmed = trimmed; 1340 return 0; 1341 1342 fail: 1343 if (sdp->sd_args.ar_discard) 1344 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv); 1345 sdp->sd_args.ar_discard = 0; 1346 return -EIO; 1347 } 1348 1349 /** 1350 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem 1351 * @filp: Any file on the filesystem 1352 * @argp: Pointer to the arguments (also used to pass result) 1353 * 1354 * Returns: 0 on success, otherwise error code 1355 */ 1356 1357 int gfs2_fitrim(struct file *filp, void __user *argp) 1358 { 1359 struct inode *inode = file_inode(filp); 1360 struct gfs2_sbd *sdp = GFS2_SB(inode); 1361 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev); 1362 struct buffer_head *bh; 1363 struct gfs2_rgrpd *rgd; 1364 struct gfs2_rgrpd *rgd_end; 1365 struct gfs2_holder gh; 1366 struct fstrim_range r; 1367 int ret = 0; 1368 u64 amt; 1369 u64 trimmed = 0; 1370 u64 start, end, minlen; 1371 unsigned int x; 1372 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift; 1373 1374 if (!capable(CAP_SYS_ADMIN)) 1375 return -EPERM; 1376 1377 if (!test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags)) 1378 return -EROFS; 1379 1380 if (!blk_queue_discard(q)) 1381 return -EOPNOTSUPP; 1382 1383 if (copy_from_user(&r, argp, sizeof(r))) 1384 return -EFAULT; 1385 1386 ret = gfs2_rindex_update(sdp); 1387 if (ret) 1388 return ret; 1389 1390 start = r.start >> bs_shift; 1391 end = start + (r.len >> bs_shift); 1392 minlen = max_t(u64, r.minlen, 1393 q->limits.discard_granularity) >> bs_shift; 1394 1395 if (end <= start || minlen > sdp->sd_max_rg_data) 1396 return -EINVAL; 1397 1398 rgd = gfs2_blk2rgrpd(sdp, start, 0); 1399 rgd_end = gfs2_blk2rgrpd(sdp, end, 0); 1400 1401 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end)) 1402 && (start > rgd_end->rd_data0 + rgd_end->rd_data)) 1403 return -EINVAL; /* start is beyond the end of the fs */ 1404 1405 while (1) { 1406 1407 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh); 1408 if (ret) 1409 goto out; 1410 1411 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) { 1412 /* Trim each bitmap in the rgrp */ 1413 for (x = 0; x < rgd->rd_length; x++) { 1414 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1415 ret = gfs2_rgrp_send_discards(sdp, 1416 rgd->rd_data0, NULL, bi, minlen, 1417 &amt); 1418 if (ret) { 1419 gfs2_glock_dq_uninit(&gh); 1420 goto out; 1421 } 1422 trimmed += amt; 1423 } 1424 1425 /* Mark rgrp as having been trimmed */ 1426 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0); 1427 if (ret == 0) { 1428 bh = rgd->rd_bits[0].bi_bh; 1429 rgd->rd_flags |= GFS2_RGF_TRIMMED; 1430 gfs2_trans_add_meta(rgd->rd_gl, bh); 1431 gfs2_rgrp_out(rgd, bh->b_data); 1432 gfs2_trans_end(sdp); 1433 } 1434 } 1435 gfs2_glock_dq_uninit(&gh); 1436 1437 if (rgd == rgd_end) 1438 break; 1439 1440 rgd = gfs2_rgrpd_get_next(rgd); 1441 } 1442 1443 out: 1444 r.len = trimmed << bs_shift; 1445 if (copy_to_user(argp, &r, sizeof(r))) 1446 return -EFAULT; 1447 1448 return ret; 1449 } 1450 1451 /** 1452 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree 1453 * @ip: the inode structure 1454 * 1455 */ 1456 static void rs_insert(struct gfs2_inode *ip) 1457 { 1458 struct rb_node **newn, *parent = NULL; 1459 int rc; 1460 struct gfs2_blkreserv *rs = &ip->i_res; 1461 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd; 1462 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm); 1463 1464 BUG_ON(gfs2_rs_active(rs)); 1465 1466 spin_lock(&rgd->rd_rsspin); 1467 newn = &rgd->rd_rstree.rb_node; 1468 while (*newn) { 1469 struct gfs2_blkreserv *cur = 1470 rb_entry(*newn, struct gfs2_blkreserv, rs_node); 1471 1472 parent = *newn; 1473 rc = rs_cmp(fsblock, rs->rs_free, cur); 1474 if (rc > 0) 1475 newn = &((*newn)->rb_right); 1476 else if (rc < 0) 1477 newn = &((*newn)->rb_left); 1478 else { 1479 spin_unlock(&rgd->rd_rsspin); 1480 WARN_ON(1); 1481 return; 1482 } 1483 } 1484 1485 rb_link_node(&rs->rs_node, parent, newn); 1486 rb_insert_color(&rs->rs_node, &rgd->rd_rstree); 1487 1488 /* Do our rgrp accounting for the reservation */ 1489 rgd->rd_reserved += rs->rs_free; /* blocks reserved */ 1490 spin_unlock(&rgd->rd_rsspin); 1491 trace_gfs2_rs(rs, TRACE_RS_INSERT); 1492 } 1493 1494 /** 1495 * rgd_free - return the number of free blocks we can allocate. 1496 * @rgd: the resource group 1497 * 1498 * This function returns the number of free blocks for an rgrp. 1499 * That's the clone-free blocks (blocks that are free, not including those 1500 * still being used for unlinked files that haven't been deleted.) 1501 * 1502 * It also subtracts any blocks reserved by someone else, but does not 1503 * include free blocks that are still part of our current reservation, 1504 * because obviously we can (and will) allocate them. 1505 */ 1506 static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs) 1507 { 1508 u32 tot_reserved, tot_free; 1509 1510 if (WARN_ON_ONCE(rgd->rd_reserved < rs->rs_free)) 1511 return 0; 1512 tot_reserved = rgd->rd_reserved - rs->rs_free; 1513 1514 if (rgd->rd_free_clone < tot_reserved) 1515 tot_reserved = 0; 1516 1517 tot_free = rgd->rd_free_clone - tot_reserved; 1518 1519 return tot_free; 1520 } 1521 1522 /** 1523 * rg_mblk_search - find a group of multiple free blocks to form a reservation 1524 * @rgd: the resource group descriptor 1525 * @ip: pointer to the inode for which we're reserving blocks 1526 * @ap: the allocation parameters 1527 * 1528 */ 1529 1530 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip, 1531 const struct gfs2_alloc_parms *ap) 1532 { 1533 struct gfs2_rbm rbm = { .rgd = rgd, }; 1534 u64 goal; 1535 struct gfs2_blkreserv *rs = &ip->i_res; 1536 u32 extlen; 1537 u32 free_blocks = rgd_free(rgd, rs); 1538 int ret; 1539 struct inode *inode = &ip->i_inode; 1540 1541 if (S_ISDIR(inode->i_mode)) 1542 extlen = 1; 1543 else { 1544 extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target); 1545 extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks); 1546 } 1547 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen)) 1548 return; 1549 1550 /* Find bitmap block that contains bits for goal block */ 1551 if (rgrp_contains_block(rgd, ip->i_goal)) 1552 goal = ip->i_goal; 1553 else 1554 goal = rgd->rd_last_alloc + rgd->rd_data0; 1555 1556 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal))) 1557 return; 1558 1559 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true); 1560 if (ret == 0) { 1561 rs->rs_rbm = rbm; 1562 rs->rs_free = extlen; 1563 rs_insert(ip); 1564 } else { 1565 if (goal == rgd->rd_last_alloc + rgd->rd_data0) 1566 rgd->rd_last_alloc = 0; 1567 } 1568 } 1569 1570 /** 1571 * gfs2_next_unreserved_block - Return next block that is not reserved 1572 * @rgd: The resource group 1573 * @block: The starting block 1574 * @length: The required length 1575 * @ip: Ignore any reservations for this inode 1576 * 1577 * If the block does not appear in any reservation, then return the 1578 * block number unchanged. If it does appear in the reservation, then 1579 * keep looking through the tree of reservations in order to find the 1580 * first block number which is not reserved. 1581 */ 1582 1583 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block, 1584 u32 length, 1585 const struct gfs2_inode *ip) 1586 { 1587 struct gfs2_blkreserv *rs; 1588 struct rb_node *n; 1589 int rc; 1590 1591 spin_lock(&rgd->rd_rsspin); 1592 n = rgd->rd_rstree.rb_node; 1593 while (n) { 1594 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1595 rc = rs_cmp(block, length, rs); 1596 if (rc < 0) 1597 n = n->rb_left; 1598 else if (rc > 0) 1599 n = n->rb_right; 1600 else 1601 break; 1602 } 1603 1604 if (n) { 1605 while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) { 1606 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free; 1607 n = n->rb_right; 1608 if (n == NULL) 1609 break; 1610 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1611 } 1612 } 1613 1614 spin_unlock(&rgd->rd_rsspin); 1615 return block; 1616 } 1617 1618 /** 1619 * gfs2_reservation_check_and_update - Check for reservations during block alloc 1620 * @rbm: The current position in the resource group 1621 * @ip: The inode for which we are searching for blocks 1622 * @minext: The minimum extent length 1623 * @maxext: A pointer to the maximum extent structure 1624 * 1625 * This checks the current position in the rgrp to see whether there is 1626 * a reservation covering this block. If not then this function is a 1627 * no-op. If there is, then the position is moved to the end of the 1628 * contiguous reservation(s) so that we are pointing at the first 1629 * non-reserved block. 1630 * 1631 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error 1632 */ 1633 1634 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm, 1635 const struct gfs2_inode *ip, 1636 u32 minext, 1637 struct gfs2_extent *maxext) 1638 { 1639 u64 block = gfs2_rbm_to_block(rbm); 1640 u32 extlen = 1; 1641 u64 nblock; 1642 int ret; 1643 1644 /* 1645 * If we have a minimum extent length, then skip over any extent 1646 * which is less than the min extent length in size. 1647 */ 1648 if (minext) { 1649 extlen = gfs2_free_extlen(rbm, minext); 1650 if (extlen <= maxext->len) 1651 goto fail; 1652 } 1653 1654 /* 1655 * Check the extent which has been found against the reservations 1656 * and skip if parts of it are already reserved 1657 */ 1658 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip); 1659 if (nblock == block) { 1660 if (!minext || extlen >= minext) 1661 return 0; 1662 1663 if (extlen > maxext->len) { 1664 maxext->len = extlen; 1665 maxext->rbm = *rbm; 1666 } 1667 fail: 1668 nblock = block + extlen; 1669 } 1670 ret = gfs2_rbm_from_block(rbm, nblock); 1671 if (ret < 0) 1672 return ret; 1673 return 1; 1674 } 1675 1676 /** 1677 * gfs2_rbm_find - Look for blocks of a particular state 1678 * @rbm: Value/result starting position and final position 1679 * @state: The state which we want to find 1680 * @minext: Pointer to the requested extent length (NULL for a single block) 1681 * This is updated to be the actual reservation size. 1682 * @ip: If set, check for reservations 1683 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping 1684 * around until we've reached the starting point. 1685 * 1686 * Side effects: 1687 * - If looking for free blocks, we set GBF_FULL on each bitmap which 1688 * has no free blocks in it. 1689 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which 1690 * has come up short on a free block search. 1691 * 1692 * Returns: 0 on success, -ENOSPC if there is no block of the requested state 1693 */ 1694 1695 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 1696 const struct gfs2_inode *ip, bool nowrap) 1697 { 1698 bool scan_from_start = rbm->bii == 0 && rbm->offset == 0; 1699 struct buffer_head *bh; 1700 int last_bii; 1701 u32 offset; 1702 u8 *buffer; 1703 bool wrapped = false; 1704 int ret; 1705 struct gfs2_bitmap *bi; 1706 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, }; 1707 1708 /* 1709 * Determine the last bitmap to search. If we're not starting at the 1710 * beginning of a bitmap, we need to search that bitmap twice to scan 1711 * the entire resource group. 1712 */ 1713 last_bii = rbm->bii - (rbm->offset == 0); 1714 1715 while(1) { 1716 bi = rbm_bi(rbm); 1717 if ((ip == NULL || !gfs2_rs_active(&ip->i_res)) && 1718 test_bit(GBF_FULL, &bi->bi_flags) && 1719 (state == GFS2_BLKST_FREE)) 1720 goto next_bitmap; 1721 1722 bh = bi->bi_bh; 1723 buffer = bh->b_data + bi->bi_offset; 1724 WARN_ON(!buffer_uptodate(bh)); 1725 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone) 1726 buffer = bi->bi_clone + bi->bi_offset; 1727 offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state); 1728 if (offset == BFITNOENT) { 1729 if (state == GFS2_BLKST_FREE && rbm->offset == 0) 1730 set_bit(GBF_FULL, &bi->bi_flags); 1731 goto next_bitmap; 1732 } 1733 rbm->offset = offset; 1734 if (ip == NULL) 1735 return 0; 1736 1737 ret = gfs2_reservation_check_and_update(rbm, ip, 1738 minext ? *minext : 0, 1739 &maxext); 1740 if (ret == 0) 1741 return 0; 1742 if (ret > 0) 1743 goto next_iter; 1744 if (ret == -E2BIG) { 1745 rbm->bii = 0; 1746 rbm->offset = 0; 1747 goto res_covered_end_of_rgrp; 1748 } 1749 return ret; 1750 1751 next_bitmap: /* Find next bitmap in the rgrp */ 1752 rbm->offset = 0; 1753 rbm->bii++; 1754 if (rbm->bii == rbm->rgd->rd_length) 1755 rbm->bii = 0; 1756 res_covered_end_of_rgrp: 1757 if (rbm->bii == 0) { 1758 if (wrapped) 1759 break; 1760 wrapped = true; 1761 if (nowrap) 1762 break; 1763 } 1764 next_iter: 1765 /* Have we scanned the entire resource group? */ 1766 if (wrapped && rbm->bii > last_bii) 1767 break; 1768 } 1769 1770 if (minext == NULL || state != GFS2_BLKST_FREE) 1771 return -ENOSPC; 1772 1773 /* If the extent was too small, and it's smaller than the smallest 1774 to have failed before, remember for future reference that it's 1775 useless to search this rgrp again for this amount or more. */ 1776 if (wrapped && (scan_from_start || rbm->bii > last_bii) && 1777 *minext < rbm->rgd->rd_extfail_pt) 1778 rbm->rgd->rd_extfail_pt = *minext; 1779 1780 /* If the maximum extent we found is big enough to fulfill the 1781 minimum requirements, use it anyway. */ 1782 if (maxext.len) { 1783 *rbm = maxext.rbm; 1784 *minext = maxext.len; 1785 return 0; 1786 } 1787 1788 return -ENOSPC; 1789 } 1790 1791 /** 1792 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes 1793 * @rgd: The rgrp 1794 * @last_unlinked: block address of the last dinode we unlinked 1795 * @skip: block address we should explicitly not unlink 1796 * 1797 * Returns: 0 if no error 1798 * The inode, if one has been found, in inode. 1799 */ 1800 1801 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) 1802 { 1803 u64 block; 1804 struct gfs2_sbd *sdp = rgd->rd_sbd; 1805 struct gfs2_glock *gl; 1806 struct gfs2_inode *ip; 1807 int error; 1808 int found = 0; 1809 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 }; 1810 1811 while (1) { 1812 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL, 1813 true); 1814 if (error == -ENOSPC) 1815 break; 1816 if (WARN_ON_ONCE(error)) 1817 break; 1818 1819 block = gfs2_rbm_to_block(&rbm); 1820 if (gfs2_rbm_from_block(&rbm, block + 1)) 1821 break; 1822 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked) 1823 continue; 1824 if (block == skip) 1825 continue; 1826 *last_unlinked = block; 1827 1828 error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl); 1829 if (error) 1830 continue; 1831 1832 /* If the inode is already in cache, we can ignore it here 1833 * because the existing inode disposal code will deal with 1834 * it when all refs have gone away. Accessing gl_object like 1835 * this is not safe in general. Here it is ok because we do 1836 * not dereference the pointer, and we only need an approx 1837 * answer to whether it is NULL or not. 1838 */ 1839 ip = gl->gl_object; 1840 1841 if (ip || !gfs2_queue_delete_work(gl, 0)) 1842 gfs2_glock_put(gl); 1843 else 1844 found++; 1845 1846 /* Limit reclaim to sensible number of tasks */ 1847 if (found > NR_CPUS) 1848 return; 1849 } 1850 1851 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1852 return; 1853 } 1854 1855 /** 1856 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested 1857 * @rgd: The rgrp in question 1858 * @loops: An indication of how picky we can be (0=very, 1=less so) 1859 * 1860 * This function uses the recently added glock statistics in order to 1861 * figure out whether a parciular resource group is suffering from 1862 * contention from multiple nodes. This is done purely on the basis 1863 * of timings, since this is the only data we have to work with and 1864 * our aim here is to reject a resource group which is highly contended 1865 * but (very important) not to do this too often in order to ensure that 1866 * we do not land up introducing fragmentation by changing resource 1867 * groups when not actually required. 1868 * 1869 * The calculation is fairly simple, we want to know whether the SRTTB 1870 * (i.e. smoothed round trip time for blocking operations) to acquire 1871 * the lock for this rgrp's glock is significantly greater than the 1872 * time taken for resource groups on average. We introduce a margin in 1873 * the form of the variable @var which is computed as the sum of the two 1874 * respective variences, and multiplied by a factor depending on @loops 1875 * and whether we have a lot of data to base the decision on. This is 1876 * then tested against the square difference of the means in order to 1877 * decide whether the result is statistically significant or not. 1878 * 1879 * Returns: A boolean verdict on the congestion status 1880 */ 1881 1882 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops) 1883 { 1884 const struct gfs2_glock *gl = rgd->rd_gl; 1885 const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 1886 struct gfs2_lkstats *st; 1887 u64 r_dcount, l_dcount; 1888 u64 l_srttb, a_srttb = 0; 1889 s64 srttb_diff; 1890 u64 sqr_diff; 1891 u64 var; 1892 int cpu, nonzero = 0; 1893 1894 preempt_disable(); 1895 for_each_present_cpu(cpu) { 1896 st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP]; 1897 if (st->stats[GFS2_LKS_SRTTB]) { 1898 a_srttb += st->stats[GFS2_LKS_SRTTB]; 1899 nonzero++; 1900 } 1901 } 1902 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP]; 1903 if (nonzero) 1904 do_div(a_srttb, nonzero); 1905 r_dcount = st->stats[GFS2_LKS_DCOUNT]; 1906 var = st->stats[GFS2_LKS_SRTTVARB] + 1907 gl->gl_stats.stats[GFS2_LKS_SRTTVARB]; 1908 preempt_enable(); 1909 1910 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB]; 1911 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT]; 1912 1913 if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0)) 1914 return false; 1915 1916 srttb_diff = a_srttb - l_srttb; 1917 sqr_diff = srttb_diff * srttb_diff; 1918 1919 var *= 2; 1920 if (l_dcount < 8 || r_dcount < 8) 1921 var *= 2; 1922 if (loops == 1) 1923 var *= 2; 1924 1925 return ((srttb_diff < 0) && (sqr_diff > var)); 1926 } 1927 1928 /** 1929 * gfs2_rgrp_used_recently 1930 * @rs: The block reservation with the rgrp to test 1931 * @msecs: The time limit in milliseconds 1932 * 1933 * Returns: True if the rgrp glock has been used within the time limit 1934 */ 1935 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs, 1936 u64 msecs) 1937 { 1938 u64 tdiff; 1939 1940 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(), 1941 rs->rs_rbm.rgd->rd_gl->gl_dstamp)); 1942 1943 return tdiff > (msecs * 1000 * 1000); 1944 } 1945 1946 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip) 1947 { 1948 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1949 u32 skip; 1950 1951 get_random_bytes(&skip, sizeof(skip)); 1952 return skip % sdp->sd_rgrps; 1953 } 1954 1955 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin) 1956 { 1957 struct gfs2_rgrpd *rgd = *pos; 1958 struct gfs2_sbd *sdp = rgd->rd_sbd; 1959 1960 rgd = gfs2_rgrpd_get_next(rgd); 1961 if (rgd == NULL) 1962 rgd = gfs2_rgrpd_get_first(sdp); 1963 *pos = rgd; 1964 if (rgd != begin) /* If we didn't wrap */ 1965 return true; 1966 return false; 1967 } 1968 1969 /** 1970 * fast_to_acquire - determine if a resource group will be fast to acquire 1971 * 1972 * If this is one of our preferred rgrps, it should be quicker to acquire, 1973 * because we tried to set ourselves up as dlm lock master. 1974 */ 1975 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd) 1976 { 1977 struct gfs2_glock *gl = rgd->rd_gl; 1978 1979 if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) && 1980 !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) && 1981 !test_bit(GLF_DEMOTE, &gl->gl_flags)) 1982 return 1; 1983 if (rgd->rd_flags & GFS2_RDF_PREFERRED) 1984 return 1; 1985 return 0; 1986 } 1987 1988 /** 1989 * gfs2_inplace_reserve - Reserve space in the filesystem 1990 * @ip: the inode to reserve space for 1991 * @ap: the allocation parameters 1992 * 1993 * We try our best to find an rgrp that has at least ap->target blocks 1994 * available. After a couple of passes (loops == 2), the prospects of finding 1995 * such an rgrp diminish. At this stage, we return the first rgrp that has 1996 * at least ap->min_target blocks available. Either way, we set ap->allowed to 1997 * the number of blocks available in the chosen rgrp. 1998 * 1999 * Returns: 0 on success, 2000 * -ENOMEM if a suitable rgrp can't be found 2001 * errno otherwise 2002 */ 2003 2004 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap) 2005 { 2006 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2007 struct gfs2_rgrpd *begin = NULL; 2008 struct gfs2_blkreserv *rs = &ip->i_res; 2009 int error = 0, rg_locked, flags = 0; 2010 u64 last_unlinked = NO_BLOCK; 2011 int loops = 0; 2012 u32 free_blocks, skip = 0; 2013 2014 if (sdp->sd_args.ar_rgrplvb) 2015 flags |= GL_SKIP; 2016 if (gfs2_assert_warn(sdp, ap->target)) 2017 return -EINVAL; 2018 if (gfs2_rs_active(rs)) { 2019 begin = rs->rs_rbm.rgd; 2020 } else if (rs->rs_rbm.rgd && 2021 rgrp_contains_block(rs->rs_rbm.rgd, ip->i_goal)) { 2022 begin = rs->rs_rbm.rgd; 2023 } else { 2024 check_and_update_goal(ip); 2025 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1); 2026 } 2027 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV)) 2028 skip = gfs2_orlov_skip(ip); 2029 if (rs->rs_rbm.rgd == NULL) 2030 return -EBADSLT; 2031 2032 while (loops < 3) { 2033 rg_locked = 1; 2034 2035 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) { 2036 rg_locked = 0; 2037 if (skip && skip--) 2038 goto next_rgrp; 2039 if (!gfs2_rs_active(rs)) { 2040 if (loops == 0 && 2041 !fast_to_acquire(rs->rs_rbm.rgd)) 2042 goto next_rgrp; 2043 if ((loops < 2) && 2044 gfs2_rgrp_used_recently(rs, 1000) && 2045 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 2046 goto next_rgrp; 2047 } 2048 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl, 2049 LM_ST_EXCLUSIVE, flags, 2050 &ip->i_rgd_gh); 2051 if (unlikely(error)) 2052 return error; 2053 if (!gfs2_rs_active(rs) && (loops < 2) && 2054 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 2055 goto skip_rgrp; 2056 if (sdp->sd_args.ar_rgrplvb) { 2057 error = update_rgrp_lvb(rs->rs_rbm.rgd); 2058 if (unlikely(error)) { 2059 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2060 return error; 2061 } 2062 } 2063 } 2064 2065 /* Skip unusable resource groups */ 2066 if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | 2067 GFS2_RDF_ERROR)) || 2068 (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt)) 2069 goto skip_rgrp; 2070 2071 if (sdp->sd_args.ar_rgrplvb) 2072 gfs2_rgrp_bh_get(rs->rs_rbm.rgd); 2073 2074 /* Get a reservation if we don't already have one */ 2075 if (!gfs2_rs_active(rs)) 2076 rg_mblk_search(rs->rs_rbm.rgd, ip, ap); 2077 2078 /* Skip rgrps when we can't get a reservation on first pass */ 2079 if (!gfs2_rs_active(rs) && (loops < 1)) 2080 goto check_rgrp; 2081 2082 /* If rgrp has enough free space, use it */ 2083 free_blocks = rgd_free(rs->rs_rbm.rgd, rs); 2084 if (free_blocks >= ap->target || 2085 (loops == 2 && ap->min_target && 2086 free_blocks >= ap->min_target)) { 2087 ap->allowed = free_blocks; 2088 return 0; 2089 } 2090 check_rgrp: 2091 /* Check for unlinked inodes which can be reclaimed */ 2092 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK) 2093 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked, 2094 ip->i_no_addr); 2095 skip_rgrp: 2096 /* Drop reservation, if we couldn't use reserved rgrp */ 2097 if (gfs2_rs_active(rs)) 2098 gfs2_rs_deltree(rs); 2099 2100 /* Unlock rgrp if required */ 2101 if (!rg_locked) 2102 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2103 next_rgrp: 2104 /* Find the next rgrp, and continue looking */ 2105 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin)) 2106 continue; 2107 if (skip) 2108 continue; 2109 2110 /* If we've scanned all the rgrps, but found no free blocks 2111 * then this checks for some less likely conditions before 2112 * trying again. 2113 */ 2114 loops++; 2115 /* Check that fs hasn't grown if writing to rindex */ 2116 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { 2117 error = gfs2_ri_update(ip); 2118 if (error) 2119 return error; 2120 } 2121 /* Flushing the log may release space */ 2122 if (loops == 2) 2123 gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL | 2124 GFS2_LFC_INPLACE_RESERVE); 2125 } 2126 2127 return -ENOSPC; 2128 } 2129 2130 /** 2131 * gfs2_inplace_release - release an inplace reservation 2132 * @ip: the inode the reservation was taken out on 2133 * 2134 * Release a reservation made by gfs2_inplace_reserve(). 2135 */ 2136 2137 void gfs2_inplace_release(struct gfs2_inode *ip) 2138 { 2139 if (gfs2_holder_initialized(&ip->i_rgd_gh)) 2140 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2141 } 2142 2143 /** 2144 * gfs2_alloc_extent - allocate an extent from a given bitmap 2145 * @rbm: the resource group information 2146 * @dinode: TRUE if the first block we allocate is for a dinode 2147 * @n: The extent length (value/result) 2148 * 2149 * Add the bitmap buffer to the transaction. 2150 * Set the found bits to @new_state to change block's allocation state. 2151 */ 2152 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode, 2153 unsigned int *n) 2154 { 2155 struct gfs2_rbm pos = { .rgd = rbm->rgd, }; 2156 const unsigned int elen = *n; 2157 u64 block; 2158 int ret; 2159 2160 *n = 1; 2161 block = gfs2_rbm_to_block(rbm); 2162 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh); 2163 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2164 block++; 2165 while (*n < elen) { 2166 ret = gfs2_rbm_from_block(&pos, block); 2167 if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE) 2168 break; 2169 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh); 2170 gfs2_setbit(&pos, true, GFS2_BLKST_USED); 2171 (*n)++; 2172 block++; 2173 } 2174 } 2175 2176 /** 2177 * rgblk_free - Change alloc state of given block(s) 2178 * @sdp: the filesystem 2179 * @rgd: the resource group the blocks are in 2180 * @bstart: the start of a run of blocks to free 2181 * @blen: the length of the block run (all must lie within ONE RG!) 2182 * @new_state: GFS2_BLKST_XXX the after-allocation block state 2183 */ 2184 2185 static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd, 2186 u64 bstart, u32 blen, unsigned char new_state) 2187 { 2188 struct gfs2_rbm rbm; 2189 struct gfs2_bitmap *bi, *bi_prev = NULL; 2190 2191 rbm.rgd = rgd; 2192 if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart))) 2193 return; 2194 while (blen--) { 2195 bi = rbm_bi(&rbm); 2196 if (bi != bi_prev) { 2197 if (!bi->bi_clone) { 2198 bi->bi_clone = kmalloc(bi->bi_bh->b_size, 2199 GFP_NOFS | __GFP_NOFAIL); 2200 memcpy(bi->bi_clone + bi->bi_offset, 2201 bi->bi_bh->b_data + bi->bi_offset, 2202 bi->bi_bytes); 2203 } 2204 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh); 2205 bi_prev = bi; 2206 } 2207 gfs2_setbit(&rbm, false, new_state); 2208 gfs2_rbm_incr(&rbm); 2209 } 2210 } 2211 2212 /** 2213 * gfs2_rgrp_dump - print out an rgrp 2214 * @seq: The iterator 2215 * @rgd: The rgrp in question 2216 * @fs_id_buf: pointer to file system id (if requested) 2217 * 2218 */ 2219 2220 void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_rgrpd *rgd, 2221 const char *fs_id_buf) 2222 { 2223 struct gfs2_blkreserv *trs; 2224 const struct rb_node *n; 2225 2226 gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n", 2227 fs_id_buf, 2228 (unsigned long long)rgd->rd_addr, rgd->rd_flags, 2229 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes, 2230 rgd->rd_reserved, rgd->rd_extfail_pt); 2231 if (rgd->rd_sbd->sd_args.ar_rgrplvb) { 2232 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 2233 2234 gfs2_print_dbg(seq, "%s L: f:%02x b:%u i:%u\n", fs_id_buf, 2235 be32_to_cpu(rgl->rl_flags), 2236 be32_to_cpu(rgl->rl_free), 2237 be32_to_cpu(rgl->rl_dinodes)); 2238 } 2239 spin_lock(&rgd->rd_rsspin); 2240 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) { 2241 trs = rb_entry(n, struct gfs2_blkreserv, rs_node); 2242 dump_rs(seq, trs, fs_id_buf); 2243 } 2244 spin_unlock(&rgd->rd_rsspin); 2245 } 2246 2247 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) 2248 { 2249 struct gfs2_sbd *sdp = rgd->rd_sbd; 2250 char fs_id_buf[sizeof(sdp->sd_fsname) + 7]; 2251 2252 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", 2253 (unsigned long long)rgd->rd_addr); 2254 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); 2255 sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname); 2256 gfs2_rgrp_dump(NULL, rgd, fs_id_buf); 2257 rgd->rd_flags |= GFS2_RDF_ERROR; 2258 } 2259 2260 /** 2261 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation 2262 * @ip: The inode we have just allocated blocks for 2263 * @rbm: The start of the allocated blocks 2264 * @len: The extent length 2265 * 2266 * Adjusts a reservation after an allocation has taken place. If the 2267 * reservation does not match the allocation, or if it is now empty 2268 * then it is removed. 2269 */ 2270 2271 static void gfs2_adjust_reservation(struct gfs2_inode *ip, 2272 const struct gfs2_rbm *rbm, unsigned len) 2273 { 2274 struct gfs2_blkreserv *rs = &ip->i_res; 2275 struct gfs2_rgrpd *rgd = rbm->rgd; 2276 unsigned rlen; 2277 u64 block; 2278 int ret; 2279 2280 spin_lock(&rgd->rd_rsspin); 2281 if (gfs2_rs_active(rs)) { 2282 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) { 2283 block = gfs2_rbm_to_block(rbm); 2284 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len); 2285 rlen = min(rs->rs_free, len); 2286 rs->rs_free -= rlen; 2287 rgd->rd_reserved -= rlen; 2288 trace_gfs2_rs(rs, TRACE_RS_CLAIM); 2289 if (rs->rs_free && !ret) 2290 goto out; 2291 /* We used up our block reservation, so we should 2292 reserve more blocks next time. */ 2293 atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint); 2294 } 2295 __rs_deltree(rs); 2296 } 2297 out: 2298 spin_unlock(&rgd->rd_rsspin); 2299 } 2300 2301 /** 2302 * gfs2_set_alloc_start - Set starting point for block allocation 2303 * @rbm: The rbm which will be set to the required location 2304 * @ip: The gfs2 inode 2305 * @dinode: Flag to say if allocation includes a new inode 2306 * 2307 * This sets the starting point from the reservation if one is active 2308 * otherwise it falls back to guessing a start point based on the 2309 * inode's goal block or the last allocation point in the rgrp. 2310 */ 2311 2312 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm, 2313 const struct gfs2_inode *ip, bool dinode) 2314 { 2315 u64 goal; 2316 2317 if (gfs2_rs_active(&ip->i_res)) { 2318 *rbm = ip->i_res.rs_rbm; 2319 return; 2320 } 2321 2322 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal)) 2323 goal = ip->i_goal; 2324 else 2325 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0; 2326 2327 if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) { 2328 rbm->bii = 0; 2329 rbm->offset = 0; 2330 } 2331 } 2332 2333 /** 2334 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode 2335 * @ip: the inode to allocate the block for 2336 * @bn: Used to return the starting block number 2337 * @nblocks: requested number of blocks/extent length (value/result) 2338 * @dinode: 1 if we're allocating a dinode block, else 0 2339 * @generation: the generation number of the inode 2340 * 2341 * Returns: 0 or error 2342 */ 2343 2344 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks, 2345 bool dinode, u64 *generation) 2346 { 2347 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2348 struct buffer_head *dibh; 2349 struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rbm.rgd, }; 2350 unsigned int ndata; 2351 u64 block; /* block, within the file system scope */ 2352 int error; 2353 2354 gfs2_set_alloc_start(&rbm, ip, dinode); 2355 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false); 2356 2357 if (error == -ENOSPC) { 2358 gfs2_set_alloc_start(&rbm, ip, dinode); 2359 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false); 2360 } 2361 2362 /* Since all blocks are reserved in advance, this shouldn't happen */ 2363 if (error) { 2364 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n", 2365 (unsigned long long)ip->i_no_addr, error, *nblocks, 2366 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags), 2367 rbm.rgd->rd_extfail_pt); 2368 goto rgrp_error; 2369 } 2370 2371 gfs2_alloc_extent(&rbm, dinode, nblocks); 2372 block = gfs2_rbm_to_block(&rbm); 2373 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0; 2374 if (gfs2_rs_active(&ip->i_res)) 2375 gfs2_adjust_reservation(ip, &rbm, *nblocks); 2376 ndata = *nblocks; 2377 if (dinode) 2378 ndata--; 2379 2380 if (!dinode) { 2381 ip->i_goal = block + ndata - 1; 2382 error = gfs2_meta_inode_buffer(ip, &dibh); 2383 if (error == 0) { 2384 struct gfs2_dinode *di = 2385 (struct gfs2_dinode *)dibh->b_data; 2386 gfs2_trans_add_meta(ip->i_gl, dibh); 2387 di->di_goal_meta = di->di_goal_data = 2388 cpu_to_be64(ip->i_goal); 2389 brelse(dibh); 2390 } 2391 } 2392 if (rbm.rgd->rd_free < *nblocks) { 2393 fs_warn(sdp, "nblocks=%u\n", *nblocks); 2394 goto rgrp_error; 2395 } 2396 2397 rbm.rgd->rd_free -= *nblocks; 2398 if (dinode) { 2399 rbm.rgd->rd_dinodes++; 2400 *generation = rbm.rgd->rd_igeneration++; 2401 if (*generation == 0) 2402 *generation = rbm.rgd->rd_igeneration++; 2403 } 2404 2405 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh); 2406 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data); 2407 2408 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0); 2409 if (dinode) 2410 gfs2_trans_remove_revoke(sdp, block, *nblocks); 2411 2412 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid); 2413 2414 rbm.rgd->rd_free_clone -= *nblocks; 2415 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks, 2416 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2417 *bn = block; 2418 return 0; 2419 2420 rgrp_error: 2421 gfs2_rgrp_error(rbm.rgd); 2422 return -EIO; 2423 } 2424 2425 /** 2426 * __gfs2_free_blocks - free a contiguous run of block(s) 2427 * @ip: the inode these blocks are being freed from 2428 * @rgd: the resource group the blocks are in 2429 * @bstart: first block of a run of contiguous blocks 2430 * @blen: the length of the block run 2431 * @meta: 1 if the blocks represent metadata 2432 * 2433 */ 2434 2435 void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd, 2436 u64 bstart, u32 blen, int meta) 2437 { 2438 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2439 2440 rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE); 2441 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE); 2442 rgd->rd_free += blen; 2443 rgd->rd_flags &= ~GFS2_RGF_TRIMMED; 2444 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2445 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2446 2447 /* Directories keep their data in the metadata address space */ 2448 if (meta || ip->i_depth || gfs2_is_jdata(ip)) 2449 gfs2_journal_wipe(ip, bstart, blen); 2450 } 2451 2452 /** 2453 * gfs2_free_meta - free a contiguous run of data block(s) 2454 * @ip: the inode these blocks are being freed from 2455 * @rgd: the resource group the blocks are in 2456 * @bstart: first block of a run of contiguous blocks 2457 * @blen: the length of the block run 2458 * 2459 */ 2460 2461 void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd, 2462 u64 bstart, u32 blen) 2463 { 2464 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2465 2466 __gfs2_free_blocks(ip, rgd, bstart, blen, 1); 2467 gfs2_statfs_change(sdp, 0, +blen, 0); 2468 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); 2469 } 2470 2471 void gfs2_unlink_di(struct inode *inode) 2472 { 2473 struct gfs2_inode *ip = GFS2_I(inode); 2474 struct gfs2_sbd *sdp = GFS2_SB(inode); 2475 struct gfs2_rgrpd *rgd; 2476 u64 blkno = ip->i_no_addr; 2477 2478 rgd = gfs2_blk2rgrpd(sdp, blkno, true); 2479 if (!rgd) 2480 return; 2481 rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2482 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2483 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2484 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2485 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1); 2486 } 2487 2488 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) 2489 { 2490 struct gfs2_sbd *sdp = rgd->rd_sbd; 2491 2492 rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2493 if (!rgd->rd_dinodes) 2494 gfs2_consist_rgrpd(rgd); 2495 rgd->rd_dinodes--; 2496 rgd->rd_free++; 2497 2498 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2499 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2500 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1); 2501 2502 gfs2_statfs_change(sdp, 0, +1, -1); 2503 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2504 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); 2505 gfs2_journal_wipe(ip, ip->i_no_addr, 1); 2506 } 2507 2508 /** 2509 * gfs2_check_blk_type - Check the type of a block 2510 * @sdp: The superblock 2511 * @no_addr: The block number to check 2512 * @type: The block type we are looking for 2513 * 2514 * Returns: 0 if the block type matches the expected type 2515 * -ESTALE if it doesn't match 2516 * or -ve errno if something went wrong while checking 2517 */ 2518 2519 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) 2520 { 2521 struct gfs2_rgrpd *rgd; 2522 struct gfs2_holder rgd_gh; 2523 struct gfs2_rbm rbm; 2524 int error = -EINVAL; 2525 2526 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1); 2527 if (!rgd) 2528 goto fail; 2529 2530 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); 2531 if (error) 2532 goto fail; 2533 2534 rbm.rgd = rgd; 2535 error = gfs2_rbm_from_block(&rbm, no_addr); 2536 if (!WARN_ON_ONCE(error)) { 2537 if (gfs2_testbit(&rbm, false) != type) 2538 error = -ESTALE; 2539 } 2540 2541 gfs2_glock_dq_uninit(&rgd_gh); 2542 2543 fail: 2544 return error; 2545 } 2546 2547 /** 2548 * gfs2_rlist_add - add a RG to a list of RGs 2549 * @ip: the inode 2550 * @rlist: the list of resource groups 2551 * @block: the block 2552 * 2553 * Figure out what RG a block belongs to and add that RG to the list 2554 * 2555 * FIXME: Don't use NOFAIL 2556 * 2557 */ 2558 2559 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, 2560 u64 block) 2561 { 2562 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2563 struct gfs2_rgrpd *rgd; 2564 struct gfs2_rgrpd **tmp; 2565 unsigned int new_space; 2566 unsigned int x; 2567 2568 if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) 2569 return; 2570 2571 /* 2572 * The resource group last accessed is kept in the last position. 2573 */ 2574 2575 if (rlist->rl_rgrps) { 2576 rgd = rlist->rl_rgd[rlist->rl_rgrps - 1]; 2577 if (rgrp_contains_block(rgd, block)) 2578 return; 2579 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2580 } else { 2581 rgd = ip->i_res.rs_rbm.rgd; 2582 if (!rgd || !rgrp_contains_block(rgd, block)) 2583 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2584 } 2585 2586 if (!rgd) { 2587 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", 2588 (unsigned long long)block); 2589 return; 2590 } 2591 2592 for (x = 0; x < rlist->rl_rgrps; x++) { 2593 if (rlist->rl_rgd[x] == rgd) { 2594 swap(rlist->rl_rgd[x], 2595 rlist->rl_rgd[rlist->rl_rgrps - 1]); 2596 return; 2597 } 2598 } 2599 2600 if (rlist->rl_rgrps == rlist->rl_space) { 2601 new_space = rlist->rl_space + 10; 2602 2603 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), 2604 GFP_NOFS | __GFP_NOFAIL); 2605 2606 if (rlist->rl_rgd) { 2607 memcpy(tmp, rlist->rl_rgd, 2608 rlist->rl_space * sizeof(struct gfs2_rgrpd *)); 2609 kfree(rlist->rl_rgd); 2610 } 2611 2612 rlist->rl_space = new_space; 2613 rlist->rl_rgd = tmp; 2614 } 2615 2616 rlist->rl_rgd[rlist->rl_rgrps++] = rgd; 2617 } 2618 2619 /** 2620 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate 2621 * and initialize an array of glock holders for them 2622 * @rlist: the list of resource groups 2623 * 2624 * FIXME: Don't use NOFAIL 2625 * 2626 */ 2627 2628 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist) 2629 { 2630 unsigned int x; 2631 2632 rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps, 2633 sizeof(struct gfs2_holder), 2634 GFP_NOFS | __GFP_NOFAIL); 2635 for (x = 0; x < rlist->rl_rgrps; x++) 2636 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, 2637 LM_ST_EXCLUSIVE, 0, 2638 &rlist->rl_ghs[x]); 2639 } 2640 2641 /** 2642 * gfs2_rlist_free - free a resource group list 2643 * @rlist: the list of resource groups 2644 * 2645 */ 2646 2647 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) 2648 { 2649 unsigned int x; 2650 2651 kfree(rlist->rl_rgd); 2652 2653 if (rlist->rl_ghs) { 2654 for (x = 0; x < rlist->rl_rgrps; x++) 2655 gfs2_holder_uninit(&rlist->rl_ghs[x]); 2656 kfree(rlist->rl_ghs); 2657 rlist->rl_ghs = NULL; 2658 } 2659 } 2660 2661