1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #include <linux/slab.h> 11 #include <linux/spinlock.h> 12 #include <linux/completion.h> 13 #include <linux/buffer_head.h> 14 #include <linux/fs.h> 15 #include <linux/gfs2_ondisk.h> 16 #include <linux/prefetch.h> 17 #include <linux/blkdev.h> 18 #include <linux/rbtree.h> 19 #include <linux/random.h> 20 21 #include "gfs2.h" 22 #include "incore.h" 23 #include "glock.h" 24 #include "glops.h" 25 #include "lops.h" 26 #include "meta_io.h" 27 #include "quota.h" 28 #include "rgrp.h" 29 #include "super.h" 30 #include "trans.h" 31 #include "util.h" 32 #include "log.h" 33 #include "inode.h" 34 #include "trace_gfs2.h" 35 36 #define BFITNOENT ((u32)~0) 37 #define NO_BLOCK ((u64)~0) 38 39 #if BITS_PER_LONG == 32 40 #define LBITMASK (0x55555555UL) 41 #define LBITSKIP55 (0x55555555UL) 42 #define LBITSKIP00 (0x00000000UL) 43 #else 44 #define LBITMASK (0x5555555555555555UL) 45 #define LBITSKIP55 (0x5555555555555555UL) 46 #define LBITSKIP00 (0x0000000000000000UL) 47 #endif 48 49 /* 50 * These routines are used by the resource group routines (rgrp.c) 51 * to keep track of block allocation. Each block is represented by two 52 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. 53 * 54 * 0 = Free 55 * 1 = Used (not metadata) 56 * 2 = Unlinked (still in use) inode 57 * 3 = Used (metadata) 58 */ 59 60 static const char valid_change[16] = { 61 /* current */ 62 /* n */ 0, 1, 1, 1, 63 /* e */ 1, 0, 0, 0, 64 /* w */ 0, 0, 0, 1, 65 1, 0, 0, 0 66 }; 67 68 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext, 69 const struct gfs2_inode *ip, bool nowrap); 70 71 72 /** 73 * gfs2_setbit - Set a bit in the bitmaps 74 * @rbm: The position of the bit to set 75 * @do_clone: Also set the clone bitmap, if it exists 76 * @new_state: the new state of the block 77 * 78 */ 79 80 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone, 81 unsigned char new_state) 82 { 83 unsigned char *byte1, *byte2, *end, cur_state; 84 unsigned int buflen = rbm->bi->bi_len; 85 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 86 87 byte1 = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset + (rbm->offset / GFS2_NBBY); 88 end = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset + buflen; 89 90 BUG_ON(byte1 >= end); 91 92 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; 93 94 if (unlikely(!valid_change[new_state * 4 + cur_state])) { 95 printk(KERN_WARNING "GFS2: buf_blk = 0x%x old_state=%d, " 96 "new_state=%d\n", rbm->offset, cur_state, new_state); 97 printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%x\n", 98 (unsigned long long)rbm->rgd->rd_addr, 99 rbm->bi->bi_start); 100 printk(KERN_WARNING "GFS2: bi_offset=0x%x bi_len=0x%x\n", 101 rbm->bi->bi_offset, rbm->bi->bi_len); 102 dump_stack(); 103 gfs2_consist_rgrpd(rbm->rgd); 104 return; 105 } 106 *byte1 ^= (cur_state ^ new_state) << bit; 107 108 if (do_clone && rbm->bi->bi_clone) { 109 byte2 = rbm->bi->bi_clone + rbm->bi->bi_offset + (rbm->offset / GFS2_NBBY); 110 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; 111 *byte2 ^= (cur_state ^ new_state) << bit; 112 } 113 } 114 115 /** 116 * gfs2_testbit - test a bit in the bitmaps 117 * @rbm: The bit to test 118 * 119 * Returns: The two bit block state of the requested bit 120 */ 121 122 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm) 123 { 124 const u8 *buffer = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset; 125 const u8 *byte; 126 unsigned int bit; 127 128 byte = buffer + (rbm->offset / GFS2_NBBY); 129 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 130 131 return (*byte >> bit) & GFS2_BIT_MASK; 132 } 133 134 /** 135 * gfs2_bit_search 136 * @ptr: Pointer to bitmap data 137 * @mask: Mask to use (normally 0x55555.... but adjusted for search start) 138 * @state: The state we are searching for 139 * 140 * We xor the bitmap data with a patter which is the bitwise opposite 141 * of what we are looking for, this gives rise to a pattern of ones 142 * wherever there is a match. Since we have two bits per entry, we 143 * take this pattern, shift it down by one place and then and it with 144 * the original. All the even bit positions (0,2,4, etc) then represent 145 * successful matches, so we mask with 0x55555..... to remove the unwanted 146 * odd bit positions. 147 * 148 * This allows searching of a whole u64 at once (32 blocks) with a 149 * single test (on 64 bit arches). 150 */ 151 152 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) 153 { 154 u64 tmp; 155 static const u64 search[] = { 156 [0] = 0xffffffffffffffffULL, 157 [1] = 0xaaaaaaaaaaaaaaaaULL, 158 [2] = 0x5555555555555555ULL, 159 [3] = 0x0000000000000000ULL, 160 }; 161 tmp = le64_to_cpu(*ptr) ^ search[state]; 162 tmp &= (tmp >> 1); 163 tmp &= mask; 164 return tmp; 165 } 166 167 /** 168 * rs_cmp - multi-block reservation range compare 169 * @blk: absolute file system block number of the new reservation 170 * @len: number of blocks in the new reservation 171 * @rs: existing reservation to compare against 172 * 173 * returns: 1 if the block range is beyond the reach of the reservation 174 * -1 if the block range is before the start of the reservation 175 * 0 if the block range overlaps with the reservation 176 */ 177 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs) 178 { 179 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm); 180 181 if (blk >= startblk + rs->rs_free) 182 return 1; 183 if (blk + len - 1 < startblk) 184 return -1; 185 return 0; 186 } 187 188 /** 189 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing 190 * a block in a given allocation state. 191 * @buf: the buffer that holds the bitmaps 192 * @len: the length (in bytes) of the buffer 193 * @goal: start search at this block's bit-pair (within @buffer) 194 * @state: GFS2_BLKST_XXX the state of the block we're looking for. 195 * 196 * Scope of @goal and returned block number is only within this bitmap buffer, 197 * not entire rgrp or filesystem. @buffer will be offset from the actual 198 * beginning of a bitmap block buffer, skipping any header structures, but 199 * headers are always a multiple of 64 bits long so that the buffer is 200 * always aligned to a 64 bit boundary. 201 * 202 * The size of the buffer is in bytes, but is it assumed that it is 203 * always ok to read a complete multiple of 64 bits at the end 204 * of the block in case the end is no aligned to a natural boundary. 205 * 206 * Return: the block number (bitmap buffer scope) that was found 207 */ 208 209 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, 210 u32 goal, u8 state) 211 { 212 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); 213 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); 214 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); 215 u64 tmp; 216 u64 mask = 0x5555555555555555ULL; 217 u32 bit; 218 219 /* Mask off bits we don't care about at the start of the search */ 220 mask <<= spoint; 221 tmp = gfs2_bit_search(ptr, mask, state); 222 ptr++; 223 while(tmp == 0 && ptr < end) { 224 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); 225 ptr++; 226 } 227 /* Mask off any bits which are more than len bytes from the start */ 228 if (ptr == end && (len & (sizeof(u64) - 1))) 229 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); 230 /* Didn't find anything, so return */ 231 if (tmp == 0) 232 return BFITNOENT; 233 ptr--; 234 bit = __ffs64(tmp); 235 bit /= 2; /* two bits per entry in the bitmap */ 236 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; 237 } 238 239 /** 240 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number 241 * @rbm: The rbm with rgd already set correctly 242 * @block: The block number (filesystem relative) 243 * 244 * This sets the bi and offset members of an rbm based on a 245 * resource group and a filesystem relative block number. The 246 * resource group must be set in the rbm on entry, the bi and 247 * offset members will be set by this function. 248 * 249 * Returns: 0 on success, or an error code 250 */ 251 252 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block) 253 { 254 u64 rblock = block - rbm->rgd->rd_data0; 255 u32 x; 256 257 if (WARN_ON_ONCE(rblock > UINT_MAX)) 258 return -EINVAL; 259 if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data) 260 return -E2BIG; 261 262 rbm->bi = rbm->rgd->rd_bits; 263 rbm->offset = (u32)(rblock); 264 /* Check if the block is within the first block */ 265 if (rbm->offset < (rbm->bi->bi_start + rbm->bi->bi_len) * GFS2_NBBY) 266 return 0; 267 268 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */ 269 rbm->offset += (sizeof(struct gfs2_rgrp) - 270 sizeof(struct gfs2_meta_header)) * GFS2_NBBY; 271 x = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 272 rbm->offset -= x * rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 273 rbm->bi += x; 274 return 0; 275 } 276 277 /** 278 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned 279 * @rbm: Position to search (value/result) 280 * @n_unaligned: Number of unaligned blocks to check 281 * @len: Decremented for each block found (terminate on zero) 282 * 283 * Returns: true if a non-free block is encountered 284 */ 285 286 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len) 287 { 288 u64 block; 289 u32 n; 290 u8 res; 291 292 for (n = 0; n < n_unaligned; n++) { 293 res = gfs2_testbit(rbm); 294 if (res != GFS2_BLKST_FREE) 295 return true; 296 (*len)--; 297 if (*len == 0) 298 return true; 299 block = gfs2_rbm_to_block(rbm); 300 if (gfs2_rbm_from_block(rbm, block + 1)) 301 return true; 302 } 303 304 return false; 305 } 306 307 /** 308 * gfs2_free_extlen - Return extent length of free blocks 309 * @rbm: Starting position 310 * @len: Max length to check 311 * 312 * Starting at the block specified by the rbm, see how many free blocks 313 * there are, not reading more than len blocks ahead. This can be done 314 * using memchr_inv when the blocks are byte aligned, but has to be done 315 * on a block by block basis in case of unaligned blocks. Also this 316 * function can cope with bitmap boundaries (although it must stop on 317 * a resource group boundary) 318 * 319 * Returns: Number of free blocks in the extent 320 */ 321 322 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len) 323 { 324 struct gfs2_rbm rbm = *rrbm; 325 u32 n_unaligned = rbm.offset & 3; 326 u32 size = len; 327 u32 bytes; 328 u32 chunk_size; 329 u8 *ptr, *start, *end; 330 u64 block; 331 332 if (n_unaligned && 333 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len)) 334 goto out; 335 336 n_unaligned = len & 3; 337 /* Start is now byte aligned */ 338 while (len > 3) { 339 start = rbm.bi->bi_bh->b_data; 340 if (rbm.bi->bi_clone) 341 start = rbm.bi->bi_clone; 342 end = start + rbm.bi->bi_bh->b_size; 343 start += rbm.bi->bi_offset; 344 BUG_ON(rbm.offset & 3); 345 start += (rbm.offset / GFS2_NBBY); 346 bytes = min_t(u32, len / GFS2_NBBY, (end - start)); 347 ptr = memchr_inv(start, 0, bytes); 348 chunk_size = ((ptr == NULL) ? bytes : (ptr - start)); 349 chunk_size *= GFS2_NBBY; 350 BUG_ON(len < chunk_size); 351 len -= chunk_size; 352 block = gfs2_rbm_to_block(&rbm); 353 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) { 354 n_unaligned = 0; 355 break; 356 } 357 if (ptr) { 358 n_unaligned = 3; 359 break; 360 } 361 n_unaligned = len & 3; 362 } 363 364 /* Deal with any bits left over at the end */ 365 if (n_unaligned) 366 gfs2_unaligned_extlen(&rbm, n_unaligned, &len); 367 out: 368 return size - len; 369 } 370 371 /** 372 * gfs2_bitcount - count the number of bits in a certain state 373 * @rgd: the resource group descriptor 374 * @buffer: the buffer that holds the bitmaps 375 * @buflen: the length (in bytes) of the buffer 376 * @state: the state of the block we're looking for 377 * 378 * Returns: The number of bits 379 */ 380 381 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, 382 unsigned int buflen, u8 state) 383 { 384 const u8 *byte = buffer; 385 const u8 *end = buffer + buflen; 386 const u8 state1 = state << 2; 387 const u8 state2 = state << 4; 388 const u8 state3 = state << 6; 389 u32 count = 0; 390 391 for (; byte < end; byte++) { 392 if (((*byte) & 0x03) == state) 393 count++; 394 if (((*byte) & 0x0C) == state1) 395 count++; 396 if (((*byte) & 0x30) == state2) 397 count++; 398 if (((*byte) & 0xC0) == state3) 399 count++; 400 } 401 402 return count; 403 } 404 405 /** 406 * gfs2_rgrp_verify - Verify that a resource group is consistent 407 * @rgd: the rgrp 408 * 409 */ 410 411 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) 412 { 413 struct gfs2_sbd *sdp = rgd->rd_sbd; 414 struct gfs2_bitmap *bi = NULL; 415 u32 length = rgd->rd_length; 416 u32 count[4], tmp; 417 int buf, x; 418 419 memset(count, 0, 4 * sizeof(u32)); 420 421 /* Count # blocks in each of 4 possible allocation states */ 422 for (buf = 0; buf < length; buf++) { 423 bi = rgd->rd_bits + buf; 424 for (x = 0; x < 4; x++) 425 count[x] += gfs2_bitcount(rgd, 426 bi->bi_bh->b_data + 427 bi->bi_offset, 428 bi->bi_len, x); 429 } 430 431 if (count[0] != rgd->rd_free) { 432 if (gfs2_consist_rgrpd(rgd)) 433 fs_err(sdp, "free data mismatch: %u != %u\n", 434 count[0], rgd->rd_free); 435 return; 436 } 437 438 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; 439 if (count[1] != tmp) { 440 if (gfs2_consist_rgrpd(rgd)) 441 fs_err(sdp, "used data mismatch: %u != %u\n", 442 count[1], tmp); 443 return; 444 } 445 446 if (count[2] + count[3] != rgd->rd_dinodes) { 447 if (gfs2_consist_rgrpd(rgd)) 448 fs_err(sdp, "used metadata mismatch: %u != %u\n", 449 count[2] + count[3], rgd->rd_dinodes); 450 return; 451 } 452 } 453 454 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block) 455 { 456 u64 first = rgd->rd_data0; 457 u64 last = first + rgd->rd_data; 458 return first <= block && block < last; 459 } 460 461 /** 462 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number 463 * @sdp: The GFS2 superblock 464 * @blk: The data block number 465 * @exact: True if this needs to be an exact match 466 * 467 * Returns: The resource group, or NULL if not found 468 */ 469 470 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact) 471 { 472 struct rb_node *n, *next; 473 struct gfs2_rgrpd *cur; 474 475 spin_lock(&sdp->sd_rindex_spin); 476 n = sdp->sd_rindex_tree.rb_node; 477 while (n) { 478 cur = rb_entry(n, struct gfs2_rgrpd, rd_node); 479 next = NULL; 480 if (blk < cur->rd_addr) 481 next = n->rb_left; 482 else if (blk >= cur->rd_data0 + cur->rd_data) 483 next = n->rb_right; 484 if (next == NULL) { 485 spin_unlock(&sdp->sd_rindex_spin); 486 if (exact) { 487 if (blk < cur->rd_addr) 488 return NULL; 489 if (blk >= cur->rd_data0 + cur->rd_data) 490 return NULL; 491 } 492 return cur; 493 } 494 n = next; 495 } 496 spin_unlock(&sdp->sd_rindex_spin); 497 498 return NULL; 499 } 500 501 /** 502 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem 503 * @sdp: The GFS2 superblock 504 * 505 * Returns: The first rgrp in the filesystem 506 */ 507 508 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) 509 { 510 const struct rb_node *n; 511 struct gfs2_rgrpd *rgd; 512 513 spin_lock(&sdp->sd_rindex_spin); 514 n = rb_first(&sdp->sd_rindex_tree); 515 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 516 spin_unlock(&sdp->sd_rindex_spin); 517 518 return rgd; 519 } 520 521 /** 522 * gfs2_rgrpd_get_next - get the next RG 523 * @rgd: the resource group descriptor 524 * 525 * Returns: The next rgrp 526 */ 527 528 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) 529 { 530 struct gfs2_sbd *sdp = rgd->rd_sbd; 531 const struct rb_node *n; 532 533 spin_lock(&sdp->sd_rindex_spin); 534 n = rb_next(&rgd->rd_node); 535 if (n == NULL) 536 n = rb_first(&sdp->sd_rindex_tree); 537 538 if (unlikely(&rgd->rd_node == n)) { 539 spin_unlock(&sdp->sd_rindex_spin); 540 return NULL; 541 } 542 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 543 spin_unlock(&sdp->sd_rindex_spin); 544 return rgd; 545 } 546 547 void gfs2_free_clones(struct gfs2_rgrpd *rgd) 548 { 549 int x; 550 551 for (x = 0; x < rgd->rd_length; x++) { 552 struct gfs2_bitmap *bi = rgd->rd_bits + x; 553 kfree(bi->bi_clone); 554 bi->bi_clone = NULL; 555 } 556 } 557 558 /** 559 * gfs2_rs_alloc - make sure we have a reservation assigned to the inode 560 * @ip: the inode for this reservation 561 */ 562 int gfs2_rs_alloc(struct gfs2_inode *ip) 563 { 564 int error = 0; 565 566 down_write(&ip->i_rw_mutex); 567 if (ip->i_res) 568 goto out; 569 570 ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS); 571 if (!ip->i_res) { 572 error = -ENOMEM; 573 goto out; 574 } 575 576 RB_CLEAR_NODE(&ip->i_res->rs_node); 577 out: 578 up_write(&ip->i_rw_mutex); 579 return error; 580 } 581 582 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs) 583 { 584 gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n", 585 (unsigned long long)rs->rs_inum, 586 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm), 587 rs->rs_rbm.offset, rs->rs_free); 588 } 589 590 /** 591 * __rs_deltree - remove a multi-block reservation from the rgd tree 592 * @rs: The reservation to remove 593 * 594 */ 595 static void __rs_deltree(struct gfs2_blkreserv *rs) 596 { 597 struct gfs2_rgrpd *rgd; 598 599 if (!gfs2_rs_active(rs)) 600 return; 601 602 rgd = rs->rs_rbm.rgd; 603 trace_gfs2_rs(rs, TRACE_RS_TREEDEL); 604 rb_erase(&rs->rs_node, &rgd->rd_rstree); 605 RB_CLEAR_NODE(&rs->rs_node); 606 607 if (rs->rs_free) { 608 /* return reserved blocks to the rgrp */ 609 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free); 610 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free; 611 rs->rs_free = 0; 612 clear_bit(GBF_FULL, &rs->rs_rbm.bi->bi_flags); 613 smp_mb__after_clear_bit(); 614 } 615 } 616 617 /** 618 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree 619 * @rs: The reservation to remove 620 * 621 */ 622 void gfs2_rs_deltree(struct gfs2_blkreserv *rs) 623 { 624 struct gfs2_rgrpd *rgd; 625 626 rgd = rs->rs_rbm.rgd; 627 if (rgd) { 628 spin_lock(&rgd->rd_rsspin); 629 __rs_deltree(rs); 630 spin_unlock(&rgd->rd_rsspin); 631 } 632 } 633 634 /** 635 * gfs2_rs_delete - delete a multi-block reservation 636 * @ip: The inode for this reservation 637 * 638 */ 639 void gfs2_rs_delete(struct gfs2_inode *ip) 640 { 641 struct inode *inode = &ip->i_inode; 642 643 down_write(&ip->i_rw_mutex); 644 if (ip->i_res && atomic_read(&inode->i_writecount) <= 1) { 645 gfs2_rs_deltree(ip->i_res); 646 BUG_ON(ip->i_res->rs_free); 647 kmem_cache_free(gfs2_rsrv_cachep, ip->i_res); 648 ip->i_res = NULL; 649 } 650 up_write(&ip->i_rw_mutex); 651 } 652 653 /** 654 * return_all_reservations - return all reserved blocks back to the rgrp. 655 * @rgd: the rgrp that needs its space back 656 * 657 * We previously reserved a bunch of blocks for allocation. Now we need to 658 * give them back. This leave the reservation structures in tact, but removes 659 * all of their corresponding "no-fly zones". 660 */ 661 static void return_all_reservations(struct gfs2_rgrpd *rgd) 662 { 663 struct rb_node *n; 664 struct gfs2_blkreserv *rs; 665 666 spin_lock(&rgd->rd_rsspin); 667 while ((n = rb_first(&rgd->rd_rstree))) { 668 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 669 __rs_deltree(rs); 670 } 671 spin_unlock(&rgd->rd_rsspin); 672 } 673 674 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) 675 { 676 struct rb_node *n; 677 struct gfs2_rgrpd *rgd; 678 struct gfs2_glock *gl; 679 680 while ((n = rb_first(&sdp->sd_rindex_tree))) { 681 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 682 gl = rgd->rd_gl; 683 684 rb_erase(n, &sdp->sd_rindex_tree); 685 686 if (gl) { 687 spin_lock(&gl->gl_spin); 688 gl->gl_object = NULL; 689 spin_unlock(&gl->gl_spin); 690 gfs2_glock_add_to_lru(gl); 691 gfs2_glock_put(gl); 692 } 693 694 gfs2_free_clones(rgd); 695 kfree(rgd->rd_bits); 696 return_all_reservations(rgd); 697 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 698 } 699 } 700 701 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd) 702 { 703 printk(KERN_INFO " ri_addr = %llu\n", (unsigned long long)rgd->rd_addr); 704 printk(KERN_INFO " ri_length = %u\n", rgd->rd_length); 705 printk(KERN_INFO " ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0); 706 printk(KERN_INFO " ri_data = %u\n", rgd->rd_data); 707 printk(KERN_INFO " ri_bitbytes = %u\n", rgd->rd_bitbytes); 708 } 709 710 /** 711 * gfs2_compute_bitstructs - Compute the bitmap sizes 712 * @rgd: The resource group descriptor 713 * 714 * Calculates bitmap descriptors, one for each block that contains bitmap data 715 * 716 * Returns: errno 717 */ 718 719 static int compute_bitstructs(struct gfs2_rgrpd *rgd) 720 { 721 struct gfs2_sbd *sdp = rgd->rd_sbd; 722 struct gfs2_bitmap *bi; 723 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ 724 u32 bytes_left, bytes; 725 int x; 726 727 if (!length) 728 return -EINVAL; 729 730 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); 731 if (!rgd->rd_bits) 732 return -ENOMEM; 733 734 bytes_left = rgd->rd_bitbytes; 735 736 for (x = 0; x < length; x++) { 737 bi = rgd->rd_bits + x; 738 739 bi->bi_flags = 0; 740 /* small rgrp; bitmap stored completely in header block */ 741 if (length == 1) { 742 bytes = bytes_left; 743 bi->bi_offset = sizeof(struct gfs2_rgrp); 744 bi->bi_start = 0; 745 bi->bi_len = bytes; 746 /* header block */ 747 } else if (x == 0) { 748 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); 749 bi->bi_offset = sizeof(struct gfs2_rgrp); 750 bi->bi_start = 0; 751 bi->bi_len = bytes; 752 /* last block */ 753 } else if (x + 1 == length) { 754 bytes = bytes_left; 755 bi->bi_offset = sizeof(struct gfs2_meta_header); 756 bi->bi_start = rgd->rd_bitbytes - bytes_left; 757 bi->bi_len = bytes; 758 /* other blocks */ 759 } else { 760 bytes = sdp->sd_sb.sb_bsize - 761 sizeof(struct gfs2_meta_header); 762 bi->bi_offset = sizeof(struct gfs2_meta_header); 763 bi->bi_start = rgd->rd_bitbytes - bytes_left; 764 bi->bi_len = bytes; 765 } 766 767 bytes_left -= bytes; 768 } 769 770 if (bytes_left) { 771 gfs2_consist_rgrpd(rgd); 772 return -EIO; 773 } 774 bi = rgd->rd_bits + (length - 1); 775 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) { 776 if (gfs2_consist_rgrpd(rgd)) { 777 gfs2_rindex_print(rgd); 778 fs_err(sdp, "start=%u len=%u offset=%u\n", 779 bi->bi_start, bi->bi_len, bi->bi_offset); 780 } 781 return -EIO; 782 } 783 784 return 0; 785 } 786 787 /** 788 * gfs2_ri_total - Total up the file system space, according to the rindex. 789 * @sdp: the filesystem 790 * 791 */ 792 u64 gfs2_ri_total(struct gfs2_sbd *sdp) 793 { 794 u64 total_data = 0; 795 struct inode *inode = sdp->sd_rindex; 796 struct gfs2_inode *ip = GFS2_I(inode); 797 char buf[sizeof(struct gfs2_rindex)]; 798 int error, rgrps; 799 800 for (rgrps = 0;; rgrps++) { 801 loff_t pos = rgrps * sizeof(struct gfs2_rindex); 802 803 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) 804 break; 805 error = gfs2_internal_read(ip, buf, &pos, 806 sizeof(struct gfs2_rindex)); 807 if (error != sizeof(struct gfs2_rindex)) 808 break; 809 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); 810 } 811 return total_data; 812 } 813 814 static int rgd_insert(struct gfs2_rgrpd *rgd) 815 { 816 struct gfs2_sbd *sdp = rgd->rd_sbd; 817 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; 818 819 /* Figure out where to put new node */ 820 while (*newn) { 821 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, 822 rd_node); 823 824 parent = *newn; 825 if (rgd->rd_addr < cur->rd_addr) 826 newn = &((*newn)->rb_left); 827 else if (rgd->rd_addr > cur->rd_addr) 828 newn = &((*newn)->rb_right); 829 else 830 return -EEXIST; 831 } 832 833 rb_link_node(&rgd->rd_node, parent, newn); 834 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); 835 sdp->sd_rgrps++; 836 return 0; 837 } 838 839 /** 840 * read_rindex_entry - Pull in a new resource index entry from the disk 841 * @ip: Pointer to the rindex inode 842 * 843 * Returns: 0 on success, > 0 on EOF, error code otherwise 844 */ 845 846 static int read_rindex_entry(struct gfs2_inode *ip) 847 { 848 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 849 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); 850 struct gfs2_rindex buf; 851 int error; 852 struct gfs2_rgrpd *rgd; 853 854 if (pos >= i_size_read(&ip->i_inode)) 855 return 1; 856 857 error = gfs2_internal_read(ip, (char *)&buf, &pos, 858 sizeof(struct gfs2_rindex)); 859 860 if (error != sizeof(struct gfs2_rindex)) 861 return (error == 0) ? 1 : error; 862 863 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); 864 error = -ENOMEM; 865 if (!rgd) 866 return error; 867 868 rgd->rd_sbd = sdp; 869 rgd->rd_addr = be64_to_cpu(buf.ri_addr); 870 rgd->rd_length = be32_to_cpu(buf.ri_length); 871 rgd->rd_data0 = be64_to_cpu(buf.ri_data0); 872 rgd->rd_data = be32_to_cpu(buf.ri_data); 873 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); 874 spin_lock_init(&rgd->rd_rsspin); 875 876 error = compute_bitstructs(rgd); 877 if (error) 878 goto fail; 879 880 error = gfs2_glock_get(sdp, rgd->rd_addr, 881 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); 882 if (error) 883 goto fail; 884 885 rgd->rd_gl->gl_object = rgd; 886 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr; 887 rgd->rd_flags &= ~GFS2_RDF_UPTODATE; 888 if (rgd->rd_data > sdp->sd_max_rg_data) 889 sdp->sd_max_rg_data = rgd->rd_data; 890 spin_lock(&sdp->sd_rindex_spin); 891 error = rgd_insert(rgd); 892 spin_unlock(&sdp->sd_rindex_spin); 893 if (!error) 894 return 0; 895 896 error = 0; /* someone else read in the rgrp; free it and ignore it */ 897 gfs2_glock_put(rgd->rd_gl); 898 899 fail: 900 kfree(rgd->rd_bits); 901 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 902 return error; 903 } 904 905 /** 906 * gfs2_ri_update - Pull in a new resource index from the disk 907 * @ip: pointer to the rindex inode 908 * 909 * Returns: 0 on successful update, error code otherwise 910 */ 911 912 static int gfs2_ri_update(struct gfs2_inode *ip) 913 { 914 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 915 int error; 916 917 do { 918 error = read_rindex_entry(ip); 919 } while (error == 0); 920 921 if (error < 0) 922 return error; 923 924 sdp->sd_rindex_uptodate = 1; 925 return 0; 926 } 927 928 /** 929 * gfs2_rindex_update - Update the rindex if required 930 * @sdp: The GFS2 superblock 931 * 932 * We grab a lock on the rindex inode to make sure that it doesn't 933 * change whilst we are performing an operation. We keep this lock 934 * for quite long periods of time compared to other locks. This 935 * doesn't matter, since it is shared and it is very, very rarely 936 * accessed in the exclusive mode (i.e. only when expanding the filesystem). 937 * 938 * This makes sure that we're using the latest copy of the resource index 939 * special file, which might have been updated if someone expanded the 940 * filesystem (via gfs2_grow utility), which adds new resource groups. 941 * 942 * Returns: 0 on succeess, error code otherwise 943 */ 944 945 int gfs2_rindex_update(struct gfs2_sbd *sdp) 946 { 947 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); 948 struct gfs2_glock *gl = ip->i_gl; 949 struct gfs2_holder ri_gh; 950 int error = 0; 951 int unlock_required = 0; 952 953 /* Read new copy from disk if we don't have the latest */ 954 if (!sdp->sd_rindex_uptodate) { 955 if (!gfs2_glock_is_locked_by_me(gl)) { 956 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); 957 if (error) 958 return error; 959 unlock_required = 1; 960 } 961 if (!sdp->sd_rindex_uptodate) 962 error = gfs2_ri_update(ip); 963 if (unlock_required) 964 gfs2_glock_dq_uninit(&ri_gh); 965 } 966 967 return error; 968 } 969 970 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) 971 { 972 const struct gfs2_rgrp *str = buf; 973 u32 rg_flags; 974 975 rg_flags = be32_to_cpu(str->rg_flags); 976 rg_flags &= ~GFS2_RDF_MASK; 977 rgd->rd_flags &= GFS2_RDF_MASK; 978 rgd->rd_flags |= rg_flags; 979 rgd->rd_free = be32_to_cpu(str->rg_free); 980 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); 981 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); 982 } 983 984 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) 985 { 986 struct gfs2_rgrp *str = buf; 987 988 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); 989 str->rg_free = cpu_to_be32(rgd->rd_free); 990 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); 991 str->__pad = cpu_to_be32(0); 992 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); 993 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); 994 } 995 996 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd) 997 { 998 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 999 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data; 1000 1001 if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free || 1002 rgl->rl_dinodes != str->rg_dinodes || 1003 rgl->rl_igeneration != str->rg_igeneration) 1004 return 0; 1005 return 1; 1006 } 1007 1008 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf) 1009 { 1010 const struct gfs2_rgrp *str = buf; 1011 1012 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC); 1013 rgl->rl_flags = str->rg_flags; 1014 rgl->rl_free = str->rg_free; 1015 rgl->rl_dinodes = str->rg_dinodes; 1016 rgl->rl_igeneration = str->rg_igeneration; 1017 rgl->__pad = 0UL; 1018 } 1019 1020 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change) 1021 { 1022 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1023 u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change; 1024 rgl->rl_unlinked = cpu_to_be32(unlinked); 1025 } 1026 1027 static u32 count_unlinked(struct gfs2_rgrpd *rgd) 1028 { 1029 struct gfs2_bitmap *bi; 1030 const u32 length = rgd->rd_length; 1031 const u8 *buffer = NULL; 1032 u32 i, goal, count = 0; 1033 1034 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) { 1035 goal = 0; 1036 buffer = bi->bi_bh->b_data + bi->bi_offset; 1037 WARN_ON(!buffer_uptodate(bi->bi_bh)); 1038 while (goal < bi->bi_len * GFS2_NBBY) { 1039 goal = gfs2_bitfit(buffer, bi->bi_len, goal, 1040 GFS2_BLKST_UNLINKED); 1041 if (goal == BFITNOENT) 1042 break; 1043 count++; 1044 goal++; 1045 } 1046 } 1047 1048 return count; 1049 } 1050 1051 1052 /** 1053 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps 1054 * @rgd: the struct gfs2_rgrpd describing the RG to read in 1055 * 1056 * Read in all of a Resource Group's header and bitmap blocks. 1057 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps. 1058 * 1059 * Returns: errno 1060 */ 1061 1062 int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd) 1063 { 1064 struct gfs2_sbd *sdp = rgd->rd_sbd; 1065 struct gfs2_glock *gl = rgd->rd_gl; 1066 unsigned int length = rgd->rd_length; 1067 struct gfs2_bitmap *bi; 1068 unsigned int x, y; 1069 int error; 1070 1071 if (rgd->rd_bits[0].bi_bh != NULL) 1072 return 0; 1073 1074 for (x = 0; x < length; x++) { 1075 bi = rgd->rd_bits + x; 1076 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh); 1077 if (error) 1078 goto fail; 1079 } 1080 1081 for (y = length; y--;) { 1082 bi = rgd->rd_bits + y; 1083 error = gfs2_meta_wait(sdp, bi->bi_bh); 1084 if (error) 1085 goto fail; 1086 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : 1087 GFS2_METATYPE_RG)) { 1088 error = -EIO; 1089 goto fail; 1090 } 1091 } 1092 1093 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) { 1094 for (x = 0; x < length; x++) 1095 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags); 1096 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); 1097 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1098 rgd->rd_free_clone = rgd->rd_free; 1099 } 1100 if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) { 1101 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd)); 1102 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, 1103 rgd->rd_bits[0].bi_bh->b_data); 1104 } 1105 else if (sdp->sd_args.ar_rgrplvb) { 1106 if (!gfs2_rgrp_lvb_valid(rgd)){ 1107 gfs2_consist_rgrpd(rgd); 1108 error = -EIO; 1109 goto fail; 1110 } 1111 if (rgd->rd_rgl->rl_unlinked == 0) 1112 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1113 } 1114 return 0; 1115 1116 fail: 1117 while (x--) { 1118 bi = rgd->rd_bits + x; 1119 brelse(bi->bi_bh); 1120 bi->bi_bh = NULL; 1121 gfs2_assert_warn(sdp, !bi->bi_clone); 1122 } 1123 1124 return error; 1125 } 1126 1127 int update_rgrp_lvb(struct gfs2_rgrpd *rgd) 1128 { 1129 u32 rl_flags; 1130 1131 if (rgd->rd_flags & GFS2_RDF_UPTODATE) 1132 return 0; 1133 1134 if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) 1135 return gfs2_rgrp_bh_get(rgd); 1136 1137 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags); 1138 rl_flags &= ~GFS2_RDF_MASK; 1139 rgd->rd_flags &= GFS2_RDF_MASK; 1140 rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1141 if (rgd->rd_rgl->rl_unlinked == 0) 1142 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1143 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free); 1144 rgd->rd_free_clone = rgd->rd_free; 1145 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes); 1146 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration); 1147 return 0; 1148 } 1149 1150 int gfs2_rgrp_go_lock(struct gfs2_holder *gh) 1151 { 1152 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1153 struct gfs2_sbd *sdp = rgd->rd_sbd; 1154 1155 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb) 1156 return 0; 1157 return gfs2_rgrp_bh_get((struct gfs2_rgrpd *)gh->gh_gl->gl_object); 1158 } 1159 1160 /** 1161 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get() 1162 * @gh: The glock holder for the resource group 1163 * 1164 */ 1165 1166 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh) 1167 { 1168 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1169 int x, length = rgd->rd_length; 1170 1171 for (x = 0; x < length; x++) { 1172 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1173 if (bi->bi_bh) { 1174 brelse(bi->bi_bh); 1175 bi->bi_bh = NULL; 1176 } 1177 } 1178 1179 } 1180 1181 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, 1182 struct buffer_head *bh, 1183 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed) 1184 { 1185 struct super_block *sb = sdp->sd_vfs; 1186 u64 blk; 1187 sector_t start = 0; 1188 sector_t nr_blks = 0; 1189 int rv; 1190 unsigned int x; 1191 u32 trimmed = 0; 1192 u8 diff; 1193 1194 for (x = 0; x < bi->bi_len; x++) { 1195 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data; 1196 clone += bi->bi_offset; 1197 clone += x; 1198 if (bh) { 1199 const u8 *orig = bh->b_data + bi->bi_offset + x; 1200 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); 1201 } else { 1202 diff = ~(*clone | (*clone >> 1)); 1203 } 1204 diff &= 0x55; 1205 if (diff == 0) 1206 continue; 1207 blk = offset + ((bi->bi_start + x) * GFS2_NBBY); 1208 while(diff) { 1209 if (diff & 1) { 1210 if (nr_blks == 0) 1211 goto start_new_extent; 1212 if ((start + nr_blks) != blk) { 1213 if (nr_blks >= minlen) { 1214 rv = sb_issue_discard(sb, 1215 start, nr_blks, 1216 GFP_NOFS, 0); 1217 if (rv) 1218 goto fail; 1219 trimmed += nr_blks; 1220 } 1221 nr_blks = 0; 1222 start_new_extent: 1223 start = blk; 1224 } 1225 nr_blks++; 1226 } 1227 diff >>= 2; 1228 blk++; 1229 } 1230 } 1231 if (nr_blks >= minlen) { 1232 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0); 1233 if (rv) 1234 goto fail; 1235 trimmed += nr_blks; 1236 } 1237 if (ptrimmed) 1238 *ptrimmed = trimmed; 1239 return 0; 1240 1241 fail: 1242 if (sdp->sd_args.ar_discard) 1243 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv); 1244 sdp->sd_args.ar_discard = 0; 1245 return -EIO; 1246 } 1247 1248 /** 1249 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem 1250 * @filp: Any file on the filesystem 1251 * @argp: Pointer to the arguments (also used to pass result) 1252 * 1253 * Returns: 0 on success, otherwise error code 1254 */ 1255 1256 int gfs2_fitrim(struct file *filp, void __user *argp) 1257 { 1258 struct inode *inode = file_inode(filp); 1259 struct gfs2_sbd *sdp = GFS2_SB(inode); 1260 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev); 1261 struct buffer_head *bh; 1262 struct gfs2_rgrpd *rgd; 1263 struct gfs2_rgrpd *rgd_end; 1264 struct gfs2_holder gh; 1265 struct fstrim_range r; 1266 int ret = 0; 1267 u64 amt; 1268 u64 trimmed = 0; 1269 u64 start, end, minlen; 1270 unsigned int x; 1271 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift; 1272 1273 if (!capable(CAP_SYS_ADMIN)) 1274 return -EPERM; 1275 1276 if (!blk_queue_discard(q)) 1277 return -EOPNOTSUPP; 1278 1279 if (copy_from_user(&r, argp, sizeof(r))) 1280 return -EFAULT; 1281 1282 ret = gfs2_rindex_update(sdp); 1283 if (ret) 1284 return ret; 1285 1286 start = r.start >> bs_shift; 1287 end = start + (r.len >> bs_shift); 1288 minlen = max_t(u64, r.minlen, 1289 q->limits.discard_granularity) >> bs_shift; 1290 1291 if (end <= start || minlen > sdp->sd_max_rg_data) 1292 return -EINVAL; 1293 1294 rgd = gfs2_blk2rgrpd(sdp, start, 0); 1295 rgd_end = gfs2_blk2rgrpd(sdp, end, 0); 1296 1297 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end)) 1298 && (start > rgd_end->rd_data0 + rgd_end->rd_data)) 1299 return -EINVAL; /* start is beyond the end of the fs */ 1300 1301 while (1) { 1302 1303 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh); 1304 if (ret) 1305 goto out; 1306 1307 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) { 1308 /* Trim each bitmap in the rgrp */ 1309 for (x = 0; x < rgd->rd_length; x++) { 1310 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1311 ret = gfs2_rgrp_send_discards(sdp, 1312 rgd->rd_data0, NULL, bi, minlen, 1313 &amt); 1314 if (ret) { 1315 gfs2_glock_dq_uninit(&gh); 1316 goto out; 1317 } 1318 trimmed += amt; 1319 } 1320 1321 /* Mark rgrp as having been trimmed */ 1322 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0); 1323 if (ret == 0) { 1324 bh = rgd->rd_bits[0].bi_bh; 1325 rgd->rd_flags |= GFS2_RGF_TRIMMED; 1326 gfs2_trans_add_meta(rgd->rd_gl, bh); 1327 gfs2_rgrp_out(rgd, bh->b_data); 1328 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data); 1329 gfs2_trans_end(sdp); 1330 } 1331 } 1332 gfs2_glock_dq_uninit(&gh); 1333 1334 if (rgd == rgd_end) 1335 break; 1336 1337 rgd = gfs2_rgrpd_get_next(rgd); 1338 } 1339 1340 out: 1341 r.len = trimmed << bs_shift; 1342 if (copy_to_user(argp, &r, sizeof(r))) 1343 return -EFAULT; 1344 1345 return ret; 1346 } 1347 1348 /** 1349 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree 1350 * @ip: the inode structure 1351 * 1352 */ 1353 static void rs_insert(struct gfs2_inode *ip) 1354 { 1355 struct rb_node **newn, *parent = NULL; 1356 int rc; 1357 struct gfs2_blkreserv *rs = ip->i_res; 1358 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd; 1359 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm); 1360 1361 BUG_ON(gfs2_rs_active(rs)); 1362 1363 spin_lock(&rgd->rd_rsspin); 1364 newn = &rgd->rd_rstree.rb_node; 1365 while (*newn) { 1366 struct gfs2_blkreserv *cur = 1367 rb_entry(*newn, struct gfs2_blkreserv, rs_node); 1368 1369 parent = *newn; 1370 rc = rs_cmp(fsblock, rs->rs_free, cur); 1371 if (rc > 0) 1372 newn = &((*newn)->rb_right); 1373 else if (rc < 0) 1374 newn = &((*newn)->rb_left); 1375 else { 1376 spin_unlock(&rgd->rd_rsspin); 1377 WARN_ON(1); 1378 return; 1379 } 1380 } 1381 1382 rb_link_node(&rs->rs_node, parent, newn); 1383 rb_insert_color(&rs->rs_node, &rgd->rd_rstree); 1384 1385 /* Do our rgrp accounting for the reservation */ 1386 rgd->rd_reserved += rs->rs_free; /* blocks reserved */ 1387 spin_unlock(&rgd->rd_rsspin); 1388 trace_gfs2_rs(rs, TRACE_RS_INSERT); 1389 } 1390 1391 /** 1392 * rg_mblk_search - find a group of multiple free blocks to form a reservation 1393 * @rgd: the resource group descriptor 1394 * @ip: pointer to the inode for which we're reserving blocks 1395 * @requested: number of blocks required for this allocation 1396 * 1397 */ 1398 1399 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip, 1400 unsigned requested) 1401 { 1402 struct gfs2_rbm rbm = { .rgd = rgd, }; 1403 u64 goal; 1404 struct gfs2_blkreserv *rs = ip->i_res; 1405 u32 extlen; 1406 u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved; 1407 int ret; 1408 struct inode *inode = &ip->i_inode; 1409 1410 if (S_ISDIR(inode->i_mode)) 1411 extlen = 1; 1412 else { 1413 extlen = max_t(u32, atomic_read(&rs->rs_sizehint), requested); 1414 extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks); 1415 } 1416 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen)) 1417 return; 1418 1419 /* Find bitmap block that contains bits for goal block */ 1420 if (rgrp_contains_block(rgd, ip->i_goal)) 1421 goal = ip->i_goal; 1422 else 1423 goal = rgd->rd_last_alloc + rgd->rd_data0; 1424 1425 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal))) 1426 return; 1427 1428 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, extlen, ip, true); 1429 if (ret == 0) { 1430 rs->rs_rbm = rbm; 1431 rs->rs_free = extlen; 1432 rs->rs_inum = ip->i_no_addr; 1433 rs_insert(ip); 1434 } else { 1435 if (goal == rgd->rd_last_alloc + rgd->rd_data0) 1436 rgd->rd_last_alloc = 0; 1437 } 1438 } 1439 1440 /** 1441 * gfs2_next_unreserved_block - Return next block that is not reserved 1442 * @rgd: The resource group 1443 * @block: The starting block 1444 * @length: The required length 1445 * @ip: Ignore any reservations for this inode 1446 * 1447 * If the block does not appear in any reservation, then return the 1448 * block number unchanged. If it does appear in the reservation, then 1449 * keep looking through the tree of reservations in order to find the 1450 * first block number which is not reserved. 1451 */ 1452 1453 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block, 1454 u32 length, 1455 const struct gfs2_inode *ip) 1456 { 1457 struct gfs2_blkreserv *rs; 1458 struct rb_node *n; 1459 int rc; 1460 1461 spin_lock(&rgd->rd_rsspin); 1462 n = rgd->rd_rstree.rb_node; 1463 while (n) { 1464 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1465 rc = rs_cmp(block, length, rs); 1466 if (rc < 0) 1467 n = n->rb_left; 1468 else if (rc > 0) 1469 n = n->rb_right; 1470 else 1471 break; 1472 } 1473 1474 if (n) { 1475 while ((rs_cmp(block, length, rs) == 0) && (ip->i_res != rs)) { 1476 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free; 1477 n = n->rb_right; 1478 if (n == NULL) 1479 break; 1480 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1481 } 1482 } 1483 1484 spin_unlock(&rgd->rd_rsspin); 1485 return block; 1486 } 1487 1488 /** 1489 * gfs2_reservation_check_and_update - Check for reservations during block alloc 1490 * @rbm: The current position in the resource group 1491 * @ip: The inode for which we are searching for blocks 1492 * @minext: The minimum extent length 1493 * 1494 * This checks the current position in the rgrp to see whether there is 1495 * a reservation covering this block. If not then this function is a 1496 * no-op. If there is, then the position is moved to the end of the 1497 * contiguous reservation(s) so that we are pointing at the first 1498 * non-reserved block. 1499 * 1500 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error 1501 */ 1502 1503 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm, 1504 const struct gfs2_inode *ip, 1505 u32 minext) 1506 { 1507 u64 block = gfs2_rbm_to_block(rbm); 1508 u32 extlen = 1; 1509 u64 nblock; 1510 int ret; 1511 1512 /* 1513 * If we have a minimum extent length, then skip over any extent 1514 * which is less than the min extent length in size. 1515 */ 1516 if (minext) { 1517 extlen = gfs2_free_extlen(rbm, minext); 1518 nblock = block + extlen; 1519 if (extlen < minext) 1520 goto fail; 1521 } 1522 1523 /* 1524 * Check the extent which has been found against the reservations 1525 * and skip if parts of it are already reserved 1526 */ 1527 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip); 1528 if (nblock == block) 1529 return 0; 1530 fail: 1531 ret = gfs2_rbm_from_block(rbm, nblock); 1532 if (ret < 0) 1533 return ret; 1534 return 1; 1535 } 1536 1537 /** 1538 * gfs2_rbm_find - Look for blocks of a particular state 1539 * @rbm: Value/result starting position and final position 1540 * @state: The state which we want to find 1541 * @minext: The requested extent length (0 for a single block) 1542 * @ip: If set, check for reservations 1543 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping 1544 * around until we've reached the starting point. 1545 * 1546 * Side effects: 1547 * - If looking for free blocks, we set GBF_FULL on each bitmap which 1548 * has no free blocks in it. 1549 * 1550 * Returns: 0 on success, -ENOSPC if there is no block of the requested state 1551 */ 1552 1553 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext, 1554 const struct gfs2_inode *ip, bool nowrap) 1555 { 1556 struct buffer_head *bh; 1557 struct gfs2_bitmap *initial_bi; 1558 u32 initial_offset; 1559 u32 offset; 1560 u8 *buffer; 1561 int index; 1562 int n = 0; 1563 int iters = rbm->rgd->rd_length; 1564 int ret; 1565 1566 /* If we are not starting at the beginning of a bitmap, then we 1567 * need to add one to the bitmap count to ensure that we search 1568 * the starting bitmap twice. 1569 */ 1570 if (rbm->offset != 0) 1571 iters++; 1572 1573 while(1) { 1574 if (test_bit(GBF_FULL, &rbm->bi->bi_flags) && 1575 (state == GFS2_BLKST_FREE)) 1576 goto next_bitmap; 1577 1578 bh = rbm->bi->bi_bh; 1579 buffer = bh->b_data + rbm->bi->bi_offset; 1580 WARN_ON(!buffer_uptodate(bh)); 1581 if (state != GFS2_BLKST_UNLINKED && rbm->bi->bi_clone) 1582 buffer = rbm->bi->bi_clone + rbm->bi->bi_offset; 1583 initial_offset = rbm->offset; 1584 offset = gfs2_bitfit(buffer, rbm->bi->bi_len, rbm->offset, state); 1585 if (offset == BFITNOENT) 1586 goto bitmap_full; 1587 rbm->offset = offset; 1588 if (ip == NULL) 1589 return 0; 1590 1591 initial_bi = rbm->bi; 1592 ret = gfs2_reservation_check_and_update(rbm, ip, minext); 1593 if (ret == 0) 1594 return 0; 1595 if (ret > 0) { 1596 n += (rbm->bi - initial_bi); 1597 goto next_iter; 1598 } 1599 if (ret == -E2BIG) { 1600 index = 0; 1601 rbm->offset = 0; 1602 n += (rbm->bi - initial_bi); 1603 goto res_covered_end_of_rgrp; 1604 } 1605 return ret; 1606 1607 bitmap_full: /* Mark bitmap as full and fall through */ 1608 if ((state == GFS2_BLKST_FREE) && initial_offset == 0) 1609 set_bit(GBF_FULL, &rbm->bi->bi_flags); 1610 1611 next_bitmap: /* Find next bitmap in the rgrp */ 1612 rbm->offset = 0; 1613 index = rbm->bi - rbm->rgd->rd_bits; 1614 index++; 1615 if (index == rbm->rgd->rd_length) 1616 index = 0; 1617 res_covered_end_of_rgrp: 1618 rbm->bi = &rbm->rgd->rd_bits[index]; 1619 if ((index == 0) && nowrap) 1620 break; 1621 n++; 1622 next_iter: 1623 if (n >= iters) 1624 break; 1625 } 1626 1627 return -ENOSPC; 1628 } 1629 1630 /** 1631 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes 1632 * @rgd: The rgrp 1633 * @last_unlinked: block address of the last dinode we unlinked 1634 * @skip: block address we should explicitly not unlink 1635 * 1636 * Returns: 0 if no error 1637 * The inode, if one has been found, in inode. 1638 */ 1639 1640 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) 1641 { 1642 u64 block; 1643 struct gfs2_sbd *sdp = rgd->rd_sbd; 1644 struct gfs2_glock *gl; 1645 struct gfs2_inode *ip; 1646 int error; 1647 int found = 0; 1648 struct gfs2_rbm rbm = { .rgd = rgd, .bi = rgd->rd_bits, .offset = 0 }; 1649 1650 while (1) { 1651 down_write(&sdp->sd_log_flush_lock); 1652 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, 0, NULL, true); 1653 up_write(&sdp->sd_log_flush_lock); 1654 if (error == -ENOSPC) 1655 break; 1656 if (WARN_ON_ONCE(error)) 1657 break; 1658 1659 block = gfs2_rbm_to_block(&rbm); 1660 if (gfs2_rbm_from_block(&rbm, block + 1)) 1661 break; 1662 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked) 1663 continue; 1664 if (block == skip) 1665 continue; 1666 *last_unlinked = block; 1667 1668 error = gfs2_glock_get(sdp, block, &gfs2_inode_glops, CREATE, &gl); 1669 if (error) 1670 continue; 1671 1672 /* If the inode is already in cache, we can ignore it here 1673 * because the existing inode disposal code will deal with 1674 * it when all refs have gone away. Accessing gl_object like 1675 * this is not safe in general. Here it is ok because we do 1676 * not dereference the pointer, and we only need an approx 1677 * answer to whether it is NULL or not. 1678 */ 1679 ip = gl->gl_object; 1680 1681 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0) 1682 gfs2_glock_put(gl); 1683 else 1684 found++; 1685 1686 /* Limit reclaim to sensible number of tasks */ 1687 if (found > NR_CPUS) 1688 return; 1689 } 1690 1691 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1692 return; 1693 } 1694 1695 /** 1696 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested 1697 * @rgd: The rgrp in question 1698 * @loops: An indication of how picky we can be (0=very, 1=less so) 1699 * 1700 * This function uses the recently added glock statistics in order to 1701 * figure out whether a parciular resource group is suffering from 1702 * contention from multiple nodes. This is done purely on the basis 1703 * of timings, since this is the only data we have to work with and 1704 * our aim here is to reject a resource group which is highly contended 1705 * but (very important) not to do this too often in order to ensure that 1706 * we do not land up introducing fragmentation by changing resource 1707 * groups when not actually required. 1708 * 1709 * The calculation is fairly simple, we want to know whether the SRTTB 1710 * (i.e. smoothed round trip time for blocking operations) to acquire 1711 * the lock for this rgrp's glock is significantly greater than the 1712 * time taken for resource groups on average. We introduce a margin in 1713 * the form of the variable @var which is computed as the sum of the two 1714 * respective variences, and multiplied by a factor depending on @loops 1715 * and whether we have a lot of data to base the decision on. This is 1716 * then tested against the square difference of the means in order to 1717 * decide whether the result is statistically significant or not. 1718 * 1719 * Returns: A boolean verdict on the congestion status 1720 */ 1721 1722 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops) 1723 { 1724 const struct gfs2_glock *gl = rgd->rd_gl; 1725 const struct gfs2_sbd *sdp = gl->gl_sbd; 1726 struct gfs2_lkstats *st; 1727 s64 r_dcount, l_dcount; 1728 s64 r_srttb, l_srttb; 1729 s64 srttb_diff; 1730 s64 sqr_diff; 1731 s64 var; 1732 1733 preempt_disable(); 1734 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP]; 1735 r_srttb = st->stats[GFS2_LKS_SRTTB]; 1736 r_dcount = st->stats[GFS2_LKS_DCOUNT]; 1737 var = st->stats[GFS2_LKS_SRTTVARB] + 1738 gl->gl_stats.stats[GFS2_LKS_SRTTVARB]; 1739 preempt_enable(); 1740 1741 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB]; 1742 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT]; 1743 1744 if ((l_dcount < 1) || (r_dcount < 1) || (r_srttb == 0)) 1745 return false; 1746 1747 srttb_diff = r_srttb - l_srttb; 1748 sqr_diff = srttb_diff * srttb_diff; 1749 1750 var *= 2; 1751 if (l_dcount < 8 || r_dcount < 8) 1752 var *= 2; 1753 if (loops == 1) 1754 var *= 2; 1755 1756 return ((srttb_diff < 0) && (sqr_diff > var)); 1757 } 1758 1759 /** 1760 * gfs2_rgrp_used_recently 1761 * @rs: The block reservation with the rgrp to test 1762 * @msecs: The time limit in milliseconds 1763 * 1764 * Returns: True if the rgrp glock has been used within the time limit 1765 */ 1766 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs, 1767 u64 msecs) 1768 { 1769 u64 tdiff; 1770 1771 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(), 1772 rs->rs_rbm.rgd->rd_gl->gl_dstamp)); 1773 1774 return tdiff > (msecs * 1000 * 1000); 1775 } 1776 1777 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip) 1778 { 1779 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1780 u32 skip; 1781 1782 get_random_bytes(&skip, sizeof(skip)); 1783 return skip % sdp->sd_rgrps; 1784 } 1785 1786 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin) 1787 { 1788 struct gfs2_rgrpd *rgd = *pos; 1789 struct gfs2_sbd *sdp = rgd->rd_sbd; 1790 1791 rgd = gfs2_rgrpd_get_next(rgd); 1792 if (rgd == NULL) 1793 rgd = gfs2_rgrpd_get_first(sdp); 1794 *pos = rgd; 1795 if (rgd != begin) /* If we didn't wrap */ 1796 return true; 1797 return false; 1798 } 1799 1800 /** 1801 * gfs2_inplace_reserve - Reserve space in the filesystem 1802 * @ip: the inode to reserve space for 1803 * @requested: the number of blocks to be reserved 1804 * 1805 * Returns: errno 1806 */ 1807 1808 int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested, u32 aflags) 1809 { 1810 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1811 struct gfs2_rgrpd *begin = NULL; 1812 struct gfs2_blkreserv *rs = ip->i_res; 1813 int error = 0, rg_locked, flags = 0; 1814 u64 last_unlinked = NO_BLOCK; 1815 int loops = 0; 1816 u32 skip = 0; 1817 1818 if (sdp->sd_args.ar_rgrplvb) 1819 flags |= GL_SKIP; 1820 if (gfs2_assert_warn(sdp, requested)) 1821 return -EINVAL; 1822 if (gfs2_rs_active(rs)) { 1823 begin = rs->rs_rbm.rgd; 1824 flags = 0; /* Yoda: Do or do not. There is no try */ 1825 } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) { 1826 rs->rs_rbm.rgd = begin = ip->i_rgd; 1827 } else { 1828 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1); 1829 } 1830 if (S_ISDIR(ip->i_inode.i_mode) && (aflags & GFS2_AF_ORLOV)) 1831 skip = gfs2_orlov_skip(ip); 1832 if (rs->rs_rbm.rgd == NULL) 1833 return -EBADSLT; 1834 1835 while (loops < 3) { 1836 rg_locked = 1; 1837 1838 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) { 1839 rg_locked = 0; 1840 if (skip && skip--) 1841 goto next_rgrp; 1842 if (!gfs2_rs_active(rs) && (loops < 2) && 1843 gfs2_rgrp_used_recently(rs, 1000) && 1844 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 1845 goto next_rgrp; 1846 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl, 1847 LM_ST_EXCLUSIVE, flags, 1848 &rs->rs_rgd_gh); 1849 if (unlikely(error)) 1850 return error; 1851 if (!gfs2_rs_active(rs) && (loops < 2) && 1852 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 1853 goto skip_rgrp; 1854 if (sdp->sd_args.ar_rgrplvb) { 1855 error = update_rgrp_lvb(rs->rs_rbm.rgd); 1856 if (unlikely(error)) { 1857 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 1858 return error; 1859 } 1860 } 1861 } 1862 1863 /* Skip unuseable resource groups */ 1864 if (rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR)) 1865 goto skip_rgrp; 1866 1867 if (sdp->sd_args.ar_rgrplvb) 1868 gfs2_rgrp_bh_get(rs->rs_rbm.rgd); 1869 1870 /* Get a reservation if we don't already have one */ 1871 if (!gfs2_rs_active(rs)) 1872 rg_mblk_search(rs->rs_rbm.rgd, ip, requested); 1873 1874 /* Skip rgrps when we can't get a reservation on first pass */ 1875 if (!gfs2_rs_active(rs) && (loops < 1)) 1876 goto check_rgrp; 1877 1878 /* If rgrp has enough free space, use it */ 1879 if (rs->rs_rbm.rgd->rd_free_clone >= requested) { 1880 ip->i_rgd = rs->rs_rbm.rgd; 1881 return 0; 1882 } 1883 1884 /* Drop reservation, if we couldn't use reserved rgrp */ 1885 if (gfs2_rs_active(rs)) 1886 gfs2_rs_deltree(rs); 1887 check_rgrp: 1888 /* Check for unlinked inodes which can be reclaimed */ 1889 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK) 1890 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked, 1891 ip->i_no_addr); 1892 skip_rgrp: 1893 /* Unlock rgrp if required */ 1894 if (!rg_locked) 1895 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 1896 next_rgrp: 1897 /* Find the next rgrp, and continue looking */ 1898 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin)) 1899 continue; 1900 if (skip) 1901 continue; 1902 1903 /* If we've scanned all the rgrps, but found no free blocks 1904 * then this checks for some less likely conditions before 1905 * trying again. 1906 */ 1907 loops++; 1908 /* Check that fs hasn't grown if writing to rindex */ 1909 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { 1910 error = gfs2_ri_update(ip); 1911 if (error) 1912 return error; 1913 } 1914 /* Flushing the log may release space */ 1915 if (loops == 2) 1916 gfs2_log_flush(sdp, NULL); 1917 } 1918 1919 return -ENOSPC; 1920 } 1921 1922 /** 1923 * gfs2_inplace_release - release an inplace reservation 1924 * @ip: the inode the reservation was taken out on 1925 * 1926 * Release a reservation made by gfs2_inplace_reserve(). 1927 */ 1928 1929 void gfs2_inplace_release(struct gfs2_inode *ip) 1930 { 1931 struct gfs2_blkreserv *rs = ip->i_res; 1932 1933 if (rs->rs_rgd_gh.gh_gl) 1934 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 1935 } 1936 1937 /** 1938 * gfs2_get_block_type - Check a block in a RG is of given type 1939 * @rgd: the resource group holding the block 1940 * @block: the block number 1941 * 1942 * Returns: The block type (GFS2_BLKST_*) 1943 */ 1944 1945 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block) 1946 { 1947 struct gfs2_rbm rbm = { .rgd = rgd, }; 1948 int ret; 1949 1950 ret = gfs2_rbm_from_block(&rbm, block); 1951 WARN_ON_ONCE(ret != 0); 1952 1953 return gfs2_testbit(&rbm); 1954 } 1955 1956 1957 /** 1958 * gfs2_alloc_extent - allocate an extent from a given bitmap 1959 * @rbm: the resource group information 1960 * @dinode: TRUE if the first block we allocate is for a dinode 1961 * @n: The extent length (value/result) 1962 * 1963 * Add the bitmap buffer to the transaction. 1964 * Set the found bits to @new_state to change block's allocation state. 1965 */ 1966 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode, 1967 unsigned int *n) 1968 { 1969 struct gfs2_rbm pos = { .rgd = rbm->rgd, }; 1970 const unsigned int elen = *n; 1971 u64 block; 1972 int ret; 1973 1974 *n = 1; 1975 block = gfs2_rbm_to_block(rbm); 1976 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm->bi->bi_bh); 1977 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 1978 block++; 1979 while (*n < elen) { 1980 ret = gfs2_rbm_from_block(&pos, block); 1981 if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE) 1982 break; 1983 gfs2_trans_add_meta(pos.rgd->rd_gl, pos.bi->bi_bh); 1984 gfs2_setbit(&pos, true, GFS2_BLKST_USED); 1985 (*n)++; 1986 block++; 1987 } 1988 } 1989 1990 /** 1991 * rgblk_free - Change alloc state of given block(s) 1992 * @sdp: the filesystem 1993 * @bstart: the start of a run of blocks to free 1994 * @blen: the length of the block run (all must lie within ONE RG!) 1995 * @new_state: GFS2_BLKST_XXX the after-allocation block state 1996 * 1997 * Returns: Resource group containing the block(s) 1998 */ 1999 2000 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart, 2001 u32 blen, unsigned char new_state) 2002 { 2003 struct gfs2_rbm rbm; 2004 2005 rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1); 2006 if (!rbm.rgd) { 2007 if (gfs2_consist(sdp)) 2008 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart); 2009 return NULL; 2010 } 2011 2012 while (blen--) { 2013 gfs2_rbm_from_block(&rbm, bstart); 2014 bstart++; 2015 if (!rbm.bi->bi_clone) { 2016 rbm.bi->bi_clone = kmalloc(rbm.bi->bi_bh->b_size, 2017 GFP_NOFS | __GFP_NOFAIL); 2018 memcpy(rbm.bi->bi_clone + rbm.bi->bi_offset, 2019 rbm.bi->bi_bh->b_data + rbm.bi->bi_offset, 2020 rbm.bi->bi_len); 2021 } 2022 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.bi->bi_bh); 2023 gfs2_setbit(&rbm, false, new_state); 2024 } 2025 2026 return rbm.rgd; 2027 } 2028 2029 /** 2030 * gfs2_rgrp_dump - print out an rgrp 2031 * @seq: The iterator 2032 * @gl: The glock in question 2033 * 2034 */ 2035 2036 int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl) 2037 { 2038 struct gfs2_rgrpd *rgd = gl->gl_object; 2039 struct gfs2_blkreserv *trs; 2040 const struct rb_node *n; 2041 2042 if (rgd == NULL) 2043 return 0; 2044 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u\n", 2045 (unsigned long long)rgd->rd_addr, rgd->rd_flags, 2046 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes, 2047 rgd->rd_reserved); 2048 spin_lock(&rgd->rd_rsspin); 2049 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) { 2050 trs = rb_entry(n, struct gfs2_blkreserv, rs_node); 2051 dump_rs(seq, trs); 2052 } 2053 spin_unlock(&rgd->rd_rsspin); 2054 return 0; 2055 } 2056 2057 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) 2058 { 2059 struct gfs2_sbd *sdp = rgd->rd_sbd; 2060 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", 2061 (unsigned long long)rgd->rd_addr); 2062 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); 2063 gfs2_rgrp_dump(NULL, rgd->rd_gl); 2064 rgd->rd_flags |= GFS2_RDF_ERROR; 2065 } 2066 2067 /** 2068 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation 2069 * @ip: The inode we have just allocated blocks for 2070 * @rbm: The start of the allocated blocks 2071 * @len: The extent length 2072 * 2073 * Adjusts a reservation after an allocation has taken place. If the 2074 * reservation does not match the allocation, or if it is now empty 2075 * then it is removed. 2076 */ 2077 2078 static void gfs2_adjust_reservation(struct gfs2_inode *ip, 2079 const struct gfs2_rbm *rbm, unsigned len) 2080 { 2081 struct gfs2_blkreserv *rs = ip->i_res; 2082 struct gfs2_rgrpd *rgd = rbm->rgd; 2083 unsigned rlen; 2084 u64 block; 2085 int ret; 2086 2087 spin_lock(&rgd->rd_rsspin); 2088 if (gfs2_rs_active(rs)) { 2089 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) { 2090 block = gfs2_rbm_to_block(rbm); 2091 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len); 2092 rlen = min(rs->rs_free, len); 2093 rs->rs_free -= rlen; 2094 rgd->rd_reserved -= rlen; 2095 trace_gfs2_rs(rs, TRACE_RS_CLAIM); 2096 if (rs->rs_free && !ret) 2097 goto out; 2098 } 2099 __rs_deltree(rs); 2100 } 2101 out: 2102 spin_unlock(&rgd->rd_rsspin); 2103 } 2104 2105 /** 2106 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode 2107 * @ip: the inode to allocate the block for 2108 * @bn: Used to return the starting block number 2109 * @nblocks: requested number of blocks/extent length (value/result) 2110 * @dinode: 1 if we're allocating a dinode block, else 0 2111 * @generation: the generation number of the inode 2112 * 2113 * Returns: 0 or error 2114 */ 2115 2116 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks, 2117 bool dinode, u64 *generation) 2118 { 2119 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2120 struct buffer_head *dibh; 2121 struct gfs2_rbm rbm = { .rgd = ip->i_rgd, }; 2122 unsigned int ndata; 2123 u64 goal; 2124 u64 block; /* block, within the file system scope */ 2125 int error; 2126 2127 if (gfs2_rs_active(ip->i_res)) 2128 goal = gfs2_rbm_to_block(&ip->i_res->rs_rbm); 2129 else if (!dinode && rgrp_contains_block(rbm.rgd, ip->i_goal)) 2130 goal = ip->i_goal; 2131 else 2132 goal = rbm.rgd->rd_last_alloc + rbm.rgd->rd_data0; 2133 2134 gfs2_rbm_from_block(&rbm, goal); 2135 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, ip, false); 2136 2137 if (error == -ENOSPC) { 2138 gfs2_rbm_from_block(&rbm, goal); 2139 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, NULL, false); 2140 } 2141 2142 /* Since all blocks are reserved in advance, this shouldn't happen */ 2143 if (error) { 2144 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d\n", 2145 (unsigned long long)ip->i_no_addr, error, *nblocks, 2146 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags)); 2147 goto rgrp_error; 2148 } 2149 2150 gfs2_alloc_extent(&rbm, dinode, nblocks); 2151 block = gfs2_rbm_to_block(&rbm); 2152 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0; 2153 if (gfs2_rs_active(ip->i_res)) 2154 gfs2_adjust_reservation(ip, &rbm, *nblocks); 2155 ndata = *nblocks; 2156 if (dinode) 2157 ndata--; 2158 2159 if (!dinode) { 2160 ip->i_goal = block + ndata - 1; 2161 error = gfs2_meta_inode_buffer(ip, &dibh); 2162 if (error == 0) { 2163 struct gfs2_dinode *di = 2164 (struct gfs2_dinode *)dibh->b_data; 2165 gfs2_trans_add_meta(ip->i_gl, dibh); 2166 di->di_goal_meta = di->di_goal_data = 2167 cpu_to_be64(ip->i_goal); 2168 brelse(dibh); 2169 } 2170 } 2171 if (rbm.rgd->rd_free < *nblocks) { 2172 printk(KERN_WARNING "nblocks=%u\n", *nblocks); 2173 goto rgrp_error; 2174 } 2175 2176 rbm.rgd->rd_free -= *nblocks; 2177 if (dinode) { 2178 rbm.rgd->rd_dinodes++; 2179 *generation = rbm.rgd->rd_igeneration++; 2180 if (*generation == 0) 2181 *generation = rbm.rgd->rd_igeneration++; 2182 } 2183 2184 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh); 2185 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data); 2186 gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data); 2187 2188 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0); 2189 if (dinode) 2190 gfs2_trans_add_unrevoke(sdp, block, 1); 2191 2192 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid); 2193 2194 rbm.rgd->rd_free_clone -= *nblocks; 2195 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks, 2196 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2197 *bn = block; 2198 return 0; 2199 2200 rgrp_error: 2201 gfs2_rgrp_error(rbm.rgd); 2202 return -EIO; 2203 } 2204 2205 /** 2206 * __gfs2_free_blocks - free a contiguous run of block(s) 2207 * @ip: the inode these blocks are being freed from 2208 * @bstart: first block of a run of contiguous blocks 2209 * @blen: the length of the block run 2210 * @meta: 1 if the blocks represent metadata 2211 * 2212 */ 2213 2214 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta) 2215 { 2216 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2217 struct gfs2_rgrpd *rgd; 2218 2219 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE); 2220 if (!rgd) 2221 return; 2222 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE); 2223 rgd->rd_free += blen; 2224 rgd->rd_flags &= ~GFS2_RGF_TRIMMED; 2225 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2226 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2227 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2228 2229 /* Directories keep their data in the metadata address space */ 2230 if (meta || ip->i_depth) 2231 gfs2_meta_wipe(ip, bstart, blen); 2232 } 2233 2234 /** 2235 * gfs2_free_meta - free a contiguous run of data block(s) 2236 * @ip: the inode these blocks are being freed from 2237 * @bstart: first block of a run of contiguous blocks 2238 * @blen: the length of the block run 2239 * 2240 */ 2241 2242 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen) 2243 { 2244 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2245 2246 __gfs2_free_blocks(ip, bstart, blen, 1); 2247 gfs2_statfs_change(sdp, 0, +blen, 0); 2248 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); 2249 } 2250 2251 void gfs2_unlink_di(struct inode *inode) 2252 { 2253 struct gfs2_inode *ip = GFS2_I(inode); 2254 struct gfs2_sbd *sdp = GFS2_SB(inode); 2255 struct gfs2_rgrpd *rgd; 2256 u64 blkno = ip->i_no_addr; 2257 2258 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED); 2259 if (!rgd) 2260 return; 2261 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2262 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2263 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2264 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2265 update_rgrp_lvb_unlinked(rgd, 1); 2266 } 2267 2268 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno) 2269 { 2270 struct gfs2_sbd *sdp = rgd->rd_sbd; 2271 struct gfs2_rgrpd *tmp_rgd; 2272 2273 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE); 2274 if (!tmp_rgd) 2275 return; 2276 gfs2_assert_withdraw(sdp, rgd == tmp_rgd); 2277 2278 if (!rgd->rd_dinodes) 2279 gfs2_consist_rgrpd(rgd); 2280 rgd->rd_dinodes--; 2281 rgd->rd_free++; 2282 2283 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2284 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2285 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2286 update_rgrp_lvb_unlinked(rgd, -1); 2287 2288 gfs2_statfs_change(sdp, 0, +1, -1); 2289 } 2290 2291 2292 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) 2293 { 2294 gfs2_free_uninit_di(rgd, ip->i_no_addr); 2295 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2296 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); 2297 gfs2_meta_wipe(ip, ip->i_no_addr, 1); 2298 } 2299 2300 /** 2301 * gfs2_check_blk_type - Check the type of a block 2302 * @sdp: The superblock 2303 * @no_addr: The block number to check 2304 * @type: The block type we are looking for 2305 * 2306 * Returns: 0 if the block type matches the expected type 2307 * -ESTALE if it doesn't match 2308 * or -ve errno if something went wrong while checking 2309 */ 2310 2311 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) 2312 { 2313 struct gfs2_rgrpd *rgd; 2314 struct gfs2_holder rgd_gh; 2315 int error = -EINVAL; 2316 2317 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1); 2318 if (!rgd) 2319 goto fail; 2320 2321 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); 2322 if (error) 2323 goto fail; 2324 2325 if (gfs2_get_block_type(rgd, no_addr) != type) 2326 error = -ESTALE; 2327 2328 gfs2_glock_dq_uninit(&rgd_gh); 2329 fail: 2330 return error; 2331 } 2332 2333 /** 2334 * gfs2_rlist_add - add a RG to a list of RGs 2335 * @ip: the inode 2336 * @rlist: the list of resource groups 2337 * @block: the block 2338 * 2339 * Figure out what RG a block belongs to and add that RG to the list 2340 * 2341 * FIXME: Don't use NOFAIL 2342 * 2343 */ 2344 2345 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, 2346 u64 block) 2347 { 2348 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2349 struct gfs2_rgrpd *rgd; 2350 struct gfs2_rgrpd **tmp; 2351 unsigned int new_space; 2352 unsigned int x; 2353 2354 if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) 2355 return; 2356 2357 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block)) 2358 rgd = ip->i_rgd; 2359 else 2360 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2361 if (!rgd) { 2362 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block); 2363 return; 2364 } 2365 ip->i_rgd = rgd; 2366 2367 for (x = 0; x < rlist->rl_rgrps; x++) 2368 if (rlist->rl_rgd[x] == rgd) 2369 return; 2370 2371 if (rlist->rl_rgrps == rlist->rl_space) { 2372 new_space = rlist->rl_space + 10; 2373 2374 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), 2375 GFP_NOFS | __GFP_NOFAIL); 2376 2377 if (rlist->rl_rgd) { 2378 memcpy(tmp, rlist->rl_rgd, 2379 rlist->rl_space * sizeof(struct gfs2_rgrpd *)); 2380 kfree(rlist->rl_rgd); 2381 } 2382 2383 rlist->rl_space = new_space; 2384 rlist->rl_rgd = tmp; 2385 } 2386 2387 rlist->rl_rgd[rlist->rl_rgrps++] = rgd; 2388 } 2389 2390 /** 2391 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate 2392 * and initialize an array of glock holders for them 2393 * @rlist: the list of resource groups 2394 * @state: the lock state to acquire the RG lock in 2395 * 2396 * FIXME: Don't use NOFAIL 2397 * 2398 */ 2399 2400 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state) 2401 { 2402 unsigned int x; 2403 2404 rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder), 2405 GFP_NOFS | __GFP_NOFAIL); 2406 for (x = 0; x < rlist->rl_rgrps; x++) 2407 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, 2408 state, 0, 2409 &rlist->rl_ghs[x]); 2410 } 2411 2412 /** 2413 * gfs2_rlist_free - free a resource group list 2414 * @list: the list of resource groups 2415 * 2416 */ 2417 2418 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) 2419 { 2420 unsigned int x; 2421 2422 kfree(rlist->rl_rgd); 2423 2424 if (rlist->rl_ghs) { 2425 for (x = 0; x < rlist->rl_rgrps; x++) 2426 gfs2_holder_uninit(&rlist->rl_ghs[x]); 2427 kfree(rlist->rl_ghs); 2428 rlist->rl_ghs = NULL; 2429 } 2430 } 2431 2432