1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/slab.h> 13 #include <linux/spinlock.h> 14 #include <linux/completion.h> 15 #include <linux/buffer_head.h> 16 #include <linux/fs.h> 17 #include <linux/gfs2_ondisk.h> 18 #include <linux/prefetch.h> 19 #include <linux/blkdev.h> 20 #include <linux/rbtree.h> 21 #include <linux/random.h> 22 23 #include "gfs2.h" 24 #include "incore.h" 25 #include "glock.h" 26 #include "glops.h" 27 #include "lops.h" 28 #include "meta_io.h" 29 #include "quota.h" 30 #include "rgrp.h" 31 #include "super.h" 32 #include "trans.h" 33 #include "util.h" 34 #include "log.h" 35 #include "inode.h" 36 #include "trace_gfs2.h" 37 #include "dir.h" 38 39 #define BFITNOENT ((u32)~0) 40 #define NO_BLOCK ((u64)~0) 41 42 #if BITS_PER_LONG == 32 43 #define LBITMASK (0x55555555UL) 44 #define LBITSKIP55 (0x55555555UL) 45 #define LBITSKIP00 (0x00000000UL) 46 #else 47 #define LBITMASK (0x5555555555555555UL) 48 #define LBITSKIP55 (0x5555555555555555UL) 49 #define LBITSKIP00 (0x0000000000000000UL) 50 #endif 51 52 /* 53 * These routines are used by the resource group routines (rgrp.c) 54 * to keep track of block allocation. Each block is represented by two 55 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. 56 * 57 * 0 = Free 58 * 1 = Used (not metadata) 59 * 2 = Unlinked (still in use) inode 60 * 3 = Used (metadata) 61 */ 62 63 struct gfs2_extent { 64 struct gfs2_rbm rbm; 65 u32 len; 66 }; 67 68 static const char valid_change[16] = { 69 /* current */ 70 /* n */ 0, 1, 1, 1, 71 /* e */ 1, 0, 0, 0, 72 /* w */ 0, 0, 0, 1, 73 1, 0, 0, 0 74 }; 75 76 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 77 const struct gfs2_inode *ip, bool nowrap); 78 79 80 /** 81 * gfs2_setbit - Set a bit in the bitmaps 82 * @rbm: The position of the bit to set 83 * @do_clone: Also set the clone bitmap, if it exists 84 * @new_state: the new state of the block 85 * 86 */ 87 88 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone, 89 unsigned char new_state) 90 { 91 unsigned char *byte1, *byte2, *end, cur_state; 92 struct gfs2_bitmap *bi = rbm_bi(rbm); 93 unsigned int buflen = bi->bi_bytes; 94 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 95 96 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY); 97 end = bi->bi_bh->b_data + bi->bi_offset + buflen; 98 99 BUG_ON(byte1 >= end); 100 101 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; 102 103 if (unlikely(!valid_change[new_state * 4 + cur_state])) { 104 struct gfs2_sbd *sdp = rbm->rgd->rd_sbd; 105 106 fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n", 107 rbm->offset, cur_state, new_state); 108 fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n", 109 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start, 110 (unsigned long long)bi->bi_bh->b_blocknr); 111 fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n", 112 bi->bi_offset, bi->bi_bytes, 113 (unsigned long long)gfs2_rbm_to_block(rbm)); 114 dump_stack(); 115 gfs2_consist_rgrpd(rbm->rgd); 116 return; 117 } 118 *byte1 ^= (cur_state ^ new_state) << bit; 119 120 if (do_clone && bi->bi_clone) { 121 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY); 122 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; 123 *byte2 ^= (cur_state ^ new_state) << bit; 124 } 125 } 126 127 /** 128 * gfs2_testbit - test a bit in the bitmaps 129 * @rbm: The bit to test 130 * @use_clone: If true, test the clone bitmap, not the official bitmap. 131 * 132 * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps, 133 * not the "real" bitmaps, to avoid allocating recently freed blocks. 134 * 135 * Returns: The two bit block state of the requested bit 136 */ 137 138 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone) 139 { 140 struct gfs2_bitmap *bi = rbm_bi(rbm); 141 const u8 *buffer; 142 const u8 *byte; 143 unsigned int bit; 144 145 if (use_clone && bi->bi_clone) 146 buffer = bi->bi_clone; 147 else 148 buffer = bi->bi_bh->b_data; 149 buffer += bi->bi_offset; 150 byte = buffer + (rbm->offset / GFS2_NBBY); 151 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 152 153 return (*byte >> bit) & GFS2_BIT_MASK; 154 } 155 156 /** 157 * gfs2_bit_search 158 * @ptr: Pointer to bitmap data 159 * @mask: Mask to use (normally 0x55555.... but adjusted for search start) 160 * @state: The state we are searching for 161 * 162 * We xor the bitmap data with a patter which is the bitwise opposite 163 * of what we are looking for, this gives rise to a pattern of ones 164 * wherever there is a match. Since we have two bits per entry, we 165 * take this pattern, shift it down by one place and then and it with 166 * the original. All the even bit positions (0,2,4, etc) then represent 167 * successful matches, so we mask with 0x55555..... to remove the unwanted 168 * odd bit positions. 169 * 170 * This allows searching of a whole u64 at once (32 blocks) with a 171 * single test (on 64 bit arches). 172 */ 173 174 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) 175 { 176 u64 tmp; 177 static const u64 search[] = { 178 [0] = 0xffffffffffffffffULL, 179 [1] = 0xaaaaaaaaaaaaaaaaULL, 180 [2] = 0x5555555555555555ULL, 181 [3] = 0x0000000000000000ULL, 182 }; 183 tmp = le64_to_cpu(*ptr) ^ search[state]; 184 tmp &= (tmp >> 1); 185 tmp &= mask; 186 return tmp; 187 } 188 189 /** 190 * rs_cmp - multi-block reservation range compare 191 * @blk: absolute file system block number of the new reservation 192 * @len: number of blocks in the new reservation 193 * @rs: existing reservation to compare against 194 * 195 * returns: 1 if the block range is beyond the reach of the reservation 196 * -1 if the block range is before the start of the reservation 197 * 0 if the block range overlaps with the reservation 198 */ 199 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs) 200 { 201 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm); 202 203 if (blk >= startblk + rs->rs_free) 204 return 1; 205 if (blk + len - 1 < startblk) 206 return -1; 207 return 0; 208 } 209 210 /** 211 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing 212 * a block in a given allocation state. 213 * @buf: the buffer that holds the bitmaps 214 * @len: the length (in bytes) of the buffer 215 * @goal: start search at this block's bit-pair (within @buffer) 216 * @state: GFS2_BLKST_XXX the state of the block we're looking for. 217 * 218 * Scope of @goal and returned block number is only within this bitmap buffer, 219 * not entire rgrp or filesystem. @buffer will be offset from the actual 220 * beginning of a bitmap block buffer, skipping any header structures, but 221 * headers are always a multiple of 64 bits long so that the buffer is 222 * always aligned to a 64 bit boundary. 223 * 224 * The size of the buffer is in bytes, but is it assumed that it is 225 * always ok to read a complete multiple of 64 bits at the end 226 * of the block in case the end is no aligned to a natural boundary. 227 * 228 * Return: the block number (bitmap buffer scope) that was found 229 */ 230 231 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, 232 u32 goal, u8 state) 233 { 234 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); 235 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); 236 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); 237 u64 tmp; 238 u64 mask = 0x5555555555555555ULL; 239 u32 bit; 240 241 /* Mask off bits we don't care about at the start of the search */ 242 mask <<= spoint; 243 tmp = gfs2_bit_search(ptr, mask, state); 244 ptr++; 245 while(tmp == 0 && ptr < end) { 246 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); 247 ptr++; 248 } 249 /* Mask off any bits which are more than len bytes from the start */ 250 if (ptr == end && (len & (sizeof(u64) - 1))) 251 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); 252 /* Didn't find anything, so return */ 253 if (tmp == 0) 254 return BFITNOENT; 255 ptr--; 256 bit = __ffs64(tmp); 257 bit /= 2; /* two bits per entry in the bitmap */ 258 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; 259 } 260 261 /** 262 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number 263 * @rbm: The rbm with rgd already set correctly 264 * @block: The block number (filesystem relative) 265 * 266 * This sets the bi and offset members of an rbm based on a 267 * resource group and a filesystem relative block number. The 268 * resource group must be set in the rbm on entry, the bi and 269 * offset members will be set by this function. 270 * 271 * Returns: 0 on success, or an error code 272 */ 273 274 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block) 275 { 276 if (!rgrp_contains_block(rbm->rgd, block)) 277 return -E2BIG; 278 rbm->bii = 0; 279 rbm->offset = block - rbm->rgd->rd_data0; 280 /* Check if the block is within the first block */ 281 if (rbm->offset < rbm_bi(rbm)->bi_blocks) 282 return 0; 283 284 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */ 285 rbm->offset += (sizeof(struct gfs2_rgrp) - 286 sizeof(struct gfs2_meta_header)) * GFS2_NBBY; 287 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 288 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 289 return 0; 290 } 291 292 /** 293 * gfs2_rbm_incr - increment an rbm structure 294 * @rbm: The rbm with rgd already set correctly 295 * 296 * This function takes an existing rbm structure and increments it to the next 297 * viable block offset. 298 * 299 * Returns: If incrementing the offset would cause the rbm to go past the 300 * end of the rgrp, true is returned, otherwise false. 301 * 302 */ 303 304 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm) 305 { 306 if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */ 307 rbm->offset++; 308 return false; 309 } 310 if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */ 311 return true; 312 313 rbm->offset = 0; 314 rbm->bii++; 315 return false; 316 } 317 318 /** 319 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned 320 * @rbm: Position to search (value/result) 321 * @n_unaligned: Number of unaligned blocks to check 322 * @len: Decremented for each block found (terminate on zero) 323 * 324 * Returns: true if a non-free block is encountered 325 */ 326 327 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len) 328 { 329 u32 n; 330 u8 res; 331 332 for (n = 0; n < n_unaligned; n++) { 333 res = gfs2_testbit(rbm, true); 334 if (res != GFS2_BLKST_FREE) 335 return true; 336 (*len)--; 337 if (*len == 0) 338 return true; 339 if (gfs2_rbm_incr(rbm)) 340 return true; 341 } 342 343 return false; 344 } 345 346 /** 347 * gfs2_free_extlen - Return extent length of free blocks 348 * @rrbm: Starting position 349 * @len: Max length to check 350 * 351 * Starting at the block specified by the rbm, see how many free blocks 352 * there are, not reading more than len blocks ahead. This can be done 353 * using memchr_inv when the blocks are byte aligned, but has to be done 354 * on a block by block basis in case of unaligned blocks. Also this 355 * function can cope with bitmap boundaries (although it must stop on 356 * a resource group boundary) 357 * 358 * Returns: Number of free blocks in the extent 359 */ 360 361 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len) 362 { 363 struct gfs2_rbm rbm = *rrbm; 364 u32 n_unaligned = rbm.offset & 3; 365 u32 size = len; 366 u32 bytes; 367 u32 chunk_size; 368 u8 *ptr, *start, *end; 369 u64 block; 370 struct gfs2_bitmap *bi; 371 372 if (n_unaligned && 373 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len)) 374 goto out; 375 376 n_unaligned = len & 3; 377 /* Start is now byte aligned */ 378 while (len > 3) { 379 bi = rbm_bi(&rbm); 380 start = bi->bi_bh->b_data; 381 if (bi->bi_clone) 382 start = bi->bi_clone; 383 start += bi->bi_offset; 384 end = start + bi->bi_bytes; 385 BUG_ON(rbm.offset & 3); 386 start += (rbm.offset / GFS2_NBBY); 387 bytes = min_t(u32, len / GFS2_NBBY, (end - start)); 388 ptr = memchr_inv(start, 0, bytes); 389 chunk_size = ((ptr == NULL) ? bytes : (ptr - start)); 390 chunk_size *= GFS2_NBBY; 391 BUG_ON(len < chunk_size); 392 len -= chunk_size; 393 block = gfs2_rbm_to_block(&rbm); 394 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) { 395 n_unaligned = 0; 396 break; 397 } 398 if (ptr) { 399 n_unaligned = 3; 400 break; 401 } 402 n_unaligned = len & 3; 403 } 404 405 /* Deal with any bits left over at the end */ 406 if (n_unaligned) 407 gfs2_unaligned_extlen(&rbm, n_unaligned, &len); 408 out: 409 return size - len; 410 } 411 412 /** 413 * gfs2_bitcount - count the number of bits in a certain state 414 * @rgd: the resource group descriptor 415 * @buffer: the buffer that holds the bitmaps 416 * @buflen: the length (in bytes) of the buffer 417 * @state: the state of the block we're looking for 418 * 419 * Returns: The number of bits 420 */ 421 422 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, 423 unsigned int buflen, u8 state) 424 { 425 const u8 *byte = buffer; 426 const u8 *end = buffer + buflen; 427 const u8 state1 = state << 2; 428 const u8 state2 = state << 4; 429 const u8 state3 = state << 6; 430 u32 count = 0; 431 432 for (; byte < end; byte++) { 433 if (((*byte) & 0x03) == state) 434 count++; 435 if (((*byte) & 0x0C) == state1) 436 count++; 437 if (((*byte) & 0x30) == state2) 438 count++; 439 if (((*byte) & 0xC0) == state3) 440 count++; 441 } 442 443 return count; 444 } 445 446 /** 447 * gfs2_rgrp_verify - Verify that a resource group is consistent 448 * @rgd: the rgrp 449 * 450 */ 451 452 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) 453 { 454 struct gfs2_sbd *sdp = rgd->rd_sbd; 455 struct gfs2_bitmap *bi = NULL; 456 u32 length = rgd->rd_length; 457 u32 count[4], tmp; 458 int buf, x; 459 460 memset(count, 0, 4 * sizeof(u32)); 461 462 /* Count # blocks in each of 4 possible allocation states */ 463 for (buf = 0; buf < length; buf++) { 464 bi = rgd->rd_bits + buf; 465 for (x = 0; x < 4; x++) 466 count[x] += gfs2_bitcount(rgd, 467 bi->bi_bh->b_data + 468 bi->bi_offset, 469 bi->bi_bytes, x); 470 } 471 472 if (count[0] != rgd->rd_free) { 473 if (gfs2_consist_rgrpd(rgd)) 474 fs_err(sdp, "free data mismatch: %u != %u\n", 475 count[0], rgd->rd_free); 476 return; 477 } 478 479 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; 480 if (count[1] != tmp) { 481 if (gfs2_consist_rgrpd(rgd)) 482 fs_err(sdp, "used data mismatch: %u != %u\n", 483 count[1], tmp); 484 return; 485 } 486 487 if (count[2] + count[3] != rgd->rd_dinodes) { 488 if (gfs2_consist_rgrpd(rgd)) 489 fs_err(sdp, "used metadata mismatch: %u != %u\n", 490 count[2] + count[3], rgd->rd_dinodes); 491 return; 492 } 493 } 494 495 /** 496 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number 497 * @sdp: The GFS2 superblock 498 * @blk: The data block number 499 * @exact: True if this needs to be an exact match 500 * 501 * The @exact argument should be set to true by most callers. The exception 502 * is when we need to match blocks which are not represented by the rgrp 503 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are 504 * there for alignment purposes. Another way of looking at it is that @exact 505 * matches only valid data/metadata blocks, but with @exact false, it will 506 * match any block within the extent of the rgrp. 507 * 508 * Returns: The resource group, or NULL if not found 509 */ 510 511 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact) 512 { 513 struct rb_node *n, *next; 514 struct gfs2_rgrpd *cur; 515 516 spin_lock(&sdp->sd_rindex_spin); 517 n = sdp->sd_rindex_tree.rb_node; 518 while (n) { 519 cur = rb_entry(n, struct gfs2_rgrpd, rd_node); 520 next = NULL; 521 if (blk < cur->rd_addr) 522 next = n->rb_left; 523 else if (blk >= cur->rd_data0 + cur->rd_data) 524 next = n->rb_right; 525 if (next == NULL) { 526 spin_unlock(&sdp->sd_rindex_spin); 527 if (exact) { 528 if (blk < cur->rd_addr) 529 return NULL; 530 if (blk >= cur->rd_data0 + cur->rd_data) 531 return NULL; 532 } 533 return cur; 534 } 535 n = next; 536 } 537 spin_unlock(&sdp->sd_rindex_spin); 538 539 return NULL; 540 } 541 542 /** 543 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem 544 * @sdp: The GFS2 superblock 545 * 546 * Returns: The first rgrp in the filesystem 547 */ 548 549 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) 550 { 551 const struct rb_node *n; 552 struct gfs2_rgrpd *rgd; 553 554 spin_lock(&sdp->sd_rindex_spin); 555 n = rb_first(&sdp->sd_rindex_tree); 556 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 557 spin_unlock(&sdp->sd_rindex_spin); 558 559 return rgd; 560 } 561 562 /** 563 * gfs2_rgrpd_get_next - get the next RG 564 * @rgd: the resource group descriptor 565 * 566 * Returns: The next rgrp 567 */ 568 569 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) 570 { 571 struct gfs2_sbd *sdp = rgd->rd_sbd; 572 const struct rb_node *n; 573 574 spin_lock(&sdp->sd_rindex_spin); 575 n = rb_next(&rgd->rd_node); 576 if (n == NULL) 577 n = rb_first(&sdp->sd_rindex_tree); 578 579 if (unlikely(&rgd->rd_node == n)) { 580 spin_unlock(&sdp->sd_rindex_spin); 581 return NULL; 582 } 583 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 584 spin_unlock(&sdp->sd_rindex_spin); 585 return rgd; 586 } 587 588 void check_and_update_goal(struct gfs2_inode *ip) 589 { 590 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 591 if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL) 592 ip->i_goal = ip->i_no_addr; 593 } 594 595 void gfs2_free_clones(struct gfs2_rgrpd *rgd) 596 { 597 int x; 598 599 for (x = 0; x < rgd->rd_length; x++) { 600 struct gfs2_bitmap *bi = rgd->rd_bits + x; 601 kfree(bi->bi_clone); 602 bi->bi_clone = NULL; 603 } 604 } 605 606 /** 607 * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode 608 * plus a quota allocations data structure, if necessary 609 * @ip: the inode for this reservation 610 */ 611 int gfs2_rsqa_alloc(struct gfs2_inode *ip) 612 { 613 return gfs2_qa_alloc(ip); 614 } 615 616 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs) 617 { 618 struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res); 619 620 gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n", 621 (unsigned long long)ip->i_no_addr, 622 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm), 623 rs->rs_rbm.offset, rs->rs_free); 624 } 625 626 /** 627 * __rs_deltree - remove a multi-block reservation from the rgd tree 628 * @rs: The reservation to remove 629 * 630 */ 631 static void __rs_deltree(struct gfs2_blkreserv *rs) 632 { 633 struct gfs2_rgrpd *rgd; 634 635 if (!gfs2_rs_active(rs)) 636 return; 637 638 rgd = rs->rs_rbm.rgd; 639 trace_gfs2_rs(rs, TRACE_RS_TREEDEL); 640 rb_erase(&rs->rs_node, &rgd->rd_rstree); 641 RB_CLEAR_NODE(&rs->rs_node); 642 643 if (rs->rs_free) { 644 u64 last_block = gfs2_rbm_to_block(&rs->rs_rbm) + 645 rs->rs_free - 1; 646 struct gfs2_rbm last_rbm = { .rgd = rs->rs_rbm.rgd, }; 647 struct gfs2_bitmap *start, *last; 648 649 /* return reserved blocks to the rgrp */ 650 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free); 651 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free; 652 /* The rgrp extent failure point is likely not to increase; 653 it will only do so if the freed blocks are somehow 654 contiguous with a span of free blocks that follows. Still, 655 it will force the number to be recalculated later. */ 656 rgd->rd_extfail_pt += rs->rs_free; 657 rs->rs_free = 0; 658 if (gfs2_rbm_from_block(&last_rbm, last_block)) 659 return; 660 start = rbm_bi(&rs->rs_rbm); 661 last = rbm_bi(&last_rbm); 662 do 663 clear_bit(GBF_FULL, &start->bi_flags); 664 while (start++ != last); 665 } 666 } 667 668 /** 669 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree 670 * @rs: The reservation to remove 671 * 672 */ 673 void gfs2_rs_deltree(struct gfs2_blkreserv *rs) 674 { 675 struct gfs2_rgrpd *rgd; 676 677 rgd = rs->rs_rbm.rgd; 678 if (rgd) { 679 spin_lock(&rgd->rd_rsspin); 680 __rs_deltree(rs); 681 BUG_ON(rs->rs_free); 682 spin_unlock(&rgd->rd_rsspin); 683 } 684 } 685 686 /** 687 * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation 688 * @ip: The inode for this reservation 689 * @wcount: The inode's write count, or NULL 690 * 691 */ 692 void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount) 693 { 694 down_write(&ip->i_rw_mutex); 695 if ((wcount == NULL) || (atomic_read(wcount) <= 1)) 696 gfs2_rs_deltree(&ip->i_res); 697 up_write(&ip->i_rw_mutex); 698 gfs2_qa_delete(ip, wcount); 699 } 700 701 /** 702 * return_all_reservations - return all reserved blocks back to the rgrp. 703 * @rgd: the rgrp that needs its space back 704 * 705 * We previously reserved a bunch of blocks for allocation. Now we need to 706 * give them back. This leave the reservation structures in tact, but removes 707 * all of their corresponding "no-fly zones". 708 */ 709 static void return_all_reservations(struct gfs2_rgrpd *rgd) 710 { 711 struct rb_node *n; 712 struct gfs2_blkreserv *rs; 713 714 spin_lock(&rgd->rd_rsspin); 715 while ((n = rb_first(&rgd->rd_rstree))) { 716 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 717 __rs_deltree(rs); 718 } 719 spin_unlock(&rgd->rd_rsspin); 720 } 721 722 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) 723 { 724 struct rb_node *n; 725 struct gfs2_rgrpd *rgd; 726 struct gfs2_glock *gl; 727 728 while ((n = rb_first(&sdp->sd_rindex_tree))) { 729 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 730 gl = rgd->rd_gl; 731 732 rb_erase(n, &sdp->sd_rindex_tree); 733 734 if (gl) { 735 glock_clear_object(gl, rgd); 736 gfs2_rgrp_brelse(rgd); 737 gfs2_glock_put(gl); 738 } 739 740 gfs2_free_clones(rgd); 741 kfree(rgd->rd_bits); 742 rgd->rd_bits = NULL; 743 return_all_reservations(rgd); 744 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 745 } 746 } 747 748 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd) 749 { 750 struct gfs2_sbd *sdp = rgd->rd_sbd; 751 752 fs_info(sdp, "ri_addr = %llu\n", (unsigned long long)rgd->rd_addr); 753 fs_info(sdp, "ri_length = %u\n", rgd->rd_length); 754 fs_info(sdp, "ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0); 755 fs_info(sdp, "ri_data = %u\n", rgd->rd_data); 756 fs_info(sdp, "ri_bitbytes = %u\n", rgd->rd_bitbytes); 757 } 758 759 /** 760 * gfs2_compute_bitstructs - Compute the bitmap sizes 761 * @rgd: The resource group descriptor 762 * 763 * Calculates bitmap descriptors, one for each block that contains bitmap data 764 * 765 * Returns: errno 766 */ 767 768 static int compute_bitstructs(struct gfs2_rgrpd *rgd) 769 { 770 struct gfs2_sbd *sdp = rgd->rd_sbd; 771 struct gfs2_bitmap *bi; 772 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ 773 u32 bytes_left, bytes; 774 int x; 775 776 if (!length) 777 return -EINVAL; 778 779 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); 780 if (!rgd->rd_bits) 781 return -ENOMEM; 782 783 bytes_left = rgd->rd_bitbytes; 784 785 for (x = 0; x < length; x++) { 786 bi = rgd->rd_bits + x; 787 788 bi->bi_flags = 0; 789 /* small rgrp; bitmap stored completely in header block */ 790 if (length == 1) { 791 bytes = bytes_left; 792 bi->bi_offset = sizeof(struct gfs2_rgrp); 793 bi->bi_start = 0; 794 bi->bi_bytes = bytes; 795 bi->bi_blocks = bytes * GFS2_NBBY; 796 /* header block */ 797 } else if (x == 0) { 798 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); 799 bi->bi_offset = sizeof(struct gfs2_rgrp); 800 bi->bi_start = 0; 801 bi->bi_bytes = bytes; 802 bi->bi_blocks = bytes * GFS2_NBBY; 803 /* last block */ 804 } else if (x + 1 == length) { 805 bytes = bytes_left; 806 bi->bi_offset = sizeof(struct gfs2_meta_header); 807 bi->bi_start = rgd->rd_bitbytes - bytes_left; 808 bi->bi_bytes = bytes; 809 bi->bi_blocks = bytes * GFS2_NBBY; 810 /* other blocks */ 811 } else { 812 bytes = sdp->sd_sb.sb_bsize - 813 sizeof(struct gfs2_meta_header); 814 bi->bi_offset = sizeof(struct gfs2_meta_header); 815 bi->bi_start = rgd->rd_bitbytes - bytes_left; 816 bi->bi_bytes = bytes; 817 bi->bi_blocks = bytes * GFS2_NBBY; 818 } 819 820 bytes_left -= bytes; 821 } 822 823 if (bytes_left) { 824 gfs2_consist_rgrpd(rgd); 825 return -EIO; 826 } 827 bi = rgd->rd_bits + (length - 1); 828 if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) { 829 if (gfs2_consist_rgrpd(rgd)) { 830 gfs2_rindex_print(rgd); 831 fs_err(sdp, "start=%u len=%u offset=%u\n", 832 bi->bi_start, bi->bi_bytes, bi->bi_offset); 833 } 834 return -EIO; 835 } 836 837 return 0; 838 } 839 840 /** 841 * gfs2_ri_total - Total up the file system space, according to the rindex. 842 * @sdp: the filesystem 843 * 844 */ 845 u64 gfs2_ri_total(struct gfs2_sbd *sdp) 846 { 847 u64 total_data = 0; 848 struct inode *inode = sdp->sd_rindex; 849 struct gfs2_inode *ip = GFS2_I(inode); 850 char buf[sizeof(struct gfs2_rindex)]; 851 int error, rgrps; 852 853 for (rgrps = 0;; rgrps++) { 854 loff_t pos = rgrps * sizeof(struct gfs2_rindex); 855 856 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) 857 break; 858 error = gfs2_internal_read(ip, buf, &pos, 859 sizeof(struct gfs2_rindex)); 860 if (error != sizeof(struct gfs2_rindex)) 861 break; 862 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); 863 } 864 return total_data; 865 } 866 867 static int rgd_insert(struct gfs2_rgrpd *rgd) 868 { 869 struct gfs2_sbd *sdp = rgd->rd_sbd; 870 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; 871 872 /* Figure out where to put new node */ 873 while (*newn) { 874 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, 875 rd_node); 876 877 parent = *newn; 878 if (rgd->rd_addr < cur->rd_addr) 879 newn = &((*newn)->rb_left); 880 else if (rgd->rd_addr > cur->rd_addr) 881 newn = &((*newn)->rb_right); 882 else 883 return -EEXIST; 884 } 885 886 rb_link_node(&rgd->rd_node, parent, newn); 887 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); 888 sdp->sd_rgrps++; 889 return 0; 890 } 891 892 /** 893 * read_rindex_entry - Pull in a new resource index entry from the disk 894 * @ip: Pointer to the rindex inode 895 * 896 * Returns: 0 on success, > 0 on EOF, error code otherwise 897 */ 898 899 static int read_rindex_entry(struct gfs2_inode *ip) 900 { 901 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 902 const unsigned bsize = sdp->sd_sb.sb_bsize; 903 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); 904 struct gfs2_rindex buf; 905 int error; 906 struct gfs2_rgrpd *rgd; 907 908 if (pos >= i_size_read(&ip->i_inode)) 909 return 1; 910 911 error = gfs2_internal_read(ip, (char *)&buf, &pos, 912 sizeof(struct gfs2_rindex)); 913 914 if (error != sizeof(struct gfs2_rindex)) 915 return (error == 0) ? 1 : error; 916 917 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); 918 error = -ENOMEM; 919 if (!rgd) 920 return error; 921 922 rgd->rd_sbd = sdp; 923 rgd->rd_addr = be64_to_cpu(buf.ri_addr); 924 rgd->rd_length = be32_to_cpu(buf.ri_length); 925 rgd->rd_data0 = be64_to_cpu(buf.ri_data0); 926 rgd->rd_data = be32_to_cpu(buf.ri_data); 927 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); 928 spin_lock_init(&rgd->rd_rsspin); 929 930 error = compute_bitstructs(rgd); 931 if (error) 932 goto fail; 933 934 error = gfs2_glock_get(sdp, rgd->rd_addr, 935 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); 936 if (error) 937 goto fail; 938 939 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr; 940 rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED); 941 if (rgd->rd_data > sdp->sd_max_rg_data) 942 sdp->sd_max_rg_data = rgd->rd_data; 943 spin_lock(&sdp->sd_rindex_spin); 944 error = rgd_insert(rgd); 945 spin_unlock(&sdp->sd_rindex_spin); 946 if (!error) { 947 glock_set_object(rgd->rd_gl, rgd); 948 rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK; 949 rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr + 950 rgd->rd_length) * bsize) - 1; 951 return 0; 952 } 953 954 error = 0; /* someone else read in the rgrp; free it and ignore it */ 955 gfs2_glock_put(rgd->rd_gl); 956 957 fail: 958 kfree(rgd->rd_bits); 959 rgd->rd_bits = NULL; 960 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 961 return error; 962 } 963 964 /** 965 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use 966 * @sdp: the GFS2 superblock 967 * 968 * The purpose of this function is to select a subset of the resource groups 969 * and mark them as PREFERRED. We do it in such a way that each node prefers 970 * to use a unique set of rgrps to minimize glock contention. 971 */ 972 static void set_rgrp_preferences(struct gfs2_sbd *sdp) 973 { 974 struct gfs2_rgrpd *rgd, *first; 975 int i; 976 977 /* Skip an initial number of rgrps, based on this node's journal ID. 978 That should start each node out on its own set. */ 979 rgd = gfs2_rgrpd_get_first(sdp); 980 for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++) 981 rgd = gfs2_rgrpd_get_next(rgd); 982 first = rgd; 983 984 do { 985 rgd->rd_flags |= GFS2_RDF_PREFERRED; 986 for (i = 0; i < sdp->sd_journals; i++) { 987 rgd = gfs2_rgrpd_get_next(rgd); 988 if (!rgd || rgd == first) 989 break; 990 } 991 } while (rgd && rgd != first); 992 } 993 994 /** 995 * gfs2_ri_update - Pull in a new resource index from the disk 996 * @ip: pointer to the rindex inode 997 * 998 * Returns: 0 on successful update, error code otherwise 999 */ 1000 1001 static int gfs2_ri_update(struct gfs2_inode *ip) 1002 { 1003 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1004 int error; 1005 1006 do { 1007 error = read_rindex_entry(ip); 1008 } while (error == 0); 1009 1010 if (error < 0) 1011 return error; 1012 1013 set_rgrp_preferences(sdp); 1014 1015 sdp->sd_rindex_uptodate = 1; 1016 return 0; 1017 } 1018 1019 /** 1020 * gfs2_rindex_update - Update the rindex if required 1021 * @sdp: The GFS2 superblock 1022 * 1023 * We grab a lock on the rindex inode to make sure that it doesn't 1024 * change whilst we are performing an operation. We keep this lock 1025 * for quite long periods of time compared to other locks. This 1026 * doesn't matter, since it is shared and it is very, very rarely 1027 * accessed in the exclusive mode (i.e. only when expanding the filesystem). 1028 * 1029 * This makes sure that we're using the latest copy of the resource index 1030 * special file, which might have been updated if someone expanded the 1031 * filesystem (via gfs2_grow utility), which adds new resource groups. 1032 * 1033 * Returns: 0 on succeess, error code otherwise 1034 */ 1035 1036 int gfs2_rindex_update(struct gfs2_sbd *sdp) 1037 { 1038 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); 1039 struct gfs2_glock *gl = ip->i_gl; 1040 struct gfs2_holder ri_gh; 1041 int error = 0; 1042 int unlock_required = 0; 1043 1044 /* Read new copy from disk if we don't have the latest */ 1045 if (!sdp->sd_rindex_uptodate) { 1046 if (!gfs2_glock_is_locked_by_me(gl)) { 1047 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); 1048 if (error) 1049 return error; 1050 unlock_required = 1; 1051 } 1052 if (!sdp->sd_rindex_uptodate) 1053 error = gfs2_ri_update(ip); 1054 if (unlock_required) 1055 gfs2_glock_dq_uninit(&ri_gh); 1056 } 1057 1058 return error; 1059 } 1060 1061 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) 1062 { 1063 const struct gfs2_rgrp *str = buf; 1064 u32 rg_flags; 1065 1066 rg_flags = be32_to_cpu(str->rg_flags); 1067 rg_flags &= ~GFS2_RDF_MASK; 1068 rgd->rd_flags &= GFS2_RDF_MASK; 1069 rgd->rd_flags |= rg_flags; 1070 rgd->rd_free = be32_to_cpu(str->rg_free); 1071 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); 1072 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); 1073 /* rd_data0, rd_data and rd_bitbytes already set from rindex */ 1074 } 1075 1076 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf) 1077 { 1078 const struct gfs2_rgrp *str = buf; 1079 1080 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC); 1081 rgl->rl_flags = str->rg_flags; 1082 rgl->rl_free = str->rg_free; 1083 rgl->rl_dinodes = str->rg_dinodes; 1084 rgl->rl_igeneration = str->rg_igeneration; 1085 rgl->__pad = 0UL; 1086 } 1087 1088 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) 1089 { 1090 struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd); 1091 struct gfs2_rgrp *str = buf; 1092 u32 crc; 1093 1094 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); 1095 str->rg_free = cpu_to_be32(rgd->rd_free); 1096 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); 1097 if (next == NULL) 1098 str->rg_skip = 0; 1099 else if (next->rd_addr > rgd->rd_addr) 1100 str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr); 1101 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); 1102 str->rg_data0 = cpu_to_be64(rgd->rd_data0); 1103 str->rg_data = cpu_to_be32(rgd->rd_data); 1104 str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes); 1105 str->rg_crc = 0; 1106 crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp)); 1107 str->rg_crc = cpu_to_be32(crc); 1108 1109 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); 1110 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf); 1111 } 1112 1113 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd) 1114 { 1115 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1116 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data; 1117 int valid = 1; 1118 1119 if (rgl->rl_flags != str->rg_flags) { 1120 printk(KERN_WARNING "GFS2: rgd: %llu lvb flag mismatch %u/%u", 1121 (unsigned long long)rgd->rd_addr, 1122 be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags)); 1123 valid = 0; 1124 } 1125 if (rgl->rl_free != str->rg_free) { 1126 printk(KERN_WARNING "GFS2: rgd: %llu lvb free mismatch %u/%u", 1127 (unsigned long long)rgd->rd_addr, 1128 be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free)); 1129 valid = 0; 1130 } 1131 if (rgl->rl_dinodes != str->rg_dinodes) { 1132 printk(KERN_WARNING "GFS2: rgd: %llu lvb dinode mismatch %u/%u", 1133 (unsigned long long)rgd->rd_addr, 1134 be32_to_cpu(rgl->rl_dinodes), 1135 be32_to_cpu(str->rg_dinodes)); 1136 valid = 0; 1137 } 1138 if (rgl->rl_igeneration != str->rg_igeneration) { 1139 printk(KERN_WARNING "GFS2: rgd: %llu lvb igen mismatch " 1140 "%llu/%llu", (unsigned long long)rgd->rd_addr, 1141 (unsigned long long)be64_to_cpu(rgl->rl_igeneration), 1142 (unsigned long long)be64_to_cpu(str->rg_igeneration)); 1143 valid = 0; 1144 } 1145 return valid; 1146 } 1147 1148 static u32 count_unlinked(struct gfs2_rgrpd *rgd) 1149 { 1150 struct gfs2_bitmap *bi; 1151 const u32 length = rgd->rd_length; 1152 const u8 *buffer = NULL; 1153 u32 i, goal, count = 0; 1154 1155 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) { 1156 goal = 0; 1157 buffer = bi->bi_bh->b_data + bi->bi_offset; 1158 WARN_ON(!buffer_uptodate(bi->bi_bh)); 1159 while (goal < bi->bi_blocks) { 1160 goal = gfs2_bitfit(buffer, bi->bi_bytes, goal, 1161 GFS2_BLKST_UNLINKED); 1162 if (goal == BFITNOENT) 1163 break; 1164 count++; 1165 goal++; 1166 } 1167 } 1168 1169 return count; 1170 } 1171 1172 1173 /** 1174 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps 1175 * @rgd: the struct gfs2_rgrpd describing the RG to read in 1176 * 1177 * Read in all of a Resource Group's header and bitmap blocks. 1178 * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps. 1179 * 1180 * Returns: errno 1181 */ 1182 1183 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd) 1184 { 1185 struct gfs2_sbd *sdp = rgd->rd_sbd; 1186 struct gfs2_glock *gl = rgd->rd_gl; 1187 unsigned int length = rgd->rd_length; 1188 struct gfs2_bitmap *bi; 1189 unsigned int x, y; 1190 int error; 1191 1192 if (rgd->rd_bits[0].bi_bh != NULL) 1193 return 0; 1194 1195 for (x = 0; x < length; x++) { 1196 bi = rgd->rd_bits + x; 1197 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh); 1198 if (error) 1199 goto fail; 1200 } 1201 1202 for (y = length; y--;) { 1203 bi = rgd->rd_bits + y; 1204 error = gfs2_meta_wait(sdp, bi->bi_bh); 1205 if (error) 1206 goto fail; 1207 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : 1208 GFS2_METATYPE_RG)) { 1209 error = -EIO; 1210 goto fail; 1211 } 1212 } 1213 1214 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) { 1215 for (x = 0; x < length; x++) 1216 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags); 1217 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); 1218 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1219 rgd->rd_free_clone = rgd->rd_free; 1220 /* max out the rgrp allocation failure point */ 1221 rgd->rd_extfail_pt = rgd->rd_free; 1222 } 1223 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) { 1224 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd)); 1225 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, 1226 rgd->rd_bits[0].bi_bh->b_data); 1227 } 1228 else if (sdp->sd_args.ar_rgrplvb) { 1229 if (!gfs2_rgrp_lvb_valid(rgd)){ 1230 gfs2_consist_rgrpd(rgd); 1231 error = -EIO; 1232 goto fail; 1233 } 1234 if (rgd->rd_rgl->rl_unlinked == 0) 1235 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1236 } 1237 return 0; 1238 1239 fail: 1240 while (x--) { 1241 bi = rgd->rd_bits + x; 1242 brelse(bi->bi_bh); 1243 bi->bi_bh = NULL; 1244 gfs2_assert_warn(sdp, !bi->bi_clone); 1245 } 1246 1247 return error; 1248 } 1249 1250 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd) 1251 { 1252 u32 rl_flags; 1253 1254 if (rgd->rd_flags & GFS2_RDF_UPTODATE) 1255 return 0; 1256 1257 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) 1258 return gfs2_rgrp_bh_get(rgd); 1259 1260 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags); 1261 rl_flags &= ~GFS2_RDF_MASK; 1262 rgd->rd_flags &= GFS2_RDF_MASK; 1263 rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK); 1264 if (rgd->rd_rgl->rl_unlinked == 0) 1265 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1266 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free); 1267 rgd->rd_free_clone = rgd->rd_free; 1268 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes); 1269 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration); 1270 return 0; 1271 } 1272 1273 int gfs2_rgrp_go_lock(struct gfs2_holder *gh) 1274 { 1275 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1276 struct gfs2_sbd *sdp = rgd->rd_sbd; 1277 1278 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb) 1279 return 0; 1280 return gfs2_rgrp_bh_get(rgd); 1281 } 1282 1283 /** 1284 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get() 1285 * @rgd: The resource group 1286 * 1287 */ 1288 1289 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd) 1290 { 1291 int x, length = rgd->rd_length; 1292 1293 for (x = 0; x < length; x++) { 1294 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1295 if (bi->bi_bh) { 1296 brelse(bi->bi_bh); 1297 bi->bi_bh = NULL; 1298 } 1299 } 1300 1301 } 1302 1303 /** 1304 * gfs2_rgrp_go_unlock - Unlock a rgrp glock 1305 * @gh: The glock holder for the resource group 1306 * 1307 */ 1308 1309 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh) 1310 { 1311 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1312 int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) | 1313 test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags); 1314 1315 if (rgd && demote_requested) 1316 gfs2_rgrp_brelse(rgd); 1317 } 1318 1319 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, 1320 struct buffer_head *bh, 1321 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed) 1322 { 1323 struct super_block *sb = sdp->sd_vfs; 1324 u64 blk; 1325 sector_t start = 0; 1326 sector_t nr_blks = 0; 1327 int rv; 1328 unsigned int x; 1329 u32 trimmed = 0; 1330 u8 diff; 1331 1332 for (x = 0; x < bi->bi_bytes; x++) { 1333 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data; 1334 clone += bi->bi_offset; 1335 clone += x; 1336 if (bh) { 1337 const u8 *orig = bh->b_data + bi->bi_offset + x; 1338 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); 1339 } else { 1340 diff = ~(*clone | (*clone >> 1)); 1341 } 1342 diff &= 0x55; 1343 if (diff == 0) 1344 continue; 1345 blk = offset + ((bi->bi_start + x) * GFS2_NBBY); 1346 while(diff) { 1347 if (diff & 1) { 1348 if (nr_blks == 0) 1349 goto start_new_extent; 1350 if ((start + nr_blks) != blk) { 1351 if (nr_blks >= minlen) { 1352 rv = sb_issue_discard(sb, 1353 start, nr_blks, 1354 GFP_NOFS, 0); 1355 if (rv) 1356 goto fail; 1357 trimmed += nr_blks; 1358 } 1359 nr_blks = 0; 1360 start_new_extent: 1361 start = blk; 1362 } 1363 nr_blks++; 1364 } 1365 diff >>= 2; 1366 blk++; 1367 } 1368 } 1369 if (nr_blks >= minlen) { 1370 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0); 1371 if (rv) 1372 goto fail; 1373 trimmed += nr_blks; 1374 } 1375 if (ptrimmed) 1376 *ptrimmed = trimmed; 1377 return 0; 1378 1379 fail: 1380 if (sdp->sd_args.ar_discard) 1381 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv); 1382 sdp->sd_args.ar_discard = 0; 1383 return -EIO; 1384 } 1385 1386 /** 1387 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem 1388 * @filp: Any file on the filesystem 1389 * @argp: Pointer to the arguments (also used to pass result) 1390 * 1391 * Returns: 0 on success, otherwise error code 1392 */ 1393 1394 int gfs2_fitrim(struct file *filp, void __user *argp) 1395 { 1396 struct inode *inode = file_inode(filp); 1397 struct gfs2_sbd *sdp = GFS2_SB(inode); 1398 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev); 1399 struct buffer_head *bh; 1400 struct gfs2_rgrpd *rgd; 1401 struct gfs2_rgrpd *rgd_end; 1402 struct gfs2_holder gh; 1403 struct fstrim_range r; 1404 int ret = 0; 1405 u64 amt; 1406 u64 trimmed = 0; 1407 u64 start, end, minlen; 1408 unsigned int x; 1409 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift; 1410 1411 if (!capable(CAP_SYS_ADMIN)) 1412 return -EPERM; 1413 1414 if (!blk_queue_discard(q)) 1415 return -EOPNOTSUPP; 1416 1417 if (copy_from_user(&r, argp, sizeof(r))) 1418 return -EFAULT; 1419 1420 ret = gfs2_rindex_update(sdp); 1421 if (ret) 1422 return ret; 1423 1424 start = r.start >> bs_shift; 1425 end = start + (r.len >> bs_shift); 1426 minlen = max_t(u64, r.minlen, 1427 q->limits.discard_granularity) >> bs_shift; 1428 1429 if (end <= start || minlen > sdp->sd_max_rg_data) 1430 return -EINVAL; 1431 1432 rgd = gfs2_blk2rgrpd(sdp, start, 0); 1433 rgd_end = gfs2_blk2rgrpd(sdp, end, 0); 1434 1435 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end)) 1436 && (start > rgd_end->rd_data0 + rgd_end->rd_data)) 1437 return -EINVAL; /* start is beyond the end of the fs */ 1438 1439 while (1) { 1440 1441 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh); 1442 if (ret) 1443 goto out; 1444 1445 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) { 1446 /* Trim each bitmap in the rgrp */ 1447 for (x = 0; x < rgd->rd_length; x++) { 1448 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1449 ret = gfs2_rgrp_send_discards(sdp, 1450 rgd->rd_data0, NULL, bi, minlen, 1451 &amt); 1452 if (ret) { 1453 gfs2_glock_dq_uninit(&gh); 1454 goto out; 1455 } 1456 trimmed += amt; 1457 } 1458 1459 /* Mark rgrp as having been trimmed */ 1460 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0); 1461 if (ret == 0) { 1462 bh = rgd->rd_bits[0].bi_bh; 1463 rgd->rd_flags |= GFS2_RGF_TRIMMED; 1464 gfs2_trans_add_meta(rgd->rd_gl, bh); 1465 gfs2_rgrp_out(rgd, bh->b_data); 1466 gfs2_trans_end(sdp); 1467 } 1468 } 1469 gfs2_glock_dq_uninit(&gh); 1470 1471 if (rgd == rgd_end) 1472 break; 1473 1474 rgd = gfs2_rgrpd_get_next(rgd); 1475 } 1476 1477 out: 1478 r.len = trimmed << bs_shift; 1479 if (copy_to_user(argp, &r, sizeof(r))) 1480 return -EFAULT; 1481 1482 return ret; 1483 } 1484 1485 /** 1486 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree 1487 * @ip: the inode structure 1488 * 1489 */ 1490 static void rs_insert(struct gfs2_inode *ip) 1491 { 1492 struct rb_node **newn, *parent = NULL; 1493 int rc; 1494 struct gfs2_blkreserv *rs = &ip->i_res; 1495 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd; 1496 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm); 1497 1498 BUG_ON(gfs2_rs_active(rs)); 1499 1500 spin_lock(&rgd->rd_rsspin); 1501 newn = &rgd->rd_rstree.rb_node; 1502 while (*newn) { 1503 struct gfs2_blkreserv *cur = 1504 rb_entry(*newn, struct gfs2_blkreserv, rs_node); 1505 1506 parent = *newn; 1507 rc = rs_cmp(fsblock, rs->rs_free, cur); 1508 if (rc > 0) 1509 newn = &((*newn)->rb_right); 1510 else if (rc < 0) 1511 newn = &((*newn)->rb_left); 1512 else { 1513 spin_unlock(&rgd->rd_rsspin); 1514 WARN_ON(1); 1515 return; 1516 } 1517 } 1518 1519 rb_link_node(&rs->rs_node, parent, newn); 1520 rb_insert_color(&rs->rs_node, &rgd->rd_rstree); 1521 1522 /* Do our rgrp accounting for the reservation */ 1523 rgd->rd_reserved += rs->rs_free; /* blocks reserved */ 1524 spin_unlock(&rgd->rd_rsspin); 1525 trace_gfs2_rs(rs, TRACE_RS_INSERT); 1526 } 1527 1528 /** 1529 * rgd_free - return the number of free blocks we can allocate. 1530 * @rgd: the resource group 1531 * 1532 * This function returns the number of free blocks for an rgrp. 1533 * That's the clone-free blocks (blocks that are free, not including those 1534 * still being used for unlinked files that haven't been deleted.) 1535 * 1536 * It also subtracts any blocks reserved by someone else, but does not 1537 * include free blocks that are still part of our current reservation, 1538 * because obviously we can (and will) allocate them. 1539 */ 1540 static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs) 1541 { 1542 u32 tot_reserved, tot_free; 1543 1544 if (WARN_ON_ONCE(rgd->rd_reserved < rs->rs_free)) 1545 return 0; 1546 tot_reserved = rgd->rd_reserved - rs->rs_free; 1547 1548 if (rgd->rd_free_clone < tot_reserved) 1549 tot_reserved = 0; 1550 1551 tot_free = rgd->rd_free_clone - tot_reserved; 1552 1553 return tot_free; 1554 } 1555 1556 /** 1557 * rg_mblk_search - find a group of multiple free blocks to form a reservation 1558 * @rgd: the resource group descriptor 1559 * @ip: pointer to the inode for which we're reserving blocks 1560 * @ap: the allocation parameters 1561 * 1562 */ 1563 1564 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip, 1565 const struct gfs2_alloc_parms *ap) 1566 { 1567 struct gfs2_rbm rbm = { .rgd = rgd, }; 1568 u64 goal; 1569 struct gfs2_blkreserv *rs = &ip->i_res; 1570 u32 extlen; 1571 u32 free_blocks = rgd_free(rgd, rs); 1572 int ret; 1573 struct inode *inode = &ip->i_inode; 1574 1575 if (S_ISDIR(inode->i_mode)) 1576 extlen = 1; 1577 else { 1578 extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target); 1579 extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks); 1580 } 1581 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen)) 1582 return; 1583 1584 /* Find bitmap block that contains bits for goal block */ 1585 if (rgrp_contains_block(rgd, ip->i_goal)) 1586 goal = ip->i_goal; 1587 else 1588 goal = rgd->rd_last_alloc + rgd->rd_data0; 1589 1590 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal))) 1591 return; 1592 1593 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true); 1594 if (ret == 0) { 1595 rs->rs_rbm = rbm; 1596 rs->rs_free = extlen; 1597 rs_insert(ip); 1598 } else { 1599 if (goal == rgd->rd_last_alloc + rgd->rd_data0) 1600 rgd->rd_last_alloc = 0; 1601 } 1602 } 1603 1604 /** 1605 * gfs2_next_unreserved_block - Return next block that is not reserved 1606 * @rgd: The resource group 1607 * @block: The starting block 1608 * @length: The required length 1609 * @ip: Ignore any reservations for this inode 1610 * 1611 * If the block does not appear in any reservation, then return the 1612 * block number unchanged. If it does appear in the reservation, then 1613 * keep looking through the tree of reservations in order to find the 1614 * first block number which is not reserved. 1615 */ 1616 1617 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block, 1618 u32 length, 1619 const struct gfs2_inode *ip) 1620 { 1621 struct gfs2_blkreserv *rs; 1622 struct rb_node *n; 1623 int rc; 1624 1625 spin_lock(&rgd->rd_rsspin); 1626 n = rgd->rd_rstree.rb_node; 1627 while (n) { 1628 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1629 rc = rs_cmp(block, length, rs); 1630 if (rc < 0) 1631 n = n->rb_left; 1632 else if (rc > 0) 1633 n = n->rb_right; 1634 else 1635 break; 1636 } 1637 1638 if (n) { 1639 while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) { 1640 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free; 1641 n = n->rb_right; 1642 if (n == NULL) 1643 break; 1644 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1645 } 1646 } 1647 1648 spin_unlock(&rgd->rd_rsspin); 1649 return block; 1650 } 1651 1652 /** 1653 * gfs2_reservation_check_and_update - Check for reservations during block alloc 1654 * @rbm: The current position in the resource group 1655 * @ip: The inode for which we are searching for blocks 1656 * @minext: The minimum extent length 1657 * @maxext: A pointer to the maximum extent structure 1658 * 1659 * This checks the current position in the rgrp to see whether there is 1660 * a reservation covering this block. If not then this function is a 1661 * no-op. If there is, then the position is moved to the end of the 1662 * contiguous reservation(s) so that we are pointing at the first 1663 * non-reserved block. 1664 * 1665 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error 1666 */ 1667 1668 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm, 1669 const struct gfs2_inode *ip, 1670 u32 minext, 1671 struct gfs2_extent *maxext) 1672 { 1673 u64 block = gfs2_rbm_to_block(rbm); 1674 u32 extlen = 1; 1675 u64 nblock; 1676 int ret; 1677 1678 /* 1679 * If we have a minimum extent length, then skip over any extent 1680 * which is less than the min extent length in size. 1681 */ 1682 if (minext) { 1683 extlen = gfs2_free_extlen(rbm, minext); 1684 if (extlen <= maxext->len) 1685 goto fail; 1686 } 1687 1688 /* 1689 * Check the extent which has been found against the reservations 1690 * and skip if parts of it are already reserved 1691 */ 1692 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip); 1693 if (nblock == block) { 1694 if (!minext || extlen >= minext) 1695 return 0; 1696 1697 if (extlen > maxext->len) { 1698 maxext->len = extlen; 1699 maxext->rbm = *rbm; 1700 } 1701 fail: 1702 nblock = block + extlen; 1703 } 1704 ret = gfs2_rbm_from_block(rbm, nblock); 1705 if (ret < 0) 1706 return ret; 1707 return 1; 1708 } 1709 1710 /** 1711 * gfs2_rbm_find - Look for blocks of a particular state 1712 * @rbm: Value/result starting position and final position 1713 * @state: The state which we want to find 1714 * @minext: Pointer to the requested extent length (NULL for a single block) 1715 * This is updated to be the actual reservation size. 1716 * @ip: If set, check for reservations 1717 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping 1718 * around until we've reached the starting point. 1719 * 1720 * Side effects: 1721 * - If looking for free blocks, we set GBF_FULL on each bitmap which 1722 * has no free blocks in it. 1723 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which 1724 * has come up short on a free block search. 1725 * 1726 * Returns: 0 on success, -ENOSPC if there is no block of the requested state 1727 */ 1728 1729 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 1730 const struct gfs2_inode *ip, bool nowrap) 1731 { 1732 bool scan_from_start = rbm->bii == 0 && rbm->offset == 0; 1733 struct buffer_head *bh; 1734 int last_bii; 1735 u32 offset; 1736 u8 *buffer; 1737 bool wrapped = false; 1738 int ret; 1739 struct gfs2_bitmap *bi; 1740 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, }; 1741 1742 /* 1743 * Determine the last bitmap to search. If we're not starting at the 1744 * beginning of a bitmap, we need to search that bitmap twice to scan 1745 * the entire resource group. 1746 */ 1747 last_bii = rbm->bii - (rbm->offset == 0); 1748 1749 while(1) { 1750 bi = rbm_bi(rbm); 1751 if ((ip == NULL || !gfs2_rs_active(&ip->i_res)) && 1752 test_bit(GBF_FULL, &bi->bi_flags) && 1753 (state == GFS2_BLKST_FREE)) 1754 goto next_bitmap; 1755 1756 bh = bi->bi_bh; 1757 buffer = bh->b_data + bi->bi_offset; 1758 WARN_ON(!buffer_uptodate(bh)); 1759 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone) 1760 buffer = bi->bi_clone + bi->bi_offset; 1761 offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state); 1762 if (offset == BFITNOENT) { 1763 if (state == GFS2_BLKST_FREE && rbm->offset == 0) 1764 set_bit(GBF_FULL, &bi->bi_flags); 1765 goto next_bitmap; 1766 } 1767 rbm->offset = offset; 1768 if (ip == NULL) 1769 return 0; 1770 1771 ret = gfs2_reservation_check_and_update(rbm, ip, 1772 minext ? *minext : 0, 1773 &maxext); 1774 if (ret == 0) 1775 return 0; 1776 if (ret > 0) 1777 goto next_iter; 1778 if (ret == -E2BIG) { 1779 rbm->bii = 0; 1780 rbm->offset = 0; 1781 goto res_covered_end_of_rgrp; 1782 } 1783 return ret; 1784 1785 next_bitmap: /* Find next bitmap in the rgrp */ 1786 rbm->offset = 0; 1787 rbm->bii++; 1788 if (rbm->bii == rbm->rgd->rd_length) 1789 rbm->bii = 0; 1790 res_covered_end_of_rgrp: 1791 if (rbm->bii == 0) { 1792 if (wrapped) 1793 break; 1794 wrapped = true; 1795 if (nowrap) 1796 break; 1797 } 1798 next_iter: 1799 /* Have we scanned the entire resource group? */ 1800 if (wrapped && rbm->bii > last_bii) 1801 break; 1802 } 1803 1804 if (minext == NULL || state != GFS2_BLKST_FREE) 1805 return -ENOSPC; 1806 1807 /* If the extent was too small, and it's smaller than the smallest 1808 to have failed before, remember for future reference that it's 1809 useless to search this rgrp again for this amount or more. */ 1810 if (wrapped && (scan_from_start || rbm->bii > last_bii) && 1811 *minext < rbm->rgd->rd_extfail_pt) 1812 rbm->rgd->rd_extfail_pt = *minext; 1813 1814 /* If the maximum extent we found is big enough to fulfill the 1815 minimum requirements, use it anyway. */ 1816 if (maxext.len) { 1817 *rbm = maxext.rbm; 1818 *minext = maxext.len; 1819 return 0; 1820 } 1821 1822 return -ENOSPC; 1823 } 1824 1825 /** 1826 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes 1827 * @rgd: The rgrp 1828 * @last_unlinked: block address of the last dinode we unlinked 1829 * @skip: block address we should explicitly not unlink 1830 * 1831 * Returns: 0 if no error 1832 * The inode, if one has been found, in inode. 1833 */ 1834 1835 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) 1836 { 1837 u64 block; 1838 struct gfs2_sbd *sdp = rgd->rd_sbd; 1839 struct gfs2_glock *gl; 1840 struct gfs2_inode *ip; 1841 int error; 1842 int found = 0; 1843 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 }; 1844 1845 while (1) { 1846 down_write(&sdp->sd_log_flush_lock); 1847 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL, 1848 true); 1849 up_write(&sdp->sd_log_flush_lock); 1850 if (error == -ENOSPC) 1851 break; 1852 if (WARN_ON_ONCE(error)) 1853 break; 1854 1855 block = gfs2_rbm_to_block(&rbm); 1856 if (gfs2_rbm_from_block(&rbm, block + 1)) 1857 break; 1858 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked) 1859 continue; 1860 if (block == skip) 1861 continue; 1862 *last_unlinked = block; 1863 1864 error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl); 1865 if (error) 1866 continue; 1867 1868 /* If the inode is already in cache, we can ignore it here 1869 * because the existing inode disposal code will deal with 1870 * it when all refs have gone away. Accessing gl_object like 1871 * this is not safe in general. Here it is ok because we do 1872 * not dereference the pointer, and we only need an approx 1873 * answer to whether it is NULL or not. 1874 */ 1875 ip = gl->gl_object; 1876 1877 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0) 1878 gfs2_glock_put(gl); 1879 else 1880 found++; 1881 1882 /* Limit reclaim to sensible number of tasks */ 1883 if (found > NR_CPUS) 1884 return; 1885 } 1886 1887 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1888 return; 1889 } 1890 1891 /** 1892 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested 1893 * @rgd: The rgrp in question 1894 * @loops: An indication of how picky we can be (0=very, 1=less so) 1895 * 1896 * This function uses the recently added glock statistics in order to 1897 * figure out whether a parciular resource group is suffering from 1898 * contention from multiple nodes. This is done purely on the basis 1899 * of timings, since this is the only data we have to work with and 1900 * our aim here is to reject a resource group which is highly contended 1901 * but (very important) not to do this too often in order to ensure that 1902 * we do not land up introducing fragmentation by changing resource 1903 * groups when not actually required. 1904 * 1905 * The calculation is fairly simple, we want to know whether the SRTTB 1906 * (i.e. smoothed round trip time for blocking operations) to acquire 1907 * the lock for this rgrp's glock is significantly greater than the 1908 * time taken for resource groups on average. We introduce a margin in 1909 * the form of the variable @var which is computed as the sum of the two 1910 * respective variences, and multiplied by a factor depending on @loops 1911 * and whether we have a lot of data to base the decision on. This is 1912 * then tested against the square difference of the means in order to 1913 * decide whether the result is statistically significant or not. 1914 * 1915 * Returns: A boolean verdict on the congestion status 1916 */ 1917 1918 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops) 1919 { 1920 const struct gfs2_glock *gl = rgd->rd_gl; 1921 const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 1922 struct gfs2_lkstats *st; 1923 u64 r_dcount, l_dcount; 1924 u64 l_srttb, a_srttb = 0; 1925 s64 srttb_diff; 1926 u64 sqr_diff; 1927 u64 var; 1928 int cpu, nonzero = 0; 1929 1930 preempt_disable(); 1931 for_each_present_cpu(cpu) { 1932 st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP]; 1933 if (st->stats[GFS2_LKS_SRTTB]) { 1934 a_srttb += st->stats[GFS2_LKS_SRTTB]; 1935 nonzero++; 1936 } 1937 } 1938 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP]; 1939 if (nonzero) 1940 do_div(a_srttb, nonzero); 1941 r_dcount = st->stats[GFS2_LKS_DCOUNT]; 1942 var = st->stats[GFS2_LKS_SRTTVARB] + 1943 gl->gl_stats.stats[GFS2_LKS_SRTTVARB]; 1944 preempt_enable(); 1945 1946 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB]; 1947 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT]; 1948 1949 if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0)) 1950 return false; 1951 1952 srttb_diff = a_srttb - l_srttb; 1953 sqr_diff = srttb_diff * srttb_diff; 1954 1955 var *= 2; 1956 if (l_dcount < 8 || r_dcount < 8) 1957 var *= 2; 1958 if (loops == 1) 1959 var *= 2; 1960 1961 return ((srttb_diff < 0) && (sqr_diff > var)); 1962 } 1963 1964 /** 1965 * gfs2_rgrp_used_recently 1966 * @rs: The block reservation with the rgrp to test 1967 * @msecs: The time limit in milliseconds 1968 * 1969 * Returns: True if the rgrp glock has been used within the time limit 1970 */ 1971 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs, 1972 u64 msecs) 1973 { 1974 u64 tdiff; 1975 1976 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(), 1977 rs->rs_rbm.rgd->rd_gl->gl_dstamp)); 1978 1979 return tdiff > (msecs * 1000 * 1000); 1980 } 1981 1982 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip) 1983 { 1984 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1985 u32 skip; 1986 1987 get_random_bytes(&skip, sizeof(skip)); 1988 return skip % sdp->sd_rgrps; 1989 } 1990 1991 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin) 1992 { 1993 struct gfs2_rgrpd *rgd = *pos; 1994 struct gfs2_sbd *sdp = rgd->rd_sbd; 1995 1996 rgd = gfs2_rgrpd_get_next(rgd); 1997 if (rgd == NULL) 1998 rgd = gfs2_rgrpd_get_first(sdp); 1999 *pos = rgd; 2000 if (rgd != begin) /* If we didn't wrap */ 2001 return true; 2002 return false; 2003 } 2004 2005 /** 2006 * fast_to_acquire - determine if a resource group will be fast to acquire 2007 * 2008 * If this is one of our preferred rgrps, it should be quicker to acquire, 2009 * because we tried to set ourselves up as dlm lock master. 2010 */ 2011 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd) 2012 { 2013 struct gfs2_glock *gl = rgd->rd_gl; 2014 2015 if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) && 2016 !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) && 2017 !test_bit(GLF_DEMOTE, &gl->gl_flags)) 2018 return 1; 2019 if (rgd->rd_flags & GFS2_RDF_PREFERRED) 2020 return 1; 2021 return 0; 2022 } 2023 2024 /** 2025 * gfs2_inplace_reserve - Reserve space in the filesystem 2026 * @ip: the inode to reserve space for 2027 * @ap: the allocation parameters 2028 * 2029 * We try our best to find an rgrp that has at least ap->target blocks 2030 * available. After a couple of passes (loops == 2), the prospects of finding 2031 * such an rgrp diminish. At this stage, we return the first rgrp that has 2032 * at least ap->min_target blocks available. Either way, we set ap->allowed to 2033 * the number of blocks available in the chosen rgrp. 2034 * 2035 * Returns: 0 on success, 2036 * -ENOMEM if a suitable rgrp can't be found 2037 * errno otherwise 2038 */ 2039 2040 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap) 2041 { 2042 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2043 struct gfs2_rgrpd *begin = NULL; 2044 struct gfs2_blkreserv *rs = &ip->i_res; 2045 int error = 0, rg_locked, flags = 0; 2046 u64 last_unlinked = NO_BLOCK; 2047 int loops = 0; 2048 u32 free_blocks, skip = 0; 2049 2050 if (sdp->sd_args.ar_rgrplvb) 2051 flags |= GL_SKIP; 2052 if (gfs2_assert_warn(sdp, ap->target)) 2053 return -EINVAL; 2054 if (gfs2_rs_active(rs)) { 2055 begin = rs->rs_rbm.rgd; 2056 } else if (rs->rs_rbm.rgd && 2057 rgrp_contains_block(rs->rs_rbm.rgd, ip->i_goal)) { 2058 begin = rs->rs_rbm.rgd; 2059 } else { 2060 check_and_update_goal(ip); 2061 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1); 2062 } 2063 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV)) 2064 skip = gfs2_orlov_skip(ip); 2065 if (rs->rs_rbm.rgd == NULL) 2066 return -EBADSLT; 2067 2068 while (loops < 3) { 2069 rg_locked = 1; 2070 2071 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) { 2072 rg_locked = 0; 2073 if (skip && skip--) 2074 goto next_rgrp; 2075 if (!gfs2_rs_active(rs)) { 2076 if (loops == 0 && 2077 !fast_to_acquire(rs->rs_rbm.rgd)) 2078 goto next_rgrp; 2079 if ((loops < 2) && 2080 gfs2_rgrp_used_recently(rs, 1000) && 2081 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 2082 goto next_rgrp; 2083 } 2084 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl, 2085 LM_ST_EXCLUSIVE, flags, 2086 &ip->i_rgd_gh); 2087 if (unlikely(error)) 2088 return error; 2089 if (!gfs2_rs_active(rs) && (loops < 2) && 2090 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 2091 goto skip_rgrp; 2092 if (sdp->sd_args.ar_rgrplvb) { 2093 error = update_rgrp_lvb(rs->rs_rbm.rgd); 2094 if (unlikely(error)) { 2095 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2096 return error; 2097 } 2098 } 2099 } 2100 2101 /* Skip unusable resource groups */ 2102 if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | 2103 GFS2_RDF_ERROR)) || 2104 (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt)) 2105 goto skip_rgrp; 2106 2107 if (sdp->sd_args.ar_rgrplvb) 2108 gfs2_rgrp_bh_get(rs->rs_rbm.rgd); 2109 2110 /* Get a reservation if we don't already have one */ 2111 if (!gfs2_rs_active(rs)) 2112 rg_mblk_search(rs->rs_rbm.rgd, ip, ap); 2113 2114 /* Skip rgrps when we can't get a reservation on first pass */ 2115 if (!gfs2_rs_active(rs) && (loops < 1)) 2116 goto check_rgrp; 2117 2118 /* If rgrp has enough free space, use it */ 2119 free_blocks = rgd_free(rs->rs_rbm.rgd, rs); 2120 if (free_blocks >= ap->target || 2121 (loops == 2 && ap->min_target && 2122 free_blocks >= ap->min_target)) { 2123 ap->allowed = free_blocks; 2124 return 0; 2125 } 2126 check_rgrp: 2127 /* Check for unlinked inodes which can be reclaimed */ 2128 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK) 2129 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked, 2130 ip->i_no_addr); 2131 skip_rgrp: 2132 /* Drop reservation, if we couldn't use reserved rgrp */ 2133 if (gfs2_rs_active(rs)) 2134 gfs2_rs_deltree(rs); 2135 2136 /* Unlock rgrp if required */ 2137 if (!rg_locked) 2138 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2139 next_rgrp: 2140 /* Find the next rgrp, and continue looking */ 2141 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin)) 2142 continue; 2143 if (skip) 2144 continue; 2145 2146 /* If we've scanned all the rgrps, but found no free blocks 2147 * then this checks for some less likely conditions before 2148 * trying again. 2149 */ 2150 loops++; 2151 /* Check that fs hasn't grown if writing to rindex */ 2152 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { 2153 error = gfs2_ri_update(ip); 2154 if (error) 2155 return error; 2156 } 2157 /* Flushing the log may release space */ 2158 if (loops == 2) 2159 gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL | 2160 GFS2_LFC_INPLACE_RESERVE); 2161 } 2162 2163 return -ENOSPC; 2164 } 2165 2166 /** 2167 * gfs2_inplace_release - release an inplace reservation 2168 * @ip: the inode the reservation was taken out on 2169 * 2170 * Release a reservation made by gfs2_inplace_reserve(). 2171 */ 2172 2173 void gfs2_inplace_release(struct gfs2_inode *ip) 2174 { 2175 if (gfs2_holder_initialized(&ip->i_rgd_gh)) 2176 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2177 } 2178 2179 /** 2180 * gfs2_alloc_extent - allocate an extent from a given bitmap 2181 * @rbm: the resource group information 2182 * @dinode: TRUE if the first block we allocate is for a dinode 2183 * @n: The extent length (value/result) 2184 * 2185 * Add the bitmap buffer to the transaction. 2186 * Set the found bits to @new_state to change block's allocation state. 2187 */ 2188 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode, 2189 unsigned int *n) 2190 { 2191 struct gfs2_rbm pos = { .rgd = rbm->rgd, }; 2192 const unsigned int elen = *n; 2193 u64 block; 2194 int ret; 2195 2196 *n = 1; 2197 block = gfs2_rbm_to_block(rbm); 2198 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh); 2199 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2200 block++; 2201 while (*n < elen) { 2202 ret = gfs2_rbm_from_block(&pos, block); 2203 if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE) 2204 break; 2205 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh); 2206 gfs2_setbit(&pos, true, GFS2_BLKST_USED); 2207 (*n)++; 2208 block++; 2209 } 2210 } 2211 2212 /** 2213 * rgblk_free - Change alloc state of given block(s) 2214 * @sdp: the filesystem 2215 * @rgd: the resource group the blocks are in 2216 * @bstart: the start of a run of blocks to free 2217 * @blen: the length of the block run (all must lie within ONE RG!) 2218 * @new_state: GFS2_BLKST_XXX the after-allocation block state 2219 */ 2220 2221 static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd, 2222 u64 bstart, u32 blen, unsigned char new_state) 2223 { 2224 struct gfs2_rbm rbm; 2225 struct gfs2_bitmap *bi, *bi_prev = NULL; 2226 2227 rbm.rgd = rgd; 2228 if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart))) 2229 return; 2230 while (blen--) { 2231 bi = rbm_bi(&rbm); 2232 if (bi != bi_prev) { 2233 if (!bi->bi_clone) { 2234 bi->bi_clone = kmalloc(bi->bi_bh->b_size, 2235 GFP_NOFS | __GFP_NOFAIL); 2236 memcpy(bi->bi_clone + bi->bi_offset, 2237 bi->bi_bh->b_data + bi->bi_offset, 2238 bi->bi_bytes); 2239 } 2240 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh); 2241 bi_prev = bi; 2242 } 2243 gfs2_setbit(&rbm, false, new_state); 2244 gfs2_rbm_incr(&rbm); 2245 } 2246 } 2247 2248 /** 2249 * gfs2_rgrp_dump - print out an rgrp 2250 * @seq: The iterator 2251 * @gl: The glock in question 2252 * 2253 */ 2254 2255 void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_glock *gl) 2256 { 2257 struct gfs2_rgrpd *rgd = gl->gl_object; 2258 struct gfs2_blkreserv *trs; 2259 const struct rb_node *n; 2260 2261 if (rgd == NULL) 2262 return; 2263 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n", 2264 (unsigned long long)rgd->rd_addr, rgd->rd_flags, 2265 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes, 2266 rgd->rd_reserved, rgd->rd_extfail_pt); 2267 if (rgd->rd_sbd->sd_args.ar_rgrplvb) { 2268 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 2269 2270 gfs2_print_dbg(seq, " L: f:%02x b:%u i:%u\n", 2271 be32_to_cpu(rgl->rl_flags), 2272 be32_to_cpu(rgl->rl_free), 2273 be32_to_cpu(rgl->rl_dinodes)); 2274 } 2275 spin_lock(&rgd->rd_rsspin); 2276 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) { 2277 trs = rb_entry(n, struct gfs2_blkreserv, rs_node); 2278 dump_rs(seq, trs); 2279 } 2280 spin_unlock(&rgd->rd_rsspin); 2281 } 2282 2283 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) 2284 { 2285 struct gfs2_sbd *sdp = rgd->rd_sbd; 2286 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", 2287 (unsigned long long)rgd->rd_addr); 2288 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); 2289 gfs2_rgrp_dump(NULL, rgd->rd_gl); 2290 rgd->rd_flags |= GFS2_RDF_ERROR; 2291 } 2292 2293 /** 2294 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation 2295 * @ip: The inode we have just allocated blocks for 2296 * @rbm: The start of the allocated blocks 2297 * @len: The extent length 2298 * 2299 * Adjusts a reservation after an allocation has taken place. If the 2300 * reservation does not match the allocation, or if it is now empty 2301 * then it is removed. 2302 */ 2303 2304 static void gfs2_adjust_reservation(struct gfs2_inode *ip, 2305 const struct gfs2_rbm *rbm, unsigned len) 2306 { 2307 struct gfs2_blkreserv *rs = &ip->i_res; 2308 struct gfs2_rgrpd *rgd = rbm->rgd; 2309 unsigned rlen; 2310 u64 block; 2311 int ret; 2312 2313 spin_lock(&rgd->rd_rsspin); 2314 if (gfs2_rs_active(rs)) { 2315 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) { 2316 block = gfs2_rbm_to_block(rbm); 2317 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len); 2318 rlen = min(rs->rs_free, len); 2319 rs->rs_free -= rlen; 2320 rgd->rd_reserved -= rlen; 2321 trace_gfs2_rs(rs, TRACE_RS_CLAIM); 2322 if (rs->rs_free && !ret) 2323 goto out; 2324 /* We used up our block reservation, so we should 2325 reserve more blocks next time. */ 2326 atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint); 2327 } 2328 __rs_deltree(rs); 2329 } 2330 out: 2331 spin_unlock(&rgd->rd_rsspin); 2332 } 2333 2334 /** 2335 * gfs2_set_alloc_start - Set starting point for block allocation 2336 * @rbm: The rbm which will be set to the required location 2337 * @ip: The gfs2 inode 2338 * @dinode: Flag to say if allocation includes a new inode 2339 * 2340 * This sets the starting point from the reservation if one is active 2341 * otherwise it falls back to guessing a start point based on the 2342 * inode's goal block or the last allocation point in the rgrp. 2343 */ 2344 2345 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm, 2346 const struct gfs2_inode *ip, bool dinode) 2347 { 2348 u64 goal; 2349 2350 if (gfs2_rs_active(&ip->i_res)) { 2351 *rbm = ip->i_res.rs_rbm; 2352 return; 2353 } 2354 2355 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal)) 2356 goal = ip->i_goal; 2357 else 2358 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0; 2359 2360 if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) { 2361 rbm->bii = 0; 2362 rbm->offset = 0; 2363 } 2364 } 2365 2366 /** 2367 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode 2368 * @ip: the inode to allocate the block for 2369 * @bn: Used to return the starting block number 2370 * @nblocks: requested number of blocks/extent length (value/result) 2371 * @dinode: 1 if we're allocating a dinode block, else 0 2372 * @generation: the generation number of the inode 2373 * 2374 * Returns: 0 or error 2375 */ 2376 2377 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks, 2378 bool dinode, u64 *generation) 2379 { 2380 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2381 struct buffer_head *dibh; 2382 struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rbm.rgd, }; 2383 unsigned int ndata; 2384 u64 block; /* block, within the file system scope */ 2385 int error; 2386 2387 gfs2_set_alloc_start(&rbm, ip, dinode); 2388 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false); 2389 2390 if (error == -ENOSPC) { 2391 gfs2_set_alloc_start(&rbm, ip, dinode); 2392 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false); 2393 } 2394 2395 /* Since all blocks are reserved in advance, this shouldn't happen */ 2396 if (error) { 2397 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n", 2398 (unsigned long long)ip->i_no_addr, error, *nblocks, 2399 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags), 2400 rbm.rgd->rd_extfail_pt); 2401 goto rgrp_error; 2402 } 2403 2404 gfs2_alloc_extent(&rbm, dinode, nblocks); 2405 block = gfs2_rbm_to_block(&rbm); 2406 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0; 2407 if (gfs2_rs_active(&ip->i_res)) 2408 gfs2_adjust_reservation(ip, &rbm, *nblocks); 2409 ndata = *nblocks; 2410 if (dinode) 2411 ndata--; 2412 2413 if (!dinode) { 2414 ip->i_goal = block + ndata - 1; 2415 error = gfs2_meta_inode_buffer(ip, &dibh); 2416 if (error == 0) { 2417 struct gfs2_dinode *di = 2418 (struct gfs2_dinode *)dibh->b_data; 2419 gfs2_trans_add_meta(ip->i_gl, dibh); 2420 di->di_goal_meta = di->di_goal_data = 2421 cpu_to_be64(ip->i_goal); 2422 brelse(dibh); 2423 } 2424 } 2425 if (rbm.rgd->rd_free < *nblocks) { 2426 fs_warn(sdp, "nblocks=%u\n", *nblocks); 2427 goto rgrp_error; 2428 } 2429 2430 rbm.rgd->rd_free -= *nblocks; 2431 if (dinode) { 2432 rbm.rgd->rd_dinodes++; 2433 *generation = rbm.rgd->rd_igeneration++; 2434 if (*generation == 0) 2435 *generation = rbm.rgd->rd_igeneration++; 2436 } 2437 2438 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh); 2439 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data); 2440 2441 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0); 2442 if (dinode) 2443 gfs2_trans_remove_revoke(sdp, block, *nblocks); 2444 2445 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid); 2446 2447 rbm.rgd->rd_free_clone -= *nblocks; 2448 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks, 2449 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2450 *bn = block; 2451 return 0; 2452 2453 rgrp_error: 2454 gfs2_rgrp_error(rbm.rgd); 2455 return -EIO; 2456 } 2457 2458 /** 2459 * __gfs2_free_blocks - free a contiguous run of block(s) 2460 * @ip: the inode these blocks are being freed from 2461 * @rgd: the resource group the blocks are in 2462 * @bstart: first block of a run of contiguous blocks 2463 * @blen: the length of the block run 2464 * @meta: 1 if the blocks represent metadata 2465 * 2466 */ 2467 2468 void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd, 2469 u64 bstart, u32 blen, int meta) 2470 { 2471 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2472 2473 rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE); 2474 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE); 2475 rgd->rd_free += blen; 2476 rgd->rd_flags &= ~GFS2_RGF_TRIMMED; 2477 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2478 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2479 2480 /* Directories keep their data in the metadata address space */ 2481 if (meta || ip->i_depth) 2482 gfs2_meta_wipe(ip, bstart, blen); 2483 } 2484 2485 /** 2486 * gfs2_free_meta - free a contiguous run of data block(s) 2487 * @ip: the inode these blocks are being freed from 2488 * @rgd: the resource group the blocks are in 2489 * @bstart: first block of a run of contiguous blocks 2490 * @blen: the length of the block run 2491 * 2492 */ 2493 2494 void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd, 2495 u64 bstart, u32 blen) 2496 { 2497 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2498 2499 __gfs2_free_blocks(ip, rgd, bstart, blen, 1); 2500 gfs2_statfs_change(sdp, 0, +blen, 0); 2501 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); 2502 } 2503 2504 void gfs2_unlink_di(struct inode *inode) 2505 { 2506 struct gfs2_inode *ip = GFS2_I(inode); 2507 struct gfs2_sbd *sdp = GFS2_SB(inode); 2508 struct gfs2_rgrpd *rgd; 2509 u64 blkno = ip->i_no_addr; 2510 2511 rgd = gfs2_blk2rgrpd(sdp, blkno, true); 2512 if (!rgd) 2513 return; 2514 rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2515 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2516 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2517 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2518 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1); 2519 } 2520 2521 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) 2522 { 2523 struct gfs2_sbd *sdp = rgd->rd_sbd; 2524 2525 rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2526 if (!rgd->rd_dinodes) 2527 gfs2_consist_rgrpd(rgd); 2528 rgd->rd_dinodes--; 2529 rgd->rd_free++; 2530 2531 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2532 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2533 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1); 2534 2535 gfs2_statfs_change(sdp, 0, +1, -1); 2536 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2537 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); 2538 gfs2_meta_wipe(ip, ip->i_no_addr, 1); 2539 } 2540 2541 /** 2542 * gfs2_check_blk_type - Check the type of a block 2543 * @sdp: The superblock 2544 * @no_addr: The block number to check 2545 * @type: The block type we are looking for 2546 * 2547 * Returns: 0 if the block type matches the expected type 2548 * -ESTALE if it doesn't match 2549 * or -ve errno if something went wrong while checking 2550 */ 2551 2552 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) 2553 { 2554 struct gfs2_rgrpd *rgd; 2555 struct gfs2_holder rgd_gh; 2556 struct gfs2_rbm rbm; 2557 int error = -EINVAL; 2558 2559 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1); 2560 if (!rgd) 2561 goto fail; 2562 2563 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); 2564 if (error) 2565 goto fail; 2566 2567 rbm.rgd = rgd; 2568 error = gfs2_rbm_from_block(&rbm, no_addr); 2569 if (WARN_ON_ONCE(error)) 2570 goto fail; 2571 2572 if (gfs2_testbit(&rbm, false) != type) 2573 error = -ESTALE; 2574 2575 gfs2_glock_dq_uninit(&rgd_gh); 2576 fail: 2577 return error; 2578 } 2579 2580 /** 2581 * gfs2_rlist_add - add a RG to a list of RGs 2582 * @ip: the inode 2583 * @rlist: the list of resource groups 2584 * @block: the block 2585 * 2586 * Figure out what RG a block belongs to and add that RG to the list 2587 * 2588 * FIXME: Don't use NOFAIL 2589 * 2590 */ 2591 2592 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, 2593 u64 block) 2594 { 2595 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2596 struct gfs2_rgrpd *rgd; 2597 struct gfs2_rgrpd **tmp; 2598 unsigned int new_space; 2599 unsigned int x; 2600 2601 if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) 2602 return; 2603 2604 /* 2605 * The resource group last accessed is kept in the last position. 2606 */ 2607 2608 if (rlist->rl_rgrps) { 2609 rgd = rlist->rl_rgd[rlist->rl_rgrps - 1]; 2610 if (rgrp_contains_block(rgd, block)) 2611 return; 2612 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2613 } else { 2614 rgd = ip->i_res.rs_rbm.rgd; 2615 if (!rgd || !rgrp_contains_block(rgd, block)) 2616 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2617 } 2618 2619 if (!rgd) { 2620 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", 2621 (unsigned long long)block); 2622 return; 2623 } 2624 2625 for (x = 0; x < rlist->rl_rgrps; x++) { 2626 if (rlist->rl_rgd[x] == rgd) { 2627 swap(rlist->rl_rgd[x], 2628 rlist->rl_rgd[rlist->rl_rgrps - 1]); 2629 return; 2630 } 2631 } 2632 2633 if (rlist->rl_rgrps == rlist->rl_space) { 2634 new_space = rlist->rl_space + 10; 2635 2636 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), 2637 GFP_NOFS | __GFP_NOFAIL); 2638 2639 if (rlist->rl_rgd) { 2640 memcpy(tmp, rlist->rl_rgd, 2641 rlist->rl_space * sizeof(struct gfs2_rgrpd *)); 2642 kfree(rlist->rl_rgd); 2643 } 2644 2645 rlist->rl_space = new_space; 2646 rlist->rl_rgd = tmp; 2647 } 2648 2649 rlist->rl_rgd[rlist->rl_rgrps++] = rgd; 2650 } 2651 2652 /** 2653 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate 2654 * and initialize an array of glock holders for them 2655 * @rlist: the list of resource groups 2656 * 2657 * FIXME: Don't use NOFAIL 2658 * 2659 */ 2660 2661 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist) 2662 { 2663 unsigned int x; 2664 2665 rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps, 2666 sizeof(struct gfs2_holder), 2667 GFP_NOFS | __GFP_NOFAIL); 2668 for (x = 0; x < rlist->rl_rgrps; x++) 2669 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, 2670 LM_ST_EXCLUSIVE, 0, 2671 &rlist->rl_ghs[x]); 2672 } 2673 2674 /** 2675 * gfs2_rlist_free - free a resource group list 2676 * @rlist: the list of resource groups 2677 * 2678 */ 2679 2680 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) 2681 { 2682 unsigned int x; 2683 2684 kfree(rlist->rl_rgd); 2685 2686 if (rlist->rl_ghs) { 2687 for (x = 0; x < rlist->rl_rgrps; x++) 2688 gfs2_holder_uninit(&rlist->rl_ghs[x]); 2689 kfree(rlist->rl_ghs); 2690 rlist->rl_ghs = NULL; 2691 } 2692 } 2693 2694