1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/slab.h> 13 #include <linux/spinlock.h> 14 #include <linux/completion.h> 15 #include <linux/buffer_head.h> 16 #include <linux/fs.h> 17 #include <linux/gfs2_ondisk.h> 18 #include <linux/prefetch.h> 19 #include <linux/blkdev.h> 20 #include <linux/rbtree.h> 21 #include <linux/random.h> 22 23 #include "gfs2.h" 24 #include "incore.h" 25 #include "glock.h" 26 #include "glops.h" 27 #include "lops.h" 28 #include "meta_io.h" 29 #include "quota.h" 30 #include "rgrp.h" 31 #include "super.h" 32 #include "trans.h" 33 #include "util.h" 34 #include "log.h" 35 #include "inode.h" 36 #include "trace_gfs2.h" 37 38 #define BFITNOENT ((u32)~0) 39 #define NO_BLOCK ((u64)~0) 40 41 #if BITS_PER_LONG == 32 42 #define LBITMASK (0x55555555UL) 43 #define LBITSKIP55 (0x55555555UL) 44 #define LBITSKIP00 (0x00000000UL) 45 #else 46 #define LBITMASK (0x5555555555555555UL) 47 #define LBITSKIP55 (0x5555555555555555UL) 48 #define LBITSKIP00 (0x0000000000000000UL) 49 #endif 50 51 /* 52 * These routines are used by the resource group routines (rgrp.c) 53 * to keep track of block allocation. Each block is represented by two 54 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. 55 * 56 * 0 = Free 57 * 1 = Used (not metadata) 58 * 2 = Unlinked (still in use) inode 59 * 3 = Used (metadata) 60 */ 61 62 struct gfs2_extent { 63 struct gfs2_rbm rbm; 64 u32 len; 65 }; 66 67 static const char valid_change[16] = { 68 /* current */ 69 /* n */ 0, 1, 1, 1, 70 /* e */ 1, 0, 0, 0, 71 /* w */ 0, 0, 0, 1, 72 1, 0, 0, 0 73 }; 74 75 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 76 const struct gfs2_inode *ip, bool nowrap); 77 78 79 /** 80 * gfs2_setbit - Set a bit in the bitmaps 81 * @rbm: The position of the bit to set 82 * @do_clone: Also set the clone bitmap, if it exists 83 * @new_state: the new state of the block 84 * 85 */ 86 87 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone, 88 unsigned char new_state) 89 { 90 unsigned char *byte1, *byte2, *end, cur_state; 91 struct gfs2_bitmap *bi = rbm_bi(rbm); 92 unsigned int buflen = bi->bi_len; 93 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 94 95 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY); 96 end = bi->bi_bh->b_data + bi->bi_offset + buflen; 97 98 BUG_ON(byte1 >= end); 99 100 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; 101 102 if (unlikely(!valid_change[new_state * 4 + cur_state])) { 103 pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n", 104 rbm->offset, cur_state, new_state); 105 pr_warn("rgrp=0x%llx bi_start=0x%x\n", 106 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start); 107 pr_warn("bi_offset=0x%x bi_len=0x%x\n", 108 bi->bi_offset, bi->bi_len); 109 dump_stack(); 110 gfs2_consist_rgrpd(rbm->rgd); 111 return; 112 } 113 *byte1 ^= (cur_state ^ new_state) << bit; 114 115 if (do_clone && bi->bi_clone) { 116 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY); 117 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; 118 *byte2 ^= (cur_state ^ new_state) << bit; 119 } 120 } 121 122 /** 123 * gfs2_testbit - test a bit in the bitmaps 124 * @rbm: The bit to test 125 * 126 * Returns: The two bit block state of the requested bit 127 */ 128 129 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm) 130 { 131 struct gfs2_bitmap *bi = rbm_bi(rbm); 132 const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset; 133 const u8 *byte; 134 unsigned int bit; 135 136 byte = buffer + (rbm->offset / GFS2_NBBY); 137 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 138 139 return (*byte >> bit) & GFS2_BIT_MASK; 140 } 141 142 /** 143 * gfs2_bit_search 144 * @ptr: Pointer to bitmap data 145 * @mask: Mask to use (normally 0x55555.... but adjusted for search start) 146 * @state: The state we are searching for 147 * 148 * We xor the bitmap data with a patter which is the bitwise opposite 149 * of what we are looking for, this gives rise to a pattern of ones 150 * wherever there is a match. Since we have two bits per entry, we 151 * take this pattern, shift it down by one place and then and it with 152 * the original. All the even bit positions (0,2,4, etc) then represent 153 * successful matches, so we mask with 0x55555..... to remove the unwanted 154 * odd bit positions. 155 * 156 * This allows searching of a whole u64 at once (32 blocks) with a 157 * single test (on 64 bit arches). 158 */ 159 160 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) 161 { 162 u64 tmp; 163 static const u64 search[] = { 164 [0] = 0xffffffffffffffffULL, 165 [1] = 0xaaaaaaaaaaaaaaaaULL, 166 [2] = 0x5555555555555555ULL, 167 [3] = 0x0000000000000000ULL, 168 }; 169 tmp = le64_to_cpu(*ptr) ^ search[state]; 170 tmp &= (tmp >> 1); 171 tmp &= mask; 172 return tmp; 173 } 174 175 /** 176 * rs_cmp - multi-block reservation range compare 177 * @blk: absolute file system block number of the new reservation 178 * @len: number of blocks in the new reservation 179 * @rs: existing reservation to compare against 180 * 181 * returns: 1 if the block range is beyond the reach of the reservation 182 * -1 if the block range is before the start of the reservation 183 * 0 if the block range overlaps with the reservation 184 */ 185 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs) 186 { 187 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm); 188 189 if (blk >= startblk + rs->rs_free) 190 return 1; 191 if (blk + len - 1 < startblk) 192 return -1; 193 return 0; 194 } 195 196 /** 197 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing 198 * a block in a given allocation state. 199 * @buf: the buffer that holds the bitmaps 200 * @len: the length (in bytes) of the buffer 201 * @goal: start search at this block's bit-pair (within @buffer) 202 * @state: GFS2_BLKST_XXX the state of the block we're looking for. 203 * 204 * Scope of @goal and returned block number is only within this bitmap buffer, 205 * not entire rgrp or filesystem. @buffer will be offset from the actual 206 * beginning of a bitmap block buffer, skipping any header structures, but 207 * headers are always a multiple of 64 bits long so that the buffer is 208 * always aligned to a 64 bit boundary. 209 * 210 * The size of the buffer is in bytes, but is it assumed that it is 211 * always ok to read a complete multiple of 64 bits at the end 212 * of the block in case the end is no aligned to a natural boundary. 213 * 214 * Return: the block number (bitmap buffer scope) that was found 215 */ 216 217 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, 218 u32 goal, u8 state) 219 { 220 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); 221 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); 222 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); 223 u64 tmp; 224 u64 mask = 0x5555555555555555ULL; 225 u32 bit; 226 227 /* Mask off bits we don't care about at the start of the search */ 228 mask <<= spoint; 229 tmp = gfs2_bit_search(ptr, mask, state); 230 ptr++; 231 while(tmp == 0 && ptr < end) { 232 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); 233 ptr++; 234 } 235 /* Mask off any bits which are more than len bytes from the start */ 236 if (ptr == end && (len & (sizeof(u64) - 1))) 237 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); 238 /* Didn't find anything, so return */ 239 if (tmp == 0) 240 return BFITNOENT; 241 ptr--; 242 bit = __ffs64(tmp); 243 bit /= 2; /* two bits per entry in the bitmap */ 244 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; 245 } 246 247 /** 248 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number 249 * @rbm: The rbm with rgd already set correctly 250 * @block: The block number (filesystem relative) 251 * 252 * This sets the bi and offset members of an rbm based on a 253 * resource group and a filesystem relative block number. The 254 * resource group must be set in the rbm on entry, the bi and 255 * offset members will be set by this function. 256 * 257 * Returns: 0 on success, or an error code 258 */ 259 260 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block) 261 { 262 u64 rblock = block - rbm->rgd->rd_data0; 263 264 if (WARN_ON_ONCE(rblock > UINT_MAX)) 265 return -EINVAL; 266 if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data) 267 return -E2BIG; 268 269 rbm->bii = 0; 270 rbm->offset = (u32)(rblock); 271 /* Check if the block is within the first block */ 272 if (rbm->offset < rbm_bi(rbm)->bi_blocks) 273 return 0; 274 275 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */ 276 rbm->offset += (sizeof(struct gfs2_rgrp) - 277 sizeof(struct gfs2_meta_header)) * GFS2_NBBY; 278 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 279 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 280 return 0; 281 } 282 283 /** 284 * gfs2_rbm_incr - increment an rbm structure 285 * @rbm: The rbm with rgd already set correctly 286 * 287 * This function takes an existing rbm structure and increments it to the next 288 * viable block offset. 289 * 290 * Returns: If incrementing the offset would cause the rbm to go past the 291 * end of the rgrp, true is returned, otherwise false. 292 * 293 */ 294 295 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm) 296 { 297 if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */ 298 rbm->offset++; 299 return false; 300 } 301 if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */ 302 return true; 303 304 rbm->offset = 0; 305 rbm->bii++; 306 return false; 307 } 308 309 /** 310 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned 311 * @rbm: Position to search (value/result) 312 * @n_unaligned: Number of unaligned blocks to check 313 * @len: Decremented for each block found (terminate on zero) 314 * 315 * Returns: true if a non-free block is encountered 316 */ 317 318 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len) 319 { 320 u32 n; 321 u8 res; 322 323 for (n = 0; n < n_unaligned; n++) { 324 res = gfs2_testbit(rbm); 325 if (res != GFS2_BLKST_FREE) 326 return true; 327 (*len)--; 328 if (*len == 0) 329 return true; 330 if (gfs2_rbm_incr(rbm)) 331 return true; 332 } 333 334 return false; 335 } 336 337 /** 338 * gfs2_free_extlen - Return extent length of free blocks 339 * @rrbm: Starting position 340 * @len: Max length to check 341 * 342 * Starting at the block specified by the rbm, see how many free blocks 343 * there are, not reading more than len blocks ahead. This can be done 344 * using memchr_inv when the blocks are byte aligned, but has to be done 345 * on a block by block basis in case of unaligned blocks. Also this 346 * function can cope with bitmap boundaries (although it must stop on 347 * a resource group boundary) 348 * 349 * Returns: Number of free blocks in the extent 350 */ 351 352 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len) 353 { 354 struct gfs2_rbm rbm = *rrbm; 355 u32 n_unaligned = rbm.offset & 3; 356 u32 size = len; 357 u32 bytes; 358 u32 chunk_size; 359 u8 *ptr, *start, *end; 360 u64 block; 361 struct gfs2_bitmap *bi; 362 363 if (n_unaligned && 364 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len)) 365 goto out; 366 367 n_unaligned = len & 3; 368 /* Start is now byte aligned */ 369 while (len > 3) { 370 bi = rbm_bi(&rbm); 371 start = bi->bi_bh->b_data; 372 if (bi->bi_clone) 373 start = bi->bi_clone; 374 end = start + bi->bi_bh->b_size; 375 start += bi->bi_offset; 376 BUG_ON(rbm.offset & 3); 377 start += (rbm.offset / GFS2_NBBY); 378 bytes = min_t(u32, len / GFS2_NBBY, (end - start)); 379 ptr = memchr_inv(start, 0, bytes); 380 chunk_size = ((ptr == NULL) ? bytes : (ptr - start)); 381 chunk_size *= GFS2_NBBY; 382 BUG_ON(len < chunk_size); 383 len -= chunk_size; 384 block = gfs2_rbm_to_block(&rbm); 385 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) { 386 n_unaligned = 0; 387 break; 388 } 389 if (ptr) { 390 n_unaligned = 3; 391 break; 392 } 393 n_unaligned = len & 3; 394 } 395 396 /* Deal with any bits left over at the end */ 397 if (n_unaligned) 398 gfs2_unaligned_extlen(&rbm, n_unaligned, &len); 399 out: 400 return size - len; 401 } 402 403 /** 404 * gfs2_bitcount - count the number of bits in a certain state 405 * @rgd: the resource group descriptor 406 * @buffer: the buffer that holds the bitmaps 407 * @buflen: the length (in bytes) of the buffer 408 * @state: the state of the block we're looking for 409 * 410 * Returns: The number of bits 411 */ 412 413 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, 414 unsigned int buflen, u8 state) 415 { 416 const u8 *byte = buffer; 417 const u8 *end = buffer + buflen; 418 const u8 state1 = state << 2; 419 const u8 state2 = state << 4; 420 const u8 state3 = state << 6; 421 u32 count = 0; 422 423 for (; byte < end; byte++) { 424 if (((*byte) & 0x03) == state) 425 count++; 426 if (((*byte) & 0x0C) == state1) 427 count++; 428 if (((*byte) & 0x30) == state2) 429 count++; 430 if (((*byte) & 0xC0) == state3) 431 count++; 432 } 433 434 return count; 435 } 436 437 /** 438 * gfs2_rgrp_verify - Verify that a resource group is consistent 439 * @rgd: the rgrp 440 * 441 */ 442 443 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) 444 { 445 struct gfs2_sbd *sdp = rgd->rd_sbd; 446 struct gfs2_bitmap *bi = NULL; 447 u32 length = rgd->rd_length; 448 u32 count[4], tmp; 449 int buf, x; 450 451 memset(count, 0, 4 * sizeof(u32)); 452 453 /* Count # blocks in each of 4 possible allocation states */ 454 for (buf = 0; buf < length; buf++) { 455 bi = rgd->rd_bits + buf; 456 for (x = 0; x < 4; x++) 457 count[x] += gfs2_bitcount(rgd, 458 bi->bi_bh->b_data + 459 bi->bi_offset, 460 bi->bi_len, x); 461 } 462 463 if (count[0] != rgd->rd_free) { 464 if (gfs2_consist_rgrpd(rgd)) 465 fs_err(sdp, "free data mismatch: %u != %u\n", 466 count[0], rgd->rd_free); 467 return; 468 } 469 470 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; 471 if (count[1] != tmp) { 472 if (gfs2_consist_rgrpd(rgd)) 473 fs_err(sdp, "used data mismatch: %u != %u\n", 474 count[1], tmp); 475 return; 476 } 477 478 if (count[2] + count[3] != rgd->rd_dinodes) { 479 if (gfs2_consist_rgrpd(rgd)) 480 fs_err(sdp, "used metadata mismatch: %u != %u\n", 481 count[2] + count[3], rgd->rd_dinodes); 482 return; 483 } 484 } 485 486 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block) 487 { 488 u64 first = rgd->rd_data0; 489 u64 last = first + rgd->rd_data; 490 return first <= block && block < last; 491 } 492 493 /** 494 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number 495 * @sdp: The GFS2 superblock 496 * @blk: The data block number 497 * @exact: True if this needs to be an exact match 498 * 499 * Returns: The resource group, or NULL if not found 500 */ 501 502 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact) 503 { 504 struct rb_node *n, *next; 505 struct gfs2_rgrpd *cur; 506 507 spin_lock(&sdp->sd_rindex_spin); 508 n = sdp->sd_rindex_tree.rb_node; 509 while (n) { 510 cur = rb_entry(n, struct gfs2_rgrpd, rd_node); 511 next = NULL; 512 if (blk < cur->rd_addr) 513 next = n->rb_left; 514 else if (blk >= cur->rd_data0 + cur->rd_data) 515 next = n->rb_right; 516 if (next == NULL) { 517 spin_unlock(&sdp->sd_rindex_spin); 518 if (exact) { 519 if (blk < cur->rd_addr) 520 return NULL; 521 if (blk >= cur->rd_data0 + cur->rd_data) 522 return NULL; 523 } 524 return cur; 525 } 526 n = next; 527 } 528 spin_unlock(&sdp->sd_rindex_spin); 529 530 return NULL; 531 } 532 533 /** 534 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem 535 * @sdp: The GFS2 superblock 536 * 537 * Returns: The first rgrp in the filesystem 538 */ 539 540 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) 541 { 542 const struct rb_node *n; 543 struct gfs2_rgrpd *rgd; 544 545 spin_lock(&sdp->sd_rindex_spin); 546 n = rb_first(&sdp->sd_rindex_tree); 547 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 548 spin_unlock(&sdp->sd_rindex_spin); 549 550 return rgd; 551 } 552 553 /** 554 * gfs2_rgrpd_get_next - get the next RG 555 * @rgd: the resource group descriptor 556 * 557 * Returns: The next rgrp 558 */ 559 560 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) 561 { 562 struct gfs2_sbd *sdp = rgd->rd_sbd; 563 const struct rb_node *n; 564 565 spin_lock(&sdp->sd_rindex_spin); 566 n = rb_next(&rgd->rd_node); 567 if (n == NULL) 568 n = rb_first(&sdp->sd_rindex_tree); 569 570 if (unlikely(&rgd->rd_node == n)) { 571 spin_unlock(&sdp->sd_rindex_spin); 572 return NULL; 573 } 574 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 575 spin_unlock(&sdp->sd_rindex_spin); 576 return rgd; 577 } 578 579 void check_and_update_goal(struct gfs2_inode *ip) 580 { 581 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 582 if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL) 583 ip->i_goal = ip->i_no_addr; 584 } 585 586 void gfs2_free_clones(struct gfs2_rgrpd *rgd) 587 { 588 int x; 589 590 for (x = 0; x < rgd->rd_length; x++) { 591 struct gfs2_bitmap *bi = rgd->rd_bits + x; 592 kfree(bi->bi_clone); 593 bi->bi_clone = NULL; 594 } 595 } 596 597 /** 598 * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode 599 * plus a quota allocations data structure, if necessary 600 * @ip: the inode for this reservation 601 */ 602 int gfs2_rsqa_alloc(struct gfs2_inode *ip) 603 { 604 return gfs2_qa_alloc(ip); 605 } 606 607 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs) 608 { 609 gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n", 610 (unsigned long long)rs->rs_inum, 611 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm), 612 rs->rs_rbm.offset, rs->rs_free); 613 } 614 615 /** 616 * __rs_deltree - remove a multi-block reservation from the rgd tree 617 * @rs: The reservation to remove 618 * 619 */ 620 static void __rs_deltree(struct gfs2_blkreserv *rs) 621 { 622 struct gfs2_rgrpd *rgd; 623 624 if (!gfs2_rs_active(rs)) 625 return; 626 627 rgd = rs->rs_rbm.rgd; 628 trace_gfs2_rs(rs, TRACE_RS_TREEDEL); 629 rb_erase(&rs->rs_node, &rgd->rd_rstree); 630 RB_CLEAR_NODE(&rs->rs_node); 631 632 if (rs->rs_free) { 633 struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm); 634 635 /* return reserved blocks to the rgrp */ 636 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free); 637 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free; 638 /* The rgrp extent failure point is likely not to increase; 639 it will only do so if the freed blocks are somehow 640 contiguous with a span of free blocks that follows. Still, 641 it will force the number to be recalculated later. */ 642 rgd->rd_extfail_pt += rs->rs_free; 643 rs->rs_free = 0; 644 clear_bit(GBF_FULL, &bi->bi_flags); 645 } 646 } 647 648 /** 649 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree 650 * @rs: The reservation to remove 651 * 652 */ 653 void gfs2_rs_deltree(struct gfs2_blkreserv *rs) 654 { 655 struct gfs2_rgrpd *rgd; 656 657 rgd = rs->rs_rbm.rgd; 658 if (rgd) { 659 spin_lock(&rgd->rd_rsspin); 660 __rs_deltree(rs); 661 BUG_ON(rs->rs_free); 662 spin_unlock(&rgd->rd_rsspin); 663 } 664 } 665 666 /** 667 * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation 668 * @ip: The inode for this reservation 669 * @wcount: The inode's write count, or NULL 670 * 671 */ 672 void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount) 673 { 674 down_write(&ip->i_rw_mutex); 675 if ((wcount == NULL) || (atomic_read(wcount) <= 1)) 676 gfs2_rs_deltree(&ip->i_res); 677 up_write(&ip->i_rw_mutex); 678 gfs2_qa_delete(ip, wcount); 679 } 680 681 /** 682 * return_all_reservations - return all reserved blocks back to the rgrp. 683 * @rgd: the rgrp that needs its space back 684 * 685 * We previously reserved a bunch of blocks for allocation. Now we need to 686 * give them back. This leave the reservation structures in tact, but removes 687 * all of their corresponding "no-fly zones". 688 */ 689 static void return_all_reservations(struct gfs2_rgrpd *rgd) 690 { 691 struct rb_node *n; 692 struct gfs2_blkreserv *rs; 693 694 spin_lock(&rgd->rd_rsspin); 695 while ((n = rb_first(&rgd->rd_rstree))) { 696 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 697 __rs_deltree(rs); 698 } 699 spin_unlock(&rgd->rd_rsspin); 700 } 701 702 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) 703 { 704 struct rb_node *n; 705 struct gfs2_rgrpd *rgd; 706 struct gfs2_glock *gl; 707 708 while ((n = rb_first(&sdp->sd_rindex_tree))) { 709 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 710 gl = rgd->rd_gl; 711 712 rb_erase(n, &sdp->sd_rindex_tree); 713 714 if (gl) { 715 spin_lock(&gl->gl_lockref.lock); 716 gl->gl_object = NULL; 717 spin_unlock(&gl->gl_lockref.lock); 718 gfs2_glock_add_to_lru(gl); 719 gfs2_glock_put(gl); 720 } 721 722 gfs2_free_clones(rgd); 723 kfree(rgd->rd_bits); 724 rgd->rd_bits = NULL; 725 return_all_reservations(rgd); 726 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 727 } 728 } 729 730 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd) 731 { 732 pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr); 733 pr_info("ri_length = %u\n", rgd->rd_length); 734 pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0); 735 pr_info("ri_data = %u\n", rgd->rd_data); 736 pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes); 737 } 738 739 /** 740 * gfs2_compute_bitstructs - Compute the bitmap sizes 741 * @rgd: The resource group descriptor 742 * 743 * Calculates bitmap descriptors, one for each block that contains bitmap data 744 * 745 * Returns: errno 746 */ 747 748 static int compute_bitstructs(struct gfs2_rgrpd *rgd) 749 { 750 struct gfs2_sbd *sdp = rgd->rd_sbd; 751 struct gfs2_bitmap *bi; 752 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ 753 u32 bytes_left, bytes; 754 int x; 755 756 if (!length) 757 return -EINVAL; 758 759 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); 760 if (!rgd->rd_bits) 761 return -ENOMEM; 762 763 bytes_left = rgd->rd_bitbytes; 764 765 for (x = 0; x < length; x++) { 766 bi = rgd->rd_bits + x; 767 768 bi->bi_flags = 0; 769 /* small rgrp; bitmap stored completely in header block */ 770 if (length == 1) { 771 bytes = bytes_left; 772 bi->bi_offset = sizeof(struct gfs2_rgrp); 773 bi->bi_start = 0; 774 bi->bi_len = bytes; 775 bi->bi_blocks = bytes * GFS2_NBBY; 776 /* header block */ 777 } else if (x == 0) { 778 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); 779 bi->bi_offset = sizeof(struct gfs2_rgrp); 780 bi->bi_start = 0; 781 bi->bi_len = bytes; 782 bi->bi_blocks = bytes * GFS2_NBBY; 783 /* last block */ 784 } else if (x + 1 == length) { 785 bytes = bytes_left; 786 bi->bi_offset = sizeof(struct gfs2_meta_header); 787 bi->bi_start = rgd->rd_bitbytes - bytes_left; 788 bi->bi_len = bytes; 789 bi->bi_blocks = bytes * GFS2_NBBY; 790 /* other blocks */ 791 } else { 792 bytes = sdp->sd_sb.sb_bsize - 793 sizeof(struct gfs2_meta_header); 794 bi->bi_offset = sizeof(struct gfs2_meta_header); 795 bi->bi_start = rgd->rd_bitbytes - bytes_left; 796 bi->bi_len = bytes; 797 bi->bi_blocks = bytes * GFS2_NBBY; 798 } 799 800 bytes_left -= bytes; 801 } 802 803 if (bytes_left) { 804 gfs2_consist_rgrpd(rgd); 805 return -EIO; 806 } 807 bi = rgd->rd_bits + (length - 1); 808 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) { 809 if (gfs2_consist_rgrpd(rgd)) { 810 gfs2_rindex_print(rgd); 811 fs_err(sdp, "start=%u len=%u offset=%u\n", 812 bi->bi_start, bi->bi_len, bi->bi_offset); 813 } 814 return -EIO; 815 } 816 817 return 0; 818 } 819 820 /** 821 * gfs2_ri_total - Total up the file system space, according to the rindex. 822 * @sdp: the filesystem 823 * 824 */ 825 u64 gfs2_ri_total(struct gfs2_sbd *sdp) 826 { 827 u64 total_data = 0; 828 struct inode *inode = sdp->sd_rindex; 829 struct gfs2_inode *ip = GFS2_I(inode); 830 char buf[sizeof(struct gfs2_rindex)]; 831 int error, rgrps; 832 833 for (rgrps = 0;; rgrps++) { 834 loff_t pos = rgrps * sizeof(struct gfs2_rindex); 835 836 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) 837 break; 838 error = gfs2_internal_read(ip, buf, &pos, 839 sizeof(struct gfs2_rindex)); 840 if (error != sizeof(struct gfs2_rindex)) 841 break; 842 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); 843 } 844 return total_data; 845 } 846 847 static int rgd_insert(struct gfs2_rgrpd *rgd) 848 { 849 struct gfs2_sbd *sdp = rgd->rd_sbd; 850 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; 851 852 /* Figure out where to put new node */ 853 while (*newn) { 854 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, 855 rd_node); 856 857 parent = *newn; 858 if (rgd->rd_addr < cur->rd_addr) 859 newn = &((*newn)->rb_left); 860 else if (rgd->rd_addr > cur->rd_addr) 861 newn = &((*newn)->rb_right); 862 else 863 return -EEXIST; 864 } 865 866 rb_link_node(&rgd->rd_node, parent, newn); 867 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); 868 sdp->sd_rgrps++; 869 return 0; 870 } 871 872 /** 873 * read_rindex_entry - Pull in a new resource index entry from the disk 874 * @ip: Pointer to the rindex inode 875 * 876 * Returns: 0 on success, > 0 on EOF, error code otherwise 877 */ 878 879 static int read_rindex_entry(struct gfs2_inode *ip) 880 { 881 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 882 const unsigned bsize = sdp->sd_sb.sb_bsize; 883 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); 884 struct gfs2_rindex buf; 885 int error; 886 struct gfs2_rgrpd *rgd; 887 888 if (pos >= i_size_read(&ip->i_inode)) 889 return 1; 890 891 error = gfs2_internal_read(ip, (char *)&buf, &pos, 892 sizeof(struct gfs2_rindex)); 893 894 if (error != sizeof(struct gfs2_rindex)) 895 return (error == 0) ? 1 : error; 896 897 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); 898 error = -ENOMEM; 899 if (!rgd) 900 return error; 901 902 rgd->rd_sbd = sdp; 903 rgd->rd_addr = be64_to_cpu(buf.ri_addr); 904 rgd->rd_length = be32_to_cpu(buf.ri_length); 905 rgd->rd_data0 = be64_to_cpu(buf.ri_data0); 906 rgd->rd_data = be32_to_cpu(buf.ri_data); 907 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); 908 spin_lock_init(&rgd->rd_rsspin); 909 910 error = compute_bitstructs(rgd); 911 if (error) 912 goto fail; 913 914 error = gfs2_glock_get(sdp, rgd->rd_addr, 915 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); 916 if (error) 917 goto fail; 918 919 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr; 920 rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED); 921 if (rgd->rd_data > sdp->sd_max_rg_data) 922 sdp->sd_max_rg_data = rgd->rd_data; 923 spin_lock(&sdp->sd_rindex_spin); 924 error = rgd_insert(rgd); 925 spin_unlock(&sdp->sd_rindex_spin); 926 if (!error) { 927 rgd->rd_gl->gl_object = rgd; 928 rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK; 929 rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr + 930 rgd->rd_length) * bsize) - 1; 931 return 0; 932 } 933 934 error = 0; /* someone else read in the rgrp; free it and ignore it */ 935 gfs2_glock_put(rgd->rd_gl); 936 937 fail: 938 kfree(rgd->rd_bits); 939 rgd->rd_bits = NULL; 940 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 941 return error; 942 } 943 944 /** 945 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use 946 * @sdp: the GFS2 superblock 947 * 948 * The purpose of this function is to select a subset of the resource groups 949 * and mark them as PREFERRED. We do it in such a way that each node prefers 950 * to use a unique set of rgrps to minimize glock contention. 951 */ 952 static void set_rgrp_preferences(struct gfs2_sbd *sdp) 953 { 954 struct gfs2_rgrpd *rgd, *first; 955 int i; 956 957 /* Skip an initial number of rgrps, based on this node's journal ID. 958 That should start each node out on its own set. */ 959 rgd = gfs2_rgrpd_get_first(sdp); 960 for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++) 961 rgd = gfs2_rgrpd_get_next(rgd); 962 first = rgd; 963 964 do { 965 rgd->rd_flags |= GFS2_RDF_PREFERRED; 966 for (i = 0; i < sdp->sd_journals; i++) { 967 rgd = gfs2_rgrpd_get_next(rgd); 968 if (!rgd || rgd == first) 969 break; 970 } 971 } while (rgd && rgd != first); 972 } 973 974 /** 975 * gfs2_ri_update - Pull in a new resource index from the disk 976 * @ip: pointer to the rindex inode 977 * 978 * Returns: 0 on successful update, error code otherwise 979 */ 980 981 static int gfs2_ri_update(struct gfs2_inode *ip) 982 { 983 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 984 int error; 985 986 do { 987 error = read_rindex_entry(ip); 988 } while (error == 0); 989 990 if (error < 0) 991 return error; 992 993 set_rgrp_preferences(sdp); 994 995 sdp->sd_rindex_uptodate = 1; 996 return 0; 997 } 998 999 /** 1000 * gfs2_rindex_update - Update the rindex if required 1001 * @sdp: The GFS2 superblock 1002 * 1003 * We grab a lock on the rindex inode to make sure that it doesn't 1004 * change whilst we are performing an operation. We keep this lock 1005 * for quite long periods of time compared to other locks. This 1006 * doesn't matter, since it is shared and it is very, very rarely 1007 * accessed in the exclusive mode (i.e. only when expanding the filesystem). 1008 * 1009 * This makes sure that we're using the latest copy of the resource index 1010 * special file, which might have been updated if someone expanded the 1011 * filesystem (via gfs2_grow utility), which adds new resource groups. 1012 * 1013 * Returns: 0 on succeess, error code otherwise 1014 */ 1015 1016 int gfs2_rindex_update(struct gfs2_sbd *sdp) 1017 { 1018 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); 1019 struct gfs2_glock *gl = ip->i_gl; 1020 struct gfs2_holder ri_gh; 1021 int error = 0; 1022 int unlock_required = 0; 1023 1024 /* Read new copy from disk if we don't have the latest */ 1025 if (!sdp->sd_rindex_uptodate) { 1026 if (!gfs2_glock_is_locked_by_me(gl)) { 1027 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); 1028 if (error) 1029 return error; 1030 unlock_required = 1; 1031 } 1032 if (!sdp->sd_rindex_uptodate) 1033 error = gfs2_ri_update(ip); 1034 if (unlock_required) 1035 gfs2_glock_dq_uninit(&ri_gh); 1036 } 1037 1038 return error; 1039 } 1040 1041 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) 1042 { 1043 const struct gfs2_rgrp *str = buf; 1044 u32 rg_flags; 1045 1046 rg_flags = be32_to_cpu(str->rg_flags); 1047 rg_flags &= ~GFS2_RDF_MASK; 1048 rgd->rd_flags &= GFS2_RDF_MASK; 1049 rgd->rd_flags |= rg_flags; 1050 rgd->rd_free = be32_to_cpu(str->rg_free); 1051 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); 1052 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); 1053 } 1054 1055 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) 1056 { 1057 struct gfs2_rgrp *str = buf; 1058 1059 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); 1060 str->rg_free = cpu_to_be32(rgd->rd_free); 1061 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); 1062 str->__pad = cpu_to_be32(0); 1063 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); 1064 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); 1065 } 1066 1067 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd) 1068 { 1069 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1070 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data; 1071 1072 if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free || 1073 rgl->rl_dinodes != str->rg_dinodes || 1074 rgl->rl_igeneration != str->rg_igeneration) 1075 return 0; 1076 return 1; 1077 } 1078 1079 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf) 1080 { 1081 const struct gfs2_rgrp *str = buf; 1082 1083 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC); 1084 rgl->rl_flags = str->rg_flags; 1085 rgl->rl_free = str->rg_free; 1086 rgl->rl_dinodes = str->rg_dinodes; 1087 rgl->rl_igeneration = str->rg_igeneration; 1088 rgl->__pad = 0UL; 1089 } 1090 1091 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change) 1092 { 1093 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1094 u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change; 1095 rgl->rl_unlinked = cpu_to_be32(unlinked); 1096 } 1097 1098 static u32 count_unlinked(struct gfs2_rgrpd *rgd) 1099 { 1100 struct gfs2_bitmap *bi; 1101 const u32 length = rgd->rd_length; 1102 const u8 *buffer = NULL; 1103 u32 i, goal, count = 0; 1104 1105 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) { 1106 goal = 0; 1107 buffer = bi->bi_bh->b_data + bi->bi_offset; 1108 WARN_ON(!buffer_uptodate(bi->bi_bh)); 1109 while (goal < bi->bi_len * GFS2_NBBY) { 1110 goal = gfs2_bitfit(buffer, bi->bi_len, goal, 1111 GFS2_BLKST_UNLINKED); 1112 if (goal == BFITNOENT) 1113 break; 1114 count++; 1115 goal++; 1116 } 1117 } 1118 1119 return count; 1120 } 1121 1122 1123 /** 1124 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps 1125 * @rgd: the struct gfs2_rgrpd describing the RG to read in 1126 * 1127 * Read in all of a Resource Group's header and bitmap blocks. 1128 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps. 1129 * 1130 * Returns: errno 1131 */ 1132 1133 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd) 1134 { 1135 struct gfs2_sbd *sdp = rgd->rd_sbd; 1136 struct gfs2_glock *gl = rgd->rd_gl; 1137 unsigned int length = rgd->rd_length; 1138 struct gfs2_bitmap *bi; 1139 unsigned int x, y; 1140 int error; 1141 1142 if (rgd->rd_bits[0].bi_bh != NULL) 1143 return 0; 1144 1145 for (x = 0; x < length; x++) { 1146 bi = rgd->rd_bits + x; 1147 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh); 1148 if (error) 1149 goto fail; 1150 } 1151 1152 for (y = length; y--;) { 1153 bi = rgd->rd_bits + y; 1154 error = gfs2_meta_wait(sdp, bi->bi_bh); 1155 if (error) 1156 goto fail; 1157 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : 1158 GFS2_METATYPE_RG)) { 1159 error = -EIO; 1160 goto fail; 1161 } 1162 } 1163 1164 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) { 1165 for (x = 0; x < length; x++) 1166 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags); 1167 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); 1168 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1169 rgd->rd_free_clone = rgd->rd_free; 1170 /* max out the rgrp allocation failure point */ 1171 rgd->rd_extfail_pt = rgd->rd_free; 1172 } 1173 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) { 1174 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd)); 1175 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, 1176 rgd->rd_bits[0].bi_bh->b_data); 1177 } 1178 else if (sdp->sd_args.ar_rgrplvb) { 1179 if (!gfs2_rgrp_lvb_valid(rgd)){ 1180 gfs2_consist_rgrpd(rgd); 1181 error = -EIO; 1182 goto fail; 1183 } 1184 if (rgd->rd_rgl->rl_unlinked == 0) 1185 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1186 } 1187 return 0; 1188 1189 fail: 1190 while (x--) { 1191 bi = rgd->rd_bits + x; 1192 brelse(bi->bi_bh); 1193 bi->bi_bh = NULL; 1194 gfs2_assert_warn(sdp, !bi->bi_clone); 1195 } 1196 1197 return error; 1198 } 1199 1200 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd) 1201 { 1202 u32 rl_flags; 1203 1204 if (rgd->rd_flags & GFS2_RDF_UPTODATE) 1205 return 0; 1206 1207 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) 1208 return gfs2_rgrp_bh_get(rgd); 1209 1210 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags); 1211 rl_flags &= ~GFS2_RDF_MASK; 1212 rgd->rd_flags &= GFS2_RDF_MASK; 1213 rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1214 if (rgd->rd_rgl->rl_unlinked == 0) 1215 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1216 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free); 1217 rgd->rd_free_clone = rgd->rd_free; 1218 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes); 1219 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration); 1220 return 0; 1221 } 1222 1223 int gfs2_rgrp_go_lock(struct gfs2_holder *gh) 1224 { 1225 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1226 struct gfs2_sbd *sdp = rgd->rd_sbd; 1227 1228 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb) 1229 return 0; 1230 return gfs2_rgrp_bh_get(rgd); 1231 } 1232 1233 /** 1234 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get() 1235 * @rgd: The resource group 1236 * 1237 */ 1238 1239 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd) 1240 { 1241 int x, length = rgd->rd_length; 1242 1243 for (x = 0; x < length; x++) { 1244 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1245 if (bi->bi_bh) { 1246 brelse(bi->bi_bh); 1247 bi->bi_bh = NULL; 1248 } 1249 } 1250 1251 } 1252 1253 /** 1254 * gfs2_rgrp_go_unlock - Unlock a rgrp glock 1255 * @gh: The glock holder for the resource group 1256 * 1257 */ 1258 1259 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh) 1260 { 1261 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1262 int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) | 1263 test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags); 1264 1265 if (rgd && demote_requested) 1266 gfs2_rgrp_brelse(rgd); 1267 } 1268 1269 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, 1270 struct buffer_head *bh, 1271 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed) 1272 { 1273 struct super_block *sb = sdp->sd_vfs; 1274 u64 blk; 1275 sector_t start = 0; 1276 sector_t nr_blks = 0; 1277 int rv; 1278 unsigned int x; 1279 u32 trimmed = 0; 1280 u8 diff; 1281 1282 for (x = 0; x < bi->bi_len; x++) { 1283 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data; 1284 clone += bi->bi_offset; 1285 clone += x; 1286 if (bh) { 1287 const u8 *orig = bh->b_data + bi->bi_offset + x; 1288 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); 1289 } else { 1290 diff = ~(*clone | (*clone >> 1)); 1291 } 1292 diff &= 0x55; 1293 if (diff == 0) 1294 continue; 1295 blk = offset + ((bi->bi_start + x) * GFS2_NBBY); 1296 while(diff) { 1297 if (diff & 1) { 1298 if (nr_blks == 0) 1299 goto start_new_extent; 1300 if ((start + nr_blks) != blk) { 1301 if (nr_blks >= minlen) { 1302 rv = sb_issue_discard(sb, 1303 start, nr_blks, 1304 GFP_NOFS, 0); 1305 if (rv) 1306 goto fail; 1307 trimmed += nr_blks; 1308 } 1309 nr_blks = 0; 1310 start_new_extent: 1311 start = blk; 1312 } 1313 nr_blks++; 1314 } 1315 diff >>= 2; 1316 blk++; 1317 } 1318 } 1319 if (nr_blks >= minlen) { 1320 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0); 1321 if (rv) 1322 goto fail; 1323 trimmed += nr_blks; 1324 } 1325 if (ptrimmed) 1326 *ptrimmed = trimmed; 1327 return 0; 1328 1329 fail: 1330 if (sdp->sd_args.ar_discard) 1331 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv); 1332 sdp->sd_args.ar_discard = 0; 1333 return -EIO; 1334 } 1335 1336 /** 1337 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem 1338 * @filp: Any file on the filesystem 1339 * @argp: Pointer to the arguments (also used to pass result) 1340 * 1341 * Returns: 0 on success, otherwise error code 1342 */ 1343 1344 int gfs2_fitrim(struct file *filp, void __user *argp) 1345 { 1346 struct inode *inode = file_inode(filp); 1347 struct gfs2_sbd *sdp = GFS2_SB(inode); 1348 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev); 1349 struct buffer_head *bh; 1350 struct gfs2_rgrpd *rgd; 1351 struct gfs2_rgrpd *rgd_end; 1352 struct gfs2_holder gh; 1353 struct fstrim_range r; 1354 int ret = 0; 1355 u64 amt; 1356 u64 trimmed = 0; 1357 u64 start, end, minlen; 1358 unsigned int x; 1359 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift; 1360 1361 if (!capable(CAP_SYS_ADMIN)) 1362 return -EPERM; 1363 1364 if (!blk_queue_discard(q)) 1365 return -EOPNOTSUPP; 1366 1367 if (copy_from_user(&r, argp, sizeof(r))) 1368 return -EFAULT; 1369 1370 ret = gfs2_rindex_update(sdp); 1371 if (ret) 1372 return ret; 1373 1374 start = r.start >> bs_shift; 1375 end = start + (r.len >> bs_shift); 1376 minlen = max_t(u64, r.minlen, 1377 q->limits.discard_granularity) >> bs_shift; 1378 1379 if (end <= start || minlen > sdp->sd_max_rg_data) 1380 return -EINVAL; 1381 1382 rgd = gfs2_blk2rgrpd(sdp, start, 0); 1383 rgd_end = gfs2_blk2rgrpd(sdp, end, 0); 1384 1385 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end)) 1386 && (start > rgd_end->rd_data0 + rgd_end->rd_data)) 1387 return -EINVAL; /* start is beyond the end of the fs */ 1388 1389 while (1) { 1390 1391 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh); 1392 if (ret) 1393 goto out; 1394 1395 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) { 1396 /* Trim each bitmap in the rgrp */ 1397 for (x = 0; x < rgd->rd_length; x++) { 1398 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1399 ret = gfs2_rgrp_send_discards(sdp, 1400 rgd->rd_data0, NULL, bi, minlen, 1401 &amt); 1402 if (ret) { 1403 gfs2_glock_dq_uninit(&gh); 1404 goto out; 1405 } 1406 trimmed += amt; 1407 } 1408 1409 /* Mark rgrp as having been trimmed */ 1410 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0); 1411 if (ret == 0) { 1412 bh = rgd->rd_bits[0].bi_bh; 1413 rgd->rd_flags |= GFS2_RGF_TRIMMED; 1414 gfs2_trans_add_meta(rgd->rd_gl, bh); 1415 gfs2_rgrp_out(rgd, bh->b_data); 1416 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data); 1417 gfs2_trans_end(sdp); 1418 } 1419 } 1420 gfs2_glock_dq_uninit(&gh); 1421 1422 if (rgd == rgd_end) 1423 break; 1424 1425 rgd = gfs2_rgrpd_get_next(rgd); 1426 } 1427 1428 out: 1429 r.len = trimmed << bs_shift; 1430 if (copy_to_user(argp, &r, sizeof(r))) 1431 return -EFAULT; 1432 1433 return ret; 1434 } 1435 1436 /** 1437 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree 1438 * @ip: the inode structure 1439 * 1440 */ 1441 static void rs_insert(struct gfs2_inode *ip) 1442 { 1443 struct rb_node **newn, *parent = NULL; 1444 int rc; 1445 struct gfs2_blkreserv *rs = &ip->i_res; 1446 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd; 1447 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm); 1448 1449 BUG_ON(gfs2_rs_active(rs)); 1450 1451 spin_lock(&rgd->rd_rsspin); 1452 newn = &rgd->rd_rstree.rb_node; 1453 while (*newn) { 1454 struct gfs2_blkreserv *cur = 1455 rb_entry(*newn, struct gfs2_blkreserv, rs_node); 1456 1457 parent = *newn; 1458 rc = rs_cmp(fsblock, rs->rs_free, cur); 1459 if (rc > 0) 1460 newn = &((*newn)->rb_right); 1461 else if (rc < 0) 1462 newn = &((*newn)->rb_left); 1463 else { 1464 spin_unlock(&rgd->rd_rsspin); 1465 WARN_ON(1); 1466 return; 1467 } 1468 } 1469 1470 rb_link_node(&rs->rs_node, parent, newn); 1471 rb_insert_color(&rs->rs_node, &rgd->rd_rstree); 1472 1473 /* Do our rgrp accounting for the reservation */ 1474 rgd->rd_reserved += rs->rs_free; /* blocks reserved */ 1475 spin_unlock(&rgd->rd_rsspin); 1476 trace_gfs2_rs(rs, TRACE_RS_INSERT); 1477 } 1478 1479 /** 1480 * rg_mblk_search - find a group of multiple free blocks to form a reservation 1481 * @rgd: the resource group descriptor 1482 * @ip: pointer to the inode for which we're reserving blocks 1483 * @ap: the allocation parameters 1484 * 1485 */ 1486 1487 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip, 1488 const struct gfs2_alloc_parms *ap) 1489 { 1490 struct gfs2_rbm rbm = { .rgd = rgd, }; 1491 u64 goal; 1492 struct gfs2_blkreserv *rs = &ip->i_res; 1493 u32 extlen; 1494 u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved; 1495 int ret; 1496 struct inode *inode = &ip->i_inode; 1497 1498 if (S_ISDIR(inode->i_mode)) 1499 extlen = 1; 1500 else { 1501 extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target); 1502 extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks); 1503 } 1504 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen)) 1505 return; 1506 1507 /* Find bitmap block that contains bits for goal block */ 1508 if (rgrp_contains_block(rgd, ip->i_goal)) 1509 goal = ip->i_goal; 1510 else 1511 goal = rgd->rd_last_alloc + rgd->rd_data0; 1512 1513 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal))) 1514 return; 1515 1516 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true); 1517 if (ret == 0) { 1518 rs->rs_rbm = rbm; 1519 rs->rs_free = extlen; 1520 rs->rs_inum = ip->i_no_addr; 1521 rs_insert(ip); 1522 } else { 1523 if (goal == rgd->rd_last_alloc + rgd->rd_data0) 1524 rgd->rd_last_alloc = 0; 1525 } 1526 } 1527 1528 /** 1529 * gfs2_next_unreserved_block - Return next block that is not reserved 1530 * @rgd: The resource group 1531 * @block: The starting block 1532 * @length: The required length 1533 * @ip: Ignore any reservations for this inode 1534 * 1535 * If the block does not appear in any reservation, then return the 1536 * block number unchanged. If it does appear in the reservation, then 1537 * keep looking through the tree of reservations in order to find the 1538 * first block number which is not reserved. 1539 */ 1540 1541 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block, 1542 u32 length, 1543 const struct gfs2_inode *ip) 1544 { 1545 struct gfs2_blkreserv *rs; 1546 struct rb_node *n; 1547 int rc; 1548 1549 spin_lock(&rgd->rd_rsspin); 1550 n = rgd->rd_rstree.rb_node; 1551 while (n) { 1552 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1553 rc = rs_cmp(block, length, rs); 1554 if (rc < 0) 1555 n = n->rb_left; 1556 else if (rc > 0) 1557 n = n->rb_right; 1558 else 1559 break; 1560 } 1561 1562 if (n) { 1563 while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) { 1564 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free; 1565 n = n->rb_right; 1566 if (n == NULL) 1567 break; 1568 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1569 } 1570 } 1571 1572 spin_unlock(&rgd->rd_rsspin); 1573 return block; 1574 } 1575 1576 /** 1577 * gfs2_reservation_check_and_update - Check for reservations during block alloc 1578 * @rbm: The current position in the resource group 1579 * @ip: The inode for which we are searching for blocks 1580 * @minext: The minimum extent length 1581 * @maxext: A pointer to the maximum extent structure 1582 * 1583 * This checks the current position in the rgrp to see whether there is 1584 * a reservation covering this block. If not then this function is a 1585 * no-op. If there is, then the position is moved to the end of the 1586 * contiguous reservation(s) so that we are pointing at the first 1587 * non-reserved block. 1588 * 1589 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error 1590 */ 1591 1592 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm, 1593 const struct gfs2_inode *ip, 1594 u32 minext, 1595 struct gfs2_extent *maxext) 1596 { 1597 u64 block = gfs2_rbm_to_block(rbm); 1598 u32 extlen = 1; 1599 u64 nblock; 1600 int ret; 1601 1602 /* 1603 * If we have a minimum extent length, then skip over any extent 1604 * which is less than the min extent length in size. 1605 */ 1606 if (minext) { 1607 extlen = gfs2_free_extlen(rbm, minext); 1608 if (extlen <= maxext->len) 1609 goto fail; 1610 } 1611 1612 /* 1613 * Check the extent which has been found against the reservations 1614 * and skip if parts of it are already reserved 1615 */ 1616 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip); 1617 if (nblock == block) { 1618 if (!minext || extlen >= minext) 1619 return 0; 1620 1621 if (extlen > maxext->len) { 1622 maxext->len = extlen; 1623 maxext->rbm = *rbm; 1624 } 1625 fail: 1626 nblock = block + extlen; 1627 } 1628 ret = gfs2_rbm_from_block(rbm, nblock); 1629 if (ret < 0) 1630 return ret; 1631 return 1; 1632 } 1633 1634 /** 1635 * gfs2_rbm_find - Look for blocks of a particular state 1636 * @rbm: Value/result starting position and final position 1637 * @state: The state which we want to find 1638 * @minext: Pointer to the requested extent length (NULL for a single block) 1639 * This is updated to be the actual reservation size. 1640 * @ip: If set, check for reservations 1641 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping 1642 * around until we've reached the starting point. 1643 * 1644 * Side effects: 1645 * - If looking for free blocks, we set GBF_FULL on each bitmap which 1646 * has no free blocks in it. 1647 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which 1648 * has come up short on a free block search. 1649 * 1650 * Returns: 0 on success, -ENOSPC if there is no block of the requested state 1651 */ 1652 1653 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 1654 const struct gfs2_inode *ip, bool nowrap) 1655 { 1656 struct buffer_head *bh; 1657 int initial_bii; 1658 u32 initial_offset; 1659 int first_bii = rbm->bii; 1660 u32 first_offset = rbm->offset; 1661 u32 offset; 1662 u8 *buffer; 1663 int n = 0; 1664 int iters = rbm->rgd->rd_length; 1665 int ret; 1666 struct gfs2_bitmap *bi; 1667 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, }; 1668 1669 /* If we are not starting at the beginning of a bitmap, then we 1670 * need to add one to the bitmap count to ensure that we search 1671 * the starting bitmap twice. 1672 */ 1673 if (rbm->offset != 0) 1674 iters++; 1675 1676 while(1) { 1677 bi = rbm_bi(rbm); 1678 if (test_bit(GBF_FULL, &bi->bi_flags) && 1679 (state == GFS2_BLKST_FREE)) 1680 goto next_bitmap; 1681 1682 bh = bi->bi_bh; 1683 buffer = bh->b_data + bi->bi_offset; 1684 WARN_ON(!buffer_uptodate(bh)); 1685 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone) 1686 buffer = bi->bi_clone + bi->bi_offset; 1687 initial_offset = rbm->offset; 1688 offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state); 1689 if (offset == BFITNOENT) 1690 goto bitmap_full; 1691 rbm->offset = offset; 1692 if (ip == NULL) 1693 return 0; 1694 1695 initial_bii = rbm->bii; 1696 ret = gfs2_reservation_check_and_update(rbm, ip, 1697 minext ? *minext : 0, 1698 &maxext); 1699 if (ret == 0) 1700 return 0; 1701 if (ret > 0) { 1702 n += (rbm->bii - initial_bii); 1703 goto next_iter; 1704 } 1705 if (ret == -E2BIG) { 1706 rbm->bii = 0; 1707 rbm->offset = 0; 1708 n += (rbm->bii - initial_bii); 1709 goto res_covered_end_of_rgrp; 1710 } 1711 return ret; 1712 1713 bitmap_full: /* Mark bitmap as full and fall through */ 1714 if ((state == GFS2_BLKST_FREE) && initial_offset == 0) 1715 set_bit(GBF_FULL, &bi->bi_flags); 1716 1717 next_bitmap: /* Find next bitmap in the rgrp */ 1718 rbm->offset = 0; 1719 rbm->bii++; 1720 if (rbm->bii == rbm->rgd->rd_length) 1721 rbm->bii = 0; 1722 res_covered_end_of_rgrp: 1723 if ((rbm->bii == 0) && nowrap) 1724 break; 1725 n++; 1726 next_iter: 1727 if (n >= iters) 1728 break; 1729 } 1730 1731 if (minext == NULL || state != GFS2_BLKST_FREE) 1732 return -ENOSPC; 1733 1734 /* If the extent was too small, and it's smaller than the smallest 1735 to have failed before, remember for future reference that it's 1736 useless to search this rgrp again for this amount or more. */ 1737 if ((first_offset == 0) && (first_bii == 0) && 1738 (*minext < rbm->rgd->rd_extfail_pt)) 1739 rbm->rgd->rd_extfail_pt = *minext; 1740 1741 /* If the maximum extent we found is big enough to fulfill the 1742 minimum requirements, use it anyway. */ 1743 if (maxext.len) { 1744 *rbm = maxext.rbm; 1745 *minext = maxext.len; 1746 return 0; 1747 } 1748 1749 return -ENOSPC; 1750 } 1751 1752 /** 1753 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes 1754 * @rgd: The rgrp 1755 * @last_unlinked: block address of the last dinode we unlinked 1756 * @skip: block address we should explicitly not unlink 1757 * 1758 * Returns: 0 if no error 1759 * The inode, if one has been found, in inode. 1760 */ 1761 1762 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) 1763 { 1764 u64 block; 1765 struct gfs2_sbd *sdp = rgd->rd_sbd; 1766 struct gfs2_glock *gl; 1767 struct gfs2_inode *ip; 1768 int error; 1769 int found = 0; 1770 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 }; 1771 1772 while (1) { 1773 down_write(&sdp->sd_log_flush_lock); 1774 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL, 1775 true); 1776 up_write(&sdp->sd_log_flush_lock); 1777 if (error == -ENOSPC) 1778 break; 1779 if (WARN_ON_ONCE(error)) 1780 break; 1781 1782 block = gfs2_rbm_to_block(&rbm); 1783 if (gfs2_rbm_from_block(&rbm, block + 1)) 1784 break; 1785 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked) 1786 continue; 1787 if (block == skip) 1788 continue; 1789 *last_unlinked = block; 1790 1791 error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl); 1792 if (error) 1793 continue; 1794 1795 /* If the inode is already in cache, we can ignore it here 1796 * because the existing inode disposal code will deal with 1797 * it when all refs have gone away. Accessing gl_object like 1798 * this is not safe in general. Here it is ok because we do 1799 * not dereference the pointer, and we only need an approx 1800 * answer to whether it is NULL or not. 1801 */ 1802 ip = gl->gl_object; 1803 1804 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0) 1805 gfs2_glock_put(gl); 1806 else 1807 found++; 1808 1809 /* Limit reclaim to sensible number of tasks */ 1810 if (found > NR_CPUS) 1811 return; 1812 } 1813 1814 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1815 return; 1816 } 1817 1818 /** 1819 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested 1820 * @rgd: The rgrp in question 1821 * @loops: An indication of how picky we can be (0=very, 1=less so) 1822 * 1823 * This function uses the recently added glock statistics in order to 1824 * figure out whether a parciular resource group is suffering from 1825 * contention from multiple nodes. This is done purely on the basis 1826 * of timings, since this is the only data we have to work with and 1827 * our aim here is to reject a resource group which is highly contended 1828 * but (very important) not to do this too often in order to ensure that 1829 * we do not land up introducing fragmentation by changing resource 1830 * groups when not actually required. 1831 * 1832 * The calculation is fairly simple, we want to know whether the SRTTB 1833 * (i.e. smoothed round trip time for blocking operations) to acquire 1834 * the lock for this rgrp's glock is significantly greater than the 1835 * time taken for resource groups on average. We introduce a margin in 1836 * the form of the variable @var which is computed as the sum of the two 1837 * respective variences, and multiplied by a factor depending on @loops 1838 * and whether we have a lot of data to base the decision on. This is 1839 * then tested against the square difference of the means in order to 1840 * decide whether the result is statistically significant or not. 1841 * 1842 * Returns: A boolean verdict on the congestion status 1843 */ 1844 1845 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops) 1846 { 1847 const struct gfs2_glock *gl = rgd->rd_gl; 1848 const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 1849 struct gfs2_lkstats *st; 1850 u64 r_dcount, l_dcount; 1851 u64 l_srttb, a_srttb = 0; 1852 s64 srttb_diff; 1853 u64 sqr_diff; 1854 u64 var; 1855 int cpu, nonzero = 0; 1856 1857 preempt_disable(); 1858 for_each_present_cpu(cpu) { 1859 st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP]; 1860 if (st->stats[GFS2_LKS_SRTTB]) { 1861 a_srttb += st->stats[GFS2_LKS_SRTTB]; 1862 nonzero++; 1863 } 1864 } 1865 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP]; 1866 if (nonzero) 1867 do_div(a_srttb, nonzero); 1868 r_dcount = st->stats[GFS2_LKS_DCOUNT]; 1869 var = st->stats[GFS2_LKS_SRTTVARB] + 1870 gl->gl_stats.stats[GFS2_LKS_SRTTVARB]; 1871 preempt_enable(); 1872 1873 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB]; 1874 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT]; 1875 1876 if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0)) 1877 return false; 1878 1879 srttb_diff = a_srttb - l_srttb; 1880 sqr_diff = srttb_diff * srttb_diff; 1881 1882 var *= 2; 1883 if (l_dcount < 8 || r_dcount < 8) 1884 var *= 2; 1885 if (loops == 1) 1886 var *= 2; 1887 1888 return ((srttb_diff < 0) && (sqr_diff > var)); 1889 } 1890 1891 /** 1892 * gfs2_rgrp_used_recently 1893 * @rs: The block reservation with the rgrp to test 1894 * @msecs: The time limit in milliseconds 1895 * 1896 * Returns: True if the rgrp glock has been used within the time limit 1897 */ 1898 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs, 1899 u64 msecs) 1900 { 1901 u64 tdiff; 1902 1903 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(), 1904 rs->rs_rbm.rgd->rd_gl->gl_dstamp)); 1905 1906 return tdiff > (msecs * 1000 * 1000); 1907 } 1908 1909 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip) 1910 { 1911 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1912 u32 skip; 1913 1914 get_random_bytes(&skip, sizeof(skip)); 1915 return skip % sdp->sd_rgrps; 1916 } 1917 1918 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin) 1919 { 1920 struct gfs2_rgrpd *rgd = *pos; 1921 struct gfs2_sbd *sdp = rgd->rd_sbd; 1922 1923 rgd = gfs2_rgrpd_get_next(rgd); 1924 if (rgd == NULL) 1925 rgd = gfs2_rgrpd_get_first(sdp); 1926 *pos = rgd; 1927 if (rgd != begin) /* If we didn't wrap */ 1928 return true; 1929 return false; 1930 } 1931 1932 /** 1933 * fast_to_acquire - determine if a resource group will be fast to acquire 1934 * 1935 * If this is one of our preferred rgrps, it should be quicker to acquire, 1936 * because we tried to set ourselves up as dlm lock master. 1937 */ 1938 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd) 1939 { 1940 struct gfs2_glock *gl = rgd->rd_gl; 1941 1942 if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) && 1943 !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) && 1944 !test_bit(GLF_DEMOTE, &gl->gl_flags)) 1945 return 1; 1946 if (rgd->rd_flags & GFS2_RDF_PREFERRED) 1947 return 1; 1948 return 0; 1949 } 1950 1951 /** 1952 * gfs2_inplace_reserve - Reserve space in the filesystem 1953 * @ip: the inode to reserve space for 1954 * @ap: the allocation parameters 1955 * 1956 * We try our best to find an rgrp that has at least ap->target blocks 1957 * available. After a couple of passes (loops == 2), the prospects of finding 1958 * such an rgrp diminish. At this stage, we return the first rgrp that has 1959 * atleast ap->min_target blocks available. Either way, we set ap->allowed to 1960 * the number of blocks available in the chosen rgrp. 1961 * 1962 * Returns: 0 on success, 1963 * -ENOMEM if a suitable rgrp can't be found 1964 * errno otherwise 1965 */ 1966 1967 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap) 1968 { 1969 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1970 struct gfs2_rgrpd *begin = NULL; 1971 struct gfs2_blkreserv *rs = &ip->i_res; 1972 int error = 0, rg_locked, flags = 0; 1973 u64 last_unlinked = NO_BLOCK; 1974 int loops = 0; 1975 u32 skip = 0; 1976 1977 if (sdp->sd_args.ar_rgrplvb) 1978 flags |= GL_SKIP; 1979 if (gfs2_assert_warn(sdp, ap->target)) 1980 return -EINVAL; 1981 if (gfs2_rs_active(rs)) { 1982 begin = rs->rs_rbm.rgd; 1983 } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) { 1984 rs->rs_rbm.rgd = begin = ip->i_rgd; 1985 } else { 1986 check_and_update_goal(ip); 1987 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1); 1988 } 1989 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV)) 1990 skip = gfs2_orlov_skip(ip); 1991 if (rs->rs_rbm.rgd == NULL) 1992 return -EBADSLT; 1993 1994 while (loops < 3) { 1995 rg_locked = 1; 1996 1997 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) { 1998 rg_locked = 0; 1999 if (skip && skip--) 2000 goto next_rgrp; 2001 if (!gfs2_rs_active(rs)) { 2002 if (loops == 0 && 2003 !fast_to_acquire(rs->rs_rbm.rgd)) 2004 goto next_rgrp; 2005 if ((loops < 2) && 2006 gfs2_rgrp_used_recently(rs, 1000) && 2007 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 2008 goto next_rgrp; 2009 } 2010 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl, 2011 LM_ST_EXCLUSIVE, flags, 2012 &rs->rs_rgd_gh); 2013 if (unlikely(error)) 2014 return error; 2015 if (!gfs2_rs_active(rs) && (loops < 2) && 2016 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 2017 goto skip_rgrp; 2018 if (sdp->sd_args.ar_rgrplvb) { 2019 error = update_rgrp_lvb(rs->rs_rbm.rgd); 2020 if (unlikely(error)) { 2021 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 2022 return error; 2023 } 2024 } 2025 } 2026 2027 /* Skip unuseable resource groups */ 2028 if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | 2029 GFS2_RDF_ERROR)) || 2030 (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt)) 2031 goto skip_rgrp; 2032 2033 if (sdp->sd_args.ar_rgrplvb) 2034 gfs2_rgrp_bh_get(rs->rs_rbm.rgd); 2035 2036 /* Get a reservation if we don't already have one */ 2037 if (!gfs2_rs_active(rs)) 2038 rg_mblk_search(rs->rs_rbm.rgd, ip, ap); 2039 2040 /* Skip rgrps when we can't get a reservation on first pass */ 2041 if (!gfs2_rs_active(rs) && (loops < 1)) 2042 goto check_rgrp; 2043 2044 /* If rgrp has enough free space, use it */ 2045 if (rs->rs_rbm.rgd->rd_free_clone >= ap->target || 2046 (loops == 2 && ap->min_target && 2047 rs->rs_rbm.rgd->rd_free_clone >= ap->min_target)) { 2048 ip->i_rgd = rs->rs_rbm.rgd; 2049 ap->allowed = ip->i_rgd->rd_free_clone; 2050 return 0; 2051 } 2052 check_rgrp: 2053 /* Check for unlinked inodes which can be reclaimed */ 2054 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK) 2055 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked, 2056 ip->i_no_addr); 2057 skip_rgrp: 2058 /* Drop reservation, if we couldn't use reserved rgrp */ 2059 if (gfs2_rs_active(rs)) 2060 gfs2_rs_deltree(rs); 2061 2062 /* Unlock rgrp if required */ 2063 if (!rg_locked) 2064 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 2065 next_rgrp: 2066 /* Find the next rgrp, and continue looking */ 2067 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin)) 2068 continue; 2069 if (skip) 2070 continue; 2071 2072 /* If we've scanned all the rgrps, but found no free blocks 2073 * then this checks for some less likely conditions before 2074 * trying again. 2075 */ 2076 loops++; 2077 /* Check that fs hasn't grown if writing to rindex */ 2078 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { 2079 error = gfs2_ri_update(ip); 2080 if (error) 2081 return error; 2082 } 2083 /* Flushing the log may release space */ 2084 if (loops == 2) 2085 gfs2_log_flush(sdp, NULL, NORMAL_FLUSH); 2086 } 2087 2088 return -ENOSPC; 2089 } 2090 2091 /** 2092 * gfs2_inplace_release - release an inplace reservation 2093 * @ip: the inode the reservation was taken out on 2094 * 2095 * Release a reservation made by gfs2_inplace_reserve(). 2096 */ 2097 2098 void gfs2_inplace_release(struct gfs2_inode *ip) 2099 { 2100 struct gfs2_blkreserv *rs = &ip->i_res; 2101 2102 if (gfs2_holder_initialized(&rs->rs_rgd_gh)) 2103 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 2104 } 2105 2106 /** 2107 * gfs2_get_block_type - Check a block in a RG is of given type 2108 * @rgd: the resource group holding the block 2109 * @block: the block number 2110 * 2111 * Returns: The block type (GFS2_BLKST_*) 2112 */ 2113 2114 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block) 2115 { 2116 struct gfs2_rbm rbm = { .rgd = rgd, }; 2117 int ret; 2118 2119 ret = gfs2_rbm_from_block(&rbm, block); 2120 WARN_ON_ONCE(ret != 0); 2121 2122 return gfs2_testbit(&rbm); 2123 } 2124 2125 2126 /** 2127 * gfs2_alloc_extent - allocate an extent from a given bitmap 2128 * @rbm: the resource group information 2129 * @dinode: TRUE if the first block we allocate is for a dinode 2130 * @n: The extent length (value/result) 2131 * 2132 * Add the bitmap buffer to the transaction. 2133 * Set the found bits to @new_state to change block's allocation state. 2134 */ 2135 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode, 2136 unsigned int *n) 2137 { 2138 struct gfs2_rbm pos = { .rgd = rbm->rgd, }; 2139 const unsigned int elen = *n; 2140 u64 block; 2141 int ret; 2142 2143 *n = 1; 2144 block = gfs2_rbm_to_block(rbm); 2145 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh); 2146 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2147 block++; 2148 while (*n < elen) { 2149 ret = gfs2_rbm_from_block(&pos, block); 2150 if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE) 2151 break; 2152 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh); 2153 gfs2_setbit(&pos, true, GFS2_BLKST_USED); 2154 (*n)++; 2155 block++; 2156 } 2157 } 2158 2159 /** 2160 * rgblk_free - Change alloc state of given block(s) 2161 * @sdp: the filesystem 2162 * @bstart: the start of a run of blocks to free 2163 * @blen: the length of the block run (all must lie within ONE RG!) 2164 * @new_state: GFS2_BLKST_XXX the after-allocation block state 2165 * 2166 * Returns: Resource group containing the block(s) 2167 */ 2168 2169 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart, 2170 u32 blen, unsigned char new_state) 2171 { 2172 struct gfs2_rbm rbm; 2173 struct gfs2_bitmap *bi, *bi_prev = NULL; 2174 2175 rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1); 2176 if (!rbm.rgd) { 2177 if (gfs2_consist(sdp)) 2178 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart); 2179 return NULL; 2180 } 2181 2182 gfs2_rbm_from_block(&rbm, bstart); 2183 while (blen--) { 2184 bi = rbm_bi(&rbm); 2185 if (bi != bi_prev) { 2186 if (!bi->bi_clone) { 2187 bi->bi_clone = kmalloc(bi->bi_bh->b_size, 2188 GFP_NOFS | __GFP_NOFAIL); 2189 memcpy(bi->bi_clone + bi->bi_offset, 2190 bi->bi_bh->b_data + bi->bi_offset, 2191 bi->bi_len); 2192 } 2193 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh); 2194 bi_prev = bi; 2195 } 2196 gfs2_setbit(&rbm, false, new_state); 2197 gfs2_rbm_incr(&rbm); 2198 } 2199 2200 return rbm.rgd; 2201 } 2202 2203 /** 2204 * gfs2_rgrp_dump - print out an rgrp 2205 * @seq: The iterator 2206 * @gl: The glock in question 2207 * 2208 */ 2209 2210 void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl) 2211 { 2212 struct gfs2_rgrpd *rgd = gl->gl_object; 2213 struct gfs2_blkreserv *trs; 2214 const struct rb_node *n; 2215 2216 if (rgd == NULL) 2217 return; 2218 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n", 2219 (unsigned long long)rgd->rd_addr, rgd->rd_flags, 2220 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes, 2221 rgd->rd_reserved, rgd->rd_extfail_pt); 2222 spin_lock(&rgd->rd_rsspin); 2223 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) { 2224 trs = rb_entry(n, struct gfs2_blkreserv, rs_node); 2225 dump_rs(seq, trs); 2226 } 2227 spin_unlock(&rgd->rd_rsspin); 2228 } 2229 2230 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) 2231 { 2232 struct gfs2_sbd *sdp = rgd->rd_sbd; 2233 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", 2234 (unsigned long long)rgd->rd_addr); 2235 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); 2236 gfs2_rgrp_dump(NULL, rgd->rd_gl); 2237 rgd->rd_flags |= GFS2_RDF_ERROR; 2238 } 2239 2240 /** 2241 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation 2242 * @ip: The inode we have just allocated blocks for 2243 * @rbm: The start of the allocated blocks 2244 * @len: The extent length 2245 * 2246 * Adjusts a reservation after an allocation has taken place. If the 2247 * reservation does not match the allocation, or if it is now empty 2248 * then it is removed. 2249 */ 2250 2251 static void gfs2_adjust_reservation(struct gfs2_inode *ip, 2252 const struct gfs2_rbm *rbm, unsigned len) 2253 { 2254 struct gfs2_blkreserv *rs = &ip->i_res; 2255 struct gfs2_rgrpd *rgd = rbm->rgd; 2256 unsigned rlen; 2257 u64 block; 2258 int ret; 2259 2260 spin_lock(&rgd->rd_rsspin); 2261 if (gfs2_rs_active(rs)) { 2262 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) { 2263 block = gfs2_rbm_to_block(rbm); 2264 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len); 2265 rlen = min(rs->rs_free, len); 2266 rs->rs_free -= rlen; 2267 rgd->rd_reserved -= rlen; 2268 trace_gfs2_rs(rs, TRACE_RS_CLAIM); 2269 if (rs->rs_free && !ret) 2270 goto out; 2271 /* We used up our block reservation, so we should 2272 reserve more blocks next time. */ 2273 atomic_add(RGRP_RSRV_ADDBLKS, &rs->rs_sizehint); 2274 } 2275 __rs_deltree(rs); 2276 } 2277 out: 2278 spin_unlock(&rgd->rd_rsspin); 2279 } 2280 2281 /** 2282 * gfs2_set_alloc_start - Set starting point for block allocation 2283 * @rbm: The rbm which will be set to the required location 2284 * @ip: The gfs2 inode 2285 * @dinode: Flag to say if allocation includes a new inode 2286 * 2287 * This sets the starting point from the reservation if one is active 2288 * otherwise it falls back to guessing a start point based on the 2289 * inode's goal block or the last allocation point in the rgrp. 2290 */ 2291 2292 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm, 2293 const struct gfs2_inode *ip, bool dinode) 2294 { 2295 u64 goal; 2296 2297 if (gfs2_rs_active(&ip->i_res)) { 2298 *rbm = ip->i_res.rs_rbm; 2299 return; 2300 } 2301 2302 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal)) 2303 goal = ip->i_goal; 2304 else 2305 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0; 2306 2307 gfs2_rbm_from_block(rbm, goal); 2308 } 2309 2310 /** 2311 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode 2312 * @ip: the inode to allocate the block for 2313 * @bn: Used to return the starting block number 2314 * @nblocks: requested number of blocks/extent length (value/result) 2315 * @dinode: 1 if we're allocating a dinode block, else 0 2316 * @generation: the generation number of the inode 2317 * 2318 * Returns: 0 or error 2319 */ 2320 2321 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks, 2322 bool dinode, u64 *generation) 2323 { 2324 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2325 struct buffer_head *dibh; 2326 struct gfs2_rbm rbm = { .rgd = ip->i_rgd, }; 2327 unsigned int ndata; 2328 u64 block; /* block, within the file system scope */ 2329 int error; 2330 2331 gfs2_set_alloc_start(&rbm, ip, dinode); 2332 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false); 2333 2334 if (error == -ENOSPC) { 2335 gfs2_set_alloc_start(&rbm, ip, dinode); 2336 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false); 2337 } 2338 2339 /* Since all blocks are reserved in advance, this shouldn't happen */ 2340 if (error) { 2341 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n", 2342 (unsigned long long)ip->i_no_addr, error, *nblocks, 2343 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags), 2344 rbm.rgd->rd_extfail_pt); 2345 goto rgrp_error; 2346 } 2347 2348 gfs2_alloc_extent(&rbm, dinode, nblocks); 2349 block = gfs2_rbm_to_block(&rbm); 2350 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0; 2351 if (gfs2_rs_active(&ip->i_res)) 2352 gfs2_adjust_reservation(ip, &rbm, *nblocks); 2353 ndata = *nblocks; 2354 if (dinode) 2355 ndata--; 2356 2357 if (!dinode) { 2358 ip->i_goal = block + ndata - 1; 2359 error = gfs2_meta_inode_buffer(ip, &dibh); 2360 if (error == 0) { 2361 struct gfs2_dinode *di = 2362 (struct gfs2_dinode *)dibh->b_data; 2363 gfs2_trans_add_meta(ip->i_gl, dibh); 2364 di->di_goal_meta = di->di_goal_data = 2365 cpu_to_be64(ip->i_goal); 2366 brelse(dibh); 2367 } 2368 } 2369 if (rbm.rgd->rd_free < *nblocks) { 2370 pr_warn("nblocks=%u\n", *nblocks); 2371 goto rgrp_error; 2372 } 2373 2374 rbm.rgd->rd_free -= *nblocks; 2375 if (dinode) { 2376 rbm.rgd->rd_dinodes++; 2377 *generation = rbm.rgd->rd_igeneration++; 2378 if (*generation == 0) 2379 *generation = rbm.rgd->rd_igeneration++; 2380 } 2381 2382 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh); 2383 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data); 2384 gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data); 2385 2386 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0); 2387 if (dinode) 2388 gfs2_trans_add_unrevoke(sdp, block, *nblocks); 2389 2390 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid); 2391 2392 rbm.rgd->rd_free_clone -= *nblocks; 2393 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks, 2394 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2395 *bn = block; 2396 return 0; 2397 2398 rgrp_error: 2399 gfs2_rgrp_error(rbm.rgd); 2400 return -EIO; 2401 } 2402 2403 /** 2404 * __gfs2_free_blocks - free a contiguous run of block(s) 2405 * @ip: the inode these blocks are being freed from 2406 * @bstart: first block of a run of contiguous blocks 2407 * @blen: the length of the block run 2408 * @meta: 1 if the blocks represent metadata 2409 * 2410 */ 2411 2412 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta) 2413 { 2414 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2415 struct gfs2_rgrpd *rgd; 2416 2417 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE); 2418 if (!rgd) 2419 return; 2420 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE); 2421 rgd->rd_free += blen; 2422 rgd->rd_flags &= ~GFS2_RGF_TRIMMED; 2423 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2424 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2425 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2426 2427 /* Directories keep their data in the metadata address space */ 2428 if (meta || ip->i_depth) 2429 gfs2_meta_wipe(ip, bstart, blen); 2430 } 2431 2432 /** 2433 * gfs2_free_meta - free a contiguous run of data block(s) 2434 * @ip: the inode these blocks are being freed from 2435 * @bstart: first block of a run of contiguous blocks 2436 * @blen: the length of the block run 2437 * 2438 */ 2439 2440 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen) 2441 { 2442 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2443 2444 __gfs2_free_blocks(ip, bstart, blen, 1); 2445 gfs2_statfs_change(sdp, 0, +blen, 0); 2446 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); 2447 } 2448 2449 void gfs2_unlink_di(struct inode *inode) 2450 { 2451 struct gfs2_inode *ip = GFS2_I(inode); 2452 struct gfs2_sbd *sdp = GFS2_SB(inode); 2453 struct gfs2_rgrpd *rgd; 2454 u64 blkno = ip->i_no_addr; 2455 2456 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED); 2457 if (!rgd) 2458 return; 2459 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2460 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2461 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2462 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2463 update_rgrp_lvb_unlinked(rgd, 1); 2464 } 2465 2466 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno) 2467 { 2468 struct gfs2_sbd *sdp = rgd->rd_sbd; 2469 struct gfs2_rgrpd *tmp_rgd; 2470 2471 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE); 2472 if (!tmp_rgd) 2473 return; 2474 gfs2_assert_withdraw(sdp, rgd == tmp_rgd); 2475 2476 if (!rgd->rd_dinodes) 2477 gfs2_consist_rgrpd(rgd); 2478 rgd->rd_dinodes--; 2479 rgd->rd_free++; 2480 2481 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2482 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2483 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2484 update_rgrp_lvb_unlinked(rgd, -1); 2485 2486 gfs2_statfs_change(sdp, 0, +1, -1); 2487 } 2488 2489 2490 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) 2491 { 2492 gfs2_free_uninit_di(rgd, ip->i_no_addr); 2493 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2494 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); 2495 gfs2_meta_wipe(ip, ip->i_no_addr, 1); 2496 } 2497 2498 /** 2499 * gfs2_check_blk_type - Check the type of a block 2500 * @sdp: The superblock 2501 * @no_addr: The block number to check 2502 * @type: The block type we are looking for 2503 * 2504 * Returns: 0 if the block type matches the expected type 2505 * -ESTALE if it doesn't match 2506 * or -ve errno if something went wrong while checking 2507 */ 2508 2509 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) 2510 { 2511 struct gfs2_rgrpd *rgd; 2512 struct gfs2_holder rgd_gh; 2513 int error = -EINVAL; 2514 2515 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1); 2516 if (!rgd) 2517 goto fail; 2518 2519 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); 2520 if (error) 2521 goto fail; 2522 2523 if (gfs2_get_block_type(rgd, no_addr) != type) 2524 error = -ESTALE; 2525 2526 gfs2_glock_dq_uninit(&rgd_gh); 2527 fail: 2528 return error; 2529 } 2530 2531 /** 2532 * gfs2_rlist_add - add a RG to a list of RGs 2533 * @ip: the inode 2534 * @rlist: the list of resource groups 2535 * @block: the block 2536 * 2537 * Figure out what RG a block belongs to and add that RG to the list 2538 * 2539 * FIXME: Don't use NOFAIL 2540 * 2541 */ 2542 2543 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, 2544 u64 block) 2545 { 2546 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2547 struct gfs2_rgrpd *rgd; 2548 struct gfs2_rgrpd **tmp; 2549 unsigned int new_space; 2550 unsigned int x; 2551 2552 if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) 2553 return; 2554 2555 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block)) 2556 rgd = ip->i_rgd; 2557 else 2558 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2559 if (!rgd) { 2560 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block); 2561 return; 2562 } 2563 ip->i_rgd = rgd; 2564 2565 for (x = 0; x < rlist->rl_rgrps; x++) 2566 if (rlist->rl_rgd[x] == rgd) 2567 return; 2568 2569 if (rlist->rl_rgrps == rlist->rl_space) { 2570 new_space = rlist->rl_space + 10; 2571 2572 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), 2573 GFP_NOFS | __GFP_NOFAIL); 2574 2575 if (rlist->rl_rgd) { 2576 memcpy(tmp, rlist->rl_rgd, 2577 rlist->rl_space * sizeof(struct gfs2_rgrpd *)); 2578 kfree(rlist->rl_rgd); 2579 } 2580 2581 rlist->rl_space = new_space; 2582 rlist->rl_rgd = tmp; 2583 } 2584 2585 rlist->rl_rgd[rlist->rl_rgrps++] = rgd; 2586 } 2587 2588 /** 2589 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate 2590 * and initialize an array of glock holders for them 2591 * @rlist: the list of resource groups 2592 * @state: the lock state to acquire the RG lock in 2593 * 2594 * FIXME: Don't use NOFAIL 2595 * 2596 */ 2597 2598 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state) 2599 { 2600 unsigned int x; 2601 2602 rlist->rl_ghs = kmalloc(rlist->rl_rgrps * sizeof(struct gfs2_holder), 2603 GFP_NOFS | __GFP_NOFAIL); 2604 for (x = 0; x < rlist->rl_rgrps; x++) 2605 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, 2606 state, 0, 2607 &rlist->rl_ghs[x]); 2608 } 2609 2610 /** 2611 * gfs2_rlist_free - free a resource group list 2612 * @rlist: the list of resource groups 2613 * 2614 */ 2615 2616 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) 2617 { 2618 unsigned int x; 2619 2620 kfree(rlist->rl_rgd); 2621 2622 if (rlist->rl_ghs) { 2623 for (x = 0; x < rlist->rl_rgrps; x++) 2624 gfs2_holder_uninit(&rlist->rl_ghs[x]); 2625 kfree(rlist->rl_ghs); 2626 rlist->rl_ghs = NULL; 2627 } 2628 } 2629 2630