1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/slab.h> 13 #include <linux/spinlock.h> 14 #include <linux/completion.h> 15 #include <linux/buffer_head.h> 16 #include <linux/fs.h> 17 #include <linux/gfs2_ondisk.h> 18 #include <linux/prefetch.h> 19 #include <linux/blkdev.h> 20 #include <linux/rbtree.h> 21 #include <linux/random.h> 22 23 #include "gfs2.h" 24 #include "incore.h" 25 #include "glock.h" 26 #include "glops.h" 27 #include "lops.h" 28 #include "meta_io.h" 29 #include "quota.h" 30 #include "rgrp.h" 31 #include "super.h" 32 #include "trans.h" 33 #include "util.h" 34 #include "log.h" 35 #include "inode.h" 36 #include "trace_gfs2.h" 37 38 #define BFITNOENT ((u32)~0) 39 #define NO_BLOCK ((u64)~0) 40 41 #if BITS_PER_LONG == 32 42 #define LBITMASK (0x55555555UL) 43 #define LBITSKIP55 (0x55555555UL) 44 #define LBITSKIP00 (0x00000000UL) 45 #else 46 #define LBITMASK (0x5555555555555555UL) 47 #define LBITSKIP55 (0x5555555555555555UL) 48 #define LBITSKIP00 (0x0000000000000000UL) 49 #endif 50 51 /* 52 * These routines are used by the resource group routines (rgrp.c) 53 * to keep track of block allocation. Each block is represented by two 54 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. 55 * 56 * 0 = Free 57 * 1 = Used (not metadata) 58 * 2 = Unlinked (still in use) inode 59 * 3 = Used (metadata) 60 */ 61 62 struct gfs2_extent { 63 struct gfs2_rbm rbm; 64 u32 len; 65 }; 66 67 static const char valid_change[16] = { 68 /* current */ 69 /* n */ 0, 1, 1, 1, 70 /* e */ 1, 0, 0, 0, 71 /* w */ 0, 0, 0, 1, 72 1, 0, 0, 0 73 }; 74 75 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 76 const struct gfs2_inode *ip, bool nowrap, 77 const struct gfs2_alloc_parms *ap); 78 79 80 /** 81 * gfs2_setbit - Set a bit in the bitmaps 82 * @rbm: The position of the bit to set 83 * @do_clone: Also set the clone bitmap, if it exists 84 * @new_state: the new state of the block 85 * 86 */ 87 88 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone, 89 unsigned char new_state) 90 { 91 unsigned char *byte1, *byte2, *end, cur_state; 92 struct gfs2_bitmap *bi = rbm_bi(rbm); 93 unsigned int buflen = bi->bi_len; 94 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 95 96 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY); 97 end = bi->bi_bh->b_data + bi->bi_offset + buflen; 98 99 BUG_ON(byte1 >= end); 100 101 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; 102 103 if (unlikely(!valid_change[new_state * 4 + cur_state])) { 104 pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n", 105 rbm->offset, cur_state, new_state); 106 pr_warn("rgrp=0x%llx bi_start=0x%x\n", 107 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start); 108 pr_warn("bi_offset=0x%x bi_len=0x%x\n", 109 bi->bi_offset, bi->bi_len); 110 dump_stack(); 111 gfs2_consist_rgrpd(rbm->rgd); 112 return; 113 } 114 *byte1 ^= (cur_state ^ new_state) << bit; 115 116 if (do_clone && bi->bi_clone) { 117 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY); 118 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; 119 *byte2 ^= (cur_state ^ new_state) << bit; 120 } 121 } 122 123 /** 124 * gfs2_testbit - test a bit in the bitmaps 125 * @rbm: The bit to test 126 * 127 * Returns: The two bit block state of the requested bit 128 */ 129 130 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm) 131 { 132 struct gfs2_bitmap *bi = rbm_bi(rbm); 133 const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset; 134 const u8 *byte; 135 unsigned int bit; 136 137 byte = buffer + (rbm->offset / GFS2_NBBY); 138 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 139 140 return (*byte >> bit) & GFS2_BIT_MASK; 141 } 142 143 /** 144 * gfs2_bit_search 145 * @ptr: Pointer to bitmap data 146 * @mask: Mask to use (normally 0x55555.... but adjusted for search start) 147 * @state: The state we are searching for 148 * 149 * We xor the bitmap data with a patter which is the bitwise opposite 150 * of what we are looking for, this gives rise to a pattern of ones 151 * wherever there is a match. Since we have two bits per entry, we 152 * take this pattern, shift it down by one place and then and it with 153 * the original. All the even bit positions (0,2,4, etc) then represent 154 * successful matches, so we mask with 0x55555..... to remove the unwanted 155 * odd bit positions. 156 * 157 * This allows searching of a whole u64 at once (32 blocks) with a 158 * single test (on 64 bit arches). 159 */ 160 161 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) 162 { 163 u64 tmp; 164 static const u64 search[] = { 165 [0] = 0xffffffffffffffffULL, 166 [1] = 0xaaaaaaaaaaaaaaaaULL, 167 [2] = 0x5555555555555555ULL, 168 [3] = 0x0000000000000000ULL, 169 }; 170 tmp = le64_to_cpu(*ptr) ^ search[state]; 171 tmp &= (tmp >> 1); 172 tmp &= mask; 173 return tmp; 174 } 175 176 /** 177 * rs_cmp - multi-block reservation range compare 178 * @blk: absolute file system block number of the new reservation 179 * @len: number of blocks in the new reservation 180 * @rs: existing reservation to compare against 181 * 182 * returns: 1 if the block range is beyond the reach of the reservation 183 * -1 if the block range is before the start of the reservation 184 * 0 if the block range overlaps with the reservation 185 */ 186 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs) 187 { 188 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm); 189 190 if (blk >= startblk + rs->rs_free) 191 return 1; 192 if (blk + len - 1 < startblk) 193 return -1; 194 return 0; 195 } 196 197 /** 198 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing 199 * a block in a given allocation state. 200 * @buf: the buffer that holds the bitmaps 201 * @len: the length (in bytes) of the buffer 202 * @goal: start search at this block's bit-pair (within @buffer) 203 * @state: GFS2_BLKST_XXX the state of the block we're looking for. 204 * 205 * Scope of @goal and returned block number is only within this bitmap buffer, 206 * not entire rgrp or filesystem. @buffer will be offset from the actual 207 * beginning of a bitmap block buffer, skipping any header structures, but 208 * headers are always a multiple of 64 bits long so that the buffer is 209 * always aligned to a 64 bit boundary. 210 * 211 * The size of the buffer is in bytes, but is it assumed that it is 212 * always ok to read a complete multiple of 64 bits at the end 213 * of the block in case the end is no aligned to a natural boundary. 214 * 215 * Return: the block number (bitmap buffer scope) that was found 216 */ 217 218 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, 219 u32 goal, u8 state) 220 { 221 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); 222 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); 223 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); 224 u64 tmp; 225 u64 mask = 0x5555555555555555ULL; 226 u32 bit; 227 228 /* Mask off bits we don't care about at the start of the search */ 229 mask <<= spoint; 230 tmp = gfs2_bit_search(ptr, mask, state); 231 ptr++; 232 while(tmp == 0 && ptr < end) { 233 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); 234 ptr++; 235 } 236 /* Mask off any bits which are more than len bytes from the start */ 237 if (ptr == end && (len & (sizeof(u64) - 1))) 238 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); 239 /* Didn't find anything, so return */ 240 if (tmp == 0) 241 return BFITNOENT; 242 ptr--; 243 bit = __ffs64(tmp); 244 bit /= 2; /* two bits per entry in the bitmap */ 245 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; 246 } 247 248 /** 249 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number 250 * @rbm: The rbm with rgd already set correctly 251 * @block: The block number (filesystem relative) 252 * 253 * This sets the bi and offset members of an rbm based on a 254 * resource group and a filesystem relative block number. The 255 * resource group must be set in the rbm on entry, the bi and 256 * offset members will be set by this function. 257 * 258 * Returns: 0 on success, or an error code 259 */ 260 261 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block) 262 { 263 u64 rblock = block - rbm->rgd->rd_data0; 264 265 if (WARN_ON_ONCE(rblock > UINT_MAX)) 266 return -EINVAL; 267 if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data) 268 return -E2BIG; 269 270 rbm->bii = 0; 271 rbm->offset = (u32)(rblock); 272 /* Check if the block is within the first block */ 273 if (rbm->offset < rbm_bi(rbm)->bi_blocks) 274 return 0; 275 276 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */ 277 rbm->offset += (sizeof(struct gfs2_rgrp) - 278 sizeof(struct gfs2_meta_header)) * GFS2_NBBY; 279 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 280 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 281 return 0; 282 } 283 284 /** 285 * gfs2_rbm_incr - increment an rbm structure 286 * @rbm: The rbm with rgd already set correctly 287 * 288 * This function takes an existing rbm structure and increments it to the next 289 * viable block offset. 290 * 291 * Returns: If incrementing the offset would cause the rbm to go past the 292 * end of the rgrp, true is returned, otherwise false. 293 * 294 */ 295 296 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm) 297 { 298 if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */ 299 rbm->offset++; 300 return false; 301 } 302 if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */ 303 return true; 304 305 rbm->offset = 0; 306 rbm->bii++; 307 return false; 308 } 309 310 /** 311 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned 312 * @rbm: Position to search (value/result) 313 * @n_unaligned: Number of unaligned blocks to check 314 * @len: Decremented for each block found (terminate on zero) 315 * 316 * Returns: true if a non-free block is encountered 317 */ 318 319 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len) 320 { 321 u32 n; 322 u8 res; 323 324 for (n = 0; n < n_unaligned; n++) { 325 res = gfs2_testbit(rbm); 326 if (res != GFS2_BLKST_FREE) 327 return true; 328 (*len)--; 329 if (*len == 0) 330 return true; 331 if (gfs2_rbm_incr(rbm)) 332 return true; 333 } 334 335 return false; 336 } 337 338 /** 339 * gfs2_free_extlen - Return extent length of free blocks 340 * @rrbm: Starting position 341 * @len: Max length to check 342 * 343 * Starting at the block specified by the rbm, see how many free blocks 344 * there are, not reading more than len blocks ahead. This can be done 345 * using memchr_inv when the blocks are byte aligned, but has to be done 346 * on a block by block basis in case of unaligned blocks. Also this 347 * function can cope with bitmap boundaries (although it must stop on 348 * a resource group boundary) 349 * 350 * Returns: Number of free blocks in the extent 351 */ 352 353 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len) 354 { 355 struct gfs2_rbm rbm = *rrbm; 356 u32 n_unaligned = rbm.offset & 3; 357 u32 size = len; 358 u32 bytes; 359 u32 chunk_size; 360 u8 *ptr, *start, *end; 361 u64 block; 362 struct gfs2_bitmap *bi; 363 364 if (n_unaligned && 365 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len)) 366 goto out; 367 368 n_unaligned = len & 3; 369 /* Start is now byte aligned */ 370 while (len > 3) { 371 bi = rbm_bi(&rbm); 372 start = bi->bi_bh->b_data; 373 if (bi->bi_clone) 374 start = bi->bi_clone; 375 end = start + bi->bi_bh->b_size; 376 start += bi->bi_offset; 377 BUG_ON(rbm.offset & 3); 378 start += (rbm.offset / GFS2_NBBY); 379 bytes = min_t(u32, len / GFS2_NBBY, (end - start)); 380 ptr = memchr_inv(start, 0, bytes); 381 chunk_size = ((ptr == NULL) ? bytes : (ptr - start)); 382 chunk_size *= GFS2_NBBY; 383 BUG_ON(len < chunk_size); 384 len -= chunk_size; 385 block = gfs2_rbm_to_block(&rbm); 386 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) { 387 n_unaligned = 0; 388 break; 389 } 390 if (ptr) { 391 n_unaligned = 3; 392 break; 393 } 394 n_unaligned = len & 3; 395 } 396 397 /* Deal with any bits left over at the end */ 398 if (n_unaligned) 399 gfs2_unaligned_extlen(&rbm, n_unaligned, &len); 400 out: 401 return size - len; 402 } 403 404 /** 405 * gfs2_bitcount - count the number of bits in a certain state 406 * @rgd: the resource group descriptor 407 * @buffer: the buffer that holds the bitmaps 408 * @buflen: the length (in bytes) of the buffer 409 * @state: the state of the block we're looking for 410 * 411 * Returns: The number of bits 412 */ 413 414 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, 415 unsigned int buflen, u8 state) 416 { 417 const u8 *byte = buffer; 418 const u8 *end = buffer + buflen; 419 const u8 state1 = state << 2; 420 const u8 state2 = state << 4; 421 const u8 state3 = state << 6; 422 u32 count = 0; 423 424 for (; byte < end; byte++) { 425 if (((*byte) & 0x03) == state) 426 count++; 427 if (((*byte) & 0x0C) == state1) 428 count++; 429 if (((*byte) & 0x30) == state2) 430 count++; 431 if (((*byte) & 0xC0) == state3) 432 count++; 433 } 434 435 return count; 436 } 437 438 /** 439 * gfs2_rgrp_verify - Verify that a resource group is consistent 440 * @rgd: the rgrp 441 * 442 */ 443 444 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) 445 { 446 struct gfs2_sbd *sdp = rgd->rd_sbd; 447 struct gfs2_bitmap *bi = NULL; 448 u32 length = rgd->rd_length; 449 u32 count[4], tmp; 450 int buf, x; 451 452 memset(count, 0, 4 * sizeof(u32)); 453 454 /* Count # blocks in each of 4 possible allocation states */ 455 for (buf = 0; buf < length; buf++) { 456 bi = rgd->rd_bits + buf; 457 for (x = 0; x < 4; x++) 458 count[x] += gfs2_bitcount(rgd, 459 bi->bi_bh->b_data + 460 bi->bi_offset, 461 bi->bi_len, x); 462 } 463 464 if (count[0] != rgd->rd_free) { 465 if (gfs2_consist_rgrpd(rgd)) 466 fs_err(sdp, "free data mismatch: %u != %u\n", 467 count[0], rgd->rd_free); 468 return; 469 } 470 471 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; 472 if (count[1] != tmp) { 473 if (gfs2_consist_rgrpd(rgd)) 474 fs_err(sdp, "used data mismatch: %u != %u\n", 475 count[1], tmp); 476 return; 477 } 478 479 if (count[2] + count[3] != rgd->rd_dinodes) { 480 if (gfs2_consist_rgrpd(rgd)) 481 fs_err(sdp, "used metadata mismatch: %u != %u\n", 482 count[2] + count[3], rgd->rd_dinodes); 483 return; 484 } 485 } 486 487 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block) 488 { 489 u64 first = rgd->rd_data0; 490 u64 last = first + rgd->rd_data; 491 return first <= block && block < last; 492 } 493 494 /** 495 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number 496 * @sdp: The GFS2 superblock 497 * @blk: The data block number 498 * @exact: True if this needs to be an exact match 499 * 500 * Returns: The resource group, or NULL if not found 501 */ 502 503 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact) 504 { 505 struct rb_node *n, *next; 506 struct gfs2_rgrpd *cur; 507 508 spin_lock(&sdp->sd_rindex_spin); 509 n = sdp->sd_rindex_tree.rb_node; 510 while (n) { 511 cur = rb_entry(n, struct gfs2_rgrpd, rd_node); 512 next = NULL; 513 if (blk < cur->rd_addr) 514 next = n->rb_left; 515 else if (blk >= cur->rd_data0 + cur->rd_data) 516 next = n->rb_right; 517 if (next == NULL) { 518 spin_unlock(&sdp->sd_rindex_spin); 519 if (exact) { 520 if (blk < cur->rd_addr) 521 return NULL; 522 if (blk >= cur->rd_data0 + cur->rd_data) 523 return NULL; 524 } 525 return cur; 526 } 527 n = next; 528 } 529 spin_unlock(&sdp->sd_rindex_spin); 530 531 return NULL; 532 } 533 534 /** 535 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem 536 * @sdp: The GFS2 superblock 537 * 538 * Returns: The first rgrp in the filesystem 539 */ 540 541 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) 542 { 543 const struct rb_node *n; 544 struct gfs2_rgrpd *rgd; 545 546 spin_lock(&sdp->sd_rindex_spin); 547 n = rb_first(&sdp->sd_rindex_tree); 548 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 549 spin_unlock(&sdp->sd_rindex_spin); 550 551 return rgd; 552 } 553 554 /** 555 * gfs2_rgrpd_get_next - get the next RG 556 * @rgd: the resource group descriptor 557 * 558 * Returns: The next rgrp 559 */ 560 561 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) 562 { 563 struct gfs2_sbd *sdp = rgd->rd_sbd; 564 const struct rb_node *n; 565 566 spin_lock(&sdp->sd_rindex_spin); 567 n = rb_next(&rgd->rd_node); 568 if (n == NULL) 569 n = rb_first(&sdp->sd_rindex_tree); 570 571 if (unlikely(&rgd->rd_node == n)) { 572 spin_unlock(&sdp->sd_rindex_spin); 573 return NULL; 574 } 575 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 576 spin_unlock(&sdp->sd_rindex_spin); 577 return rgd; 578 } 579 580 void gfs2_free_clones(struct gfs2_rgrpd *rgd) 581 { 582 int x; 583 584 for (x = 0; x < rgd->rd_length; x++) { 585 struct gfs2_bitmap *bi = rgd->rd_bits + x; 586 kfree(bi->bi_clone); 587 bi->bi_clone = NULL; 588 } 589 } 590 591 /** 592 * gfs2_rs_alloc - make sure we have a reservation assigned to the inode 593 * @ip: the inode for this reservation 594 */ 595 int gfs2_rs_alloc(struct gfs2_inode *ip) 596 { 597 int error = 0; 598 599 down_write(&ip->i_rw_mutex); 600 if (ip->i_res) 601 goto out; 602 603 ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS); 604 if (!ip->i_res) { 605 error = -ENOMEM; 606 goto out; 607 } 608 609 RB_CLEAR_NODE(&ip->i_res->rs_node); 610 out: 611 up_write(&ip->i_rw_mutex); 612 return error; 613 } 614 615 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs) 616 { 617 gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n", 618 (unsigned long long)rs->rs_inum, 619 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm), 620 rs->rs_rbm.offset, rs->rs_free); 621 } 622 623 /** 624 * __rs_deltree - remove a multi-block reservation from the rgd tree 625 * @rs: The reservation to remove 626 * 627 */ 628 static void __rs_deltree(struct gfs2_blkreserv *rs) 629 { 630 struct gfs2_rgrpd *rgd; 631 632 if (!gfs2_rs_active(rs)) 633 return; 634 635 rgd = rs->rs_rbm.rgd; 636 trace_gfs2_rs(rs, TRACE_RS_TREEDEL); 637 rb_erase(&rs->rs_node, &rgd->rd_rstree); 638 RB_CLEAR_NODE(&rs->rs_node); 639 640 if (rs->rs_free) { 641 struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm); 642 643 /* return reserved blocks to the rgrp */ 644 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free); 645 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free; 646 /* The rgrp extent failure point is likely not to increase; 647 it will only do so if the freed blocks are somehow 648 contiguous with a span of free blocks that follows. Still, 649 it will force the number to be recalculated later. */ 650 rgd->rd_extfail_pt += rs->rs_free; 651 rs->rs_free = 0; 652 clear_bit(GBF_FULL, &bi->bi_flags); 653 } 654 } 655 656 /** 657 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree 658 * @rs: The reservation to remove 659 * 660 */ 661 void gfs2_rs_deltree(struct gfs2_blkreserv *rs) 662 { 663 struct gfs2_rgrpd *rgd; 664 665 rgd = rs->rs_rbm.rgd; 666 if (rgd) { 667 spin_lock(&rgd->rd_rsspin); 668 __rs_deltree(rs); 669 spin_unlock(&rgd->rd_rsspin); 670 } 671 } 672 673 /** 674 * gfs2_rs_delete - delete a multi-block reservation 675 * @ip: The inode for this reservation 676 * @wcount: The inode's write count, or NULL 677 * 678 */ 679 void gfs2_rs_delete(struct gfs2_inode *ip, atomic_t *wcount) 680 { 681 down_write(&ip->i_rw_mutex); 682 if (ip->i_res && ((wcount == NULL) || (atomic_read(wcount) <= 1))) { 683 gfs2_rs_deltree(ip->i_res); 684 BUG_ON(ip->i_res->rs_free); 685 kmem_cache_free(gfs2_rsrv_cachep, ip->i_res); 686 ip->i_res = NULL; 687 } 688 up_write(&ip->i_rw_mutex); 689 } 690 691 /** 692 * return_all_reservations - return all reserved blocks back to the rgrp. 693 * @rgd: the rgrp that needs its space back 694 * 695 * We previously reserved a bunch of blocks for allocation. Now we need to 696 * give them back. This leave the reservation structures in tact, but removes 697 * all of their corresponding "no-fly zones". 698 */ 699 static void return_all_reservations(struct gfs2_rgrpd *rgd) 700 { 701 struct rb_node *n; 702 struct gfs2_blkreserv *rs; 703 704 spin_lock(&rgd->rd_rsspin); 705 while ((n = rb_first(&rgd->rd_rstree))) { 706 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 707 __rs_deltree(rs); 708 } 709 spin_unlock(&rgd->rd_rsspin); 710 } 711 712 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) 713 { 714 struct rb_node *n; 715 struct gfs2_rgrpd *rgd; 716 struct gfs2_glock *gl; 717 718 while ((n = rb_first(&sdp->sd_rindex_tree))) { 719 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 720 gl = rgd->rd_gl; 721 722 rb_erase(n, &sdp->sd_rindex_tree); 723 724 if (gl) { 725 spin_lock(&gl->gl_spin); 726 gl->gl_object = NULL; 727 spin_unlock(&gl->gl_spin); 728 gfs2_glock_add_to_lru(gl); 729 gfs2_glock_put(gl); 730 } 731 732 gfs2_free_clones(rgd); 733 kfree(rgd->rd_bits); 734 return_all_reservations(rgd); 735 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 736 } 737 } 738 739 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd) 740 { 741 pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr); 742 pr_info("ri_length = %u\n", rgd->rd_length); 743 pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0); 744 pr_info("ri_data = %u\n", rgd->rd_data); 745 pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes); 746 } 747 748 /** 749 * gfs2_compute_bitstructs - Compute the bitmap sizes 750 * @rgd: The resource group descriptor 751 * 752 * Calculates bitmap descriptors, one for each block that contains bitmap data 753 * 754 * Returns: errno 755 */ 756 757 static int compute_bitstructs(struct gfs2_rgrpd *rgd) 758 { 759 struct gfs2_sbd *sdp = rgd->rd_sbd; 760 struct gfs2_bitmap *bi; 761 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ 762 u32 bytes_left, bytes; 763 int x; 764 765 if (!length) 766 return -EINVAL; 767 768 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); 769 if (!rgd->rd_bits) 770 return -ENOMEM; 771 772 bytes_left = rgd->rd_bitbytes; 773 774 for (x = 0; x < length; x++) { 775 bi = rgd->rd_bits + x; 776 777 bi->bi_flags = 0; 778 /* small rgrp; bitmap stored completely in header block */ 779 if (length == 1) { 780 bytes = bytes_left; 781 bi->bi_offset = sizeof(struct gfs2_rgrp); 782 bi->bi_start = 0; 783 bi->bi_len = bytes; 784 bi->bi_blocks = bytes * GFS2_NBBY; 785 /* header block */ 786 } else if (x == 0) { 787 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); 788 bi->bi_offset = sizeof(struct gfs2_rgrp); 789 bi->bi_start = 0; 790 bi->bi_len = bytes; 791 bi->bi_blocks = bytes * GFS2_NBBY; 792 /* last block */ 793 } else if (x + 1 == length) { 794 bytes = bytes_left; 795 bi->bi_offset = sizeof(struct gfs2_meta_header); 796 bi->bi_start = rgd->rd_bitbytes - bytes_left; 797 bi->bi_len = bytes; 798 bi->bi_blocks = bytes * GFS2_NBBY; 799 /* other blocks */ 800 } else { 801 bytes = sdp->sd_sb.sb_bsize - 802 sizeof(struct gfs2_meta_header); 803 bi->bi_offset = sizeof(struct gfs2_meta_header); 804 bi->bi_start = rgd->rd_bitbytes - bytes_left; 805 bi->bi_len = bytes; 806 bi->bi_blocks = bytes * GFS2_NBBY; 807 } 808 809 bytes_left -= bytes; 810 } 811 812 if (bytes_left) { 813 gfs2_consist_rgrpd(rgd); 814 return -EIO; 815 } 816 bi = rgd->rd_bits + (length - 1); 817 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) { 818 if (gfs2_consist_rgrpd(rgd)) { 819 gfs2_rindex_print(rgd); 820 fs_err(sdp, "start=%u len=%u offset=%u\n", 821 bi->bi_start, bi->bi_len, bi->bi_offset); 822 } 823 return -EIO; 824 } 825 826 return 0; 827 } 828 829 /** 830 * gfs2_ri_total - Total up the file system space, according to the rindex. 831 * @sdp: the filesystem 832 * 833 */ 834 u64 gfs2_ri_total(struct gfs2_sbd *sdp) 835 { 836 u64 total_data = 0; 837 struct inode *inode = sdp->sd_rindex; 838 struct gfs2_inode *ip = GFS2_I(inode); 839 char buf[sizeof(struct gfs2_rindex)]; 840 int error, rgrps; 841 842 for (rgrps = 0;; rgrps++) { 843 loff_t pos = rgrps * sizeof(struct gfs2_rindex); 844 845 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) 846 break; 847 error = gfs2_internal_read(ip, buf, &pos, 848 sizeof(struct gfs2_rindex)); 849 if (error != sizeof(struct gfs2_rindex)) 850 break; 851 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); 852 } 853 return total_data; 854 } 855 856 static int rgd_insert(struct gfs2_rgrpd *rgd) 857 { 858 struct gfs2_sbd *sdp = rgd->rd_sbd; 859 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; 860 861 /* Figure out where to put new node */ 862 while (*newn) { 863 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, 864 rd_node); 865 866 parent = *newn; 867 if (rgd->rd_addr < cur->rd_addr) 868 newn = &((*newn)->rb_left); 869 else if (rgd->rd_addr > cur->rd_addr) 870 newn = &((*newn)->rb_right); 871 else 872 return -EEXIST; 873 } 874 875 rb_link_node(&rgd->rd_node, parent, newn); 876 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); 877 sdp->sd_rgrps++; 878 return 0; 879 } 880 881 /** 882 * read_rindex_entry - Pull in a new resource index entry from the disk 883 * @ip: Pointer to the rindex inode 884 * 885 * Returns: 0 on success, > 0 on EOF, error code otherwise 886 */ 887 888 static int read_rindex_entry(struct gfs2_inode *ip) 889 { 890 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 891 const unsigned bsize = sdp->sd_sb.sb_bsize; 892 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); 893 struct gfs2_rindex buf; 894 int error; 895 struct gfs2_rgrpd *rgd; 896 897 if (pos >= i_size_read(&ip->i_inode)) 898 return 1; 899 900 error = gfs2_internal_read(ip, (char *)&buf, &pos, 901 sizeof(struct gfs2_rindex)); 902 903 if (error != sizeof(struct gfs2_rindex)) 904 return (error == 0) ? 1 : error; 905 906 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); 907 error = -ENOMEM; 908 if (!rgd) 909 return error; 910 911 rgd->rd_sbd = sdp; 912 rgd->rd_addr = be64_to_cpu(buf.ri_addr); 913 rgd->rd_length = be32_to_cpu(buf.ri_length); 914 rgd->rd_data0 = be64_to_cpu(buf.ri_data0); 915 rgd->rd_data = be32_to_cpu(buf.ri_data); 916 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); 917 spin_lock_init(&rgd->rd_rsspin); 918 919 error = compute_bitstructs(rgd); 920 if (error) 921 goto fail; 922 923 error = gfs2_glock_get(sdp, rgd->rd_addr, 924 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); 925 if (error) 926 goto fail; 927 928 rgd->rd_gl->gl_object = rgd; 929 rgd->rd_gl->gl_vm.start = rgd->rd_addr * bsize; 930 rgd->rd_gl->gl_vm.end = rgd->rd_gl->gl_vm.start + (rgd->rd_length * bsize) - 1; 931 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr; 932 rgd->rd_flags &= ~GFS2_RDF_UPTODATE; 933 if (rgd->rd_data > sdp->sd_max_rg_data) 934 sdp->sd_max_rg_data = rgd->rd_data; 935 spin_lock(&sdp->sd_rindex_spin); 936 error = rgd_insert(rgd); 937 spin_unlock(&sdp->sd_rindex_spin); 938 if (!error) 939 return 0; 940 941 error = 0; /* someone else read in the rgrp; free it and ignore it */ 942 gfs2_glock_put(rgd->rd_gl); 943 944 fail: 945 kfree(rgd->rd_bits); 946 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 947 return error; 948 } 949 950 /** 951 * gfs2_ri_update - Pull in a new resource index from the disk 952 * @ip: pointer to the rindex inode 953 * 954 * Returns: 0 on successful update, error code otherwise 955 */ 956 957 static int gfs2_ri_update(struct gfs2_inode *ip) 958 { 959 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 960 int error; 961 962 do { 963 error = read_rindex_entry(ip); 964 } while (error == 0); 965 966 if (error < 0) 967 return error; 968 969 sdp->sd_rindex_uptodate = 1; 970 return 0; 971 } 972 973 /** 974 * gfs2_rindex_update - Update the rindex if required 975 * @sdp: The GFS2 superblock 976 * 977 * We grab a lock on the rindex inode to make sure that it doesn't 978 * change whilst we are performing an operation. We keep this lock 979 * for quite long periods of time compared to other locks. This 980 * doesn't matter, since it is shared and it is very, very rarely 981 * accessed in the exclusive mode (i.e. only when expanding the filesystem). 982 * 983 * This makes sure that we're using the latest copy of the resource index 984 * special file, which might have been updated if someone expanded the 985 * filesystem (via gfs2_grow utility), which adds new resource groups. 986 * 987 * Returns: 0 on succeess, error code otherwise 988 */ 989 990 int gfs2_rindex_update(struct gfs2_sbd *sdp) 991 { 992 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); 993 struct gfs2_glock *gl = ip->i_gl; 994 struct gfs2_holder ri_gh; 995 int error = 0; 996 int unlock_required = 0; 997 998 /* Read new copy from disk if we don't have the latest */ 999 if (!sdp->sd_rindex_uptodate) { 1000 if (!gfs2_glock_is_locked_by_me(gl)) { 1001 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); 1002 if (error) 1003 return error; 1004 unlock_required = 1; 1005 } 1006 if (!sdp->sd_rindex_uptodate) 1007 error = gfs2_ri_update(ip); 1008 if (unlock_required) 1009 gfs2_glock_dq_uninit(&ri_gh); 1010 } 1011 1012 return error; 1013 } 1014 1015 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) 1016 { 1017 const struct gfs2_rgrp *str = buf; 1018 u32 rg_flags; 1019 1020 rg_flags = be32_to_cpu(str->rg_flags); 1021 rg_flags &= ~GFS2_RDF_MASK; 1022 rgd->rd_flags &= GFS2_RDF_MASK; 1023 rgd->rd_flags |= rg_flags; 1024 rgd->rd_free = be32_to_cpu(str->rg_free); 1025 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); 1026 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); 1027 } 1028 1029 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) 1030 { 1031 struct gfs2_rgrp *str = buf; 1032 1033 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); 1034 str->rg_free = cpu_to_be32(rgd->rd_free); 1035 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); 1036 str->__pad = cpu_to_be32(0); 1037 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); 1038 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); 1039 } 1040 1041 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd) 1042 { 1043 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1044 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data; 1045 1046 if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free || 1047 rgl->rl_dinodes != str->rg_dinodes || 1048 rgl->rl_igeneration != str->rg_igeneration) 1049 return 0; 1050 return 1; 1051 } 1052 1053 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf) 1054 { 1055 const struct gfs2_rgrp *str = buf; 1056 1057 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC); 1058 rgl->rl_flags = str->rg_flags; 1059 rgl->rl_free = str->rg_free; 1060 rgl->rl_dinodes = str->rg_dinodes; 1061 rgl->rl_igeneration = str->rg_igeneration; 1062 rgl->__pad = 0UL; 1063 } 1064 1065 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change) 1066 { 1067 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1068 u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change; 1069 rgl->rl_unlinked = cpu_to_be32(unlinked); 1070 } 1071 1072 static u32 count_unlinked(struct gfs2_rgrpd *rgd) 1073 { 1074 struct gfs2_bitmap *bi; 1075 const u32 length = rgd->rd_length; 1076 const u8 *buffer = NULL; 1077 u32 i, goal, count = 0; 1078 1079 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) { 1080 goal = 0; 1081 buffer = bi->bi_bh->b_data + bi->bi_offset; 1082 WARN_ON(!buffer_uptodate(bi->bi_bh)); 1083 while (goal < bi->bi_len * GFS2_NBBY) { 1084 goal = gfs2_bitfit(buffer, bi->bi_len, goal, 1085 GFS2_BLKST_UNLINKED); 1086 if (goal == BFITNOENT) 1087 break; 1088 count++; 1089 goal++; 1090 } 1091 } 1092 1093 return count; 1094 } 1095 1096 1097 /** 1098 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps 1099 * @rgd: the struct gfs2_rgrpd describing the RG to read in 1100 * 1101 * Read in all of a Resource Group's header and bitmap blocks. 1102 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps. 1103 * 1104 * Returns: errno 1105 */ 1106 1107 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd) 1108 { 1109 struct gfs2_sbd *sdp = rgd->rd_sbd; 1110 struct gfs2_glock *gl = rgd->rd_gl; 1111 unsigned int length = rgd->rd_length; 1112 struct gfs2_bitmap *bi; 1113 unsigned int x, y; 1114 int error; 1115 1116 if (rgd->rd_bits[0].bi_bh != NULL) 1117 return 0; 1118 1119 for (x = 0; x < length; x++) { 1120 bi = rgd->rd_bits + x; 1121 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh); 1122 if (error) 1123 goto fail; 1124 } 1125 1126 for (y = length; y--;) { 1127 bi = rgd->rd_bits + y; 1128 error = gfs2_meta_wait(sdp, bi->bi_bh); 1129 if (error) 1130 goto fail; 1131 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : 1132 GFS2_METATYPE_RG)) { 1133 error = -EIO; 1134 goto fail; 1135 } 1136 } 1137 1138 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) { 1139 for (x = 0; x < length; x++) 1140 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags); 1141 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); 1142 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1143 rgd->rd_free_clone = rgd->rd_free; 1144 /* max out the rgrp allocation failure point */ 1145 rgd->rd_extfail_pt = rgd->rd_free; 1146 } 1147 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) { 1148 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd)); 1149 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, 1150 rgd->rd_bits[0].bi_bh->b_data); 1151 } 1152 else if (sdp->sd_args.ar_rgrplvb) { 1153 if (!gfs2_rgrp_lvb_valid(rgd)){ 1154 gfs2_consist_rgrpd(rgd); 1155 error = -EIO; 1156 goto fail; 1157 } 1158 if (rgd->rd_rgl->rl_unlinked == 0) 1159 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1160 } 1161 return 0; 1162 1163 fail: 1164 while (x--) { 1165 bi = rgd->rd_bits + x; 1166 brelse(bi->bi_bh); 1167 bi->bi_bh = NULL; 1168 gfs2_assert_warn(sdp, !bi->bi_clone); 1169 } 1170 1171 return error; 1172 } 1173 1174 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd) 1175 { 1176 u32 rl_flags; 1177 1178 if (rgd->rd_flags & GFS2_RDF_UPTODATE) 1179 return 0; 1180 1181 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) 1182 return gfs2_rgrp_bh_get(rgd); 1183 1184 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags); 1185 rl_flags &= ~GFS2_RDF_MASK; 1186 rgd->rd_flags &= GFS2_RDF_MASK; 1187 rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1188 if (rgd->rd_rgl->rl_unlinked == 0) 1189 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1190 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free); 1191 rgd->rd_free_clone = rgd->rd_free; 1192 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes); 1193 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration); 1194 return 0; 1195 } 1196 1197 int gfs2_rgrp_go_lock(struct gfs2_holder *gh) 1198 { 1199 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1200 struct gfs2_sbd *sdp = rgd->rd_sbd; 1201 1202 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb) 1203 return 0; 1204 return gfs2_rgrp_bh_get(rgd); 1205 } 1206 1207 /** 1208 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get() 1209 * @gh: The glock holder for the resource group 1210 * 1211 */ 1212 1213 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh) 1214 { 1215 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1216 int x, length = rgd->rd_length; 1217 1218 for (x = 0; x < length; x++) { 1219 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1220 if (bi->bi_bh) { 1221 brelse(bi->bi_bh); 1222 bi->bi_bh = NULL; 1223 } 1224 } 1225 1226 } 1227 1228 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, 1229 struct buffer_head *bh, 1230 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed) 1231 { 1232 struct super_block *sb = sdp->sd_vfs; 1233 u64 blk; 1234 sector_t start = 0; 1235 sector_t nr_blks = 0; 1236 int rv; 1237 unsigned int x; 1238 u32 trimmed = 0; 1239 u8 diff; 1240 1241 for (x = 0; x < bi->bi_len; x++) { 1242 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data; 1243 clone += bi->bi_offset; 1244 clone += x; 1245 if (bh) { 1246 const u8 *orig = bh->b_data + bi->bi_offset + x; 1247 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); 1248 } else { 1249 diff = ~(*clone | (*clone >> 1)); 1250 } 1251 diff &= 0x55; 1252 if (diff == 0) 1253 continue; 1254 blk = offset + ((bi->bi_start + x) * GFS2_NBBY); 1255 while(diff) { 1256 if (diff & 1) { 1257 if (nr_blks == 0) 1258 goto start_new_extent; 1259 if ((start + nr_blks) != blk) { 1260 if (nr_blks >= minlen) { 1261 rv = sb_issue_discard(sb, 1262 start, nr_blks, 1263 GFP_NOFS, 0); 1264 if (rv) 1265 goto fail; 1266 trimmed += nr_blks; 1267 } 1268 nr_blks = 0; 1269 start_new_extent: 1270 start = blk; 1271 } 1272 nr_blks++; 1273 } 1274 diff >>= 2; 1275 blk++; 1276 } 1277 } 1278 if (nr_blks >= minlen) { 1279 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0); 1280 if (rv) 1281 goto fail; 1282 trimmed += nr_blks; 1283 } 1284 if (ptrimmed) 1285 *ptrimmed = trimmed; 1286 return 0; 1287 1288 fail: 1289 if (sdp->sd_args.ar_discard) 1290 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv); 1291 sdp->sd_args.ar_discard = 0; 1292 return -EIO; 1293 } 1294 1295 /** 1296 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem 1297 * @filp: Any file on the filesystem 1298 * @argp: Pointer to the arguments (also used to pass result) 1299 * 1300 * Returns: 0 on success, otherwise error code 1301 */ 1302 1303 int gfs2_fitrim(struct file *filp, void __user *argp) 1304 { 1305 struct inode *inode = file_inode(filp); 1306 struct gfs2_sbd *sdp = GFS2_SB(inode); 1307 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev); 1308 struct buffer_head *bh; 1309 struct gfs2_rgrpd *rgd; 1310 struct gfs2_rgrpd *rgd_end; 1311 struct gfs2_holder gh; 1312 struct fstrim_range r; 1313 int ret = 0; 1314 u64 amt; 1315 u64 trimmed = 0; 1316 u64 start, end, minlen; 1317 unsigned int x; 1318 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift; 1319 1320 if (!capable(CAP_SYS_ADMIN)) 1321 return -EPERM; 1322 1323 if (!blk_queue_discard(q)) 1324 return -EOPNOTSUPP; 1325 1326 if (copy_from_user(&r, argp, sizeof(r))) 1327 return -EFAULT; 1328 1329 ret = gfs2_rindex_update(sdp); 1330 if (ret) 1331 return ret; 1332 1333 start = r.start >> bs_shift; 1334 end = start + (r.len >> bs_shift); 1335 minlen = max_t(u64, r.minlen, 1336 q->limits.discard_granularity) >> bs_shift; 1337 1338 if (end <= start || minlen > sdp->sd_max_rg_data) 1339 return -EINVAL; 1340 1341 rgd = gfs2_blk2rgrpd(sdp, start, 0); 1342 rgd_end = gfs2_blk2rgrpd(sdp, end, 0); 1343 1344 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end)) 1345 && (start > rgd_end->rd_data0 + rgd_end->rd_data)) 1346 return -EINVAL; /* start is beyond the end of the fs */ 1347 1348 while (1) { 1349 1350 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh); 1351 if (ret) 1352 goto out; 1353 1354 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) { 1355 /* Trim each bitmap in the rgrp */ 1356 for (x = 0; x < rgd->rd_length; x++) { 1357 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1358 ret = gfs2_rgrp_send_discards(sdp, 1359 rgd->rd_data0, NULL, bi, minlen, 1360 &amt); 1361 if (ret) { 1362 gfs2_glock_dq_uninit(&gh); 1363 goto out; 1364 } 1365 trimmed += amt; 1366 } 1367 1368 /* Mark rgrp as having been trimmed */ 1369 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0); 1370 if (ret == 0) { 1371 bh = rgd->rd_bits[0].bi_bh; 1372 rgd->rd_flags |= GFS2_RGF_TRIMMED; 1373 gfs2_trans_add_meta(rgd->rd_gl, bh); 1374 gfs2_rgrp_out(rgd, bh->b_data); 1375 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data); 1376 gfs2_trans_end(sdp); 1377 } 1378 } 1379 gfs2_glock_dq_uninit(&gh); 1380 1381 if (rgd == rgd_end) 1382 break; 1383 1384 rgd = gfs2_rgrpd_get_next(rgd); 1385 } 1386 1387 out: 1388 r.len = trimmed << bs_shift; 1389 if (copy_to_user(argp, &r, sizeof(r))) 1390 return -EFAULT; 1391 1392 return ret; 1393 } 1394 1395 /** 1396 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree 1397 * @ip: the inode structure 1398 * 1399 */ 1400 static void rs_insert(struct gfs2_inode *ip) 1401 { 1402 struct rb_node **newn, *parent = NULL; 1403 int rc; 1404 struct gfs2_blkreserv *rs = ip->i_res; 1405 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd; 1406 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm); 1407 1408 BUG_ON(gfs2_rs_active(rs)); 1409 1410 spin_lock(&rgd->rd_rsspin); 1411 newn = &rgd->rd_rstree.rb_node; 1412 while (*newn) { 1413 struct gfs2_blkreserv *cur = 1414 rb_entry(*newn, struct gfs2_blkreserv, rs_node); 1415 1416 parent = *newn; 1417 rc = rs_cmp(fsblock, rs->rs_free, cur); 1418 if (rc > 0) 1419 newn = &((*newn)->rb_right); 1420 else if (rc < 0) 1421 newn = &((*newn)->rb_left); 1422 else { 1423 spin_unlock(&rgd->rd_rsspin); 1424 WARN_ON(1); 1425 return; 1426 } 1427 } 1428 1429 rb_link_node(&rs->rs_node, parent, newn); 1430 rb_insert_color(&rs->rs_node, &rgd->rd_rstree); 1431 1432 /* Do our rgrp accounting for the reservation */ 1433 rgd->rd_reserved += rs->rs_free; /* blocks reserved */ 1434 spin_unlock(&rgd->rd_rsspin); 1435 trace_gfs2_rs(rs, TRACE_RS_INSERT); 1436 } 1437 1438 /** 1439 * rg_mblk_search - find a group of multiple free blocks to form a reservation 1440 * @rgd: the resource group descriptor 1441 * @ip: pointer to the inode for which we're reserving blocks 1442 * @ap: the allocation parameters 1443 * 1444 */ 1445 1446 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip, 1447 const struct gfs2_alloc_parms *ap) 1448 { 1449 struct gfs2_rbm rbm = { .rgd = rgd, }; 1450 u64 goal; 1451 struct gfs2_blkreserv *rs = ip->i_res; 1452 u32 extlen; 1453 u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved; 1454 int ret; 1455 struct inode *inode = &ip->i_inode; 1456 1457 if (S_ISDIR(inode->i_mode)) 1458 extlen = 1; 1459 else { 1460 extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target); 1461 extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks); 1462 } 1463 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen)) 1464 return; 1465 1466 /* Find bitmap block that contains bits for goal block */ 1467 if (rgrp_contains_block(rgd, ip->i_goal)) 1468 goal = ip->i_goal; 1469 else 1470 goal = rgd->rd_last_alloc + rgd->rd_data0; 1471 1472 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal))) 1473 return; 1474 1475 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true, ap); 1476 if (ret == 0) { 1477 rs->rs_rbm = rbm; 1478 rs->rs_free = extlen; 1479 rs->rs_inum = ip->i_no_addr; 1480 rs_insert(ip); 1481 } else { 1482 if (goal == rgd->rd_last_alloc + rgd->rd_data0) 1483 rgd->rd_last_alloc = 0; 1484 } 1485 } 1486 1487 /** 1488 * gfs2_next_unreserved_block - Return next block that is not reserved 1489 * @rgd: The resource group 1490 * @block: The starting block 1491 * @length: The required length 1492 * @ip: Ignore any reservations for this inode 1493 * 1494 * If the block does not appear in any reservation, then return the 1495 * block number unchanged. If it does appear in the reservation, then 1496 * keep looking through the tree of reservations in order to find the 1497 * first block number which is not reserved. 1498 */ 1499 1500 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block, 1501 u32 length, 1502 const struct gfs2_inode *ip) 1503 { 1504 struct gfs2_blkreserv *rs; 1505 struct rb_node *n; 1506 int rc; 1507 1508 spin_lock(&rgd->rd_rsspin); 1509 n = rgd->rd_rstree.rb_node; 1510 while (n) { 1511 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1512 rc = rs_cmp(block, length, rs); 1513 if (rc < 0) 1514 n = n->rb_left; 1515 else if (rc > 0) 1516 n = n->rb_right; 1517 else 1518 break; 1519 } 1520 1521 if (n) { 1522 while ((rs_cmp(block, length, rs) == 0) && (ip->i_res != rs)) { 1523 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free; 1524 n = n->rb_right; 1525 if (n == NULL) 1526 break; 1527 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1528 } 1529 } 1530 1531 spin_unlock(&rgd->rd_rsspin); 1532 return block; 1533 } 1534 1535 /** 1536 * gfs2_reservation_check_and_update - Check for reservations during block alloc 1537 * @rbm: The current position in the resource group 1538 * @ip: The inode for which we are searching for blocks 1539 * @minext: The minimum extent length 1540 * @maxext: A pointer to the maximum extent structure 1541 * 1542 * This checks the current position in the rgrp to see whether there is 1543 * a reservation covering this block. If not then this function is a 1544 * no-op. If there is, then the position is moved to the end of the 1545 * contiguous reservation(s) so that we are pointing at the first 1546 * non-reserved block. 1547 * 1548 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error 1549 */ 1550 1551 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm, 1552 const struct gfs2_inode *ip, 1553 u32 minext, 1554 struct gfs2_extent *maxext) 1555 { 1556 u64 block = gfs2_rbm_to_block(rbm); 1557 u32 extlen = 1; 1558 u64 nblock; 1559 int ret; 1560 1561 /* 1562 * If we have a minimum extent length, then skip over any extent 1563 * which is less than the min extent length in size. 1564 */ 1565 if (minext) { 1566 extlen = gfs2_free_extlen(rbm, minext); 1567 if (extlen <= maxext->len) 1568 goto fail; 1569 } 1570 1571 /* 1572 * Check the extent which has been found against the reservations 1573 * and skip if parts of it are already reserved 1574 */ 1575 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip); 1576 if (nblock == block) { 1577 if (!minext || extlen >= minext) 1578 return 0; 1579 1580 if (extlen > maxext->len) { 1581 maxext->len = extlen; 1582 maxext->rbm = *rbm; 1583 } 1584 fail: 1585 nblock = block + extlen; 1586 } 1587 ret = gfs2_rbm_from_block(rbm, nblock); 1588 if (ret < 0) 1589 return ret; 1590 return 1; 1591 } 1592 1593 /** 1594 * gfs2_rbm_find - Look for blocks of a particular state 1595 * @rbm: Value/result starting position and final position 1596 * @state: The state which we want to find 1597 * @minext: Pointer to the requested extent length (NULL for a single block) 1598 * This is updated to be the actual reservation size. 1599 * @ip: If set, check for reservations 1600 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping 1601 * around until we've reached the starting point. 1602 * @ap: the allocation parameters 1603 * 1604 * Side effects: 1605 * - If looking for free blocks, we set GBF_FULL on each bitmap which 1606 * has no free blocks in it. 1607 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which 1608 * has come up short on a free block search. 1609 * 1610 * Returns: 0 on success, -ENOSPC if there is no block of the requested state 1611 */ 1612 1613 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 1614 const struct gfs2_inode *ip, bool nowrap, 1615 const struct gfs2_alloc_parms *ap) 1616 { 1617 struct buffer_head *bh; 1618 int initial_bii; 1619 u32 initial_offset; 1620 int first_bii = rbm->bii; 1621 u32 first_offset = rbm->offset; 1622 u32 offset; 1623 u8 *buffer; 1624 int n = 0; 1625 int iters = rbm->rgd->rd_length; 1626 int ret; 1627 struct gfs2_bitmap *bi; 1628 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, }; 1629 1630 /* If we are not starting at the beginning of a bitmap, then we 1631 * need to add one to the bitmap count to ensure that we search 1632 * the starting bitmap twice. 1633 */ 1634 if (rbm->offset != 0) 1635 iters++; 1636 1637 while(1) { 1638 bi = rbm_bi(rbm); 1639 if (test_bit(GBF_FULL, &bi->bi_flags) && 1640 (state == GFS2_BLKST_FREE)) 1641 goto next_bitmap; 1642 1643 bh = bi->bi_bh; 1644 buffer = bh->b_data + bi->bi_offset; 1645 WARN_ON(!buffer_uptodate(bh)); 1646 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone) 1647 buffer = bi->bi_clone + bi->bi_offset; 1648 initial_offset = rbm->offset; 1649 offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state); 1650 if (offset == BFITNOENT) 1651 goto bitmap_full; 1652 rbm->offset = offset; 1653 if (ip == NULL) 1654 return 0; 1655 1656 initial_bii = rbm->bii; 1657 ret = gfs2_reservation_check_and_update(rbm, ip, 1658 minext ? *minext : 0, 1659 &maxext); 1660 if (ret == 0) 1661 return 0; 1662 if (ret > 0) { 1663 n += (rbm->bii - initial_bii); 1664 goto next_iter; 1665 } 1666 if (ret == -E2BIG) { 1667 rbm->bii = 0; 1668 rbm->offset = 0; 1669 n += (rbm->bii - initial_bii); 1670 goto res_covered_end_of_rgrp; 1671 } 1672 return ret; 1673 1674 bitmap_full: /* Mark bitmap as full and fall through */ 1675 if ((state == GFS2_BLKST_FREE) && initial_offset == 0) { 1676 struct gfs2_bitmap *bi = rbm_bi(rbm); 1677 set_bit(GBF_FULL, &bi->bi_flags); 1678 } 1679 1680 next_bitmap: /* Find next bitmap in the rgrp */ 1681 rbm->offset = 0; 1682 rbm->bii++; 1683 if (rbm->bii == rbm->rgd->rd_length) 1684 rbm->bii = 0; 1685 res_covered_end_of_rgrp: 1686 if ((rbm->bii == 0) && nowrap) 1687 break; 1688 n++; 1689 next_iter: 1690 if (n >= iters) 1691 break; 1692 } 1693 1694 if (minext == NULL || state != GFS2_BLKST_FREE) 1695 return -ENOSPC; 1696 1697 /* If the extent was too small, and it's smaller than the smallest 1698 to have failed before, remember for future reference that it's 1699 useless to search this rgrp again for this amount or more. */ 1700 if ((first_offset == 0) && (first_bii == 0) && 1701 (*minext < rbm->rgd->rd_extfail_pt)) 1702 rbm->rgd->rd_extfail_pt = *minext; 1703 1704 /* If the maximum extent we found is big enough to fulfill the 1705 minimum requirements, use it anyway. */ 1706 if (maxext.len) { 1707 *rbm = maxext.rbm; 1708 *minext = maxext.len; 1709 return 0; 1710 } 1711 1712 return -ENOSPC; 1713 } 1714 1715 /** 1716 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes 1717 * @rgd: The rgrp 1718 * @last_unlinked: block address of the last dinode we unlinked 1719 * @skip: block address we should explicitly not unlink 1720 * 1721 * Returns: 0 if no error 1722 * The inode, if one has been found, in inode. 1723 */ 1724 1725 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) 1726 { 1727 u64 block; 1728 struct gfs2_sbd *sdp = rgd->rd_sbd; 1729 struct gfs2_glock *gl; 1730 struct gfs2_inode *ip; 1731 int error; 1732 int found = 0; 1733 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 }; 1734 1735 while (1) { 1736 down_write(&sdp->sd_log_flush_lock); 1737 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL, 1738 true, NULL); 1739 up_write(&sdp->sd_log_flush_lock); 1740 if (error == -ENOSPC) 1741 break; 1742 if (WARN_ON_ONCE(error)) 1743 break; 1744 1745 block = gfs2_rbm_to_block(&rbm); 1746 if (gfs2_rbm_from_block(&rbm, block + 1)) 1747 break; 1748 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked) 1749 continue; 1750 if (block == skip) 1751 continue; 1752 *last_unlinked = block; 1753 1754 error = gfs2_glock_get(sdp, block, &gfs2_inode_glops, CREATE, &gl); 1755 if (error) 1756 continue; 1757 1758 /* If the inode is already in cache, we can ignore it here 1759 * because the existing inode disposal code will deal with 1760 * it when all refs have gone away. Accessing gl_object like 1761 * this is not safe in general. Here it is ok because we do 1762 * not dereference the pointer, and we only need an approx 1763 * answer to whether it is NULL or not. 1764 */ 1765 ip = gl->gl_object; 1766 1767 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0) 1768 gfs2_glock_put(gl); 1769 else 1770 found++; 1771 1772 /* Limit reclaim to sensible number of tasks */ 1773 if (found > NR_CPUS) 1774 return; 1775 } 1776 1777 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1778 return; 1779 } 1780 1781 /** 1782 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested 1783 * @rgd: The rgrp in question 1784 * @loops: An indication of how picky we can be (0=very, 1=less so) 1785 * 1786 * This function uses the recently added glock statistics in order to 1787 * figure out whether a parciular resource group is suffering from 1788 * contention from multiple nodes. This is done purely on the basis 1789 * of timings, since this is the only data we have to work with and 1790 * our aim here is to reject a resource group which is highly contended 1791 * but (very important) not to do this too often in order to ensure that 1792 * we do not land up introducing fragmentation by changing resource 1793 * groups when not actually required. 1794 * 1795 * The calculation is fairly simple, we want to know whether the SRTTB 1796 * (i.e. smoothed round trip time for blocking operations) to acquire 1797 * the lock for this rgrp's glock is significantly greater than the 1798 * time taken for resource groups on average. We introduce a margin in 1799 * the form of the variable @var which is computed as the sum of the two 1800 * respective variences, and multiplied by a factor depending on @loops 1801 * and whether we have a lot of data to base the decision on. This is 1802 * then tested against the square difference of the means in order to 1803 * decide whether the result is statistically significant or not. 1804 * 1805 * Returns: A boolean verdict on the congestion status 1806 */ 1807 1808 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops) 1809 { 1810 const struct gfs2_glock *gl = rgd->rd_gl; 1811 const struct gfs2_sbd *sdp = gl->gl_sbd; 1812 struct gfs2_lkstats *st; 1813 s64 r_dcount, l_dcount; 1814 s64 r_srttb, l_srttb; 1815 s64 srttb_diff; 1816 s64 sqr_diff; 1817 s64 var; 1818 1819 preempt_disable(); 1820 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP]; 1821 r_srttb = st->stats[GFS2_LKS_SRTTB]; 1822 r_dcount = st->stats[GFS2_LKS_DCOUNT]; 1823 var = st->stats[GFS2_LKS_SRTTVARB] + 1824 gl->gl_stats.stats[GFS2_LKS_SRTTVARB]; 1825 preempt_enable(); 1826 1827 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB]; 1828 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT]; 1829 1830 if ((l_dcount < 1) || (r_dcount < 1) || (r_srttb == 0)) 1831 return false; 1832 1833 srttb_diff = r_srttb - l_srttb; 1834 sqr_diff = srttb_diff * srttb_diff; 1835 1836 var *= 2; 1837 if (l_dcount < 8 || r_dcount < 8) 1838 var *= 2; 1839 if (loops == 1) 1840 var *= 2; 1841 1842 return ((srttb_diff < 0) && (sqr_diff > var)); 1843 } 1844 1845 /** 1846 * gfs2_rgrp_used_recently 1847 * @rs: The block reservation with the rgrp to test 1848 * @msecs: The time limit in milliseconds 1849 * 1850 * Returns: True if the rgrp glock has been used within the time limit 1851 */ 1852 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs, 1853 u64 msecs) 1854 { 1855 u64 tdiff; 1856 1857 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(), 1858 rs->rs_rbm.rgd->rd_gl->gl_dstamp)); 1859 1860 return tdiff > (msecs * 1000 * 1000); 1861 } 1862 1863 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip) 1864 { 1865 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1866 u32 skip; 1867 1868 get_random_bytes(&skip, sizeof(skip)); 1869 return skip % sdp->sd_rgrps; 1870 } 1871 1872 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin) 1873 { 1874 struct gfs2_rgrpd *rgd = *pos; 1875 struct gfs2_sbd *sdp = rgd->rd_sbd; 1876 1877 rgd = gfs2_rgrpd_get_next(rgd); 1878 if (rgd == NULL) 1879 rgd = gfs2_rgrpd_get_first(sdp); 1880 *pos = rgd; 1881 if (rgd != begin) /* If we didn't wrap */ 1882 return true; 1883 return false; 1884 } 1885 1886 /** 1887 * gfs2_inplace_reserve - Reserve space in the filesystem 1888 * @ip: the inode to reserve space for 1889 * @ap: the allocation parameters 1890 * 1891 * Returns: errno 1892 */ 1893 1894 int gfs2_inplace_reserve(struct gfs2_inode *ip, const struct gfs2_alloc_parms *ap) 1895 { 1896 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1897 struct gfs2_rgrpd *begin = NULL; 1898 struct gfs2_blkreserv *rs = ip->i_res; 1899 int error = 0, rg_locked, flags = 0; 1900 u64 last_unlinked = NO_BLOCK; 1901 int loops = 0; 1902 u32 skip = 0; 1903 1904 if (sdp->sd_args.ar_rgrplvb) 1905 flags |= GL_SKIP; 1906 if (gfs2_assert_warn(sdp, ap->target)) 1907 return -EINVAL; 1908 if (gfs2_rs_active(rs)) { 1909 begin = rs->rs_rbm.rgd; 1910 } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) { 1911 rs->rs_rbm.rgd = begin = ip->i_rgd; 1912 } else { 1913 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1); 1914 } 1915 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV)) 1916 skip = gfs2_orlov_skip(ip); 1917 if (rs->rs_rbm.rgd == NULL) 1918 return -EBADSLT; 1919 1920 while (loops < 3) { 1921 rg_locked = 1; 1922 1923 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) { 1924 rg_locked = 0; 1925 if (skip && skip--) 1926 goto next_rgrp; 1927 if (!gfs2_rs_active(rs) && (loops < 2) && 1928 gfs2_rgrp_used_recently(rs, 1000) && 1929 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 1930 goto next_rgrp; 1931 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl, 1932 LM_ST_EXCLUSIVE, flags, 1933 &rs->rs_rgd_gh); 1934 if (unlikely(error)) 1935 return error; 1936 if (!gfs2_rs_active(rs) && (loops < 2) && 1937 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 1938 goto skip_rgrp; 1939 if (sdp->sd_args.ar_rgrplvb) { 1940 error = update_rgrp_lvb(rs->rs_rbm.rgd); 1941 if (unlikely(error)) { 1942 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 1943 return error; 1944 } 1945 } 1946 } 1947 1948 /* Skip unuseable resource groups */ 1949 if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | 1950 GFS2_RDF_ERROR)) || 1951 (ap->target > rs->rs_rbm.rgd->rd_extfail_pt)) 1952 goto skip_rgrp; 1953 1954 if (sdp->sd_args.ar_rgrplvb) 1955 gfs2_rgrp_bh_get(rs->rs_rbm.rgd); 1956 1957 /* Get a reservation if we don't already have one */ 1958 if (!gfs2_rs_active(rs)) 1959 rg_mblk_search(rs->rs_rbm.rgd, ip, ap); 1960 1961 /* Skip rgrps when we can't get a reservation on first pass */ 1962 if (!gfs2_rs_active(rs) && (loops < 1)) 1963 goto check_rgrp; 1964 1965 /* If rgrp has enough free space, use it */ 1966 if (rs->rs_rbm.rgd->rd_free_clone >= ap->target) { 1967 ip->i_rgd = rs->rs_rbm.rgd; 1968 return 0; 1969 } 1970 1971 check_rgrp: 1972 /* Check for unlinked inodes which can be reclaimed */ 1973 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK) 1974 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked, 1975 ip->i_no_addr); 1976 skip_rgrp: 1977 /* Drop reservation, if we couldn't use reserved rgrp */ 1978 if (gfs2_rs_active(rs)) 1979 gfs2_rs_deltree(rs); 1980 1981 /* Unlock rgrp if required */ 1982 if (!rg_locked) 1983 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 1984 next_rgrp: 1985 /* Find the next rgrp, and continue looking */ 1986 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin)) 1987 continue; 1988 if (skip) 1989 continue; 1990 1991 /* If we've scanned all the rgrps, but found no free blocks 1992 * then this checks for some less likely conditions before 1993 * trying again. 1994 */ 1995 loops++; 1996 /* Check that fs hasn't grown if writing to rindex */ 1997 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { 1998 error = gfs2_ri_update(ip); 1999 if (error) 2000 return error; 2001 } 2002 /* Flushing the log may release space */ 2003 if (loops == 2) 2004 gfs2_log_flush(sdp, NULL, NORMAL_FLUSH); 2005 } 2006 2007 return -ENOSPC; 2008 } 2009 2010 /** 2011 * gfs2_inplace_release - release an inplace reservation 2012 * @ip: the inode the reservation was taken out on 2013 * 2014 * Release a reservation made by gfs2_inplace_reserve(). 2015 */ 2016 2017 void gfs2_inplace_release(struct gfs2_inode *ip) 2018 { 2019 struct gfs2_blkreserv *rs = ip->i_res; 2020 2021 if (rs->rs_rgd_gh.gh_gl) 2022 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 2023 } 2024 2025 /** 2026 * gfs2_get_block_type - Check a block in a RG is of given type 2027 * @rgd: the resource group holding the block 2028 * @block: the block number 2029 * 2030 * Returns: The block type (GFS2_BLKST_*) 2031 */ 2032 2033 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block) 2034 { 2035 struct gfs2_rbm rbm = { .rgd = rgd, }; 2036 int ret; 2037 2038 ret = gfs2_rbm_from_block(&rbm, block); 2039 WARN_ON_ONCE(ret != 0); 2040 2041 return gfs2_testbit(&rbm); 2042 } 2043 2044 2045 /** 2046 * gfs2_alloc_extent - allocate an extent from a given bitmap 2047 * @rbm: the resource group information 2048 * @dinode: TRUE if the first block we allocate is for a dinode 2049 * @n: The extent length (value/result) 2050 * 2051 * Add the bitmap buffer to the transaction. 2052 * Set the found bits to @new_state to change block's allocation state. 2053 */ 2054 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode, 2055 unsigned int *n) 2056 { 2057 struct gfs2_rbm pos = { .rgd = rbm->rgd, }; 2058 const unsigned int elen = *n; 2059 u64 block; 2060 int ret; 2061 2062 *n = 1; 2063 block = gfs2_rbm_to_block(rbm); 2064 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh); 2065 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2066 block++; 2067 while (*n < elen) { 2068 ret = gfs2_rbm_from_block(&pos, block); 2069 if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE) 2070 break; 2071 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh); 2072 gfs2_setbit(&pos, true, GFS2_BLKST_USED); 2073 (*n)++; 2074 block++; 2075 } 2076 } 2077 2078 /** 2079 * rgblk_free - Change alloc state of given block(s) 2080 * @sdp: the filesystem 2081 * @bstart: the start of a run of blocks to free 2082 * @blen: the length of the block run (all must lie within ONE RG!) 2083 * @new_state: GFS2_BLKST_XXX the after-allocation block state 2084 * 2085 * Returns: Resource group containing the block(s) 2086 */ 2087 2088 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart, 2089 u32 blen, unsigned char new_state) 2090 { 2091 struct gfs2_rbm rbm; 2092 struct gfs2_bitmap *bi; 2093 2094 rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1); 2095 if (!rbm.rgd) { 2096 if (gfs2_consist(sdp)) 2097 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart); 2098 return NULL; 2099 } 2100 2101 while (blen--) { 2102 gfs2_rbm_from_block(&rbm, bstart); 2103 bi = rbm_bi(&rbm); 2104 bstart++; 2105 if (!bi->bi_clone) { 2106 bi->bi_clone = kmalloc(bi->bi_bh->b_size, 2107 GFP_NOFS | __GFP_NOFAIL); 2108 memcpy(bi->bi_clone + bi->bi_offset, 2109 bi->bi_bh->b_data + bi->bi_offset, bi->bi_len); 2110 } 2111 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh); 2112 gfs2_setbit(&rbm, false, new_state); 2113 } 2114 2115 return rbm.rgd; 2116 } 2117 2118 /** 2119 * gfs2_rgrp_dump - print out an rgrp 2120 * @seq: The iterator 2121 * @gl: The glock in question 2122 * 2123 */ 2124 2125 void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl) 2126 { 2127 struct gfs2_rgrpd *rgd = gl->gl_object; 2128 struct gfs2_blkreserv *trs; 2129 const struct rb_node *n; 2130 2131 if (rgd == NULL) 2132 return; 2133 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n", 2134 (unsigned long long)rgd->rd_addr, rgd->rd_flags, 2135 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes, 2136 rgd->rd_reserved, rgd->rd_extfail_pt); 2137 spin_lock(&rgd->rd_rsspin); 2138 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) { 2139 trs = rb_entry(n, struct gfs2_blkreserv, rs_node); 2140 dump_rs(seq, trs); 2141 } 2142 spin_unlock(&rgd->rd_rsspin); 2143 } 2144 2145 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) 2146 { 2147 struct gfs2_sbd *sdp = rgd->rd_sbd; 2148 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", 2149 (unsigned long long)rgd->rd_addr); 2150 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); 2151 gfs2_rgrp_dump(NULL, rgd->rd_gl); 2152 rgd->rd_flags |= GFS2_RDF_ERROR; 2153 } 2154 2155 /** 2156 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation 2157 * @ip: The inode we have just allocated blocks for 2158 * @rbm: The start of the allocated blocks 2159 * @len: The extent length 2160 * 2161 * Adjusts a reservation after an allocation has taken place. If the 2162 * reservation does not match the allocation, or if it is now empty 2163 * then it is removed. 2164 */ 2165 2166 static void gfs2_adjust_reservation(struct gfs2_inode *ip, 2167 const struct gfs2_rbm *rbm, unsigned len) 2168 { 2169 struct gfs2_blkreserv *rs = ip->i_res; 2170 struct gfs2_rgrpd *rgd = rbm->rgd; 2171 unsigned rlen; 2172 u64 block; 2173 int ret; 2174 2175 spin_lock(&rgd->rd_rsspin); 2176 if (gfs2_rs_active(rs)) { 2177 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) { 2178 block = gfs2_rbm_to_block(rbm); 2179 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len); 2180 rlen = min(rs->rs_free, len); 2181 rs->rs_free -= rlen; 2182 rgd->rd_reserved -= rlen; 2183 trace_gfs2_rs(rs, TRACE_RS_CLAIM); 2184 if (rs->rs_free && !ret) 2185 goto out; 2186 } 2187 __rs_deltree(rs); 2188 } 2189 out: 2190 spin_unlock(&rgd->rd_rsspin); 2191 } 2192 2193 /** 2194 * gfs2_set_alloc_start - Set starting point for block allocation 2195 * @rbm: The rbm which will be set to the required location 2196 * @ip: The gfs2 inode 2197 * @dinode: Flag to say if allocation includes a new inode 2198 * 2199 * This sets the starting point from the reservation if one is active 2200 * otherwise it falls back to guessing a start point based on the 2201 * inode's goal block or the last allocation point in the rgrp. 2202 */ 2203 2204 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm, 2205 const struct gfs2_inode *ip, bool dinode) 2206 { 2207 u64 goal; 2208 2209 if (gfs2_rs_active(ip->i_res)) { 2210 *rbm = ip->i_res->rs_rbm; 2211 return; 2212 } 2213 2214 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal)) 2215 goal = ip->i_goal; 2216 else 2217 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0; 2218 2219 gfs2_rbm_from_block(rbm, goal); 2220 } 2221 2222 /** 2223 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode 2224 * @ip: the inode to allocate the block for 2225 * @bn: Used to return the starting block number 2226 * @nblocks: requested number of blocks/extent length (value/result) 2227 * @dinode: 1 if we're allocating a dinode block, else 0 2228 * @generation: the generation number of the inode 2229 * 2230 * Returns: 0 or error 2231 */ 2232 2233 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks, 2234 bool dinode, u64 *generation) 2235 { 2236 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2237 struct buffer_head *dibh; 2238 struct gfs2_rbm rbm = { .rgd = ip->i_rgd, }; 2239 unsigned int ndata; 2240 u64 block; /* block, within the file system scope */ 2241 int error; 2242 2243 gfs2_set_alloc_start(&rbm, ip, dinode); 2244 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false, NULL); 2245 2246 if (error == -ENOSPC) { 2247 gfs2_set_alloc_start(&rbm, ip, dinode); 2248 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false, 2249 NULL); 2250 } 2251 2252 /* Since all blocks are reserved in advance, this shouldn't happen */ 2253 if (error) { 2254 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n", 2255 (unsigned long long)ip->i_no_addr, error, *nblocks, 2256 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags), 2257 rbm.rgd->rd_extfail_pt); 2258 goto rgrp_error; 2259 } 2260 2261 gfs2_alloc_extent(&rbm, dinode, nblocks); 2262 block = gfs2_rbm_to_block(&rbm); 2263 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0; 2264 if (gfs2_rs_active(ip->i_res)) 2265 gfs2_adjust_reservation(ip, &rbm, *nblocks); 2266 ndata = *nblocks; 2267 if (dinode) 2268 ndata--; 2269 2270 if (!dinode) { 2271 ip->i_goal = block + ndata - 1; 2272 error = gfs2_meta_inode_buffer(ip, &dibh); 2273 if (error == 0) { 2274 struct gfs2_dinode *di = 2275 (struct gfs2_dinode *)dibh->b_data; 2276 gfs2_trans_add_meta(ip->i_gl, dibh); 2277 di->di_goal_meta = di->di_goal_data = 2278 cpu_to_be64(ip->i_goal); 2279 brelse(dibh); 2280 } 2281 } 2282 if (rbm.rgd->rd_free < *nblocks) { 2283 pr_warn("nblocks=%u\n", *nblocks); 2284 goto rgrp_error; 2285 } 2286 2287 rbm.rgd->rd_free -= *nblocks; 2288 if (dinode) { 2289 rbm.rgd->rd_dinodes++; 2290 *generation = rbm.rgd->rd_igeneration++; 2291 if (*generation == 0) 2292 *generation = rbm.rgd->rd_igeneration++; 2293 } 2294 2295 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh); 2296 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data); 2297 gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data); 2298 2299 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0); 2300 if (dinode) 2301 gfs2_trans_add_unrevoke(sdp, block, *nblocks); 2302 2303 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid); 2304 2305 rbm.rgd->rd_free_clone -= *nblocks; 2306 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks, 2307 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2308 *bn = block; 2309 return 0; 2310 2311 rgrp_error: 2312 gfs2_rgrp_error(rbm.rgd); 2313 return -EIO; 2314 } 2315 2316 /** 2317 * __gfs2_free_blocks - free a contiguous run of block(s) 2318 * @ip: the inode these blocks are being freed from 2319 * @bstart: first block of a run of contiguous blocks 2320 * @blen: the length of the block run 2321 * @meta: 1 if the blocks represent metadata 2322 * 2323 */ 2324 2325 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta) 2326 { 2327 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2328 struct gfs2_rgrpd *rgd; 2329 2330 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE); 2331 if (!rgd) 2332 return; 2333 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE); 2334 rgd->rd_free += blen; 2335 rgd->rd_flags &= ~GFS2_RGF_TRIMMED; 2336 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2337 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2338 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2339 2340 /* Directories keep their data in the metadata address space */ 2341 if (meta || ip->i_depth) 2342 gfs2_meta_wipe(ip, bstart, blen); 2343 } 2344 2345 /** 2346 * gfs2_free_meta - free a contiguous run of data block(s) 2347 * @ip: the inode these blocks are being freed from 2348 * @bstart: first block of a run of contiguous blocks 2349 * @blen: the length of the block run 2350 * 2351 */ 2352 2353 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen) 2354 { 2355 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2356 2357 __gfs2_free_blocks(ip, bstart, blen, 1); 2358 gfs2_statfs_change(sdp, 0, +blen, 0); 2359 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); 2360 } 2361 2362 void gfs2_unlink_di(struct inode *inode) 2363 { 2364 struct gfs2_inode *ip = GFS2_I(inode); 2365 struct gfs2_sbd *sdp = GFS2_SB(inode); 2366 struct gfs2_rgrpd *rgd; 2367 u64 blkno = ip->i_no_addr; 2368 2369 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED); 2370 if (!rgd) 2371 return; 2372 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2373 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2374 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2375 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2376 update_rgrp_lvb_unlinked(rgd, 1); 2377 } 2378 2379 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno) 2380 { 2381 struct gfs2_sbd *sdp = rgd->rd_sbd; 2382 struct gfs2_rgrpd *tmp_rgd; 2383 2384 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE); 2385 if (!tmp_rgd) 2386 return; 2387 gfs2_assert_withdraw(sdp, rgd == tmp_rgd); 2388 2389 if (!rgd->rd_dinodes) 2390 gfs2_consist_rgrpd(rgd); 2391 rgd->rd_dinodes--; 2392 rgd->rd_free++; 2393 2394 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2395 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2396 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2397 update_rgrp_lvb_unlinked(rgd, -1); 2398 2399 gfs2_statfs_change(sdp, 0, +1, -1); 2400 } 2401 2402 2403 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) 2404 { 2405 gfs2_free_uninit_di(rgd, ip->i_no_addr); 2406 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2407 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); 2408 gfs2_meta_wipe(ip, ip->i_no_addr, 1); 2409 } 2410 2411 /** 2412 * gfs2_check_blk_type - Check the type of a block 2413 * @sdp: The superblock 2414 * @no_addr: The block number to check 2415 * @type: The block type we are looking for 2416 * 2417 * Returns: 0 if the block type matches the expected type 2418 * -ESTALE if it doesn't match 2419 * or -ve errno if something went wrong while checking 2420 */ 2421 2422 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) 2423 { 2424 struct gfs2_rgrpd *rgd; 2425 struct gfs2_holder rgd_gh; 2426 int error = -EINVAL; 2427 2428 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1); 2429 if (!rgd) 2430 goto fail; 2431 2432 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); 2433 if (error) 2434 goto fail; 2435 2436 if (gfs2_get_block_type(rgd, no_addr) != type) 2437 error = -ESTALE; 2438 2439 gfs2_glock_dq_uninit(&rgd_gh); 2440 fail: 2441 return error; 2442 } 2443 2444 /** 2445 * gfs2_rlist_add - add a RG to a list of RGs 2446 * @ip: the inode 2447 * @rlist: the list of resource groups 2448 * @block: the block 2449 * 2450 * Figure out what RG a block belongs to and add that RG to the list 2451 * 2452 * FIXME: Don't use NOFAIL 2453 * 2454 */ 2455 2456 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, 2457 u64 block) 2458 { 2459 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2460 struct gfs2_rgrpd *rgd; 2461 struct gfs2_rgrpd **tmp; 2462 unsigned int new_space; 2463 unsigned int x; 2464 2465 if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) 2466 return; 2467 2468 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block)) 2469 rgd = ip->i_rgd; 2470 else 2471 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2472 if (!rgd) { 2473 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block); 2474 return; 2475 } 2476 ip->i_rgd = rgd; 2477 2478 for (x = 0; x < rlist->rl_rgrps; x++) 2479 if (rlist->rl_rgd[x] == rgd) 2480 return; 2481 2482 if (rlist->rl_rgrps == rlist->rl_space) { 2483 new_space = rlist->rl_space + 10; 2484 2485 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), 2486 GFP_NOFS | __GFP_NOFAIL); 2487 2488 if (rlist->rl_rgd) { 2489 memcpy(tmp, rlist->rl_rgd, 2490 rlist->rl_space * sizeof(struct gfs2_rgrpd *)); 2491 kfree(rlist->rl_rgd); 2492 } 2493 2494 rlist->rl_space = new_space; 2495 rlist->rl_rgd = tmp; 2496 } 2497 2498 rlist->rl_rgd[rlist->rl_rgrps++] = rgd; 2499 } 2500 2501 /** 2502 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate 2503 * and initialize an array of glock holders for them 2504 * @rlist: the list of resource groups 2505 * @state: the lock state to acquire the RG lock in 2506 * 2507 * FIXME: Don't use NOFAIL 2508 * 2509 */ 2510 2511 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state) 2512 { 2513 unsigned int x; 2514 2515 rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder), 2516 GFP_NOFS | __GFP_NOFAIL); 2517 for (x = 0; x < rlist->rl_rgrps; x++) 2518 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, 2519 state, 0, 2520 &rlist->rl_ghs[x]); 2521 } 2522 2523 /** 2524 * gfs2_rlist_free - free a resource group list 2525 * @rlist: the list of resource groups 2526 * 2527 */ 2528 2529 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) 2530 { 2531 unsigned int x; 2532 2533 kfree(rlist->rl_rgd); 2534 2535 if (rlist->rl_ghs) { 2536 for (x = 0; x < rlist->rl_rgrps; x++) 2537 gfs2_holder_uninit(&rlist->rl_ghs[x]); 2538 kfree(rlist->rl_ghs); 2539 rlist->rl_ghs = NULL; 2540 } 2541 } 2542 2543