1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #include <linux/slab.h> 11 #include <linux/spinlock.h> 12 #include <linux/completion.h> 13 #include <linux/buffer_head.h> 14 #include <linux/fs.h> 15 #include <linux/gfs2_ondisk.h> 16 #include <linux/prefetch.h> 17 #include <linux/blkdev.h> 18 #include <linux/rbtree.h> 19 #include <linux/random.h> 20 21 #include "gfs2.h" 22 #include "incore.h" 23 #include "glock.h" 24 #include "glops.h" 25 #include "lops.h" 26 #include "meta_io.h" 27 #include "quota.h" 28 #include "rgrp.h" 29 #include "super.h" 30 #include "trans.h" 31 #include "util.h" 32 #include "log.h" 33 #include "inode.h" 34 #include "trace_gfs2.h" 35 36 #define BFITNOENT ((u32)~0) 37 #define NO_BLOCK ((u64)~0) 38 39 #if BITS_PER_LONG == 32 40 #define LBITMASK (0x55555555UL) 41 #define LBITSKIP55 (0x55555555UL) 42 #define LBITSKIP00 (0x00000000UL) 43 #else 44 #define LBITMASK (0x5555555555555555UL) 45 #define LBITSKIP55 (0x5555555555555555UL) 46 #define LBITSKIP00 (0x0000000000000000UL) 47 #endif 48 49 /* 50 * These routines are used by the resource group routines (rgrp.c) 51 * to keep track of block allocation. Each block is represented by two 52 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. 53 * 54 * 0 = Free 55 * 1 = Used (not metadata) 56 * 2 = Unlinked (still in use) inode 57 * 3 = Used (metadata) 58 */ 59 60 static const char valid_change[16] = { 61 /* current */ 62 /* n */ 0, 1, 1, 1, 63 /* e */ 1, 0, 0, 0, 64 /* w */ 0, 0, 0, 1, 65 1, 0, 0, 0 66 }; 67 68 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext, 69 const struct gfs2_inode *ip, bool nowrap); 70 71 72 /** 73 * gfs2_setbit - Set a bit in the bitmaps 74 * @rbm: The position of the bit to set 75 * @do_clone: Also set the clone bitmap, if it exists 76 * @new_state: the new state of the block 77 * 78 */ 79 80 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone, 81 unsigned char new_state) 82 { 83 unsigned char *byte1, *byte2, *end, cur_state; 84 unsigned int buflen = rbm->bi->bi_len; 85 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 86 87 byte1 = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset + (rbm->offset / GFS2_NBBY); 88 end = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset + buflen; 89 90 BUG_ON(byte1 >= end); 91 92 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; 93 94 if (unlikely(!valid_change[new_state * 4 + cur_state])) { 95 printk(KERN_WARNING "GFS2: buf_blk = 0x%x old_state=%d, " 96 "new_state=%d\n", rbm->offset, cur_state, new_state); 97 printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%x\n", 98 (unsigned long long)rbm->rgd->rd_addr, 99 rbm->bi->bi_start); 100 printk(KERN_WARNING "GFS2: bi_offset=0x%x bi_len=0x%x\n", 101 rbm->bi->bi_offset, rbm->bi->bi_len); 102 dump_stack(); 103 gfs2_consist_rgrpd(rbm->rgd); 104 return; 105 } 106 *byte1 ^= (cur_state ^ new_state) << bit; 107 108 if (do_clone && rbm->bi->bi_clone) { 109 byte2 = rbm->bi->bi_clone + rbm->bi->bi_offset + (rbm->offset / GFS2_NBBY); 110 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; 111 *byte2 ^= (cur_state ^ new_state) << bit; 112 } 113 } 114 115 /** 116 * gfs2_testbit - test a bit in the bitmaps 117 * @rbm: The bit to test 118 * 119 * Returns: The two bit block state of the requested bit 120 */ 121 122 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm) 123 { 124 const u8 *buffer = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset; 125 const u8 *byte; 126 unsigned int bit; 127 128 byte = buffer + (rbm->offset / GFS2_NBBY); 129 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 130 131 return (*byte >> bit) & GFS2_BIT_MASK; 132 } 133 134 /** 135 * gfs2_bit_search 136 * @ptr: Pointer to bitmap data 137 * @mask: Mask to use (normally 0x55555.... but adjusted for search start) 138 * @state: The state we are searching for 139 * 140 * We xor the bitmap data with a patter which is the bitwise opposite 141 * of what we are looking for, this gives rise to a pattern of ones 142 * wherever there is a match. Since we have two bits per entry, we 143 * take this pattern, shift it down by one place and then and it with 144 * the original. All the even bit positions (0,2,4, etc) then represent 145 * successful matches, so we mask with 0x55555..... to remove the unwanted 146 * odd bit positions. 147 * 148 * This allows searching of a whole u64 at once (32 blocks) with a 149 * single test (on 64 bit arches). 150 */ 151 152 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) 153 { 154 u64 tmp; 155 static const u64 search[] = { 156 [0] = 0xffffffffffffffffULL, 157 [1] = 0xaaaaaaaaaaaaaaaaULL, 158 [2] = 0x5555555555555555ULL, 159 [3] = 0x0000000000000000ULL, 160 }; 161 tmp = le64_to_cpu(*ptr) ^ search[state]; 162 tmp &= (tmp >> 1); 163 tmp &= mask; 164 return tmp; 165 } 166 167 /** 168 * rs_cmp - multi-block reservation range compare 169 * @blk: absolute file system block number of the new reservation 170 * @len: number of blocks in the new reservation 171 * @rs: existing reservation to compare against 172 * 173 * returns: 1 if the block range is beyond the reach of the reservation 174 * -1 if the block range is before the start of the reservation 175 * 0 if the block range overlaps with the reservation 176 */ 177 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs) 178 { 179 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm); 180 181 if (blk >= startblk + rs->rs_free) 182 return 1; 183 if (blk + len - 1 < startblk) 184 return -1; 185 return 0; 186 } 187 188 /** 189 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing 190 * a block in a given allocation state. 191 * @buf: the buffer that holds the bitmaps 192 * @len: the length (in bytes) of the buffer 193 * @goal: start search at this block's bit-pair (within @buffer) 194 * @state: GFS2_BLKST_XXX the state of the block we're looking for. 195 * 196 * Scope of @goal and returned block number is only within this bitmap buffer, 197 * not entire rgrp or filesystem. @buffer will be offset from the actual 198 * beginning of a bitmap block buffer, skipping any header structures, but 199 * headers are always a multiple of 64 bits long so that the buffer is 200 * always aligned to a 64 bit boundary. 201 * 202 * The size of the buffer is in bytes, but is it assumed that it is 203 * always ok to read a complete multiple of 64 bits at the end 204 * of the block in case the end is no aligned to a natural boundary. 205 * 206 * Return: the block number (bitmap buffer scope) that was found 207 */ 208 209 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, 210 u32 goal, u8 state) 211 { 212 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); 213 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); 214 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); 215 u64 tmp; 216 u64 mask = 0x5555555555555555ULL; 217 u32 bit; 218 219 /* Mask off bits we don't care about at the start of the search */ 220 mask <<= spoint; 221 tmp = gfs2_bit_search(ptr, mask, state); 222 ptr++; 223 while(tmp == 0 && ptr < end) { 224 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); 225 ptr++; 226 } 227 /* Mask off any bits which are more than len bytes from the start */ 228 if (ptr == end && (len & (sizeof(u64) - 1))) 229 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); 230 /* Didn't find anything, so return */ 231 if (tmp == 0) 232 return BFITNOENT; 233 ptr--; 234 bit = __ffs64(tmp); 235 bit /= 2; /* two bits per entry in the bitmap */ 236 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; 237 } 238 239 /** 240 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number 241 * @rbm: The rbm with rgd already set correctly 242 * @block: The block number (filesystem relative) 243 * 244 * This sets the bi and offset members of an rbm based on a 245 * resource group and a filesystem relative block number. The 246 * resource group must be set in the rbm on entry, the bi and 247 * offset members will be set by this function. 248 * 249 * Returns: 0 on success, or an error code 250 */ 251 252 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block) 253 { 254 u64 rblock = block - rbm->rgd->rd_data0; 255 u32 x; 256 257 if (WARN_ON_ONCE(rblock > UINT_MAX)) 258 return -EINVAL; 259 if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data) 260 return -E2BIG; 261 262 rbm->bi = rbm->rgd->rd_bits; 263 rbm->offset = (u32)(rblock); 264 /* Check if the block is within the first block */ 265 if (rbm->offset < (rbm->bi->bi_start + rbm->bi->bi_len) * GFS2_NBBY) 266 return 0; 267 268 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */ 269 rbm->offset += (sizeof(struct gfs2_rgrp) - 270 sizeof(struct gfs2_meta_header)) * GFS2_NBBY; 271 x = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 272 rbm->offset -= x * rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 273 rbm->bi += x; 274 return 0; 275 } 276 277 /** 278 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned 279 * @rbm: Position to search (value/result) 280 * @n_unaligned: Number of unaligned blocks to check 281 * @len: Decremented for each block found (terminate on zero) 282 * 283 * Returns: true if a non-free block is encountered 284 */ 285 286 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len) 287 { 288 u64 block; 289 u32 n; 290 u8 res; 291 292 for (n = 0; n < n_unaligned; n++) { 293 res = gfs2_testbit(rbm); 294 if (res != GFS2_BLKST_FREE) 295 return true; 296 (*len)--; 297 if (*len == 0) 298 return true; 299 block = gfs2_rbm_to_block(rbm); 300 if (gfs2_rbm_from_block(rbm, block + 1)) 301 return true; 302 } 303 304 return false; 305 } 306 307 /** 308 * gfs2_free_extlen - Return extent length of free blocks 309 * @rbm: Starting position 310 * @len: Max length to check 311 * 312 * Starting at the block specified by the rbm, see how many free blocks 313 * there are, not reading more than len blocks ahead. This can be done 314 * using memchr_inv when the blocks are byte aligned, but has to be done 315 * on a block by block basis in case of unaligned blocks. Also this 316 * function can cope with bitmap boundaries (although it must stop on 317 * a resource group boundary) 318 * 319 * Returns: Number of free blocks in the extent 320 */ 321 322 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len) 323 { 324 struct gfs2_rbm rbm = *rrbm; 325 u32 n_unaligned = rbm.offset & 3; 326 u32 size = len; 327 u32 bytes; 328 u32 chunk_size; 329 u8 *ptr, *start, *end; 330 u64 block; 331 332 if (n_unaligned && 333 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len)) 334 goto out; 335 336 n_unaligned = len & 3; 337 /* Start is now byte aligned */ 338 while (len > 3) { 339 start = rbm.bi->bi_bh->b_data; 340 if (rbm.bi->bi_clone) 341 start = rbm.bi->bi_clone; 342 end = start + rbm.bi->bi_bh->b_size; 343 start += rbm.bi->bi_offset; 344 BUG_ON(rbm.offset & 3); 345 start += (rbm.offset / GFS2_NBBY); 346 bytes = min_t(u32, len / GFS2_NBBY, (end - start)); 347 ptr = memchr_inv(start, 0, bytes); 348 chunk_size = ((ptr == NULL) ? bytes : (ptr - start)); 349 chunk_size *= GFS2_NBBY; 350 BUG_ON(len < chunk_size); 351 len -= chunk_size; 352 block = gfs2_rbm_to_block(&rbm); 353 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) { 354 n_unaligned = 0; 355 break; 356 } 357 if (ptr) { 358 n_unaligned = 3; 359 break; 360 } 361 n_unaligned = len & 3; 362 } 363 364 /* Deal with any bits left over at the end */ 365 if (n_unaligned) 366 gfs2_unaligned_extlen(&rbm, n_unaligned, &len); 367 out: 368 return size - len; 369 } 370 371 /** 372 * gfs2_bitcount - count the number of bits in a certain state 373 * @rgd: the resource group descriptor 374 * @buffer: the buffer that holds the bitmaps 375 * @buflen: the length (in bytes) of the buffer 376 * @state: the state of the block we're looking for 377 * 378 * Returns: The number of bits 379 */ 380 381 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, 382 unsigned int buflen, u8 state) 383 { 384 const u8 *byte = buffer; 385 const u8 *end = buffer + buflen; 386 const u8 state1 = state << 2; 387 const u8 state2 = state << 4; 388 const u8 state3 = state << 6; 389 u32 count = 0; 390 391 for (; byte < end; byte++) { 392 if (((*byte) & 0x03) == state) 393 count++; 394 if (((*byte) & 0x0C) == state1) 395 count++; 396 if (((*byte) & 0x30) == state2) 397 count++; 398 if (((*byte) & 0xC0) == state3) 399 count++; 400 } 401 402 return count; 403 } 404 405 /** 406 * gfs2_rgrp_verify - Verify that a resource group is consistent 407 * @rgd: the rgrp 408 * 409 */ 410 411 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) 412 { 413 struct gfs2_sbd *sdp = rgd->rd_sbd; 414 struct gfs2_bitmap *bi = NULL; 415 u32 length = rgd->rd_length; 416 u32 count[4], tmp; 417 int buf, x; 418 419 memset(count, 0, 4 * sizeof(u32)); 420 421 /* Count # blocks in each of 4 possible allocation states */ 422 for (buf = 0; buf < length; buf++) { 423 bi = rgd->rd_bits + buf; 424 for (x = 0; x < 4; x++) 425 count[x] += gfs2_bitcount(rgd, 426 bi->bi_bh->b_data + 427 bi->bi_offset, 428 bi->bi_len, x); 429 } 430 431 if (count[0] != rgd->rd_free) { 432 if (gfs2_consist_rgrpd(rgd)) 433 fs_err(sdp, "free data mismatch: %u != %u\n", 434 count[0], rgd->rd_free); 435 return; 436 } 437 438 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; 439 if (count[1] != tmp) { 440 if (gfs2_consist_rgrpd(rgd)) 441 fs_err(sdp, "used data mismatch: %u != %u\n", 442 count[1], tmp); 443 return; 444 } 445 446 if (count[2] + count[3] != rgd->rd_dinodes) { 447 if (gfs2_consist_rgrpd(rgd)) 448 fs_err(sdp, "used metadata mismatch: %u != %u\n", 449 count[2] + count[3], rgd->rd_dinodes); 450 return; 451 } 452 } 453 454 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block) 455 { 456 u64 first = rgd->rd_data0; 457 u64 last = first + rgd->rd_data; 458 return first <= block && block < last; 459 } 460 461 /** 462 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number 463 * @sdp: The GFS2 superblock 464 * @blk: The data block number 465 * @exact: True if this needs to be an exact match 466 * 467 * Returns: The resource group, or NULL if not found 468 */ 469 470 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact) 471 { 472 struct rb_node *n, *next; 473 struct gfs2_rgrpd *cur; 474 475 spin_lock(&sdp->sd_rindex_spin); 476 n = sdp->sd_rindex_tree.rb_node; 477 while (n) { 478 cur = rb_entry(n, struct gfs2_rgrpd, rd_node); 479 next = NULL; 480 if (blk < cur->rd_addr) 481 next = n->rb_left; 482 else if (blk >= cur->rd_data0 + cur->rd_data) 483 next = n->rb_right; 484 if (next == NULL) { 485 spin_unlock(&sdp->sd_rindex_spin); 486 if (exact) { 487 if (blk < cur->rd_addr) 488 return NULL; 489 if (blk >= cur->rd_data0 + cur->rd_data) 490 return NULL; 491 } 492 return cur; 493 } 494 n = next; 495 } 496 spin_unlock(&sdp->sd_rindex_spin); 497 498 return NULL; 499 } 500 501 /** 502 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem 503 * @sdp: The GFS2 superblock 504 * 505 * Returns: The first rgrp in the filesystem 506 */ 507 508 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) 509 { 510 const struct rb_node *n; 511 struct gfs2_rgrpd *rgd; 512 513 spin_lock(&sdp->sd_rindex_spin); 514 n = rb_first(&sdp->sd_rindex_tree); 515 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 516 spin_unlock(&sdp->sd_rindex_spin); 517 518 return rgd; 519 } 520 521 /** 522 * gfs2_rgrpd_get_next - get the next RG 523 * @rgd: the resource group descriptor 524 * 525 * Returns: The next rgrp 526 */ 527 528 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) 529 { 530 struct gfs2_sbd *sdp = rgd->rd_sbd; 531 const struct rb_node *n; 532 533 spin_lock(&sdp->sd_rindex_spin); 534 n = rb_next(&rgd->rd_node); 535 if (n == NULL) 536 n = rb_first(&sdp->sd_rindex_tree); 537 538 if (unlikely(&rgd->rd_node == n)) { 539 spin_unlock(&sdp->sd_rindex_spin); 540 return NULL; 541 } 542 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 543 spin_unlock(&sdp->sd_rindex_spin); 544 return rgd; 545 } 546 547 void gfs2_free_clones(struct gfs2_rgrpd *rgd) 548 { 549 int x; 550 551 for (x = 0; x < rgd->rd_length; x++) { 552 struct gfs2_bitmap *bi = rgd->rd_bits + x; 553 kfree(bi->bi_clone); 554 bi->bi_clone = NULL; 555 } 556 } 557 558 /** 559 * gfs2_rs_alloc - make sure we have a reservation assigned to the inode 560 * @ip: the inode for this reservation 561 */ 562 int gfs2_rs_alloc(struct gfs2_inode *ip) 563 { 564 int error = 0; 565 566 down_write(&ip->i_rw_mutex); 567 if (ip->i_res) 568 goto out; 569 570 ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS); 571 if (!ip->i_res) { 572 error = -ENOMEM; 573 goto out; 574 } 575 576 RB_CLEAR_NODE(&ip->i_res->rs_node); 577 out: 578 up_write(&ip->i_rw_mutex); 579 return error; 580 } 581 582 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs) 583 { 584 gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n", 585 (unsigned long long)rs->rs_inum, 586 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm), 587 rs->rs_rbm.offset, rs->rs_free); 588 } 589 590 /** 591 * __rs_deltree - remove a multi-block reservation from the rgd tree 592 * @rs: The reservation to remove 593 * 594 */ 595 static void __rs_deltree(struct gfs2_blkreserv *rs) 596 { 597 struct gfs2_rgrpd *rgd; 598 599 if (!gfs2_rs_active(rs)) 600 return; 601 602 rgd = rs->rs_rbm.rgd; 603 trace_gfs2_rs(rs, TRACE_RS_TREEDEL); 604 rb_erase(&rs->rs_node, &rgd->rd_rstree); 605 RB_CLEAR_NODE(&rs->rs_node); 606 607 if (rs->rs_free) { 608 /* return reserved blocks to the rgrp */ 609 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free); 610 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free; 611 rs->rs_free = 0; 612 clear_bit(GBF_FULL, &rs->rs_rbm.bi->bi_flags); 613 smp_mb__after_clear_bit(); 614 } 615 } 616 617 /** 618 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree 619 * @rs: The reservation to remove 620 * 621 */ 622 void gfs2_rs_deltree(struct gfs2_blkreserv *rs) 623 { 624 struct gfs2_rgrpd *rgd; 625 626 rgd = rs->rs_rbm.rgd; 627 if (rgd) { 628 spin_lock(&rgd->rd_rsspin); 629 __rs_deltree(rs); 630 spin_unlock(&rgd->rd_rsspin); 631 } 632 } 633 634 /** 635 * gfs2_rs_delete - delete a multi-block reservation 636 * @ip: The inode for this reservation 637 * 638 */ 639 void gfs2_rs_delete(struct gfs2_inode *ip) 640 { 641 struct inode *inode = &ip->i_inode; 642 643 down_write(&ip->i_rw_mutex); 644 if (ip->i_res && atomic_read(&inode->i_writecount) <= 1) { 645 gfs2_rs_deltree(ip->i_res); 646 BUG_ON(ip->i_res->rs_free); 647 kmem_cache_free(gfs2_rsrv_cachep, ip->i_res); 648 ip->i_res = NULL; 649 } 650 up_write(&ip->i_rw_mutex); 651 } 652 653 /** 654 * return_all_reservations - return all reserved blocks back to the rgrp. 655 * @rgd: the rgrp that needs its space back 656 * 657 * We previously reserved a bunch of blocks for allocation. Now we need to 658 * give them back. This leave the reservation structures in tact, but removes 659 * all of their corresponding "no-fly zones". 660 */ 661 static void return_all_reservations(struct gfs2_rgrpd *rgd) 662 { 663 struct rb_node *n; 664 struct gfs2_blkreserv *rs; 665 666 spin_lock(&rgd->rd_rsspin); 667 while ((n = rb_first(&rgd->rd_rstree))) { 668 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 669 __rs_deltree(rs); 670 } 671 spin_unlock(&rgd->rd_rsspin); 672 } 673 674 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) 675 { 676 struct rb_node *n; 677 struct gfs2_rgrpd *rgd; 678 struct gfs2_glock *gl; 679 680 while ((n = rb_first(&sdp->sd_rindex_tree))) { 681 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 682 gl = rgd->rd_gl; 683 684 rb_erase(n, &sdp->sd_rindex_tree); 685 686 if (gl) { 687 spin_lock(&gl->gl_spin); 688 gl->gl_object = NULL; 689 spin_unlock(&gl->gl_spin); 690 gfs2_glock_add_to_lru(gl); 691 gfs2_glock_put(gl); 692 } 693 694 gfs2_free_clones(rgd); 695 kfree(rgd->rd_bits); 696 return_all_reservations(rgd); 697 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 698 } 699 } 700 701 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd) 702 { 703 printk(KERN_INFO " ri_addr = %llu\n", (unsigned long long)rgd->rd_addr); 704 printk(KERN_INFO " ri_length = %u\n", rgd->rd_length); 705 printk(KERN_INFO " ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0); 706 printk(KERN_INFO " ri_data = %u\n", rgd->rd_data); 707 printk(KERN_INFO " ri_bitbytes = %u\n", rgd->rd_bitbytes); 708 } 709 710 /** 711 * gfs2_compute_bitstructs - Compute the bitmap sizes 712 * @rgd: The resource group descriptor 713 * 714 * Calculates bitmap descriptors, one for each block that contains bitmap data 715 * 716 * Returns: errno 717 */ 718 719 static int compute_bitstructs(struct gfs2_rgrpd *rgd) 720 { 721 struct gfs2_sbd *sdp = rgd->rd_sbd; 722 struct gfs2_bitmap *bi; 723 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ 724 u32 bytes_left, bytes; 725 int x; 726 727 if (!length) 728 return -EINVAL; 729 730 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); 731 if (!rgd->rd_bits) 732 return -ENOMEM; 733 734 bytes_left = rgd->rd_bitbytes; 735 736 for (x = 0; x < length; x++) { 737 bi = rgd->rd_bits + x; 738 739 bi->bi_flags = 0; 740 /* small rgrp; bitmap stored completely in header block */ 741 if (length == 1) { 742 bytes = bytes_left; 743 bi->bi_offset = sizeof(struct gfs2_rgrp); 744 bi->bi_start = 0; 745 bi->bi_len = bytes; 746 /* header block */ 747 } else if (x == 0) { 748 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); 749 bi->bi_offset = sizeof(struct gfs2_rgrp); 750 bi->bi_start = 0; 751 bi->bi_len = bytes; 752 /* last block */ 753 } else if (x + 1 == length) { 754 bytes = bytes_left; 755 bi->bi_offset = sizeof(struct gfs2_meta_header); 756 bi->bi_start = rgd->rd_bitbytes - bytes_left; 757 bi->bi_len = bytes; 758 /* other blocks */ 759 } else { 760 bytes = sdp->sd_sb.sb_bsize - 761 sizeof(struct gfs2_meta_header); 762 bi->bi_offset = sizeof(struct gfs2_meta_header); 763 bi->bi_start = rgd->rd_bitbytes - bytes_left; 764 bi->bi_len = bytes; 765 } 766 767 bytes_left -= bytes; 768 } 769 770 if (bytes_left) { 771 gfs2_consist_rgrpd(rgd); 772 return -EIO; 773 } 774 bi = rgd->rd_bits + (length - 1); 775 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) { 776 if (gfs2_consist_rgrpd(rgd)) { 777 gfs2_rindex_print(rgd); 778 fs_err(sdp, "start=%u len=%u offset=%u\n", 779 bi->bi_start, bi->bi_len, bi->bi_offset); 780 } 781 return -EIO; 782 } 783 784 return 0; 785 } 786 787 /** 788 * gfs2_ri_total - Total up the file system space, according to the rindex. 789 * @sdp: the filesystem 790 * 791 */ 792 u64 gfs2_ri_total(struct gfs2_sbd *sdp) 793 { 794 u64 total_data = 0; 795 struct inode *inode = sdp->sd_rindex; 796 struct gfs2_inode *ip = GFS2_I(inode); 797 char buf[sizeof(struct gfs2_rindex)]; 798 int error, rgrps; 799 800 for (rgrps = 0;; rgrps++) { 801 loff_t pos = rgrps * sizeof(struct gfs2_rindex); 802 803 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) 804 break; 805 error = gfs2_internal_read(ip, buf, &pos, 806 sizeof(struct gfs2_rindex)); 807 if (error != sizeof(struct gfs2_rindex)) 808 break; 809 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); 810 } 811 return total_data; 812 } 813 814 static int rgd_insert(struct gfs2_rgrpd *rgd) 815 { 816 struct gfs2_sbd *sdp = rgd->rd_sbd; 817 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; 818 819 /* Figure out where to put new node */ 820 while (*newn) { 821 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, 822 rd_node); 823 824 parent = *newn; 825 if (rgd->rd_addr < cur->rd_addr) 826 newn = &((*newn)->rb_left); 827 else if (rgd->rd_addr > cur->rd_addr) 828 newn = &((*newn)->rb_right); 829 else 830 return -EEXIST; 831 } 832 833 rb_link_node(&rgd->rd_node, parent, newn); 834 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); 835 sdp->sd_rgrps++; 836 return 0; 837 } 838 839 /** 840 * read_rindex_entry - Pull in a new resource index entry from the disk 841 * @ip: Pointer to the rindex inode 842 * 843 * Returns: 0 on success, > 0 on EOF, error code otherwise 844 */ 845 846 static int read_rindex_entry(struct gfs2_inode *ip) 847 { 848 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 849 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); 850 struct gfs2_rindex buf; 851 int error; 852 struct gfs2_rgrpd *rgd; 853 854 if (pos >= i_size_read(&ip->i_inode)) 855 return 1; 856 857 error = gfs2_internal_read(ip, (char *)&buf, &pos, 858 sizeof(struct gfs2_rindex)); 859 860 if (error != sizeof(struct gfs2_rindex)) 861 return (error == 0) ? 1 : error; 862 863 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); 864 error = -ENOMEM; 865 if (!rgd) 866 return error; 867 868 rgd->rd_sbd = sdp; 869 rgd->rd_addr = be64_to_cpu(buf.ri_addr); 870 rgd->rd_length = be32_to_cpu(buf.ri_length); 871 rgd->rd_data0 = be64_to_cpu(buf.ri_data0); 872 rgd->rd_data = be32_to_cpu(buf.ri_data); 873 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); 874 spin_lock_init(&rgd->rd_rsspin); 875 876 error = compute_bitstructs(rgd); 877 if (error) 878 goto fail; 879 880 error = gfs2_glock_get(sdp, rgd->rd_addr, 881 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); 882 if (error) 883 goto fail; 884 885 rgd->rd_gl->gl_object = rgd; 886 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr; 887 rgd->rd_flags &= ~GFS2_RDF_UPTODATE; 888 if (rgd->rd_data > sdp->sd_max_rg_data) 889 sdp->sd_max_rg_data = rgd->rd_data; 890 spin_lock(&sdp->sd_rindex_spin); 891 error = rgd_insert(rgd); 892 spin_unlock(&sdp->sd_rindex_spin); 893 if (!error) 894 return 0; 895 896 error = 0; /* someone else read in the rgrp; free it and ignore it */ 897 gfs2_glock_put(rgd->rd_gl); 898 899 fail: 900 kfree(rgd->rd_bits); 901 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 902 return error; 903 } 904 905 /** 906 * gfs2_ri_update - Pull in a new resource index from the disk 907 * @ip: pointer to the rindex inode 908 * 909 * Returns: 0 on successful update, error code otherwise 910 */ 911 912 static int gfs2_ri_update(struct gfs2_inode *ip) 913 { 914 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 915 int error; 916 917 do { 918 error = read_rindex_entry(ip); 919 } while (error == 0); 920 921 if (error < 0) 922 return error; 923 924 sdp->sd_rindex_uptodate = 1; 925 return 0; 926 } 927 928 /** 929 * gfs2_rindex_update - Update the rindex if required 930 * @sdp: The GFS2 superblock 931 * 932 * We grab a lock on the rindex inode to make sure that it doesn't 933 * change whilst we are performing an operation. We keep this lock 934 * for quite long periods of time compared to other locks. This 935 * doesn't matter, since it is shared and it is very, very rarely 936 * accessed in the exclusive mode (i.e. only when expanding the filesystem). 937 * 938 * This makes sure that we're using the latest copy of the resource index 939 * special file, which might have been updated if someone expanded the 940 * filesystem (via gfs2_grow utility), which adds new resource groups. 941 * 942 * Returns: 0 on succeess, error code otherwise 943 */ 944 945 int gfs2_rindex_update(struct gfs2_sbd *sdp) 946 { 947 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); 948 struct gfs2_glock *gl = ip->i_gl; 949 struct gfs2_holder ri_gh; 950 int error = 0; 951 int unlock_required = 0; 952 953 /* Read new copy from disk if we don't have the latest */ 954 if (!sdp->sd_rindex_uptodate) { 955 if (!gfs2_glock_is_locked_by_me(gl)) { 956 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); 957 if (error) 958 return error; 959 unlock_required = 1; 960 } 961 if (!sdp->sd_rindex_uptodate) 962 error = gfs2_ri_update(ip); 963 if (unlock_required) 964 gfs2_glock_dq_uninit(&ri_gh); 965 } 966 967 return error; 968 } 969 970 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) 971 { 972 const struct gfs2_rgrp *str = buf; 973 u32 rg_flags; 974 975 rg_flags = be32_to_cpu(str->rg_flags); 976 rg_flags &= ~GFS2_RDF_MASK; 977 rgd->rd_flags &= GFS2_RDF_MASK; 978 rgd->rd_flags |= rg_flags; 979 rgd->rd_free = be32_to_cpu(str->rg_free); 980 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); 981 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); 982 } 983 984 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) 985 { 986 struct gfs2_rgrp *str = buf; 987 988 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); 989 str->rg_free = cpu_to_be32(rgd->rd_free); 990 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); 991 str->__pad = cpu_to_be32(0); 992 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); 993 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); 994 } 995 996 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd) 997 { 998 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 999 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data; 1000 1001 if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free || 1002 rgl->rl_dinodes != str->rg_dinodes || 1003 rgl->rl_igeneration != str->rg_igeneration) 1004 return 0; 1005 return 1; 1006 } 1007 1008 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf) 1009 { 1010 const struct gfs2_rgrp *str = buf; 1011 1012 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC); 1013 rgl->rl_flags = str->rg_flags; 1014 rgl->rl_free = str->rg_free; 1015 rgl->rl_dinodes = str->rg_dinodes; 1016 rgl->rl_igeneration = str->rg_igeneration; 1017 rgl->__pad = 0UL; 1018 } 1019 1020 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change) 1021 { 1022 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1023 u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change; 1024 rgl->rl_unlinked = cpu_to_be32(unlinked); 1025 } 1026 1027 static u32 count_unlinked(struct gfs2_rgrpd *rgd) 1028 { 1029 struct gfs2_bitmap *bi; 1030 const u32 length = rgd->rd_length; 1031 const u8 *buffer = NULL; 1032 u32 i, goal, count = 0; 1033 1034 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) { 1035 goal = 0; 1036 buffer = bi->bi_bh->b_data + bi->bi_offset; 1037 WARN_ON(!buffer_uptodate(bi->bi_bh)); 1038 while (goal < bi->bi_len * GFS2_NBBY) { 1039 goal = gfs2_bitfit(buffer, bi->bi_len, goal, 1040 GFS2_BLKST_UNLINKED); 1041 if (goal == BFITNOENT) 1042 break; 1043 count++; 1044 goal++; 1045 } 1046 } 1047 1048 return count; 1049 } 1050 1051 1052 /** 1053 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps 1054 * @rgd: the struct gfs2_rgrpd describing the RG to read in 1055 * 1056 * Read in all of a Resource Group's header and bitmap blocks. 1057 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps. 1058 * 1059 * Returns: errno 1060 */ 1061 1062 int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd) 1063 { 1064 struct gfs2_sbd *sdp = rgd->rd_sbd; 1065 struct gfs2_glock *gl = rgd->rd_gl; 1066 unsigned int length = rgd->rd_length; 1067 struct gfs2_bitmap *bi; 1068 unsigned int x, y; 1069 int error; 1070 1071 if (rgd->rd_bits[0].bi_bh != NULL) 1072 return 0; 1073 1074 for (x = 0; x < length; x++) { 1075 bi = rgd->rd_bits + x; 1076 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh); 1077 if (error) 1078 goto fail; 1079 } 1080 1081 for (y = length; y--;) { 1082 bi = rgd->rd_bits + y; 1083 error = gfs2_meta_wait(sdp, bi->bi_bh); 1084 if (error) 1085 goto fail; 1086 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : 1087 GFS2_METATYPE_RG)) { 1088 error = -EIO; 1089 goto fail; 1090 } 1091 } 1092 1093 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) { 1094 for (x = 0; x < length; x++) 1095 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags); 1096 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); 1097 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1098 rgd->rd_free_clone = rgd->rd_free; 1099 } 1100 if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) { 1101 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd)); 1102 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, 1103 rgd->rd_bits[0].bi_bh->b_data); 1104 } 1105 else if (sdp->sd_args.ar_rgrplvb) { 1106 if (!gfs2_rgrp_lvb_valid(rgd)){ 1107 gfs2_consist_rgrpd(rgd); 1108 error = -EIO; 1109 goto fail; 1110 } 1111 if (rgd->rd_rgl->rl_unlinked == 0) 1112 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1113 } 1114 return 0; 1115 1116 fail: 1117 while (x--) { 1118 bi = rgd->rd_bits + x; 1119 brelse(bi->bi_bh); 1120 bi->bi_bh = NULL; 1121 gfs2_assert_warn(sdp, !bi->bi_clone); 1122 } 1123 1124 return error; 1125 } 1126 1127 int update_rgrp_lvb(struct gfs2_rgrpd *rgd) 1128 { 1129 u32 rl_flags; 1130 1131 if (rgd->rd_flags & GFS2_RDF_UPTODATE) 1132 return 0; 1133 1134 if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) 1135 return gfs2_rgrp_bh_get(rgd); 1136 1137 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags); 1138 rl_flags &= ~GFS2_RDF_MASK; 1139 rgd->rd_flags &= GFS2_RDF_MASK; 1140 rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1141 if (rgd->rd_rgl->rl_unlinked == 0) 1142 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1143 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free); 1144 rgd->rd_free_clone = rgd->rd_free; 1145 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes); 1146 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration); 1147 return 0; 1148 } 1149 1150 int gfs2_rgrp_go_lock(struct gfs2_holder *gh) 1151 { 1152 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1153 struct gfs2_sbd *sdp = rgd->rd_sbd; 1154 1155 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb) 1156 return 0; 1157 return gfs2_rgrp_bh_get((struct gfs2_rgrpd *)gh->gh_gl->gl_object); 1158 } 1159 1160 /** 1161 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get() 1162 * @gh: The glock holder for the resource group 1163 * 1164 */ 1165 1166 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh) 1167 { 1168 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1169 int x, length = rgd->rd_length; 1170 1171 for (x = 0; x < length; x++) { 1172 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1173 if (bi->bi_bh) { 1174 brelse(bi->bi_bh); 1175 bi->bi_bh = NULL; 1176 } 1177 } 1178 1179 } 1180 1181 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, 1182 struct buffer_head *bh, 1183 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed) 1184 { 1185 struct super_block *sb = sdp->sd_vfs; 1186 u64 blk; 1187 sector_t start = 0; 1188 sector_t nr_blks = 0; 1189 int rv; 1190 unsigned int x; 1191 u32 trimmed = 0; 1192 u8 diff; 1193 1194 for (x = 0; x < bi->bi_len; x++) { 1195 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data; 1196 clone += bi->bi_offset; 1197 clone += x; 1198 if (bh) { 1199 const u8 *orig = bh->b_data + bi->bi_offset + x; 1200 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); 1201 } else { 1202 diff = ~(*clone | (*clone >> 1)); 1203 } 1204 diff &= 0x55; 1205 if (diff == 0) 1206 continue; 1207 blk = offset + ((bi->bi_start + x) * GFS2_NBBY); 1208 while(diff) { 1209 if (diff & 1) { 1210 if (nr_blks == 0) 1211 goto start_new_extent; 1212 if ((start + nr_blks) != blk) { 1213 if (nr_blks >= minlen) { 1214 rv = sb_issue_discard(sb, 1215 start, nr_blks, 1216 GFP_NOFS, 0); 1217 if (rv) 1218 goto fail; 1219 trimmed += nr_blks; 1220 } 1221 nr_blks = 0; 1222 start_new_extent: 1223 start = blk; 1224 } 1225 nr_blks++; 1226 } 1227 diff >>= 2; 1228 blk++; 1229 } 1230 } 1231 if (nr_blks >= minlen) { 1232 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0); 1233 if (rv) 1234 goto fail; 1235 trimmed += nr_blks; 1236 } 1237 if (ptrimmed) 1238 *ptrimmed = trimmed; 1239 return 0; 1240 1241 fail: 1242 if (sdp->sd_args.ar_discard) 1243 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv); 1244 sdp->sd_args.ar_discard = 0; 1245 return -EIO; 1246 } 1247 1248 /** 1249 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem 1250 * @filp: Any file on the filesystem 1251 * @argp: Pointer to the arguments (also used to pass result) 1252 * 1253 * Returns: 0 on success, otherwise error code 1254 */ 1255 1256 int gfs2_fitrim(struct file *filp, void __user *argp) 1257 { 1258 struct inode *inode = file_inode(filp); 1259 struct gfs2_sbd *sdp = GFS2_SB(inode); 1260 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev); 1261 struct buffer_head *bh; 1262 struct gfs2_rgrpd *rgd; 1263 struct gfs2_rgrpd *rgd_end; 1264 struct gfs2_holder gh; 1265 struct fstrim_range r; 1266 int ret = 0; 1267 u64 amt; 1268 u64 trimmed = 0; 1269 u64 start, end, minlen; 1270 unsigned int x; 1271 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift; 1272 1273 if (!capable(CAP_SYS_ADMIN)) 1274 return -EPERM; 1275 1276 if (!blk_queue_discard(q)) 1277 return -EOPNOTSUPP; 1278 1279 if (copy_from_user(&r, argp, sizeof(r))) 1280 return -EFAULT; 1281 1282 ret = gfs2_rindex_update(sdp); 1283 if (ret) 1284 return ret; 1285 1286 start = r.start >> bs_shift; 1287 end = start + (r.len >> bs_shift); 1288 minlen = max_t(u64, r.minlen, 1289 q->limits.discard_granularity) >> bs_shift; 1290 1291 rgd = gfs2_blk2rgrpd(sdp, start, 0); 1292 rgd_end = gfs2_blk2rgrpd(sdp, end - 1, 0); 1293 1294 if (end <= start || 1295 minlen > sdp->sd_max_rg_data || 1296 start > rgd_end->rd_data0 + rgd_end->rd_data) 1297 return -EINVAL; 1298 1299 while (1) { 1300 1301 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh); 1302 if (ret) 1303 goto out; 1304 1305 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) { 1306 /* Trim each bitmap in the rgrp */ 1307 for (x = 0; x < rgd->rd_length; x++) { 1308 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1309 ret = gfs2_rgrp_send_discards(sdp, 1310 rgd->rd_data0, NULL, bi, minlen, 1311 &amt); 1312 if (ret) { 1313 gfs2_glock_dq_uninit(&gh); 1314 goto out; 1315 } 1316 trimmed += amt; 1317 } 1318 1319 /* Mark rgrp as having been trimmed */ 1320 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0); 1321 if (ret == 0) { 1322 bh = rgd->rd_bits[0].bi_bh; 1323 rgd->rd_flags |= GFS2_RGF_TRIMMED; 1324 gfs2_trans_add_meta(rgd->rd_gl, bh); 1325 gfs2_rgrp_out(rgd, bh->b_data); 1326 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data); 1327 gfs2_trans_end(sdp); 1328 } 1329 } 1330 gfs2_glock_dq_uninit(&gh); 1331 1332 if (rgd == rgd_end) 1333 break; 1334 1335 rgd = gfs2_rgrpd_get_next(rgd); 1336 } 1337 1338 out: 1339 r.len = trimmed << 9; 1340 if (copy_to_user(argp, &r, sizeof(r))) 1341 return -EFAULT; 1342 1343 return ret; 1344 } 1345 1346 /** 1347 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree 1348 * @ip: the inode structure 1349 * 1350 */ 1351 static void rs_insert(struct gfs2_inode *ip) 1352 { 1353 struct rb_node **newn, *parent = NULL; 1354 int rc; 1355 struct gfs2_blkreserv *rs = ip->i_res; 1356 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd; 1357 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm); 1358 1359 BUG_ON(gfs2_rs_active(rs)); 1360 1361 spin_lock(&rgd->rd_rsspin); 1362 newn = &rgd->rd_rstree.rb_node; 1363 while (*newn) { 1364 struct gfs2_blkreserv *cur = 1365 rb_entry(*newn, struct gfs2_blkreserv, rs_node); 1366 1367 parent = *newn; 1368 rc = rs_cmp(fsblock, rs->rs_free, cur); 1369 if (rc > 0) 1370 newn = &((*newn)->rb_right); 1371 else if (rc < 0) 1372 newn = &((*newn)->rb_left); 1373 else { 1374 spin_unlock(&rgd->rd_rsspin); 1375 WARN_ON(1); 1376 return; 1377 } 1378 } 1379 1380 rb_link_node(&rs->rs_node, parent, newn); 1381 rb_insert_color(&rs->rs_node, &rgd->rd_rstree); 1382 1383 /* Do our rgrp accounting for the reservation */ 1384 rgd->rd_reserved += rs->rs_free; /* blocks reserved */ 1385 spin_unlock(&rgd->rd_rsspin); 1386 trace_gfs2_rs(rs, TRACE_RS_INSERT); 1387 } 1388 1389 /** 1390 * rg_mblk_search - find a group of multiple free blocks to form a reservation 1391 * @rgd: the resource group descriptor 1392 * @ip: pointer to the inode for which we're reserving blocks 1393 * @requested: number of blocks required for this allocation 1394 * 1395 */ 1396 1397 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip, 1398 unsigned requested) 1399 { 1400 struct gfs2_rbm rbm = { .rgd = rgd, }; 1401 u64 goal; 1402 struct gfs2_blkreserv *rs = ip->i_res; 1403 u32 extlen; 1404 u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved; 1405 int ret; 1406 struct inode *inode = &ip->i_inode; 1407 1408 if (S_ISDIR(inode->i_mode)) 1409 extlen = 1; 1410 else { 1411 extlen = max_t(u32, atomic_read(&rs->rs_sizehint), requested); 1412 extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks); 1413 } 1414 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen)) 1415 return; 1416 1417 /* Find bitmap block that contains bits for goal block */ 1418 if (rgrp_contains_block(rgd, ip->i_goal)) 1419 goal = ip->i_goal; 1420 else 1421 goal = rgd->rd_last_alloc + rgd->rd_data0; 1422 1423 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal))) 1424 return; 1425 1426 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, extlen, ip, true); 1427 if (ret == 0) { 1428 rs->rs_rbm = rbm; 1429 rs->rs_free = extlen; 1430 rs->rs_inum = ip->i_no_addr; 1431 rs_insert(ip); 1432 } else { 1433 if (goal == rgd->rd_last_alloc + rgd->rd_data0) 1434 rgd->rd_last_alloc = 0; 1435 } 1436 } 1437 1438 /** 1439 * gfs2_next_unreserved_block - Return next block that is not reserved 1440 * @rgd: The resource group 1441 * @block: The starting block 1442 * @length: The required length 1443 * @ip: Ignore any reservations for this inode 1444 * 1445 * If the block does not appear in any reservation, then return the 1446 * block number unchanged. If it does appear in the reservation, then 1447 * keep looking through the tree of reservations in order to find the 1448 * first block number which is not reserved. 1449 */ 1450 1451 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block, 1452 u32 length, 1453 const struct gfs2_inode *ip) 1454 { 1455 struct gfs2_blkreserv *rs; 1456 struct rb_node *n; 1457 int rc; 1458 1459 spin_lock(&rgd->rd_rsspin); 1460 n = rgd->rd_rstree.rb_node; 1461 while (n) { 1462 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1463 rc = rs_cmp(block, length, rs); 1464 if (rc < 0) 1465 n = n->rb_left; 1466 else if (rc > 0) 1467 n = n->rb_right; 1468 else 1469 break; 1470 } 1471 1472 if (n) { 1473 while ((rs_cmp(block, length, rs) == 0) && (ip->i_res != rs)) { 1474 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free; 1475 n = n->rb_right; 1476 if (n == NULL) 1477 break; 1478 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1479 } 1480 } 1481 1482 spin_unlock(&rgd->rd_rsspin); 1483 return block; 1484 } 1485 1486 /** 1487 * gfs2_reservation_check_and_update - Check for reservations during block alloc 1488 * @rbm: The current position in the resource group 1489 * @ip: The inode for which we are searching for blocks 1490 * @minext: The minimum extent length 1491 * 1492 * This checks the current position in the rgrp to see whether there is 1493 * a reservation covering this block. If not then this function is a 1494 * no-op. If there is, then the position is moved to the end of the 1495 * contiguous reservation(s) so that we are pointing at the first 1496 * non-reserved block. 1497 * 1498 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error 1499 */ 1500 1501 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm, 1502 const struct gfs2_inode *ip, 1503 u32 minext) 1504 { 1505 u64 block = gfs2_rbm_to_block(rbm); 1506 u32 extlen = 1; 1507 u64 nblock; 1508 int ret; 1509 1510 /* 1511 * If we have a minimum extent length, then skip over any extent 1512 * which is less than the min extent length in size. 1513 */ 1514 if (minext) { 1515 extlen = gfs2_free_extlen(rbm, minext); 1516 nblock = block + extlen; 1517 if (extlen < minext) 1518 goto fail; 1519 } 1520 1521 /* 1522 * Check the extent which has been found against the reservations 1523 * and skip if parts of it are already reserved 1524 */ 1525 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip); 1526 if (nblock == block) 1527 return 0; 1528 fail: 1529 ret = gfs2_rbm_from_block(rbm, nblock); 1530 if (ret < 0) 1531 return ret; 1532 return 1; 1533 } 1534 1535 /** 1536 * gfs2_rbm_find - Look for blocks of a particular state 1537 * @rbm: Value/result starting position and final position 1538 * @state: The state which we want to find 1539 * @minext: The requested extent length (0 for a single block) 1540 * @ip: If set, check for reservations 1541 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping 1542 * around until we've reached the starting point. 1543 * 1544 * Side effects: 1545 * - If looking for free blocks, we set GBF_FULL on each bitmap which 1546 * has no free blocks in it. 1547 * 1548 * Returns: 0 on success, -ENOSPC if there is no block of the requested state 1549 */ 1550 1551 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext, 1552 const struct gfs2_inode *ip, bool nowrap) 1553 { 1554 struct buffer_head *bh; 1555 struct gfs2_bitmap *initial_bi; 1556 u32 initial_offset; 1557 u32 offset; 1558 u8 *buffer; 1559 int index; 1560 int n = 0; 1561 int iters = rbm->rgd->rd_length; 1562 int ret; 1563 1564 /* If we are not starting at the beginning of a bitmap, then we 1565 * need to add one to the bitmap count to ensure that we search 1566 * the starting bitmap twice. 1567 */ 1568 if (rbm->offset != 0) 1569 iters++; 1570 1571 while(1) { 1572 if (test_bit(GBF_FULL, &rbm->bi->bi_flags) && 1573 (state == GFS2_BLKST_FREE)) 1574 goto next_bitmap; 1575 1576 bh = rbm->bi->bi_bh; 1577 buffer = bh->b_data + rbm->bi->bi_offset; 1578 WARN_ON(!buffer_uptodate(bh)); 1579 if (state != GFS2_BLKST_UNLINKED && rbm->bi->bi_clone) 1580 buffer = rbm->bi->bi_clone + rbm->bi->bi_offset; 1581 initial_offset = rbm->offset; 1582 offset = gfs2_bitfit(buffer, rbm->bi->bi_len, rbm->offset, state); 1583 if (offset == BFITNOENT) 1584 goto bitmap_full; 1585 rbm->offset = offset; 1586 if (ip == NULL) 1587 return 0; 1588 1589 initial_bi = rbm->bi; 1590 ret = gfs2_reservation_check_and_update(rbm, ip, minext); 1591 if (ret == 0) 1592 return 0; 1593 if (ret > 0) { 1594 n += (rbm->bi - initial_bi); 1595 goto next_iter; 1596 } 1597 if (ret == -E2BIG) { 1598 index = 0; 1599 rbm->offset = 0; 1600 n += (rbm->bi - initial_bi); 1601 goto res_covered_end_of_rgrp; 1602 } 1603 return ret; 1604 1605 bitmap_full: /* Mark bitmap as full and fall through */ 1606 if ((state == GFS2_BLKST_FREE) && initial_offset == 0) 1607 set_bit(GBF_FULL, &rbm->bi->bi_flags); 1608 1609 next_bitmap: /* Find next bitmap in the rgrp */ 1610 rbm->offset = 0; 1611 index = rbm->bi - rbm->rgd->rd_bits; 1612 index++; 1613 if (index == rbm->rgd->rd_length) 1614 index = 0; 1615 res_covered_end_of_rgrp: 1616 rbm->bi = &rbm->rgd->rd_bits[index]; 1617 if ((index == 0) && nowrap) 1618 break; 1619 n++; 1620 next_iter: 1621 if (n >= iters) 1622 break; 1623 } 1624 1625 return -ENOSPC; 1626 } 1627 1628 /** 1629 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes 1630 * @rgd: The rgrp 1631 * @last_unlinked: block address of the last dinode we unlinked 1632 * @skip: block address we should explicitly not unlink 1633 * 1634 * Returns: 0 if no error 1635 * The inode, if one has been found, in inode. 1636 */ 1637 1638 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) 1639 { 1640 u64 block; 1641 struct gfs2_sbd *sdp = rgd->rd_sbd; 1642 struct gfs2_glock *gl; 1643 struct gfs2_inode *ip; 1644 int error; 1645 int found = 0; 1646 struct gfs2_rbm rbm = { .rgd = rgd, .bi = rgd->rd_bits, .offset = 0 }; 1647 1648 while (1) { 1649 down_write(&sdp->sd_log_flush_lock); 1650 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, 0, NULL, true); 1651 up_write(&sdp->sd_log_flush_lock); 1652 if (error == -ENOSPC) 1653 break; 1654 if (WARN_ON_ONCE(error)) 1655 break; 1656 1657 block = gfs2_rbm_to_block(&rbm); 1658 if (gfs2_rbm_from_block(&rbm, block + 1)) 1659 break; 1660 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked) 1661 continue; 1662 if (block == skip) 1663 continue; 1664 *last_unlinked = block; 1665 1666 error = gfs2_glock_get(sdp, block, &gfs2_inode_glops, CREATE, &gl); 1667 if (error) 1668 continue; 1669 1670 /* If the inode is already in cache, we can ignore it here 1671 * because the existing inode disposal code will deal with 1672 * it when all refs have gone away. Accessing gl_object like 1673 * this is not safe in general. Here it is ok because we do 1674 * not dereference the pointer, and we only need an approx 1675 * answer to whether it is NULL or not. 1676 */ 1677 ip = gl->gl_object; 1678 1679 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0) 1680 gfs2_glock_put(gl); 1681 else 1682 found++; 1683 1684 /* Limit reclaim to sensible number of tasks */ 1685 if (found > NR_CPUS) 1686 return; 1687 } 1688 1689 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1690 return; 1691 } 1692 1693 /** 1694 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested 1695 * @rgd: The rgrp in question 1696 * @loops: An indication of how picky we can be (0=very, 1=less so) 1697 * 1698 * This function uses the recently added glock statistics in order to 1699 * figure out whether a parciular resource group is suffering from 1700 * contention from multiple nodes. This is done purely on the basis 1701 * of timings, since this is the only data we have to work with and 1702 * our aim here is to reject a resource group which is highly contended 1703 * but (very important) not to do this too often in order to ensure that 1704 * we do not land up introducing fragmentation by changing resource 1705 * groups when not actually required. 1706 * 1707 * The calculation is fairly simple, we want to know whether the SRTTB 1708 * (i.e. smoothed round trip time for blocking operations) to acquire 1709 * the lock for this rgrp's glock is significantly greater than the 1710 * time taken for resource groups on average. We introduce a margin in 1711 * the form of the variable @var which is computed as the sum of the two 1712 * respective variences, and multiplied by a factor depending on @loops 1713 * and whether we have a lot of data to base the decision on. This is 1714 * then tested against the square difference of the means in order to 1715 * decide whether the result is statistically significant or not. 1716 * 1717 * Returns: A boolean verdict on the congestion status 1718 */ 1719 1720 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops) 1721 { 1722 const struct gfs2_glock *gl = rgd->rd_gl; 1723 const struct gfs2_sbd *sdp = gl->gl_sbd; 1724 struct gfs2_lkstats *st; 1725 s64 r_dcount, l_dcount; 1726 s64 r_srttb, l_srttb; 1727 s64 srttb_diff; 1728 s64 sqr_diff; 1729 s64 var; 1730 1731 preempt_disable(); 1732 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP]; 1733 r_srttb = st->stats[GFS2_LKS_SRTTB]; 1734 r_dcount = st->stats[GFS2_LKS_DCOUNT]; 1735 var = st->stats[GFS2_LKS_SRTTVARB] + 1736 gl->gl_stats.stats[GFS2_LKS_SRTTVARB]; 1737 preempt_enable(); 1738 1739 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB]; 1740 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT]; 1741 1742 if ((l_dcount < 1) || (r_dcount < 1) || (r_srttb == 0)) 1743 return false; 1744 1745 srttb_diff = r_srttb - l_srttb; 1746 sqr_diff = srttb_diff * srttb_diff; 1747 1748 var *= 2; 1749 if (l_dcount < 8 || r_dcount < 8) 1750 var *= 2; 1751 if (loops == 1) 1752 var *= 2; 1753 1754 return ((srttb_diff < 0) && (sqr_diff > var)); 1755 } 1756 1757 /** 1758 * gfs2_rgrp_used_recently 1759 * @rs: The block reservation with the rgrp to test 1760 * @msecs: The time limit in milliseconds 1761 * 1762 * Returns: True if the rgrp glock has been used within the time limit 1763 */ 1764 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs, 1765 u64 msecs) 1766 { 1767 u64 tdiff; 1768 1769 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(), 1770 rs->rs_rbm.rgd->rd_gl->gl_dstamp)); 1771 1772 return tdiff > (msecs * 1000 * 1000); 1773 } 1774 1775 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip) 1776 { 1777 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1778 u32 skip; 1779 1780 get_random_bytes(&skip, sizeof(skip)); 1781 return skip % sdp->sd_rgrps; 1782 } 1783 1784 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin) 1785 { 1786 struct gfs2_rgrpd *rgd = *pos; 1787 struct gfs2_sbd *sdp = rgd->rd_sbd; 1788 1789 rgd = gfs2_rgrpd_get_next(rgd); 1790 if (rgd == NULL) 1791 rgd = gfs2_rgrpd_get_first(sdp); 1792 *pos = rgd; 1793 if (rgd != begin) /* If we didn't wrap */ 1794 return true; 1795 return false; 1796 } 1797 1798 /** 1799 * gfs2_inplace_reserve - Reserve space in the filesystem 1800 * @ip: the inode to reserve space for 1801 * @requested: the number of blocks to be reserved 1802 * 1803 * Returns: errno 1804 */ 1805 1806 int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested, u32 aflags) 1807 { 1808 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1809 struct gfs2_rgrpd *begin = NULL; 1810 struct gfs2_blkreserv *rs = ip->i_res; 1811 int error = 0, rg_locked, flags = 0; 1812 u64 last_unlinked = NO_BLOCK; 1813 int loops = 0; 1814 u32 skip = 0; 1815 1816 if (sdp->sd_args.ar_rgrplvb) 1817 flags |= GL_SKIP; 1818 if (gfs2_assert_warn(sdp, requested)) 1819 return -EINVAL; 1820 if (gfs2_rs_active(rs)) { 1821 begin = rs->rs_rbm.rgd; 1822 flags = 0; /* Yoda: Do or do not. There is no try */ 1823 } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) { 1824 rs->rs_rbm.rgd = begin = ip->i_rgd; 1825 } else { 1826 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1); 1827 } 1828 if (S_ISDIR(ip->i_inode.i_mode) && (aflags & GFS2_AF_ORLOV)) 1829 skip = gfs2_orlov_skip(ip); 1830 if (rs->rs_rbm.rgd == NULL) 1831 return -EBADSLT; 1832 1833 while (loops < 3) { 1834 rg_locked = 1; 1835 1836 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) { 1837 rg_locked = 0; 1838 if (skip && skip--) 1839 goto next_rgrp; 1840 if (!gfs2_rs_active(rs) && (loops < 2) && 1841 gfs2_rgrp_used_recently(rs, 1000) && 1842 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 1843 goto next_rgrp; 1844 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl, 1845 LM_ST_EXCLUSIVE, flags, 1846 &rs->rs_rgd_gh); 1847 if (unlikely(error)) 1848 return error; 1849 if (!gfs2_rs_active(rs) && (loops < 2) && 1850 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 1851 goto skip_rgrp; 1852 if (sdp->sd_args.ar_rgrplvb) { 1853 error = update_rgrp_lvb(rs->rs_rbm.rgd); 1854 if (unlikely(error)) { 1855 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 1856 return error; 1857 } 1858 } 1859 } 1860 1861 /* Skip unuseable resource groups */ 1862 if (rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR)) 1863 goto skip_rgrp; 1864 1865 if (sdp->sd_args.ar_rgrplvb) 1866 gfs2_rgrp_bh_get(rs->rs_rbm.rgd); 1867 1868 /* Get a reservation if we don't already have one */ 1869 if (!gfs2_rs_active(rs)) 1870 rg_mblk_search(rs->rs_rbm.rgd, ip, requested); 1871 1872 /* Skip rgrps when we can't get a reservation on first pass */ 1873 if (!gfs2_rs_active(rs) && (loops < 1)) 1874 goto check_rgrp; 1875 1876 /* If rgrp has enough free space, use it */ 1877 if (rs->rs_rbm.rgd->rd_free_clone >= requested) { 1878 ip->i_rgd = rs->rs_rbm.rgd; 1879 return 0; 1880 } 1881 1882 /* Drop reservation, if we couldn't use reserved rgrp */ 1883 if (gfs2_rs_active(rs)) 1884 gfs2_rs_deltree(rs); 1885 check_rgrp: 1886 /* Check for unlinked inodes which can be reclaimed */ 1887 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK) 1888 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked, 1889 ip->i_no_addr); 1890 skip_rgrp: 1891 /* Unlock rgrp if required */ 1892 if (!rg_locked) 1893 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 1894 next_rgrp: 1895 /* Find the next rgrp, and continue looking */ 1896 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin)) 1897 continue; 1898 if (skip) 1899 continue; 1900 1901 /* If we've scanned all the rgrps, but found no free blocks 1902 * then this checks for some less likely conditions before 1903 * trying again. 1904 */ 1905 loops++; 1906 /* Check that fs hasn't grown if writing to rindex */ 1907 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { 1908 error = gfs2_ri_update(ip); 1909 if (error) 1910 return error; 1911 } 1912 /* Flushing the log may release space */ 1913 if (loops == 2) 1914 gfs2_log_flush(sdp, NULL); 1915 } 1916 1917 return -ENOSPC; 1918 } 1919 1920 /** 1921 * gfs2_inplace_release - release an inplace reservation 1922 * @ip: the inode the reservation was taken out on 1923 * 1924 * Release a reservation made by gfs2_inplace_reserve(). 1925 */ 1926 1927 void gfs2_inplace_release(struct gfs2_inode *ip) 1928 { 1929 struct gfs2_blkreserv *rs = ip->i_res; 1930 1931 if (rs->rs_rgd_gh.gh_gl) 1932 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 1933 } 1934 1935 /** 1936 * gfs2_get_block_type - Check a block in a RG is of given type 1937 * @rgd: the resource group holding the block 1938 * @block: the block number 1939 * 1940 * Returns: The block type (GFS2_BLKST_*) 1941 */ 1942 1943 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block) 1944 { 1945 struct gfs2_rbm rbm = { .rgd = rgd, }; 1946 int ret; 1947 1948 ret = gfs2_rbm_from_block(&rbm, block); 1949 WARN_ON_ONCE(ret != 0); 1950 1951 return gfs2_testbit(&rbm); 1952 } 1953 1954 1955 /** 1956 * gfs2_alloc_extent - allocate an extent from a given bitmap 1957 * @rbm: the resource group information 1958 * @dinode: TRUE if the first block we allocate is for a dinode 1959 * @n: The extent length (value/result) 1960 * 1961 * Add the bitmap buffer to the transaction. 1962 * Set the found bits to @new_state to change block's allocation state. 1963 */ 1964 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode, 1965 unsigned int *n) 1966 { 1967 struct gfs2_rbm pos = { .rgd = rbm->rgd, }; 1968 const unsigned int elen = *n; 1969 u64 block; 1970 int ret; 1971 1972 *n = 1; 1973 block = gfs2_rbm_to_block(rbm); 1974 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm->bi->bi_bh); 1975 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 1976 block++; 1977 while (*n < elen) { 1978 ret = gfs2_rbm_from_block(&pos, block); 1979 if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE) 1980 break; 1981 gfs2_trans_add_meta(pos.rgd->rd_gl, pos.bi->bi_bh); 1982 gfs2_setbit(&pos, true, GFS2_BLKST_USED); 1983 (*n)++; 1984 block++; 1985 } 1986 } 1987 1988 /** 1989 * rgblk_free - Change alloc state of given block(s) 1990 * @sdp: the filesystem 1991 * @bstart: the start of a run of blocks to free 1992 * @blen: the length of the block run (all must lie within ONE RG!) 1993 * @new_state: GFS2_BLKST_XXX the after-allocation block state 1994 * 1995 * Returns: Resource group containing the block(s) 1996 */ 1997 1998 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart, 1999 u32 blen, unsigned char new_state) 2000 { 2001 struct gfs2_rbm rbm; 2002 2003 rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1); 2004 if (!rbm.rgd) { 2005 if (gfs2_consist(sdp)) 2006 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart); 2007 return NULL; 2008 } 2009 2010 while (blen--) { 2011 gfs2_rbm_from_block(&rbm, bstart); 2012 bstart++; 2013 if (!rbm.bi->bi_clone) { 2014 rbm.bi->bi_clone = kmalloc(rbm.bi->bi_bh->b_size, 2015 GFP_NOFS | __GFP_NOFAIL); 2016 memcpy(rbm.bi->bi_clone + rbm.bi->bi_offset, 2017 rbm.bi->bi_bh->b_data + rbm.bi->bi_offset, 2018 rbm.bi->bi_len); 2019 } 2020 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.bi->bi_bh); 2021 gfs2_setbit(&rbm, false, new_state); 2022 } 2023 2024 return rbm.rgd; 2025 } 2026 2027 /** 2028 * gfs2_rgrp_dump - print out an rgrp 2029 * @seq: The iterator 2030 * @gl: The glock in question 2031 * 2032 */ 2033 2034 int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl) 2035 { 2036 struct gfs2_rgrpd *rgd = gl->gl_object; 2037 struct gfs2_blkreserv *trs; 2038 const struct rb_node *n; 2039 2040 if (rgd == NULL) 2041 return 0; 2042 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u\n", 2043 (unsigned long long)rgd->rd_addr, rgd->rd_flags, 2044 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes, 2045 rgd->rd_reserved); 2046 spin_lock(&rgd->rd_rsspin); 2047 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) { 2048 trs = rb_entry(n, struct gfs2_blkreserv, rs_node); 2049 dump_rs(seq, trs); 2050 } 2051 spin_unlock(&rgd->rd_rsspin); 2052 return 0; 2053 } 2054 2055 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) 2056 { 2057 struct gfs2_sbd *sdp = rgd->rd_sbd; 2058 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", 2059 (unsigned long long)rgd->rd_addr); 2060 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); 2061 gfs2_rgrp_dump(NULL, rgd->rd_gl); 2062 rgd->rd_flags |= GFS2_RDF_ERROR; 2063 } 2064 2065 /** 2066 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation 2067 * @ip: The inode we have just allocated blocks for 2068 * @rbm: The start of the allocated blocks 2069 * @len: The extent length 2070 * 2071 * Adjusts a reservation after an allocation has taken place. If the 2072 * reservation does not match the allocation, or if it is now empty 2073 * then it is removed. 2074 */ 2075 2076 static void gfs2_adjust_reservation(struct gfs2_inode *ip, 2077 const struct gfs2_rbm *rbm, unsigned len) 2078 { 2079 struct gfs2_blkreserv *rs = ip->i_res; 2080 struct gfs2_rgrpd *rgd = rbm->rgd; 2081 unsigned rlen; 2082 u64 block; 2083 int ret; 2084 2085 spin_lock(&rgd->rd_rsspin); 2086 if (gfs2_rs_active(rs)) { 2087 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) { 2088 block = gfs2_rbm_to_block(rbm); 2089 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len); 2090 rlen = min(rs->rs_free, len); 2091 rs->rs_free -= rlen; 2092 rgd->rd_reserved -= rlen; 2093 trace_gfs2_rs(rs, TRACE_RS_CLAIM); 2094 if (rs->rs_free && !ret) 2095 goto out; 2096 } 2097 __rs_deltree(rs); 2098 } 2099 out: 2100 spin_unlock(&rgd->rd_rsspin); 2101 } 2102 2103 /** 2104 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode 2105 * @ip: the inode to allocate the block for 2106 * @bn: Used to return the starting block number 2107 * @nblocks: requested number of blocks/extent length (value/result) 2108 * @dinode: 1 if we're allocating a dinode block, else 0 2109 * @generation: the generation number of the inode 2110 * 2111 * Returns: 0 or error 2112 */ 2113 2114 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks, 2115 bool dinode, u64 *generation) 2116 { 2117 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2118 struct buffer_head *dibh; 2119 struct gfs2_rbm rbm = { .rgd = ip->i_rgd, }; 2120 unsigned int ndata; 2121 u64 goal; 2122 u64 block; /* block, within the file system scope */ 2123 int error; 2124 2125 if (gfs2_rs_active(ip->i_res)) 2126 goal = gfs2_rbm_to_block(&ip->i_res->rs_rbm); 2127 else if (!dinode && rgrp_contains_block(rbm.rgd, ip->i_goal)) 2128 goal = ip->i_goal; 2129 else 2130 goal = rbm.rgd->rd_last_alloc + rbm.rgd->rd_data0; 2131 2132 gfs2_rbm_from_block(&rbm, goal); 2133 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, ip, false); 2134 2135 if (error == -ENOSPC) { 2136 gfs2_rbm_from_block(&rbm, goal); 2137 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, NULL, false); 2138 } 2139 2140 /* Since all blocks are reserved in advance, this shouldn't happen */ 2141 if (error) { 2142 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d\n", 2143 (unsigned long long)ip->i_no_addr, error, *nblocks, 2144 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags)); 2145 goto rgrp_error; 2146 } 2147 2148 gfs2_alloc_extent(&rbm, dinode, nblocks); 2149 block = gfs2_rbm_to_block(&rbm); 2150 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0; 2151 if (gfs2_rs_active(ip->i_res)) 2152 gfs2_adjust_reservation(ip, &rbm, *nblocks); 2153 ndata = *nblocks; 2154 if (dinode) 2155 ndata--; 2156 2157 if (!dinode) { 2158 ip->i_goal = block + ndata - 1; 2159 error = gfs2_meta_inode_buffer(ip, &dibh); 2160 if (error == 0) { 2161 struct gfs2_dinode *di = 2162 (struct gfs2_dinode *)dibh->b_data; 2163 gfs2_trans_add_meta(ip->i_gl, dibh); 2164 di->di_goal_meta = di->di_goal_data = 2165 cpu_to_be64(ip->i_goal); 2166 brelse(dibh); 2167 } 2168 } 2169 if (rbm.rgd->rd_free < *nblocks) { 2170 printk(KERN_WARNING "nblocks=%u\n", *nblocks); 2171 goto rgrp_error; 2172 } 2173 2174 rbm.rgd->rd_free -= *nblocks; 2175 if (dinode) { 2176 rbm.rgd->rd_dinodes++; 2177 *generation = rbm.rgd->rd_igeneration++; 2178 if (*generation == 0) 2179 *generation = rbm.rgd->rd_igeneration++; 2180 } 2181 2182 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh); 2183 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data); 2184 gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data); 2185 2186 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0); 2187 if (dinode) 2188 gfs2_trans_add_unrevoke(sdp, block, 1); 2189 2190 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid); 2191 2192 rbm.rgd->rd_free_clone -= *nblocks; 2193 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks, 2194 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2195 *bn = block; 2196 return 0; 2197 2198 rgrp_error: 2199 gfs2_rgrp_error(rbm.rgd); 2200 return -EIO; 2201 } 2202 2203 /** 2204 * __gfs2_free_blocks - free a contiguous run of block(s) 2205 * @ip: the inode these blocks are being freed from 2206 * @bstart: first block of a run of contiguous blocks 2207 * @blen: the length of the block run 2208 * @meta: 1 if the blocks represent metadata 2209 * 2210 */ 2211 2212 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta) 2213 { 2214 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2215 struct gfs2_rgrpd *rgd; 2216 2217 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE); 2218 if (!rgd) 2219 return; 2220 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE); 2221 rgd->rd_free += blen; 2222 rgd->rd_flags &= ~GFS2_RGF_TRIMMED; 2223 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2224 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2225 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2226 2227 /* Directories keep their data in the metadata address space */ 2228 if (meta || ip->i_depth) 2229 gfs2_meta_wipe(ip, bstart, blen); 2230 } 2231 2232 /** 2233 * gfs2_free_meta - free a contiguous run of data block(s) 2234 * @ip: the inode these blocks are being freed from 2235 * @bstart: first block of a run of contiguous blocks 2236 * @blen: the length of the block run 2237 * 2238 */ 2239 2240 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen) 2241 { 2242 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2243 2244 __gfs2_free_blocks(ip, bstart, blen, 1); 2245 gfs2_statfs_change(sdp, 0, +blen, 0); 2246 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); 2247 } 2248 2249 void gfs2_unlink_di(struct inode *inode) 2250 { 2251 struct gfs2_inode *ip = GFS2_I(inode); 2252 struct gfs2_sbd *sdp = GFS2_SB(inode); 2253 struct gfs2_rgrpd *rgd; 2254 u64 blkno = ip->i_no_addr; 2255 2256 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED); 2257 if (!rgd) 2258 return; 2259 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2260 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2261 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2262 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2263 update_rgrp_lvb_unlinked(rgd, 1); 2264 } 2265 2266 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno) 2267 { 2268 struct gfs2_sbd *sdp = rgd->rd_sbd; 2269 struct gfs2_rgrpd *tmp_rgd; 2270 2271 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE); 2272 if (!tmp_rgd) 2273 return; 2274 gfs2_assert_withdraw(sdp, rgd == tmp_rgd); 2275 2276 if (!rgd->rd_dinodes) 2277 gfs2_consist_rgrpd(rgd); 2278 rgd->rd_dinodes--; 2279 rgd->rd_free++; 2280 2281 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2282 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2283 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2284 update_rgrp_lvb_unlinked(rgd, -1); 2285 2286 gfs2_statfs_change(sdp, 0, +1, -1); 2287 } 2288 2289 2290 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) 2291 { 2292 gfs2_free_uninit_di(rgd, ip->i_no_addr); 2293 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2294 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); 2295 gfs2_meta_wipe(ip, ip->i_no_addr, 1); 2296 } 2297 2298 /** 2299 * gfs2_check_blk_type - Check the type of a block 2300 * @sdp: The superblock 2301 * @no_addr: The block number to check 2302 * @type: The block type we are looking for 2303 * 2304 * Returns: 0 if the block type matches the expected type 2305 * -ESTALE if it doesn't match 2306 * or -ve errno if something went wrong while checking 2307 */ 2308 2309 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) 2310 { 2311 struct gfs2_rgrpd *rgd; 2312 struct gfs2_holder rgd_gh; 2313 int error = -EINVAL; 2314 2315 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1); 2316 if (!rgd) 2317 goto fail; 2318 2319 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); 2320 if (error) 2321 goto fail; 2322 2323 if (gfs2_get_block_type(rgd, no_addr) != type) 2324 error = -ESTALE; 2325 2326 gfs2_glock_dq_uninit(&rgd_gh); 2327 fail: 2328 return error; 2329 } 2330 2331 /** 2332 * gfs2_rlist_add - add a RG to a list of RGs 2333 * @ip: the inode 2334 * @rlist: the list of resource groups 2335 * @block: the block 2336 * 2337 * Figure out what RG a block belongs to and add that RG to the list 2338 * 2339 * FIXME: Don't use NOFAIL 2340 * 2341 */ 2342 2343 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, 2344 u64 block) 2345 { 2346 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2347 struct gfs2_rgrpd *rgd; 2348 struct gfs2_rgrpd **tmp; 2349 unsigned int new_space; 2350 unsigned int x; 2351 2352 if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) 2353 return; 2354 2355 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block)) 2356 rgd = ip->i_rgd; 2357 else 2358 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2359 if (!rgd) { 2360 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block); 2361 return; 2362 } 2363 ip->i_rgd = rgd; 2364 2365 for (x = 0; x < rlist->rl_rgrps; x++) 2366 if (rlist->rl_rgd[x] == rgd) 2367 return; 2368 2369 if (rlist->rl_rgrps == rlist->rl_space) { 2370 new_space = rlist->rl_space + 10; 2371 2372 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), 2373 GFP_NOFS | __GFP_NOFAIL); 2374 2375 if (rlist->rl_rgd) { 2376 memcpy(tmp, rlist->rl_rgd, 2377 rlist->rl_space * sizeof(struct gfs2_rgrpd *)); 2378 kfree(rlist->rl_rgd); 2379 } 2380 2381 rlist->rl_space = new_space; 2382 rlist->rl_rgd = tmp; 2383 } 2384 2385 rlist->rl_rgd[rlist->rl_rgrps++] = rgd; 2386 } 2387 2388 /** 2389 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate 2390 * and initialize an array of glock holders for them 2391 * @rlist: the list of resource groups 2392 * @state: the lock state to acquire the RG lock in 2393 * 2394 * FIXME: Don't use NOFAIL 2395 * 2396 */ 2397 2398 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state) 2399 { 2400 unsigned int x; 2401 2402 rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder), 2403 GFP_NOFS | __GFP_NOFAIL); 2404 for (x = 0; x < rlist->rl_rgrps; x++) 2405 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, 2406 state, 0, 2407 &rlist->rl_ghs[x]); 2408 } 2409 2410 /** 2411 * gfs2_rlist_free - free a resource group list 2412 * @list: the list of resource groups 2413 * 2414 */ 2415 2416 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) 2417 { 2418 unsigned int x; 2419 2420 kfree(rlist->rl_rgd); 2421 2422 if (rlist->rl_ghs) { 2423 for (x = 0; x < rlist->rl_rgrps; x++) 2424 gfs2_holder_uninit(&rlist->rl_ghs[x]); 2425 kfree(rlist->rl_ghs); 2426 rlist->rl_ghs = NULL; 2427 } 2428 } 2429 2430