1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/slab.h> 13 #include <linux/spinlock.h> 14 #include <linux/completion.h> 15 #include <linux/buffer_head.h> 16 #include <linux/fs.h> 17 #include <linux/gfs2_ondisk.h> 18 #include <linux/prefetch.h> 19 #include <linux/blkdev.h> 20 #include <linux/rbtree.h> 21 #include <linux/random.h> 22 23 #include "gfs2.h" 24 #include "incore.h" 25 #include "glock.h" 26 #include "glops.h" 27 #include "lops.h" 28 #include "meta_io.h" 29 #include "quota.h" 30 #include "rgrp.h" 31 #include "super.h" 32 #include "trans.h" 33 #include "util.h" 34 #include "log.h" 35 #include "inode.h" 36 #include "trace_gfs2.h" 37 38 #define BFITNOENT ((u32)~0) 39 #define NO_BLOCK ((u64)~0) 40 41 #if BITS_PER_LONG == 32 42 #define LBITMASK (0x55555555UL) 43 #define LBITSKIP55 (0x55555555UL) 44 #define LBITSKIP00 (0x00000000UL) 45 #else 46 #define LBITMASK (0x5555555555555555UL) 47 #define LBITSKIP55 (0x5555555555555555UL) 48 #define LBITSKIP00 (0x0000000000000000UL) 49 #endif 50 51 /* 52 * These routines are used by the resource group routines (rgrp.c) 53 * to keep track of block allocation. Each block is represented by two 54 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. 55 * 56 * 0 = Free 57 * 1 = Used (not metadata) 58 * 2 = Unlinked (still in use) inode 59 * 3 = Used (metadata) 60 */ 61 62 struct gfs2_extent { 63 struct gfs2_rbm rbm; 64 u32 len; 65 }; 66 67 static const char valid_change[16] = { 68 /* current */ 69 /* n */ 0, 1, 1, 1, 70 /* e */ 1, 0, 0, 0, 71 /* w */ 0, 0, 0, 1, 72 1, 0, 0, 0 73 }; 74 75 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 76 const struct gfs2_inode *ip, bool nowrap); 77 78 79 /** 80 * gfs2_setbit - Set a bit in the bitmaps 81 * @rbm: The position of the bit to set 82 * @do_clone: Also set the clone bitmap, if it exists 83 * @new_state: the new state of the block 84 * 85 */ 86 87 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone, 88 unsigned char new_state) 89 { 90 unsigned char *byte1, *byte2, *end, cur_state; 91 struct gfs2_bitmap *bi = rbm_bi(rbm); 92 unsigned int buflen = bi->bi_len; 93 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 94 95 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY); 96 end = bi->bi_bh->b_data + bi->bi_offset + buflen; 97 98 BUG_ON(byte1 >= end); 99 100 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; 101 102 if (unlikely(!valid_change[new_state * 4 + cur_state])) { 103 pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n", 104 rbm->offset, cur_state, new_state); 105 pr_warn("rgrp=0x%llx bi_start=0x%x\n", 106 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start); 107 pr_warn("bi_offset=0x%x bi_len=0x%x\n", 108 bi->bi_offset, bi->bi_len); 109 dump_stack(); 110 gfs2_consist_rgrpd(rbm->rgd); 111 return; 112 } 113 *byte1 ^= (cur_state ^ new_state) << bit; 114 115 if (do_clone && bi->bi_clone) { 116 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY); 117 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; 118 *byte2 ^= (cur_state ^ new_state) << bit; 119 } 120 } 121 122 /** 123 * gfs2_testbit - test a bit in the bitmaps 124 * @rbm: The bit to test 125 * 126 * Returns: The two bit block state of the requested bit 127 */ 128 129 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm) 130 { 131 struct gfs2_bitmap *bi = rbm_bi(rbm); 132 const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset; 133 const u8 *byte; 134 unsigned int bit; 135 136 byte = buffer + (rbm->offset / GFS2_NBBY); 137 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 138 139 return (*byte >> bit) & GFS2_BIT_MASK; 140 } 141 142 /** 143 * gfs2_bit_search 144 * @ptr: Pointer to bitmap data 145 * @mask: Mask to use (normally 0x55555.... but adjusted for search start) 146 * @state: The state we are searching for 147 * 148 * We xor the bitmap data with a patter which is the bitwise opposite 149 * of what we are looking for, this gives rise to a pattern of ones 150 * wherever there is a match. Since we have two bits per entry, we 151 * take this pattern, shift it down by one place and then and it with 152 * the original. All the even bit positions (0,2,4, etc) then represent 153 * successful matches, so we mask with 0x55555..... to remove the unwanted 154 * odd bit positions. 155 * 156 * This allows searching of a whole u64 at once (32 blocks) with a 157 * single test (on 64 bit arches). 158 */ 159 160 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) 161 { 162 u64 tmp; 163 static const u64 search[] = { 164 [0] = 0xffffffffffffffffULL, 165 [1] = 0xaaaaaaaaaaaaaaaaULL, 166 [2] = 0x5555555555555555ULL, 167 [3] = 0x0000000000000000ULL, 168 }; 169 tmp = le64_to_cpu(*ptr) ^ search[state]; 170 tmp &= (tmp >> 1); 171 tmp &= mask; 172 return tmp; 173 } 174 175 /** 176 * rs_cmp - multi-block reservation range compare 177 * @blk: absolute file system block number of the new reservation 178 * @len: number of blocks in the new reservation 179 * @rs: existing reservation to compare against 180 * 181 * returns: 1 if the block range is beyond the reach of the reservation 182 * -1 if the block range is before the start of the reservation 183 * 0 if the block range overlaps with the reservation 184 */ 185 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs) 186 { 187 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm); 188 189 if (blk >= startblk + rs->rs_free) 190 return 1; 191 if (blk + len - 1 < startblk) 192 return -1; 193 return 0; 194 } 195 196 /** 197 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing 198 * a block in a given allocation state. 199 * @buf: the buffer that holds the bitmaps 200 * @len: the length (in bytes) of the buffer 201 * @goal: start search at this block's bit-pair (within @buffer) 202 * @state: GFS2_BLKST_XXX the state of the block we're looking for. 203 * 204 * Scope of @goal and returned block number is only within this bitmap buffer, 205 * not entire rgrp or filesystem. @buffer will be offset from the actual 206 * beginning of a bitmap block buffer, skipping any header structures, but 207 * headers are always a multiple of 64 bits long so that the buffer is 208 * always aligned to a 64 bit boundary. 209 * 210 * The size of the buffer is in bytes, but is it assumed that it is 211 * always ok to read a complete multiple of 64 bits at the end 212 * of the block in case the end is no aligned to a natural boundary. 213 * 214 * Return: the block number (bitmap buffer scope) that was found 215 */ 216 217 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, 218 u32 goal, u8 state) 219 { 220 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); 221 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); 222 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); 223 u64 tmp; 224 u64 mask = 0x5555555555555555ULL; 225 u32 bit; 226 227 /* Mask off bits we don't care about at the start of the search */ 228 mask <<= spoint; 229 tmp = gfs2_bit_search(ptr, mask, state); 230 ptr++; 231 while(tmp == 0 && ptr < end) { 232 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); 233 ptr++; 234 } 235 /* Mask off any bits which are more than len bytes from the start */ 236 if (ptr == end && (len & (sizeof(u64) - 1))) 237 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); 238 /* Didn't find anything, so return */ 239 if (tmp == 0) 240 return BFITNOENT; 241 ptr--; 242 bit = __ffs64(tmp); 243 bit /= 2; /* two bits per entry in the bitmap */ 244 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; 245 } 246 247 /** 248 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number 249 * @rbm: The rbm with rgd already set correctly 250 * @block: The block number (filesystem relative) 251 * 252 * This sets the bi and offset members of an rbm based on a 253 * resource group and a filesystem relative block number. The 254 * resource group must be set in the rbm on entry, the bi and 255 * offset members will be set by this function. 256 * 257 * Returns: 0 on success, or an error code 258 */ 259 260 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block) 261 { 262 u64 rblock = block - rbm->rgd->rd_data0; 263 264 if (WARN_ON_ONCE(rblock > UINT_MAX)) 265 return -EINVAL; 266 if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data) 267 return -E2BIG; 268 269 rbm->bii = 0; 270 rbm->offset = (u32)(rblock); 271 /* Check if the block is within the first block */ 272 if (rbm->offset < rbm_bi(rbm)->bi_blocks) 273 return 0; 274 275 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */ 276 rbm->offset += (sizeof(struct gfs2_rgrp) - 277 sizeof(struct gfs2_meta_header)) * GFS2_NBBY; 278 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 279 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 280 return 0; 281 } 282 283 /** 284 * gfs2_rbm_incr - increment an rbm structure 285 * @rbm: The rbm with rgd already set correctly 286 * 287 * This function takes an existing rbm structure and increments it to the next 288 * viable block offset. 289 * 290 * Returns: If incrementing the offset would cause the rbm to go past the 291 * end of the rgrp, true is returned, otherwise false. 292 * 293 */ 294 295 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm) 296 { 297 if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */ 298 rbm->offset++; 299 return false; 300 } 301 if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */ 302 return true; 303 304 rbm->offset = 0; 305 rbm->bii++; 306 return false; 307 } 308 309 /** 310 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned 311 * @rbm: Position to search (value/result) 312 * @n_unaligned: Number of unaligned blocks to check 313 * @len: Decremented for each block found (terminate on zero) 314 * 315 * Returns: true if a non-free block is encountered 316 */ 317 318 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len) 319 { 320 u32 n; 321 u8 res; 322 323 for (n = 0; n < n_unaligned; n++) { 324 res = gfs2_testbit(rbm); 325 if (res != GFS2_BLKST_FREE) 326 return true; 327 (*len)--; 328 if (*len == 0) 329 return true; 330 if (gfs2_rbm_incr(rbm)) 331 return true; 332 } 333 334 return false; 335 } 336 337 /** 338 * gfs2_free_extlen - Return extent length of free blocks 339 * @rrbm: Starting position 340 * @len: Max length to check 341 * 342 * Starting at the block specified by the rbm, see how many free blocks 343 * there are, not reading more than len blocks ahead. This can be done 344 * using memchr_inv when the blocks are byte aligned, but has to be done 345 * on a block by block basis in case of unaligned blocks. Also this 346 * function can cope with bitmap boundaries (although it must stop on 347 * a resource group boundary) 348 * 349 * Returns: Number of free blocks in the extent 350 */ 351 352 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len) 353 { 354 struct gfs2_rbm rbm = *rrbm; 355 u32 n_unaligned = rbm.offset & 3; 356 u32 size = len; 357 u32 bytes; 358 u32 chunk_size; 359 u8 *ptr, *start, *end; 360 u64 block; 361 struct gfs2_bitmap *bi; 362 363 if (n_unaligned && 364 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len)) 365 goto out; 366 367 n_unaligned = len & 3; 368 /* Start is now byte aligned */ 369 while (len > 3) { 370 bi = rbm_bi(&rbm); 371 start = bi->bi_bh->b_data; 372 if (bi->bi_clone) 373 start = bi->bi_clone; 374 end = start + bi->bi_bh->b_size; 375 start += bi->bi_offset; 376 BUG_ON(rbm.offset & 3); 377 start += (rbm.offset / GFS2_NBBY); 378 bytes = min_t(u32, len / GFS2_NBBY, (end - start)); 379 ptr = memchr_inv(start, 0, bytes); 380 chunk_size = ((ptr == NULL) ? bytes : (ptr - start)); 381 chunk_size *= GFS2_NBBY; 382 BUG_ON(len < chunk_size); 383 len -= chunk_size; 384 block = gfs2_rbm_to_block(&rbm); 385 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) { 386 n_unaligned = 0; 387 break; 388 } 389 if (ptr) { 390 n_unaligned = 3; 391 break; 392 } 393 n_unaligned = len & 3; 394 } 395 396 /* Deal with any bits left over at the end */ 397 if (n_unaligned) 398 gfs2_unaligned_extlen(&rbm, n_unaligned, &len); 399 out: 400 return size - len; 401 } 402 403 /** 404 * gfs2_bitcount - count the number of bits in a certain state 405 * @rgd: the resource group descriptor 406 * @buffer: the buffer that holds the bitmaps 407 * @buflen: the length (in bytes) of the buffer 408 * @state: the state of the block we're looking for 409 * 410 * Returns: The number of bits 411 */ 412 413 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, 414 unsigned int buflen, u8 state) 415 { 416 const u8 *byte = buffer; 417 const u8 *end = buffer + buflen; 418 const u8 state1 = state << 2; 419 const u8 state2 = state << 4; 420 const u8 state3 = state << 6; 421 u32 count = 0; 422 423 for (; byte < end; byte++) { 424 if (((*byte) & 0x03) == state) 425 count++; 426 if (((*byte) & 0x0C) == state1) 427 count++; 428 if (((*byte) & 0x30) == state2) 429 count++; 430 if (((*byte) & 0xC0) == state3) 431 count++; 432 } 433 434 return count; 435 } 436 437 /** 438 * gfs2_rgrp_verify - Verify that a resource group is consistent 439 * @rgd: the rgrp 440 * 441 */ 442 443 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) 444 { 445 struct gfs2_sbd *sdp = rgd->rd_sbd; 446 struct gfs2_bitmap *bi = NULL; 447 u32 length = rgd->rd_length; 448 u32 count[4], tmp; 449 int buf, x; 450 451 memset(count, 0, 4 * sizeof(u32)); 452 453 /* Count # blocks in each of 4 possible allocation states */ 454 for (buf = 0; buf < length; buf++) { 455 bi = rgd->rd_bits + buf; 456 for (x = 0; x < 4; x++) 457 count[x] += gfs2_bitcount(rgd, 458 bi->bi_bh->b_data + 459 bi->bi_offset, 460 bi->bi_len, x); 461 } 462 463 if (count[0] != rgd->rd_free) { 464 if (gfs2_consist_rgrpd(rgd)) 465 fs_err(sdp, "free data mismatch: %u != %u\n", 466 count[0], rgd->rd_free); 467 return; 468 } 469 470 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; 471 if (count[1] != tmp) { 472 if (gfs2_consist_rgrpd(rgd)) 473 fs_err(sdp, "used data mismatch: %u != %u\n", 474 count[1], tmp); 475 return; 476 } 477 478 if (count[2] + count[3] != rgd->rd_dinodes) { 479 if (gfs2_consist_rgrpd(rgd)) 480 fs_err(sdp, "used metadata mismatch: %u != %u\n", 481 count[2] + count[3], rgd->rd_dinodes); 482 return; 483 } 484 } 485 486 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block) 487 { 488 u64 first = rgd->rd_data0; 489 u64 last = first + rgd->rd_data; 490 return first <= block && block < last; 491 } 492 493 /** 494 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number 495 * @sdp: The GFS2 superblock 496 * @blk: The data block number 497 * @exact: True if this needs to be an exact match 498 * 499 * Returns: The resource group, or NULL if not found 500 */ 501 502 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact) 503 { 504 struct rb_node *n, *next; 505 struct gfs2_rgrpd *cur; 506 507 spin_lock(&sdp->sd_rindex_spin); 508 n = sdp->sd_rindex_tree.rb_node; 509 while (n) { 510 cur = rb_entry(n, struct gfs2_rgrpd, rd_node); 511 next = NULL; 512 if (blk < cur->rd_addr) 513 next = n->rb_left; 514 else if (blk >= cur->rd_data0 + cur->rd_data) 515 next = n->rb_right; 516 if (next == NULL) { 517 spin_unlock(&sdp->sd_rindex_spin); 518 if (exact) { 519 if (blk < cur->rd_addr) 520 return NULL; 521 if (blk >= cur->rd_data0 + cur->rd_data) 522 return NULL; 523 } 524 return cur; 525 } 526 n = next; 527 } 528 spin_unlock(&sdp->sd_rindex_spin); 529 530 return NULL; 531 } 532 533 /** 534 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem 535 * @sdp: The GFS2 superblock 536 * 537 * Returns: The first rgrp in the filesystem 538 */ 539 540 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) 541 { 542 const struct rb_node *n; 543 struct gfs2_rgrpd *rgd; 544 545 spin_lock(&sdp->sd_rindex_spin); 546 n = rb_first(&sdp->sd_rindex_tree); 547 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 548 spin_unlock(&sdp->sd_rindex_spin); 549 550 return rgd; 551 } 552 553 /** 554 * gfs2_rgrpd_get_next - get the next RG 555 * @rgd: the resource group descriptor 556 * 557 * Returns: The next rgrp 558 */ 559 560 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) 561 { 562 struct gfs2_sbd *sdp = rgd->rd_sbd; 563 const struct rb_node *n; 564 565 spin_lock(&sdp->sd_rindex_spin); 566 n = rb_next(&rgd->rd_node); 567 if (n == NULL) 568 n = rb_first(&sdp->sd_rindex_tree); 569 570 if (unlikely(&rgd->rd_node == n)) { 571 spin_unlock(&sdp->sd_rindex_spin); 572 return NULL; 573 } 574 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 575 spin_unlock(&sdp->sd_rindex_spin); 576 return rgd; 577 } 578 579 void check_and_update_goal(struct gfs2_inode *ip) 580 { 581 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 582 if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL) 583 ip->i_goal = ip->i_no_addr; 584 } 585 586 void gfs2_free_clones(struct gfs2_rgrpd *rgd) 587 { 588 int x; 589 590 for (x = 0; x < rgd->rd_length; x++) { 591 struct gfs2_bitmap *bi = rgd->rd_bits + x; 592 kfree(bi->bi_clone); 593 bi->bi_clone = NULL; 594 } 595 } 596 597 /** 598 * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode 599 * plus a quota allocations data structure, if necessary 600 * @ip: the inode for this reservation 601 */ 602 int gfs2_rsqa_alloc(struct gfs2_inode *ip) 603 { 604 return gfs2_qa_alloc(ip); 605 } 606 607 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs) 608 { 609 gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n", 610 (unsigned long long)rs->rs_inum, 611 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm), 612 rs->rs_rbm.offset, rs->rs_free); 613 } 614 615 /** 616 * __rs_deltree - remove a multi-block reservation from the rgd tree 617 * @rs: The reservation to remove 618 * 619 */ 620 static void __rs_deltree(struct gfs2_blkreserv *rs) 621 { 622 struct gfs2_rgrpd *rgd; 623 624 if (!gfs2_rs_active(rs)) 625 return; 626 627 rgd = rs->rs_rbm.rgd; 628 trace_gfs2_rs(rs, TRACE_RS_TREEDEL); 629 rb_erase(&rs->rs_node, &rgd->rd_rstree); 630 RB_CLEAR_NODE(&rs->rs_node); 631 632 if (rs->rs_free) { 633 struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm); 634 635 /* return reserved blocks to the rgrp */ 636 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free); 637 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free; 638 /* The rgrp extent failure point is likely not to increase; 639 it will only do so if the freed blocks are somehow 640 contiguous with a span of free blocks that follows. Still, 641 it will force the number to be recalculated later. */ 642 rgd->rd_extfail_pt += rs->rs_free; 643 rs->rs_free = 0; 644 clear_bit(GBF_FULL, &bi->bi_flags); 645 } 646 } 647 648 /** 649 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree 650 * @rs: The reservation to remove 651 * 652 */ 653 void gfs2_rs_deltree(struct gfs2_blkreserv *rs) 654 { 655 struct gfs2_rgrpd *rgd; 656 657 rgd = rs->rs_rbm.rgd; 658 if (rgd) { 659 spin_lock(&rgd->rd_rsspin); 660 __rs_deltree(rs); 661 spin_unlock(&rgd->rd_rsspin); 662 } 663 } 664 665 /** 666 * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation 667 * @ip: The inode for this reservation 668 * @wcount: The inode's write count, or NULL 669 * 670 */ 671 void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount) 672 { 673 down_write(&ip->i_rw_mutex); 674 if ((wcount == NULL) || (atomic_read(wcount) <= 1)) { 675 gfs2_rs_deltree(&ip->i_res); 676 BUG_ON(ip->i_res.rs_free); 677 } 678 up_write(&ip->i_rw_mutex); 679 gfs2_qa_delete(ip, wcount); 680 } 681 682 /** 683 * return_all_reservations - return all reserved blocks back to the rgrp. 684 * @rgd: the rgrp that needs its space back 685 * 686 * We previously reserved a bunch of blocks for allocation. Now we need to 687 * give them back. This leave the reservation structures in tact, but removes 688 * all of their corresponding "no-fly zones". 689 */ 690 static void return_all_reservations(struct gfs2_rgrpd *rgd) 691 { 692 struct rb_node *n; 693 struct gfs2_blkreserv *rs; 694 695 spin_lock(&rgd->rd_rsspin); 696 while ((n = rb_first(&rgd->rd_rstree))) { 697 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 698 __rs_deltree(rs); 699 } 700 spin_unlock(&rgd->rd_rsspin); 701 } 702 703 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) 704 { 705 struct rb_node *n; 706 struct gfs2_rgrpd *rgd; 707 struct gfs2_glock *gl; 708 709 while ((n = rb_first(&sdp->sd_rindex_tree))) { 710 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 711 gl = rgd->rd_gl; 712 713 rb_erase(n, &sdp->sd_rindex_tree); 714 715 if (gl) { 716 spin_lock(&gl->gl_lockref.lock); 717 gl->gl_object = NULL; 718 spin_unlock(&gl->gl_lockref.lock); 719 gfs2_glock_add_to_lru(gl); 720 gfs2_glock_put(gl); 721 } 722 723 gfs2_free_clones(rgd); 724 kfree(rgd->rd_bits); 725 return_all_reservations(rgd); 726 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 727 } 728 } 729 730 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd) 731 { 732 pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr); 733 pr_info("ri_length = %u\n", rgd->rd_length); 734 pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0); 735 pr_info("ri_data = %u\n", rgd->rd_data); 736 pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes); 737 } 738 739 /** 740 * gfs2_compute_bitstructs - Compute the bitmap sizes 741 * @rgd: The resource group descriptor 742 * 743 * Calculates bitmap descriptors, one for each block that contains bitmap data 744 * 745 * Returns: errno 746 */ 747 748 static int compute_bitstructs(struct gfs2_rgrpd *rgd) 749 { 750 struct gfs2_sbd *sdp = rgd->rd_sbd; 751 struct gfs2_bitmap *bi; 752 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ 753 u32 bytes_left, bytes; 754 int x; 755 756 if (!length) 757 return -EINVAL; 758 759 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); 760 if (!rgd->rd_bits) 761 return -ENOMEM; 762 763 bytes_left = rgd->rd_bitbytes; 764 765 for (x = 0; x < length; x++) { 766 bi = rgd->rd_bits + x; 767 768 bi->bi_flags = 0; 769 /* small rgrp; bitmap stored completely in header block */ 770 if (length == 1) { 771 bytes = bytes_left; 772 bi->bi_offset = sizeof(struct gfs2_rgrp); 773 bi->bi_start = 0; 774 bi->bi_len = bytes; 775 bi->bi_blocks = bytes * GFS2_NBBY; 776 /* header block */ 777 } else if (x == 0) { 778 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); 779 bi->bi_offset = sizeof(struct gfs2_rgrp); 780 bi->bi_start = 0; 781 bi->bi_len = bytes; 782 bi->bi_blocks = bytes * GFS2_NBBY; 783 /* last block */ 784 } else if (x + 1 == length) { 785 bytes = bytes_left; 786 bi->bi_offset = sizeof(struct gfs2_meta_header); 787 bi->bi_start = rgd->rd_bitbytes - bytes_left; 788 bi->bi_len = bytes; 789 bi->bi_blocks = bytes * GFS2_NBBY; 790 /* other blocks */ 791 } else { 792 bytes = sdp->sd_sb.sb_bsize - 793 sizeof(struct gfs2_meta_header); 794 bi->bi_offset = sizeof(struct gfs2_meta_header); 795 bi->bi_start = rgd->rd_bitbytes - bytes_left; 796 bi->bi_len = bytes; 797 bi->bi_blocks = bytes * GFS2_NBBY; 798 } 799 800 bytes_left -= bytes; 801 } 802 803 if (bytes_left) { 804 gfs2_consist_rgrpd(rgd); 805 return -EIO; 806 } 807 bi = rgd->rd_bits + (length - 1); 808 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) { 809 if (gfs2_consist_rgrpd(rgd)) { 810 gfs2_rindex_print(rgd); 811 fs_err(sdp, "start=%u len=%u offset=%u\n", 812 bi->bi_start, bi->bi_len, bi->bi_offset); 813 } 814 return -EIO; 815 } 816 817 return 0; 818 } 819 820 /** 821 * gfs2_ri_total - Total up the file system space, according to the rindex. 822 * @sdp: the filesystem 823 * 824 */ 825 u64 gfs2_ri_total(struct gfs2_sbd *sdp) 826 { 827 u64 total_data = 0; 828 struct inode *inode = sdp->sd_rindex; 829 struct gfs2_inode *ip = GFS2_I(inode); 830 char buf[sizeof(struct gfs2_rindex)]; 831 int error, rgrps; 832 833 for (rgrps = 0;; rgrps++) { 834 loff_t pos = rgrps * sizeof(struct gfs2_rindex); 835 836 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) 837 break; 838 error = gfs2_internal_read(ip, buf, &pos, 839 sizeof(struct gfs2_rindex)); 840 if (error != sizeof(struct gfs2_rindex)) 841 break; 842 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); 843 } 844 return total_data; 845 } 846 847 static int rgd_insert(struct gfs2_rgrpd *rgd) 848 { 849 struct gfs2_sbd *sdp = rgd->rd_sbd; 850 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; 851 852 /* Figure out where to put new node */ 853 while (*newn) { 854 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, 855 rd_node); 856 857 parent = *newn; 858 if (rgd->rd_addr < cur->rd_addr) 859 newn = &((*newn)->rb_left); 860 else if (rgd->rd_addr > cur->rd_addr) 861 newn = &((*newn)->rb_right); 862 else 863 return -EEXIST; 864 } 865 866 rb_link_node(&rgd->rd_node, parent, newn); 867 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); 868 sdp->sd_rgrps++; 869 return 0; 870 } 871 872 /** 873 * read_rindex_entry - Pull in a new resource index entry from the disk 874 * @ip: Pointer to the rindex inode 875 * 876 * Returns: 0 on success, > 0 on EOF, error code otherwise 877 */ 878 879 static int read_rindex_entry(struct gfs2_inode *ip) 880 { 881 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 882 const unsigned bsize = sdp->sd_sb.sb_bsize; 883 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); 884 struct gfs2_rindex buf; 885 int error; 886 struct gfs2_rgrpd *rgd; 887 888 if (pos >= i_size_read(&ip->i_inode)) 889 return 1; 890 891 error = gfs2_internal_read(ip, (char *)&buf, &pos, 892 sizeof(struct gfs2_rindex)); 893 894 if (error != sizeof(struct gfs2_rindex)) 895 return (error == 0) ? 1 : error; 896 897 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); 898 error = -ENOMEM; 899 if (!rgd) 900 return error; 901 902 rgd->rd_sbd = sdp; 903 rgd->rd_addr = be64_to_cpu(buf.ri_addr); 904 rgd->rd_length = be32_to_cpu(buf.ri_length); 905 rgd->rd_data0 = be64_to_cpu(buf.ri_data0); 906 rgd->rd_data = be32_to_cpu(buf.ri_data); 907 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); 908 spin_lock_init(&rgd->rd_rsspin); 909 910 error = compute_bitstructs(rgd); 911 if (error) 912 goto fail; 913 914 error = gfs2_glock_get(sdp, rgd->rd_addr, 915 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); 916 if (error) 917 goto fail; 918 919 rgd->rd_gl->gl_object = rgd; 920 rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK; 921 rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr + rgd->rd_length) * bsize) - 1; 922 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr; 923 rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED); 924 if (rgd->rd_data > sdp->sd_max_rg_data) 925 sdp->sd_max_rg_data = rgd->rd_data; 926 spin_lock(&sdp->sd_rindex_spin); 927 error = rgd_insert(rgd); 928 spin_unlock(&sdp->sd_rindex_spin); 929 if (!error) 930 return 0; 931 932 error = 0; /* someone else read in the rgrp; free it and ignore it */ 933 gfs2_glock_put(rgd->rd_gl); 934 935 fail: 936 kfree(rgd->rd_bits); 937 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 938 return error; 939 } 940 941 /** 942 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use 943 * @sdp: the GFS2 superblock 944 * 945 * The purpose of this function is to select a subset of the resource groups 946 * and mark them as PREFERRED. We do it in such a way that each node prefers 947 * to use a unique set of rgrps to minimize glock contention. 948 */ 949 static void set_rgrp_preferences(struct gfs2_sbd *sdp) 950 { 951 struct gfs2_rgrpd *rgd, *first; 952 int i; 953 954 /* Skip an initial number of rgrps, based on this node's journal ID. 955 That should start each node out on its own set. */ 956 rgd = gfs2_rgrpd_get_first(sdp); 957 for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++) 958 rgd = gfs2_rgrpd_get_next(rgd); 959 first = rgd; 960 961 do { 962 rgd->rd_flags |= GFS2_RDF_PREFERRED; 963 for (i = 0; i < sdp->sd_journals; i++) { 964 rgd = gfs2_rgrpd_get_next(rgd); 965 if (!rgd || rgd == first) 966 break; 967 } 968 } while (rgd && rgd != first); 969 } 970 971 /** 972 * gfs2_ri_update - Pull in a new resource index from the disk 973 * @ip: pointer to the rindex inode 974 * 975 * Returns: 0 on successful update, error code otherwise 976 */ 977 978 static int gfs2_ri_update(struct gfs2_inode *ip) 979 { 980 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 981 int error; 982 983 do { 984 error = read_rindex_entry(ip); 985 } while (error == 0); 986 987 if (error < 0) 988 return error; 989 990 set_rgrp_preferences(sdp); 991 992 sdp->sd_rindex_uptodate = 1; 993 return 0; 994 } 995 996 /** 997 * gfs2_rindex_update - Update the rindex if required 998 * @sdp: The GFS2 superblock 999 * 1000 * We grab a lock on the rindex inode to make sure that it doesn't 1001 * change whilst we are performing an operation. We keep this lock 1002 * for quite long periods of time compared to other locks. This 1003 * doesn't matter, since it is shared and it is very, very rarely 1004 * accessed in the exclusive mode (i.e. only when expanding the filesystem). 1005 * 1006 * This makes sure that we're using the latest copy of the resource index 1007 * special file, which might have been updated if someone expanded the 1008 * filesystem (via gfs2_grow utility), which adds new resource groups. 1009 * 1010 * Returns: 0 on succeess, error code otherwise 1011 */ 1012 1013 int gfs2_rindex_update(struct gfs2_sbd *sdp) 1014 { 1015 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); 1016 struct gfs2_glock *gl = ip->i_gl; 1017 struct gfs2_holder ri_gh; 1018 int error = 0; 1019 int unlock_required = 0; 1020 1021 /* Read new copy from disk if we don't have the latest */ 1022 if (!sdp->sd_rindex_uptodate) { 1023 if (!gfs2_glock_is_locked_by_me(gl)) { 1024 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); 1025 if (error) 1026 return error; 1027 unlock_required = 1; 1028 } 1029 if (!sdp->sd_rindex_uptodate) 1030 error = gfs2_ri_update(ip); 1031 if (unlock_required) 1032 gfs2_glock_dq_uninit(&ri_gh); 1033 } 1034 1035 return error; 1036 } 1037 1038 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) 1039 { 1040 const struct gfs2_rgrp *str = buf; 1041 u32 rg_flags; 1042 1043 rg_flags = be32_to_cpu(str->rg_flags); 1044 rg_flags &= ~GFS2_RDF_MASK; 1045 rgd->rd_flags &= GFS2_RDF_MASK; 1046 rgd->rd_flags |= rg_flags; 1047 rgd->rd_free = be32_to_cpu(str->rg_free); 1048 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); 1049 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); 1050 } 1051 1052 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) 1053 { 1054 struct gfs2_rgrp *str = buf; 1055 1056 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); 1057 str->rg_free = cpu_to_be32(rgd->rd_free); 1058 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); 1059 str->__pad = cpu_to_be32(0); 1060 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); 1061 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); 1062 } 1063 1064 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd) 1065 { 1066 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1067 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data; 1068 1069 if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free || 1070 rgl->rl_dinodes != str->rg_dinodes || 1071 rgl->rl_igeneration != str->rg_igeneration) 1072 return 0; 1073 return 1; 1074 } 1075 1076 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf) 1077 { 1078 const struct gfs2_rgrp *str = buf; 1079 1080 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC); 1081 rgl->rl_flags = str->rg_flags; 1082 rgl->rl_free = str->rg_free; 1083 rgl->rl_dinodes = str->rg_dinodes; 1084 rgl->rl_igeneration = str->rg_igeneration; 1085 rgl->__pad = 0UL; 1086 } 1087 1088 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change) 1089 { 1090 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1091 u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change; 1092 rgl->rl_unlinked = cpu_to_be32(unlinked); 1093 } 1094 1095 static u32 count_unlinked(struct gfs2_rgrpd *rgd) 1096 { 1097 struct gfs2_bitmap *bi; 1098 const u32 length = rgd->rd_length; 1099 const u8 *buffer = NULL; 1100 u32 i, goal, count = 0; 1101 1102 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) { 1103 goal = 0; 1104 buffer = bi->bi_bh->b_data + bi->bi_offset; 1105 WARN_ON(!buffer_uptodate(bi->bi_bh)); 1106 while (goal < bi->bi_len * GFS2_NBBY) { 1107 goal = gfs2_bitfit(buffer, bi->bi_len, goal, 1108 GFS2_BLKST_UNLINKED); 1109 if (goal == BFITNOENT) 1110 break; 1111 count++; 1112 goal++; 1113 } 1114 } 1115 1116 return count; 1117 } 1118 1119 1120 /** 1121 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps 1122 * @rgd: the struct gfs2_rgrpd describing the RG to read in 1123 * 1124 * Read in all of a Resource Group's header and bitmap blocks. 1125 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps. 1126 * 1127 * Returns: errno 1128 */ 1129 1130 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd) 1131 { 1132 struct gfs2_sbd *sdp = rgd->rd_sbd; 1133 struct gfs2_glock *gl = rgd->rd_gl; 1134 unsigned int length = rgd->rd_length; 1135 struct gfs2_bitmap *bi; 1136 unsigned int x, y; 1137 int error; 1138 1139 if (rgd->rd_bits[0].bi_bh != NULL) 1140 return 0; 1141 1142 for (x = 0; x < length; x++) { 1143 bi = rgd->rd_bits + x; 1144 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh); 1145 if (error) 1146 goto fail; 1147 } 1148 1149 for (y = length; y--;) { 1150 bi = rgd->rd_bits + y; 1151 error = gfs2_meta_wait(sdp, bi->bi_bh); 1152 if (error) 1153 goto fail; 1154 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : 1155 GFS2_METATYPE_RG)) { 1156 error = -EIO; 1157 goto fail; 1158 } 1159 } 1160 1161 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) { 1162 for (x = 0; x < length; x++) 1163 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags); 1164 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); 1165 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1166 rgd->rd_free_clone = rgd->rd_free; 1167 /* max out the rgrp allocation failure point */ 1168 rgd->rd_extfail_pt = rgd->rd_free; 1169 } 1170 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) { 1171 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd)); 1172 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, 1173 rgd->rd_bits[0].bi_bh->b_data); 1174 } 1175 else if (sdp->sd_args.ar_rgrplvb) { 1176 if (!gfs2_rgrp_lvb_valid(rgd)){ 1177 gfs2_consist_rgrpd(rgd); 1178 error = -EIO; 1179 goto fail; 1180 } 1181 if (rgd->rd_rgl->rl_unlinked == 0) 1182 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1183 } 1184 return 0; 1185 1186 fail: 1187 while (x--) { 1188 bi = rgd->rd_bits + x; 1189 brelse(bi->bi_bh); 1190 bi->bi_bh = NULL; 1191 gfs2_assert_warn(sdp, !bi->bi_clone); 1192 } 1193 1194 return error; 1195 } 1196 1197 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd) 1198 { 1199 u32 rl_flags; 1200 1201 if (rgd->rd_flags & GFS2_RDF_UPTODATE) 1202 return 0; 1203 1204 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) 1205 return gfs2_rgrp_bh_get(rgd); 1206 1207 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags); 1208 rl_flags &= ~GFS2_RDF_MASK; 1209 rgd->rd_flags &= GFS2_RDF_MASK; 1210 rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1211 if (rgd->rd_rgl->rl_unlinked == 0) 1212 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1213 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free); 1214 rgd->rd_free_clone = rgd->rd_free; 1215 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes); 1216 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration); 1217 return 0; 1218 } 1219 1220 int gfs2_rgrp_go_lock(struct gfs2_holder *gh) 1221 { 1222 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1223 struct gfs2_sbd *sdp = rgd->rd_sbd; 1224 1225 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb) 1226 return 0; 1227 return gfs2_rgrp_bh_get(rgd); 1228 } 1229 1230 /** 1231 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get() 1232 * @rgd: The resource group 1233 * 1234 */ 1235 1236 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd) 1237 { 1238 int x, length = rgd->rd_length; 1239 1240 for (x = 0; x < length; x++) { 1241 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1242 if (bi->bi_bh) { 1243 brelse(bi->bi_bh); 1244 bi->bi_bh = NULL; 1245 } 1246 } 1247 1248 } 1249 1250 /** 1251 * gfs2_rgrp_go_unlock - Unlock a rgrp glock 1252 * @gh: The glock holder for the resource group 1253 * 1254 */ 1255 1256 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh) 1257 { 1258 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1259 int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) | 1260 test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags); 1261 1262 if (rgd && demote_requested) 1263 gfs2_rgrp_brelse(rgd); 1264 } 1265 1266 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, 1267 struct buffer_head *bh, 1268 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed) 1269 { 1270 struct super_block *sb = sdp->sd_vfs; 1271 u64 blk; 1272 sector_t start = 0; 1273 sector_t nr_blks = 0; 1274 int rv; 1275 unsigned int x; 1276 u32 trimmed = 0; 1277 u8 diff; 1278 1279 for (x = 0; x < bi->bi_len; x++) { 1280 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data; 1281 clone += bi->bi_offset; 1282 clone += x; 1283 if (bh) { 1284 const u8 *orig = bh->b_data + bi->bi_offset + x; 1285 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); 1286 } else { 1287 diff = ~(*clone | (*clone >> 1)); 1288 } 1289 diff &= 0x55; 1290 if (diff == 0) 1291 continue; 1292 blk = offset + ((bi->bi_start + x) * GFS2_NBBY); 1293 while(diff) { 1294 if (diff & 1) { 1295 if (nr_blks == 0) 1296 goto start_new_extent; 1297 if ((start + nr_blks) != blk) { 1298 if (nr_blks >= minlen) { 1299 rv = sb_issue_discard(sb, 1300 start, nr_blks, 1301 GFP_NOFS, 0); 1302 if (rv) 1303 goto fail; 1304 trimmed += nr_blks; 1305 } 1306 nr_blks = 0; 1307 start_new_extent: 1308 start = blk; 1309 } 1310 nr_blks++; 1311 } 1312 diff >>= 2; 1313 blk++; 1314 } 1315 } 1316 if (nr_blks >= minlen) { 1317 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0); 1318 if (rv) 1319 goto fail; 1320 trimmed += nr_blks; 1321 } 1322 if (ptrimmed) 1323 *ptrimmed = trimmed; 1324 return 0; 1325 1326 fail: 1327 if (sdp->sd_args.ar_discard) 1328 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv); 1329 sdp->sd_args.ar_discard = 0; 1330 return -EIO; 1331 } 1332 1333 /** 1334 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem 1335 * @filp: Any file on the filesystem 1336 * @argp: Pointer to the arguments (also used to pass result) 1337 * 1338 * Returns: 0 on success, otherwise error code 1339 */ 1340 1341 int gfs2_fitrim(struct file *filp, void __user *argp) 1342 { 1343 struct inode *inode = file_inode(filp); 1344 struct gfs2_sbd *sdp = GFS2_SB(inode); 1345 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev); 1346 struct buffer_head *bh; 1347 struct gfs2_rgrpd *rgd; 1348 struct gfs2_rgrpd *rgd_end; 1349 struct gfs2_holder gh; 1350 struct fstrim_range r; 1351 int ret = 0; 1352 u64 amt; 1353 u64 trimmed = 0; 1354 u64 start, end, minlen; 1355 unsigned int x; 1356 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift; 1357 1358 if (!capable(CAP_SYS_ADMIN)) 1359 return -EPERM; 1360 1361 if (!blk_queue_discard(q)) 1362 return -EOPNOTSUPP; 1363 1364 if (copy_from_user(&r, argp, sizeof(r))) 1365 return -EFAULT; 1366 1367 ret = gfs2_rindex_update(sdp); 1368 if (ret) 1369 return ret; 1370 1371 start = r.start >> bs_shift; 1372 end = start + (r.len >> bs_shift); 1373 minlen = max_t(u64, r.minlen, 1374 q->limits.discard_granularity) >> bs_shift; 1375 1376 if (end <= start || minlen > sdp->sd_max_rg_data) 1377 return -EINVAL; 1378 1379 rgd = gfs2_blk2rgrpd(sdp, start, 0); 1380 rgd_end = gfs2_blk2rgrpd(sdp, end, 0); 1381 1382 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end)) 1383 && (start > rgd_end->rd_data0 + rgd_end->rd_data)) 1384 return -EINVAL; /* start is beyond the end of the fs */ 1385 1386 while (1) { 1387 1388 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh); 1389 if (ret) 1390 goto out; 1391 1392 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) { 1393 /* Trim each bitmap in the rgrp */ 1394 for (x = 0; x < rgd->rd_length; x++) { 1395 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1396 ret = gfs2_rgrp_send_discards(sdp, 1397 rgd->rd_data0, NULL, bi, minlen, 1398 &amt); 1399 if (ret) { 1400 gfs2_glock_dq_uninit(&gh); 1401 goto out; 1402 } 1403 trimmed += amt; 1404 } 1405 1406 /* Mark rgrp as having been trimmed */ 1407 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0); 1408 if (ret == 0) { 1409 bh = rgd->rd_bits[0].bi_bh; 1410 rgd->rd_flags |= GFS2_RGF_TRIMMED; 1411 gfs2_trans_add_meta(rgd->rd_gl, bh); 1412 gfs2_rgrp_out(rgd, bh->b_data); 1413 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data); 1414 gfs2_trans_end(sdp); 1415 } 1416 } 1417 gfs2_glock_dq_uninit(&gh); 1418 1419 if (rgd == rgd_end) 1420 break; 1421 1422 rgd = gfs2_rgrpd_get_next(rgd); 1423 } 1424 1425 out: 1426 r.len = trimmed << bs_shift; 1427 if (copy_to_user(argp, &r, sizeof(r))) 1428 return -EFAULT; 1429 1430 return ret; 1431 } 1432 1433 /** 1434 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree 1435 * @ip: the inode structure 1436 * 1437 */ 1438 static void rs_insert(struct gfs2_inode *ip) 1439 { 1440 struct rb_node **newn, *parent = NULL; 1441 int rc; 1442 struct gfs2_blkreserv *rs = &ip->i_res; 1443 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd; 1444 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm); 1445 1446 BUG_ON(gfs2_rs_active(rs)); 1447 1448 spin_lock(&rgd->rd_rsspin); 1449 newn = &rgd->rd_rstree.rb_node; 1450 while (*newn) { 1451 struct gfs2_blkreserv *cur = 1452 rb_entry(*newn, struct gfs2_blkreserv, rs_node); 1453 1454 parent = *newn; 1455 rc = rs_cmp(fsblock, rs->rs_free, cur); 1456 if (rc > 0) 1457 newn = &((*newn)->rb_right); 1458 else if (rc < 0) 1459 newn = &((*newn)->rb_left); 1460 else { 1461 spin_unlock(&rgd->rd_rsspin); 1462 WARN_ON(1); 1463 return; 1464 } 1465 } 1466 1467 rb_link_node(&rs->rs_node, parent, newn); 1468 rb_insert_color(&rs->rs_node, &rgd->rd_rstree); 1469 1470 /* Do our rgrp accounting for the reservation */ 1471 rgd->rd_reserved += rs->rs_free; /* blocks reserved */ 1472 spin_unlock(&rgd->rd_rsspin); 1473 trace_gfs2_rs(rs, TRACE_RS_INSERT); 1474 } 1475 1476 /** 1477 * rg_mblk_search - find a group of multiple free blocks to form a reservation 1478 * @rgd: the resource group descriptor 1479 * @ip: pointer to the inode for which we're reserving blocks 1480 * @ap: the allocation parameters 1481 * 1482 */ 1483 1484 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip, 1485 const struct gfs2_alloc_parms *ap) 1486 { 1487 struct gfs2_rbm rbm = { .rgd = rgd, }; 1488 u64 goal; 1489 struct gfs2_blkreserv *rs = &ip->i_res; 1490 u32 extlen; 1491 u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved; 1492 int ret; 1493 struct inode *inode = &ip->i_inode; 1494 1495 if (S_ISDIR(inode->i_mode)) 1496 extlen = 1; 1497 else { 1498 extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target); 1499 extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks); 1500 } 1501 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen)) 1502 return; 1503 1504 /* Find bitmap block that contains bits for goal block */ 1505 if (rgrp_contains_block(rgd, ip->i_goal)) 1506 goal = ip->i_goal; 1507 else 1508 goal = rgd->rd_last_alloc + rgd->rd_data0; 1509 1510 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal))) 1511 return; 1512 1513 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true); 1514 if (ret == 0) { 1515 rs->rs_rbm = rbm; 1516 rs->rs_free = extlen; 1517 rs->rs_inum = ip->i_no_addr; 1518 rs_insert(ip); 1519 } else { 1520 if (goal == rgd->rd_last_alloc + rgd->rd_data0) 1521 rgd->rd_last_alloc = 0; 1522 } 1523 } 1524 1525 /** 1526 * gfs2_next_unreserved_block - Return next block that is not reserved 1527 * @rgd: The resource group 1528 * @block: The starting block 1529 * @length: The required length 1530 * @ip: Ignore any reservations for this inode 1531 * 1532 * If the block does not appear in any reservation, then return the 1533 * block number unchanged. If it does appear in the reservation, then 1534 * keep looking through the tree of reservations in order to find the 1535 * first block number which is not reserved. 1536 */ 1537 1538 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block, 1539 u32 length, 1540 const struct gfs2_inode *ip) 1541 { 1542 struct gfs2_blkreserv *rs; 1543 struct rb_node *n; 1544 int rc; 1545 1546 spin_lock(&rgd->rd_rsspin); 1547 n = rgd->rd_rstree.rb_node; 1548 while (n) { 1549 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1550 rc = rs_cmp(block, length, rs); 1551 if (rc < 0) 1552 n = n->rb_left; 1553 else if (rc > 0) 1554 n = n->rb_right; 1555 else 1556 break; 1557 } 1558 1559 if (n) { 1560 while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) { 1561 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free; 1562 n = n->rb_right; 1563 if (n == NULL) 1564 break; 1565 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1566 } 1567 } 1568 1569 spin_unlock(&rgd->rd_rsspin); 1570 return block; 1571 } 1572 1573 /** 1574 * gfs2_reservation_check_and_update - Check for reservations during block alloc 1575 * @rbm: The current position in the resource group 1576 * @ip: The inode for which we are searching for blocks 1577 * @minext: The minimum extent length 1578 * @maxext: A pointer to the maximum extent structure 1579 * 1580 * This checks the current position in the rgrp to see whether there is 1581 * a reservation covering this block. If not then this function is a 1582 * no-op. If there is, then the position is moved to the end of the 1583 * contiguous reservation(s) so that we are pointing at the first 1584 * non-reserved block. 1585 * 1586 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error 1587 */ 1588 1589 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm, 1590 const struct gfs2_inode *ip, 1591 u32 minext, 1592 struct gfs2_extent *maxext) 1593 { 1594 u64 block = gfs2_rbm_to_block(rbm); 1595 u32 extlen = 1; 1596 u64 nblock; 1597 int ret; 1598 1599 /* 1600 * If we have a minimum extent length, then skip over any extent 1601 * which is less than the min extent length in size. 1602 */ 1603 if (minext) { 1604 extlen = gfs2_free_extlen(rbm, minext); 1605 if (extlen <= maxext->len) 1606 goto fail; 1607 } 1608 1609 /* 1610 * Check the extent which has been found against the reservations 1611 * and skip if parts of it are already reserved 1612 */ 1613 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip); 1614 if (nblock == block) { 1615 if (!minext || extlen >= minext) 1616 return 0; 1617 1618 if (extlen > maxext->len) { 1619 maxext->len = extlen; 1620 maxext->rbm = *rbm; 1621 } 1622 fail: 1623 nblock = block + extlen; 1624 } 1625 ret = gfs2_rbm_from_block(rbm, nblock); 1626 if (ret < 0) 1627 return ret; 1628 return 1; 1629 } 1630 1631 /** 1632 * gfs2_rbm_find - Look for blocks of a particular state 1633 * @rbm: Value/result starting position and final position 1634 * @state: The state which we want to find 1635 * @minext: Pointer to the requested extent length (NULL for a single block) 1636 * This is updated to be the actual reservation size. 1637 * @ip: If set, check for reservations 1638 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping 1639 * around until we've reached the starting point. 1640 * 1641 * Side effects: 1642 * - If looking for free blocks, we set GBF_FULL on each bitmap which 1643 * has no free blocks in it. 1644 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which 1645 * has come up short on a free block search. 1646 * 1647 * Returns: 0 on success, -ENOSPC if there is no block of the requested state 1648 */ 1649 1650 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 1651 const struct gfs2_inode *ip, bool nowrap) 1652 { 1653 struct buffer_head *bh; 1654 int initial_bii; 1655 u32 initial_offset; 1656 int first_bii = rbm->bii; 1657 u32 first_offset = rbm->offset; 1658 u32 offset; 1659 u8 *buffer; 1660 int n = 0; 1661 int iters = rbm->rgd->rd_length; 1662 int ret; 1663 struct gfs2_bitmap *bi; 1664 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, }; 1665 1666 /* If we are not starting at the beginning of a bitmap, then we 1667 * need to add one to the bitmap count to ensure that we search 1668 * the starting bitmap twice. 1669 */ 1670 if (rbm->offset != 0) 1671 iters++; 1672 1673 while(1) { 1674 bi = rbm_bi(rbm); 1675 if (test_bit(GBF_FULL, &bi->bi_flags) && 1676 (state == GFS2_BLKST_FREE)) 1677 goto next_bitmap; 1678 1679 bh = bi->bi_bh; 1680 buffer = bh->b_data + bi->bi_offset; 1681 WARN_ON(!buffer_uptodate(bh)); 1682 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone) 1683 buffer = bi->bi_clone + bi->bi_offset; 1684 initial_offset = rbm->offset; 1685 offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state); 1686 if (offset == BFITNOENT) 1687 goto bitmap_full; 1688 rbm->offset = offset; 1689 if (ip == NULL) 1690 return 0; 1691 1692 initial_bii = rbm->bii; 1693 ret = gfs2_reservation_check_and_update(rbm, ip, 1694 minext ? *minext : 0, 1695 &maxext); 1696 if (ret == 0) 1697 return 0; 1698 if (ret > 0) { 1699 n += (rbm->bii - initial_bii); 1700 goto next_iter; 1701 } 1702 if (ret == -E2BIG) { 1703 rbm->bii = 0; 1704 rbm->offset = 0; 1705 n += (rbm->bii - initial_bii); 1706 goto res_covered_end_of_rgrp; 1707 } 1708 return ret; 1709 1710 bitmap_full: /* Mark bitmap as full and fall through */ 1711 if ((state == GFS2_BLKST_FREE) && initial_offset == 0) 1712 set_bit(GBF_FULL, &bi->bi_flags); 1713 1714 next_bitmap: /* Find next bitmap in the rgrp */ 1715 rbm->offset = 0; 1716 rbm->bii++; 1717 if (rbm->bii == rbm->rgd->rd_length) 1718 rbm->bii = 0; 1719 res_covered_end_of_rgrp: 1720 if ((rbm->bii == 0) && nowrap) 1721 break; 1722 n++; 1723 next_iter: 1724 if (n >= iters) 1725 break; 1726 } 1727 1728 if (minext == NULL || state != GFS2_BLKST_FREE) 1729 return -ENOSPC; 1730 1731 /* If the extent was too small, and it's smaller than the smallest 1732 to have failed before, remember for future reference that it's 1733 useless to search this rgrp again for this amount or more. */ 1734 if ((first_offset == 0) && (first_bii == 0) && 1735 (*minext < rbm->rgd->rd_extfail_pt)) 1736 rbm->rgd->rd_extfail_pt = *minext; 1737 1738 /* If the maximum extent we found is big enough to fulfill the 1739 minimum requirements, use it anyway. */ 1740 if (maxext.len) { 1741 *rbm = maxext.rbm; 1742 *minext = maxext.len; 1743 return 0; 1744 } 1745 1746 return -ENOSPC; 1747 } 1748 1749 /** 1750 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes 1751 * @rgd: The rgrp 1752 * @last_unlinked: block address of the last dinode we unlinked 1753 * @skip: block address we should explicitly not unlink 1754 * 1755 * Returns: 0 if no error 1756 * The inode, if one has been found, in inode. 1757 */ 1758 1759 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) 1760 { 1761 u64 block; 1762 struct gfs2_sbd *sdp = rgd->rd_sbd; 1763 struct gfs2_glock *gl; 1764 struct gfs2_inode *ip; 1765 int error; 1766 int found = 0; 1767 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 }; 1768 1769 while (1) { 1770 down_write(&sdp->sd_log_flush_lock); 1771 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL, 1772 true); 1773 up_write(&sdp->sd_log_flush_lock); 1774 if (error == -ENOSPC) 1775 break; 1776 if (WARN_ON_ONCE(error)) 1777 break; 1778 1779 block = gfs2_rbm_to_block(&rbm); 1780 if (gfs2_rbm_from_block(&rbm, block + 1)) 1781 break; 1782 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked) 1783 continue; 1784 if (block == skip) 1785 continue; 1786 *last_unlinked = block; 1787 1788 error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl); 1789 if (error) 1790 continue; 1791 1792 /* If the inode is already in cache, we can ignore it here 1793 * because the existing inode disposal code will deal with 1794 * it when all refs have gone away. Accessing gl_object like 1795 * this is not safe in general. Here it is ok because we do 1796 * not dereference the pointer, and we only need an approx 1797 * answer to whether it is NULL or not. 1798 */ 1799 ip = gl->gl_object; 1800 1801 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0) 1802 gfs2_glock_put(gl); 1803 else 1804 found++; 1805 1806 /* Limit reclaim to sensible number of tasks */ 1807 if (found > NR_CPUS) 1808 return; 1809 } 1810 1811 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1812 return; 1813 } 1814 1815 /** 1816 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested 1817 * @rgd: The rgrp in question 1818 * @loops: An indication of how picky we can be (0=very, 1=less so) 1819 * 1820 * This function uses the recently added glock statistics in order to 1821 * figure out whether a parciular resource group is suffering from 1822 * contention from multiple nodes. This is done purely on the basis 1823 * of timings, since this is the only data we have to work with and 1824 * our aim here is to reject a resource group which is highly contended 1825 * but (very important) not to do this too often in order to ensure that 1826 * we do not land up introducing fragmentation by changing resource 1827 * groups when not actually required. 1828 * 1829 * The calculation is fairly simple, we want to know whether the SRTTB 1830 * (i.e. smoothed round trip time for blocking operations) to acquire 1831 * the lock for this rgrp's glock is significantly greater than the 1832 * time taken for resource groups on average. We introduce a margin in 1833 * the form of the variable @var which is computed as the sum of the two 1834 * respective variences, and multiplied by a factor depending on @loops 1835 * and whether we have a lot of data to base the decision on. This is 1836 * then tested against the square difference of the means in order to 1837 * decide whether the result is statistically significant or not. 1838 * 1839 * Returns: A boolean verdict on the congestion status 1840 */ 1841 1842 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops) 1843 { 1844 const struct gfs2_glock *gl = rgd->rd_gl; 1845 const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 1846 struct gfs2_lkstats *st; 1847 u64 r_dcount, l_dcount; 1848 u64 l_srttb, a_srttb = 0; 1849 s64 srttb_diff; 1850 u64 sqr_diff; 1851 u64 var; 1852 int cpu, nonzero = 0; 1853 1854 preempt_disable(); 1855 for_each_present_cpu(cpu) { 1856 st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP]; 1857 if (st->stats[GFS2_LKS_SRTTB]) { 1858 a_srttb += st->stats[GFS2_LKS_SRTTB]; 1859 nonzero++; 1860 } 1861 } 1862 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP]; 1863 if (nonzero) 1864 do_div(a_srttb, nonzero); 1865 r_dcount = st->stats[GFS2_LKS_DCOUNT]; 1866 var = st->stats[GFS2_LKS_SRTTVARB] + 1867 gl->gl_stats.stats[GFS2_LKS_SRTTVARB]; 1868 preempt_enable(); 1869 1870 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB]; 1871 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT]; 1872 1873 if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0)) 1874 return false; 1875 1876 srttb_diff = a_srttb - l_srttb; 1877 sqr_diff = srttb_diff * srttb_diff; 1878 1879 var *= 2; 1880 if (l_dcount < 8 || r_dcount < 8) 1881 var *= 2; 1882 if (loops == 1) 1883 var *= 2; 1884 1885 return ((srttb_diff < 0) && (sqr_diff > var)); 1886 } 1887 1888 /** 1889 * gfs2_rgrp_used_recently 1890 * @rs: The block reservation with the rgrp to test 1891 * @msecs: The time limit in milliseconds 1892 * 1893 * Returns: True if the rgrp glock has been used within the time limit 1894 */ 1895 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs, 1896 u64 msecs) 1897 { 1898 u64 tdiff; 1899 1900 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(), 1901 rs->rs_rbm.rgd->rd_gl->gl_dstamp)); 1902 1903 return tdiff > (msecs * 1000 * 1000); 1904 } 1905 1906 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip) 1907 { 1908 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1909 u32 skip; 1910 1911 get_random_bytes(&skip, sizeof(skip)); 1912 return skip % sdp->sd_rgrps; 1913 } 1914 1915 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin) 1916 { 1917 struct gfs2_rgrpd *rgd = *pos; 1918 struct gfs2_sbd *sdp = rgd->rd_sbd; 1919 1920 rgd = gfs2_rgrpd_get_next(rgd); 1921 if (rgd == NULL) 1922 rgd = gfs2_rgrpd_get_first(sdp); 1923 *pos = rgd; 1924 if (rgd != begin) /* If we didn't wrap */ 1925 return true; 1926 return false; 1927 } 1928 1929 /** 1930 * fast_to_acquire - determine if a resource group will be fast to acquire 1931 * 1932 * If this is one of our preferred rgrps, it should be quicker to acquire, 1933 * because we tried to set ourselves up as dlm lock master. 1934 */ 1935 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd) 1936 { 1937 struct gfs2_glock *gl = rgd->rd_gl; 1938 1939 if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) && 1940 !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) && 1941 !test_bit(GLF_DEMOTE, &gl->gl_flags)) 1942 return 1; 1943 if (rgd->rd_flags & GFS2_RDF_PREFERRED) 1944 return 1; 1945 return 0; 1946 } 1947 1948 /** 1949 * gfs2_inplace_reserve - Reserve space in the filesystem 1950 * @ip: the inode to reserve space for 1951 * @ap: the allocation parameters 1952 * 1953 * We try our best to find an rgrp that has at least ap->target blocks 1954 * available. After a couple of passes (loops == 2), the prospects of finding 1955 * such an rgrp diminish. At this stage, we return the first rgrp that has 1956 * atleast ap->min_target blocks available. Either way, we set ap->allowed to 1957 * the number of blocks available in the chosen rgrp. 1958 * 1959 * Returns: 0 on success, 1960 * -ENOMEM if a suitable rgrp can't be found 1961 * errno otherwise 1962 */ 1963 1964 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap) 1965 { 1966 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1967 struct gfs2_rgrpd *begin = NULL; 1968 struct gfs2_blkreserv *rs = &ip->i_res; 1969 int error = 0, rg_locked, flags = 0; 1970 u64 last_unlinked = NO_BLOCK; 1971 int loops = 0; 1972 u32 skip = 0; 1973 1974 if (sdp->sd_args.ar_rgrplvb) 1975 flags |= GL_SKIP; 1976 if (gfs2_assert_warn(sdp, ap->target)) 1977 return -EINVAL; 1978 if (gfs2_rs_active(rs)) { 1979 begin = rs->rs_rbm.rgd; 1980 } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) { 1981 rs->rs_rbm.rgd = begin = ip->i_rgd; 1982 } else { 1983 check_and_update_goal(ip); 1984 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1); 1985 } 1986 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV)) 1987 skip = gfs2_orlov_skip(ip); 1988 if (rs->rs_rbm.rgd == NULL) 1989 return -EBADSLT; 1990 1991 while (loops < 3) { 1992 rg_locked = 1; 1993 1994 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) { 1995 rg_locked = 0; 1996 if (skip && skip--) 1997 goto next_rgrp; 1998 if (!gfs2_rs_active(rs)) { 1999 if (loops == 0 && 2000 !fast_to_acquire(rs->rs_rbm.rgd)) 2001 goto next_rgrp; 2002 if ((loops < 2) && 2003 gfs2_rgrp_used_recently(rs, 1000) && 2004 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 2005 goto next_rgrp; 2006 } 2007 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl, 2008 LM_ST_EXCLUSIVE, flags, 2009 &rs->rs_rgd_gh); 2010 if (unlikely(error)) 2011 return error; 2012 if (!gfs2_rs_active(rs) && (loops < 2) && 2013 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 2014 goto skip_rgrp; 2015 if (sdp->sd_args.ar_rgrplvb) { 2016 error = update_rgrp_lvb(rs->rs_rbm.rgd); 2017 if (unlikely(error)) { 2018 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 2019 return error; 2020 } 2021 } 2022 } 2023 2024 /* Skip unuseable resource groups */ 2025 if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | 2026 GFS2_RDF_ERROR)) || 2027 (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt)) 2028 goto skip_rgrp; 2029 2030 if (sdp->sd_args.ar_rgrplvb) 2031 gfs2_rgrp_bh_get(rs->rs_rbm.rgd); 2032 2033 /* Get a reservation if we don't already have one */ 2034 if (!gfs2_rs_active(rs)) 2035 rg_mblk_search(rs->rs_rbm.rgd, ip, ap); 2036 2037 /* Skip rgrps when we can't get a reservation on first pass */ 2038 if (!gfs2_rs_active(rs) && (loops < 1)) 2039 goto check_rgrp; 2040 2041 /* If rgrp has enough free space, use it */ 2042 if (rs->rs_rbm.rgd->rd_free_clone >= ap->target || 2043 (loops == 2 && ap->min_target && 2044 rs->rs_rbm.rgd->rd_free_clone >= ap->min_target)) { 2045 ip->i_rgd = rs->rs_rbm.rgd; 2046 ap->allowed = ip->i_rgd->rd_free_clone; 2047 return 0; 2048 } 2049 check_rgrp: 2050 /* Check for unlinked inodes which can be reclaimed */ 2051 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK) 2052 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked, 2053 ip->i_no_addr); 2054 skip_rgrp: 2055 /* Drop reservation, if we couldn't use reserved rgrp */ 2056 if (gfs2_rs_active(rs)) 2057 gfs2_rs_deltree(rs); 2058 2059 /* Unlock rgrp if required */ 2060 if (!rg_locked) 2061 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 2062 next_rgrp: 2063 /* Find the next rgrp, and continue looking */ 2064 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin)) 2065 continue; 2066 if (skip) 2067 continue; 2068 2069 /* If we've scanned all the rgrps, but found no free blocks 2070 * then this checks for some less likely conditions before 2071 * trying again. 2072 */ 2073 loops++; 2074 /* Check that fs hasn't grown if writing to rindex */ 2075 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { 2076 error = gfs2_ri_update(ip); 2077 if (error) 2078 return error; 2079 } 2080 /* Flushing the log may release space */ 2081 if (loops == 2) 2082 gfs2_log_flush(sdp, NULL, NORMAL_FLUSH); 2083 } 2084 2085 return -ENOSPC; 2086 } 2087 2088 /** 2089 * gfs2_inplace_release - release an inplace reservation 2090 * @ip: the inode the reservation was taken out on 2091 * 2092 * Release a reservation made by gfs2_inplace_reserve(). 2093 */ 2094 2095 void gfs2_inplace_release(struct gfs2_inode *ip) 2096 { 2097 struct gfs2_blkreserv *rs = &ip->i_res; 2098 2099 if (rs->rs_rgd_gh.gh_gl) 2100 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 2101 } 2102 2103 /** 2104 * gfs2_get_block_type - Check a block in a RG is of given type 2105 * @rgd: the resource group holding the block 2106 * @block: the block number 2107 * 2108 * Returns: The block type (GFS2_BLKST_*) 2109 */ 2110 2111 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block) 2112 { 2113 struct gfs2_rbm rbm = { .rgd = rgd, }; 2114 int ret; 2115 2116 ret = gfs2_rbm_from_block(&rbm, block); 2117 WARN_ON_ONCE(ret != 0); 2118 2119 return gfs2_testbit(&rbm); 2120 } 2121 2122 2123 /** 2124 * gfs2_alloc_extent - allocate an extent from a given bitmap 2125 * @rbm: the resource group information 2126 * @dinode: TRUE if the first block we allocate is for a dinode 2127 * @n: The extent length (value/result) 2128 * 2129 * Add the bitmap buffer to the transaction. 2130 * Set the found bits to @new_state to change block's allocation state. 2131 */ 2132 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode, 2133 unsigned int *n) 2134 { 2135 struct gfs2_rbm pos = { .rgd = rbm->rgd, }; 2136 const unsigned int elen = *n; 2137 u64 block; 2138 int ret; 2139 2140 *n = 1; 2141 block = gfs2_rbm_to_block(rbm); 2142 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh); 2143 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2144 block++; 2145 while (*n < elen) { 2146 ret = gfs2_rbm_from_block(&pos, block); 2147 if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE) 2148 break; 2149 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh); 2150 gfs2_setbit(&pos, true, GFS2_BLKST_USED); 2151 (*n)++; 2152 block++; 2153 } 2154 } 2155 2156 /** 2157 * rgblk_free - Change alloc state of given block(s) 2158 * @sdp: the filesystem 2159 * @bstart: the start of a run of blocks to free 2160 * @blen: the length of the block run (all must lie within ONE RG!) 2161 * @new_state: GFS2_BLKST_XXX the after-allocation block state 2162 * 2163 * Returns: Resource group containing the block(s) 2164 */ 2165 2166 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart, 2167 u32 blen, unsigned char new_state) 2168 { 2169 struct gfs2_rbm rbm; 2170 struct gfs2_bitmap *bi, *bi_prev = NULL; 2171 2172 rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1); 2173 if (!rbm.rgd) { 2174 if (gfs2_consist(sdp)) 2175 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart); 2176 return NULL; 2177 } 2178 2179 gfs2_rbm_from_block(&rbm, bstart); 2180 while (blen--) { 2181 bi = rbm_bi(&rbm); 2182 if (bi != bi_prev) { 2183 if (!bi->bi_clone) { 2184 bi->bi_clone = kmalloc(bi->bi_bh->b_size, 2185 GFP_NOFS | __GFP_NOFAIL); 2186 memcpy(bi->bi_clone + bi->bi_offset, 2187 bi->bi_bh->b_data + bi->bi_offset, 2188 bi->bi_len); 2189 } 2190 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh); 2191 bi_prev = bi; 2192 } 2193 gfs2_setbit(&rbm, false, new_state); 2194 gfs2_rbm_incr(&rbm); 2195 } 2196 2197 return rbm.rgd; 2198 } 2199 2200 /** 2201 * gfs2_rgrp_dump - print out an rgrp 2202 * @seq: The iterator 2203 * @gl: The glock in question 2204 * 2205 */ 2206 2207 void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl) 2208 { 2209 struct gfs2_rgrpd *rgd = gl->gl_object; 2210 struct gfs2_blkreserv *trs; 2211 const struct rb_node *n; 2212 2213 if (rgd == NULL) 2214 return; 2215 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n", 2216 (unsigned long long)rgd->rd_addr, rgd->rd_flags, 2217 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes, 2218 rgd->rd_reserved, rgd->rd_extfail_pt); 2219 spin_lock(&rgd->rd_rsspin); 2220 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) { 2221 trs = rb_entry(n, struct gfs2_blkreserv, rs_node); 2222 dump_rs(seq, trs); 2223 } 2224 spin_unlock(&rgd->rd_rsspin); 2225 } 2226 2227 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) 2228 { 2229 struct gfs2_sbd *sdp = rgd->rd_sbd; 2230 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", 2231 (unsigned long long)rgd->rd_addr); 2232 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); 2233 gfs2_rgrp_dump(NULL, rgd->rd_gl); 2234 rgd->rd_flags |= GFS2_RDF_ERROR; 2235 } 2236 2237 /** 2238 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation 2239 * @ip: The inode we have just allocated blocks for 2240 * @rbm: The start of the allocated blocks 2241 * @len: The extent length 2242 * 2243 * Adjusts a reservation after an allocation has taken place. If the 2244 * reservation does not match the allocation, or if it is now empty 2245 * then it is removed. 2246 */ 2247 2248 static void gfs2_adjust_reservation(struct gfs2_inode *ip, 2249 const struct gfs2_rbm *rbm, unsigned len) 2250 { 2251 struct gfs2_blkreserv *rs = &ip->i_res; 2252 struct gfs2_rgrpd *rgd = rbm->rgd; 2253 unsigned rlen; 2254 u64 block; 2255 int ret; 2256 2257 spin_lock(&rgd->rd_rsspin); 2258 if (gfs2_rs_active(rs)) { 2259 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) { 2260 block = gfs2_rbm_to_block(rbm); 2261 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len); 2262 rlen = min(rs->rs_free, len); 2263 rs->rs_free -= rlen; 2264 rgd->rd_reserved -= rlen; 2265 trace_gfs2_rs(rs, TRACE_RS_CLAIM); 2266 if (rs->rs_free && !ret) 2267 goto out; 2268 /* We used up our block reservation, so we should 2269 reserve more blocks next time. */ 2270 atomic_add(RGRP_RSRV_ADDBLKS, &rs->rs_sizehint); 2271 } 2272 __rs_deltree(rs); 2273 } 2274 out: 2275 spin_unlock(&rgd->rd_rsspin); 2276 } 2277 2278 /** 2279 * gfs2_set_alloc_start - Set starting point for block allocation 2280 * @rbm: The rbm which will be set to the required location 2281 * @ip: The gfs2 inode 2282 * @dinode: Flag to say if allocation includes a new inode 2283 * 2284 * This sets the starting point from the reservation if one is active 2285 * otherwise it falls back to guessing a start point based on the 2286 * inode's goal block or the last allocation point in the rgrp. 2287 */ 2288 2289 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm, 2290 const struct gfs2_inode *ip, bool dinode) 2291 { 2292 u64 goal; 2293 2294 if (gfs2_rs_active(&ip->i_res)) { 2295 *rbm = ip->i_res.rs_rbm; 2296 return; 2297 } 2298 2299 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal)) 2300 goal = ip->i_goal; 2301 else 2302 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0; 2303 2304 gfs2_rbm_from_block(rbm, goal); 2305 } 2306 2307 /** 2308 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode 2309 * @ip: the inode to allocate the block for 2310 * @bn: Used to return the starting block number 2311 * @nblocks: requested number of blocks/extent length (value/result) 2312 * @dinode: 1 if we're allocating a dinode block, else 0 2313 * @generation: the generation number of the inode 2314 * 2315 * Returns: 0 or error 2316 */ 2317 2318 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks, 2319 bool dinode, u64 *generation) 2320 { 2321 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2322 struct buffer_head *dibh; 2323 struct gfs2_rbm rbm = { .rgd = ip->i_rgd, }; 2324 unsigned int ndata; 2325 u64 block; /* block, within the file system scope */ 2326 int error; 2327 2328 gfs2_set_alloc_start(&rbm, ip, dinode); 2329 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false); 2330 2331 if (error == -ENOSPC) { 2332 gfs2_set_alloc_start(&rbm, ip, dinode); 2333 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false); 2334 } 2335 2336 /* Since all blocks are reserved in advance, this shouldn't happen */ 2337 if (error) { 2338 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n", 2339 (unsigned long long)ip->i_no_addr, error, *nblocks, 2340 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags), 2341 rbm.rgd->rd_extfail_pt); 2342 goto rgrp_error; 2343 } 2344 2345 gfs2_alloc_extent(&rbm, dinode, nblocks); 2346 block = gfs2_rbm_to_block(&rbm); 2347 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0; 2348 if (gfs2_rs_active(&ip->i_res)) 2349 gfs2_adjust_reservation(ip, &rbm, *nblocks); 2350 ndata = *nblocks; 2351 if (dinode) 2352 ndata--; 2353 2354 if (!dinode) { 2355 ip->i_goal = block + ndata - 1; 2356 error = gfs2_meta_inode_buffer(ip, &dibh); 2357 if (error == 0) { 2358 struct gfs2_dinode *di = 2359 (struct gfs2_dinode *)dibh->b_data; 2360 gfs2_trans_add_meta(ip->i_gl, dibh); 2361 di->di_goal_meta = di->di_goal_data = 2362 cpu_to_be64(ip->i_goal); 2363 brelse(dibh); 2364 } 2365 } 2366 if (rbm.rgd->rd_free < *nblocks) { 2367 pr_warn("nblocks=%u\n", *nblocks); 2368 goto rgrp_error; 2369 } 2370 2371 rbm.rgd->rd_free -= *nblocks; 2372 if (dinode) { 2373 rbm.rgd->rd_dinodes++; 2374 *generation = rbm.rgd->rd_igeneration++; 2375 if (*generation == 0) 2376 *generation = rbm.rgd->rd_igeneration++; 2377 } 2378 2379 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh); 2380 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data); 2381 gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data); 2382 2383 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0); 2384 if (dinode) 2385 gfs2_trans_add_unrevoke(sdp, block, *nblocks); 2386 2387 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid); 2388 2389 rbm.rgd->rd_free_clone -= *nblocks; 2390 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks, 2391 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2392 *bn = block; 2393 return 0; 2394 2395 rgrp_error: 2396 gfs2_rgrp_error(rbm.rgd); 2397 return -EIO; 2398 } 2399 2400 /** 2401 * __gfs2_free_blocks - free a contiguous run of block(s) 2402 * @ip: the inode these blocks are being freed from 2403 * @bstart: first block of a run of contiguous blocks 2404 * @blen: the length of the block run 2405 * @meta: 1 if the blocks represent metadata 2406 * 2407 */ 2408 2409 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta) 2410 { 2411 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2412 struct gfs2_rgrpd *rgd; 2413 2414 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE); 2415 if (!rgd) 2416 return; 2417 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE); 2418 rgd->rd_free += blen; 2419 rgd->rd_flags &= ~GFS2_RGF_TRIMMED; 2420 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2421 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2422 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2423 2424 /* Directories keep their data in the metadata address space */ 2425 if (meta || ip->i_depth) 2426 gfs2_meta_wipe(ip, bstart, blen); 2427 } 2428 2429 /** 2430 * gfs2_free_meta - free a contiguous run of data block(s) 2431 * @ip: the inode these blocks are being freed from 2432 * @bstart: first block of a run of contiguous blocks 2433 * @blen: the length of the block run 2434 * 2435 */ 2436 2437 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen) 2438 { 2439 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2440 2441 __gfs2_free_blocks(ip, bstart, blen, 1); 2442 gfs2_statfs_change(sdp, 0, +blen, 0); 2443 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); 2444 } 2445 2446 void gfs2_unlink_di(struct inode *inode) 2447 { 2448 struct gfs2_inode *ip = GFS2_I(inode); 2449 struct gfs2_sbd *sdp = GFS2_SB(inode); 2450 struct gfs2_rgrpd *rgd; 2451 u64 blkno = ip->i_no_addr; 2452 2453 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED); 2454 if (!rgd) 2455 return; 2456 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2457 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2458 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2459 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2460 update_rgrp_lvb_unlinked(rgd, 1); 2461 } 2462 2463 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno) 2464 { 2465 struct gfs2_sbd *sdp = rgd->rd_sbd; 2466 struct gfs2_rgrpd *tmp_rgd; 2467 2468 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE); 2469 if (!tmp_rgd) 2470 return; 2471 gfs2_assert_withdraw(sdp, rgd == tmp_rgd); 2472 2473 if (!rgd->rd_dinodes) 2474 gfs2_consist_rgrpd(rgd); 2475 rgd->rd_dinodes--; 2476 rgd->rd_free++; 2477 2478 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2479 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2480 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2481 update_rgrp_lvb_unlinked(rgd, -1); 2482 2483 gfs2_statfs_change(sdp, 0, +1, -1); 2484 } 2485 2486 2487 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) 2488 { 2489 gfs2_free_uninit_di(rgd, ip->i_no_addr); 2490 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2491 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); 2492 gfs2_meta_wipe(ip, ip->i_no_addr, 1); 2493 } 2494 2495 /** 2496 * gfs2_check_blk_type - Check the type of a block 2497 * @sdp: The superblock 2498 * @no_addr: The block number to check 2499 * @type: The block type we are looking for 2500 * 2501 * Returns: 0 if the block type matches the expected type 2502 * -ESTALE if it doesn't match 2503 * or -ve errno if something went wrong while checking 2504 */ 2505 2506 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) 2507 { 2508 struct gfs2_rgrpd *rgd; 2509 struct gfs2_holder rgd_gh; 2510 int error = -EINVAL; 2511 2512 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1); 2513 if (!rgd) 2514 goto fail; 2515 2516 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); 2517 if (error) 2518 goto fail; 2519 2520 if (gfs2_get_block_type(rgd, no_addr) != type) 2521 error = -ESTALE; 2522 2523 gfs2_glock_dq_uninit(&rgd_gh); 2524 fail: 2525 return error; 2526 } 2527 2528 /** 2529 * gfs2_rlist_add - add a RG to a list of RGs 2530 * @ip: the inode 2531 * @rlist: the list of resource groups 2532 * @block: the block 2533 * 2534 * Figure out what RG a block belongs to and add that RG to the list 2535 * 2536 * FIXME: Don't use NOFAIL 2537 * 2538 */ 2539 2540 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, 2541 u64 block) 2542 { 2543 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2544 struct gfs2_rgrpd *rgd; 2545 struct gfs2_rgrpd **tmp; 2546 unsigned int new_space; 2547 unsigned int x; 2548 2549 if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) 2550 return; 2551 2552 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block)) 2553 rgd = ip->i_rgd; 2554 else 2555 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2556 if (!rgd) { 2557 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block); 2558 return; 2559 } 2560 ip->i_rgd = rgd; 2561 2562 for (x = 0; x < rlist->rl_rgrps; x++) 2563 if (rlist->rl_rgd[x] == rgd) 2564 return; 2565 2566 if (rlist->rl_rgrps == rlist->rl_space) { 2567 new_space = rlist->rl_space + 10; 2568 2569 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), 2570 GFP_NOFS | __GFP_NOFAIL); 2571 2572 if (rlist->rl_rgd) { 2573 memcpy(tmp, rlist->rl_rgd, 2574 rlist->rl_space * sizeof(struct gfs2_rgrpd *)); 2575 kfree(rlist->rl_rgd); 2576 } 2577 2578 rlist->rl_space = new_space; 2579 rlist->rl_rgd = tmp; 2580 } 2581 2582 rlist->rl_rgd[rlist->rl_rgrps++] = rgd; 2583 } 2584 2585 /** 2586 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate 2587 * and initialize an array of glock holders for them 2588 * @rlist: the list of resource groups 2589 * @state: the lock state to acquire the RG lock in 2590 * 2591 * FIXME: Don't use NOFAIL 2592 * 2593 */ 2594 2595 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state) 2596 { 2597 unsigned int x; 2598 2599 rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder), 2600 GFP_NOFS | __GFP_NOFAIL); 2601 for (x = 0; x < rlist->rl_rgrps; x++) 2602 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, 2603 state, 0, 2604 &rlist->rl_ghs[x]); 2605 } 2606 2607 /** 2608 * gfs2_rlist_free - free a resource group list 2609 * @rlist: the list of resource groups 2610 * 2611 */ 2612 2613 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) 2614 { 2615 unsigned int x; 2616 2617 kfree(rlist->rl_rgd); 2618 2619 if (rlist->rl_ghs) { 2620 for (x = 0; x < rlist->rl_rgrps; x++) 2621 gfs2_holder_uninit(&rlist->rl_ghs[x]); 2622 kfree(rlist->rl_ghs); 2623 rlist->rl_ghs = NULL; 2624 } 2625 } 2626 2627