xref: /openbmc/linux/fs/gfs2/rgrp.c (revision 2cf1c348)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/slab.h>
10 #include <linux/spinlock.h>
11 #include <linux/completion.h>
12 #include <linux/buffer_head.h>
13 #include <linux/fs.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/prefetch.h>
16 #include <linux/blkdev.h>
17 #include <linux/rbtree.h>
18 #include <linux/random.h>
19 
20 #include "gfs2.h"
21 #include "incore.h"
22 #include "glock.h"
23 #include "glops.h"
24 #include "lops.h"
25 #include "meta_io.h"
26 #include "quota.h"
27 #include "rgrp.h"
28 #include "super.h"
29 #include "trans.h"
30 #include "util.h"
31 #include "log.h"
32 #include "inode.h"
33 #include "trace_gfs2.h"
34 #include "dir.h"
35 
36 #define BFITNOENT ((u32)~0)
37 #define NO_BLOCK ((u64)~0)
38 
39 struct gfs2_rbm {
40 	struct gfs2_rgrpd *rgd;
41 	u32 offset;		/* The offset is bitmap relative */
42 	int bii;		/* Bitmap index */
43 };
44 
45 static inline struct gfs2_bitmap *rbm_bi(const struct gfs2_rbm *rbm)
46 {
47 	return rbm->rgd->rd_bits + rbm->bii;
48 }
49 
50 static inline u64 gfs2_rbm_to_block(const struct gfs2_rbm *rbm)
51 {
52 	BUG_ON(rbm->offset >= rbm->rgd->rd_data);
53 	return rbm->rgd->rd_data0 + (rbm_bi(rbm)->bi_start * GFS2_NBBY) +
54 		rbm->offset;
55 }
56 
57 /*
58  * These routines are used by the resource group routines (rgrp.c)
59  * to keep track of block allocation.  Each block is represented by two
60  * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
61  *
62  * 0 = Free
63  * 1 = Used (not metadata)
64  * 2 = Unlinked (still in use) inode
65  * 3 = Used (metadata)
66  */
67 
68 struct gfs2_extent {
69 	struct gfs2_rbm rbm;
70 	u32 len;
71 };
72 
73 static const char valid_change[16] = {
74 	        /* current */
75 	/* n */ 0, 1, 1, 1,
76 	/* e */ 1, 0, 0, 0,
77 	/* w */ 0, 0, 0, 1,
78 	        1, 0, 0, 0
79 };
80 
81 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
82 			 struct gfs2_blkreserv *rs, bool nowrap);
83 
84 
85 /**
86  * gfs2_setbit - Set a bit in the bitmaps
87  * @rbm: The position of the bit to set
88  * @do_clone: Also set the clone bitmap, if it exists
89  * @new_state: the new state of the block
90  *
91  */
92 
93 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
94 			       unsigned char new_state)
95 {
96 	unsigned char *byte1, *byte2, *end, cur_state;
97 	struct gfs2_bitmap *bi = rbm_bi(rbm);
98 	unsigned int buflen = bi->bi_bytes;
99 	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
100 
101 	byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
102 	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
103 
104 	BUG_ON(byte1 >= end);
105 
106 	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
107 
108 	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
109 		struct gfs2_sbd *sdp = rbm->rgd->rd_sbd;
110 
111 		fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n",
112 			rbm->offset, cur_state, new_state);
113 		fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n",
114 			(unsigned long long)rbm->rgd->rd_addr, bi->bi_start,
115 			(unsigned long long)bi->bi_bh->b_blocknr);
116 		fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n",
117 			bi->bi_offset, bi->bi_bytes,
118 			(unsigned long long)gfs2_rbm_to_block(rbm));
119 		dump_stack();
120 		gfs2_consist_rgrpd(rbm->rgd);
121 		return;
122 	}
123 	*byte1 ^= (cur_state ^ new_state) << bit;
124 
125 	if (do_clone && bi->bi_clone) {
126 		byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
127 		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
128 		*byte2 ^= (cur_state ^ new_state) << bit;
129 	}
130 }
131 
132 /**
133  * gfs2_testbit - test a bit in the bitmaps
134  * @rbm: The bit to test
135  * @use_clone: If true, test the clone bitmap, not the official bitmap.
136  *
137  * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps,
138  * not the "real" bitmaps, to avoid allocating recently freed blocks.
139  *
140  * Returns: The two bit block state of the requested bit
141  */
142 
143 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone)
144 {
145 	struct gfs2_bitmap *bi = rbm_bi(rbm);
146 	const u8 *buffer;
147 	const u8 *byte;
148 	unsigned int bit;
149 
150 	if (use_clone && bi->bi_clone)
151 		buffer = bi->bi_clone;
152 	else
153 		buffer = bi->bi_bh->b_data;
154 	buffer += bi->bi_offset;
155 	byte = buffer + (rbm->offset / GFS2_NBBY);
156 	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
157 
158 	return (*byte >> bit) & GFS2_BIT_MASK;
159 }
160 
161 /**
162  * gfs2_bit_search
163  * @ptr: Pointer to bitmap data
164  * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
165  * @state: The state we are searching for
166  *
167  * We xor the bitmap data with a patter which is the bitwise opposite
168  * of what we are looking for, this gives rise to a pattern of ones
169  * wherever there is a match. Since we have two bits per entry, we
170  * take this pattern, shift it down by one place and then and it with
171  * the original. All the even bit positions (0,2,4, etc) then represent
172  * successful matches, so we mask with 0x55555..... to remove the unwanted
173  * odd bit positions.
174  *
175  * This allows searching of a whole u64 at once (32 blocks) with a
176  * single test (on 64 bit arches).
177  */
178 
179 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
180 {
181 	u64 tmp;
182 	static const u64 search[] = {
183 		[0] = 0xffffffffffffffffULL,
184 		[1] = 0xaaaaaaaaaaaaaaaaULL,
185 		[2] = 0x5555555555555555ULL,
186 		[3] = 0x0000000000000000ULL,
187 	};
188 	tmp = le64_to_cpu(*ptr) ^ search[state];
189 	tmp &= (tmp >> 1);
190 	tmp &= mask;
191 	return tmp;
192 }
193 
194 /**
195  * rs_cmp - multi-block reservation range compare
196  * @start: start of the new reservation
197  * @len: number of blocks in the new reservation
198  * @rs: existing reservation to compare against
199  *
200  * returns: 1 if the block range is beyond the reach of the reservation
201  *         -1 if the block range is before the start of the reservation
202  *          0 if the block range overlaps with the reservation
203  */
204 static inline int rs_cmp(u64 start, u32 len, struct gfs2_blkreserv *rs)
205 {
206 	if (start >= rs->rs_start + rs->rs_requested)
207 		return 1;
208 	if (rs->rs_start >= start + len)
209 		return -1;
210 	return 0;
211 }
212 
213 /**
214  * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
215  *       a block in a given allocation state.
216  * @buf: the buffer that holds the bitmaps
217  * @len: the length (in bytes) of the buffer
218  * @goal: start search at this block's bit-pair (within @buffer)
219  * @state: GFS2_BLKST_XXX the state of the block we're looking for.
220  *
221  * Scope of @goal and returned block number is only within this bitmap buffer,
222  * not entire rgrp or filesystem.  @buffer will be offset from the actual
223  * beginning of a bitmap block buffer, skipping any header structures, but
224  * headers are always a multiple of 64 bits long so that the buffer is
225  * always aligned to a 64 bit boundary.
226  *
227  * The size of the buffer is in bytes, but is it assumed that it is
228  * always ok to read a complete multiple of 64 bits at the end
229  * of the block in case the end is no aligned to a natural boundary.
230  *
231  * Return: the block number (bitmap buffer scope) that was found
232  */
233 
234 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
235 		       u32 goal, u8 state)
236 {
237 	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
238 	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
239 	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
240 	u64 tmp;
241 	u64 mask = 0x5555555555555555ULL;
242 	u32 bit;
243 
244 	/* Mask off bits we don't care about at the start of the search */
245 	mask <<= spoint;
246 	tmp = gfs2_bit_search(ptr, mask, state);
247 	ptr++;
248 	while(tmp == 0 && ptr < end) {
249 		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
250 		ptr++;
251 	}
252 	/* Mask off any bits which are more than len bytes from the start */
253 	if (ptr == end && (len & (sizeof(u64) - 1)))
254 		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
255 	/* Didn't find anything, so return */
256 	if (tmp == 0)
257 		return BFITNOENT;
258 	ptr--;
259 	bit = __ffs64(tmp);
260 	bit /= 2;	/* two bits per entry in the bitmap */
261 	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
262 }
263 
264 /**
265  * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
266  * @rbm: The rbm with rgd already set correctly
267  * @block: The block number (filesystem relative)
268  *
269  * This sets the bi and offset members of an rbm based on a
270  * resource group and a filesystem relative block number. The
271  * resource group must be set in the rbm on entry, the bi and
272  * offset members will be set by this function.
273  *
274  * Returns: 0 on success, or an error code
275  */
276 
277 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
278 {
279 	if (!rgrp_contains_block(rbm->rgd, block))
280 		return -E2BIG;
281 	rbm->bii = 0;
282 	rbm->offset = block - rbm->rgd->rd_data0;
283 	/* Check if the block is within the first block */
284 	if (rbm->offset < rbm_bi(rbm)->bi_blocks)
285 		return 0;
286 
287 	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
288 	rbm->offset += (sizeof(struct gfs2_rgrp) -
289 			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
290 	rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
291 	rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
292 	return 0;
293 }
294 
295 /**
296  * gfs2_rbm_add - add a number of blocks to an rbm
297  * @rbm: The rbm with rgd already set correctly
298  * @blocks: The number of blocks to add to rpm
299  *
300  * This function takes an existing rbm structure and adds a number of blocks to
301  * it.
302  *
303  * Returns: True if the new rbm would point past the end of the rgrp.
304  */
305 
306 static bool gfs2_rbm_add(struct gfs2_rbm *rbm, u32 blocks)
307 {
308 	struct gfs2_rgrpd *rgd = rbm->rgd;
309 	struct gfs2_bitmap *bi = rgd->rd_bits + rbm->bii;
310 
311 	if (rbm->offset + blocks < bi->bi_blocks) {
312 		rbm->offset += blocks;
313 		return false;
314 	}
315 	blocks -= bi->bi_blocks - rbm->offset;
316 
317 	for(;;) {
318 		bi++;
319 		if (bi == rgd->rd_bits + rgd->rd_length)
320 			return true;
321 		if (blocks < bi->bi_blocks) {
322 			rbm->offset = blocks;
323 			rbm->bii = bi - rgd->rd_bits;
324 			return false;
325 		}
326 		blocks -= bi->bi_blocks;
327 	}
328 }
329 
330 /**
331  * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
332  * @rbm: Position to search (value/result)
333  * @n_unaligned: Number of unaligned blocks to check
334  * @len: Decremented for each block found (terminate on zero)
335  *
336  * Returns: true if a non-free block is encountered or the end of the resource
337  *	    group is reached.
338  */
339 
340 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
341 {
342 	u32 n;
343 	u8 res;
344 
345 	for (n = 0; n < n_unaligned; n++) {
346 		res = gfs2_testbit(rbm, true);
347 		if (res != GFS2_BLKST_FREE)
348 			return true;
349 		(*len)--;
350 		if (*len == 0)
351 			return true;
352 		if (gfs2_rbm_add(rbm, 1))
353 			return true;
354 	}
355 
356 	return false;
357 }
358 
359 /**
360  * gfs2_free_extlen - Return extent length of free blocks
361  * @rrbm: Starting position
362  * @len: Max length to check
363  *
364  * Starting at the block specified by the rbm, see how many free blocks
365  * there are, not reading more than len blocks ahead. This can be done
366  * using memchr_inv when the blocks are byte aligned, but has to be done
367  * on a block by block basis in case of unaligned blocks. Also this
368  * function can cope with bitmap boundaries (although it must stop on
369  * a resource group boundary)
370  *
371  * Returns: Number of free blocks in the extent
372  */
373 
374 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
375 {
376 	struct gfs2_rbm rbm = *rrbm;
377 	u32 n_unaligned = rbm.offset & 3;
378 	u32 size = len;
379 	u32 bytes;
380 	u32 chunk_size;
381 	u8 *ptr, *start, *end;
382 	u64 block;
383 	struct gfs2_bitmap *bi;
384 
385 	if (n_unaligned &&
386 	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
387 		goto out;
388 
389 	n_unaligned = len & 3;
390 	/* Start is now byte aligned */
391 	while (len > 3) {
392 		bi = rbm_bi(&rbm);
393 		start = bi->bi_bh->b_data;
394 		if (bi->bi_clone)
395 			start = bi->bi_clone;
396 		start += bi->bi_offset;
397 		end = start + bi->bi_bytes;
398 		BUG_ON(rbm.offset & 3);
399 		start += (rbm.offset / GFS2_NBBY);
400 		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
401 		ptr = memchr_inv(start, 0, bytes);
402 		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
403 		chunk_size *= GFS2_NBBY;
404 		BUG_ON(len < chunk_size);
405 		len -= chunk_size;
406 		block = gfs2_rbm_to_block(&rbm);
407 		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
408 			n_unaligned = 0;
409 			break;
410 		}
411 		if (ptr) {
412 			n_unaligned = 3;
413 			break;
414 		}
415 		n_unaligned = len & 3;
416 	}
417 
418 	/* Deal with any bits left over at the end */
419 	if (n_unaligned)
420 		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
421 out:
422 	return size - len;
423 }
424 
425 /**
426  * gfs2_bitcount - count the number of bits in a certain state
427  * @rgd: the resource group descriptor
428  * @buffer: the buffer that holds the bitmaps
429  * @buflen: the length (in bytes) of the buffer
430  * @state: the state of the block we're looking for
431  *
432  * Returns: The number of bits
433  */
434 
435 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
436 			 unsigned int buflen, u8 state)
437 {
438 	const u8 *byte = buffer;
439 	const u8 *end = buffer + buflen;
440 	const u8 state1 = state << 2;
441 	const u8 state2 = state << 4;
442 	const u8 state3 = state << 6;
443 	u32 count = 0;
444 
445 	for (; byte < end; byte++) {
446 		if (((*byte) & 0x03) == state)
447 			count++;
448 		if (((*byte) & 0x0C) == state1)
449 			count++;
450 		if (((*byte) & 0x30) == state2)
451 			count++;
452 		if (((*byte) & 0xC0) == state3)
453 			count++;
454 	}
455 
456 	return count;
457 }
458 
459 /**
460  * gfs2_rgrp_verify - Verify that a resource group is consistent
461  * @rgd: the rgrp
462  *
463  */
464 
465 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
466 {
467 	struct gfs2_sbd *sdp = rgd->rd_sbd;
468 	struct gfs2_bitmap *bi = NULL;
469 	u32 length = rgd->rd_length;
470 	u32 count[4], tmp;
471 	int buf, x;
472 
473 	memset(count, 0, 4 * sizeof(u32));
474 
475 	/* Count # blocks in each of 4 possible allocation states */
476 	for (buf = 0; buf < length; buf++) {
477 		bi = rgd->rd_bits + buf;
478 		for (x = 0; x < 4; x++)
479 			count[x] += gfs2_bitcount(rgd,
480 						  bi->bi_bh->b_data +
481 						  bi->bi_offset,
482 						  bi->bi_bytes, x);
483 	}
484 
485 	if (count[0] != rgd->rd_free) {
486 		gfs2_lm(sdp, "free data mismatch:  %u != %u\n",
487 			count[0], rgd->rd_free);
488 		gfs2_consist_rgrpd(rgd);
489 		return;
490 	}
491 
492 	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
493 	if (count[1] != tmp) {
494 		gfs2_lm(sdp, "used data mismatch:  %u != %u\n",
495 			count[1], tmp);
496 		gfs2_consist_rgrpd(rgd);
497 		return;
498 	}
499 
500 	if (count[2] + count[3] != rgd->rd_dinodes) {
501 		gfs2_lm(sdp, "used metadata mismatch:  %u != %u\n",
502 			count[2] + count[3], rgd->rd_dinodes);
503 		gfs2_consist_rgrpd(rgd);
504 		return;
505 	}
506 }
507 
508 /**
509  * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
510  * @sdp: The GFS2 superblock
511  * @blk: The data block number
512  * @exact: True if this needs to be an exact match
513  *
514  * The @exact argument should be set to true by most callers. The exception
515  * is when we need to match blocks which are not represented by the rgrp
516  * bitmap, but which are part of the rgrp (i.e. padding blocks) which are
517  * there for alignment purposes. Another way of looking at it is that @exact
518  * matches only valid data/metadata blocks, but with @exact false, it will
519  * match any block within the extent of the rgrp.
520  *
521  * Returns: The resource group, or NULL if not found
522  */
523 
524 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
525 {
526 	struct rb_node *n, *next;
527 	struct gfs2_rgrpd *cur;
528 
529 	spin_lock(&sdp->sd_rindex_spin);
530 	n = sdp->sd_rindex_tree.rb_node;
531 	while (n) {
532 		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
533 		next = NULL;
534 		if (blk < cur->rd_addr)
535 			next = n->rb_left;
536 		else if (blk >= cur->rd_data0 + cur->rd_data)
537 			next = n->rb_right;
538 		if (next == NULL) {
539 			spin_unlock(&sdp->sd_rindex_spin);
540 			if (exact) {
541 				if (blk < cur->rd_addr)
542 					return NULL;
543 				if (blk >= cur->rd_data0 + cur->rd_data)
544 					return NULL;
545 			}
546 			return cur;
547 		}
548 		n = next;
549 	}
550 	spin_unlock(&sdp->sd_rindex_spin);
551 
552 	return NULL;
553 }
554 
555 /**
556  * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
557  * @sdp: The GFS2 superblock
558  *
559  * Returns: The first rgrp in the filesystem
560  */
561 
562 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
563 {
564 	const struct rb_node *n;
565 	struct gfs2_rgrpd *rgd;
566 
567 	spin_lock(&sdp->sd_rindex_spin);
568 	n = rb_first(&sdp->sd_rindex_tree);
569 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
570 	spin_unlock(&sdp->sd_rindex_spin);
571 
572 	return rgd;
573 }
574 
575 /**
576  * gfs2_rgrpd_get_next - get the next RG
577  * @rgd: the resource group descriptor
578  *
579  * Returns: The next rgrp
580  */
581 
582 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
583 {
584 	struct gfs2_sbd *sdp = rgd->rd_sbd;
585 	const struct rb_node *n;
586 
587 	spin_lock(&sdp->sd_rindex_spin);
588 	n = rb_next(&rgd->rd_node);
589 	if (n == NULL)
590 		n = rb_first(&sdp->sd_rindex_tree);
591 
592 	if (unlikely(&rgd->rd_node == n)) {
593 		spin_unlock(&sdp->sd_rindex_spin);
594 		return NULL;
595 	}
596 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
597 	spin_unlock(&sdp->sd_rindex_spin);
598 	return rgd;
599 }
600 
601 void check_and_update_goal(struct gfs2_inode *ip)
602 {
603 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
604 	if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
605 		ip->i_goal = ip->i_no_addr;
606 }
607 
608 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
609 {
610 	int x;
611 
612 	for (x = 0; x < rgd->rd_length; x++) {
613 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
614 		kfree(bi->bi_clone);
615 		bi->bi_clone = NULL;
616 	}
617 }
618 
619 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs,
620 		    const char *fs_id_buf)
621 {
622 	struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res);
623 
624 	gfs2_print_dbg(seq, "%s  B: n:%llu s:%llu f:%u\n",
625 		       fs_id_buf,
626 		       (unsigned long long)ip->i_no_addr,
627 		       (unsigned long long)rs->rs_start,
628 		       rs->rs_requested);
629 }
630 
631 /**
632  * __rs_deltree - remove a multi-block reservation from the rgd tree
633  * @rs: The reservation to remove
634  *
635  */
636 static void __rs_deltree(struct gfs2_blkreserv *rs)
637 {
638 	struct gfs2_rgrpd *rgd;
639 
640 	if (!gfs2_rs_active(rs))
641 		return;
642 
643 	rgd = rs->rs_rgd;
644 	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
645 	rb_erase(&rs->rs_node, &rgd->rd_rstree);
646 	RB_CLEAR_NODE(&rs->rs_node);
647 
648 	if (rs->rs_requested) {
649 		/* return requested blocks to the rgrp */
650 		BUG_ON(rs->rs_rgd->rd_requested < rs->rs_requested);
651 		rs->rs_rgd->rd_requested -= rs->rs_requested;
652 
653 		/* The rgrp extent failure point is likely not to increase;
654 		   it will only do so if the freed blocks are somehow
655 		   contiguous with a span of free blocks that follows. Still,
656 		   it will force the number to be recalculated later. */
657 		rgd->rd_extfail_pt += rs->rs_requested;
658 		rs->rs_requested = 0;
659 	}
660 }
661 
662 /**
663  * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
664  * @rs: The reservation to remove
665  *
666  */
667 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
668 {
669 	struct gfs2_rgrpd *rgd;
670 
671 	rgd = rs->rs_rgd;
672 	if (rgd) {
673 		spin_lock(&rgd->rd_rsspin);
674 		__rs_deltree(rs);
675 		BUG_ON(rs->rs_requested);
676 		spin_unlock(&rgd->rd_rsspin);
677 	}
678 }
679 
680 /**
681  * gfs2_rs_delete - delete a multi-block reservation
682  * @ip: The inode for this reservation
683  * @wcount: The inode's write count, or NULL
684  *
685  */
686 void gfs2_rs_delete(struct gfs2_inode *ip, atomic_t *wcount)
687 {
688 	down_write(&ip->i_rw_mutex);
689 	if ((wcount == NULL) || (atomic_read(wcount) <= 1))
690 		gfs2_rs_deltree(&ip->i_res);
691 	up_write(&ip->i_rw_mutex);
692 }
693 
694 /**
695  * return_all_reservations - return all reserved blocks back to the rgrp.
696  * @rgd: the rgrp that needs its space back
697  *
698  * We previously reserved a bunch of blocks for allocation. Now we need to
699  * give them back. This leave the reservation structures in tact, but removes
700  * all of their corresponding "no-fly zones".
701  */
702 static void return_all_reservations(struct gfs2_rgrpd *rgd)
703 {
704 	struct rb_node *n;
705 	struct gfs2_blkreserv *rs;
706 
707 	spin_lock(&rgd->rd_rsspin);
708 	while ((n = rb_first(&rgd->rd_rstree))) {
709 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
710 		__rs_deltree(rs);
711 	}
712 	spin_unlock(&rgd->rd_rsspin);
713 }
714 
715 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
716 {
717 	struct rb_node *n;
718 	struct gfs2_rgrpd *rgd;
719 	struct gfs2_glock *gl;
720 
721 	while ((n = rb_first(&sdp->sd_rindex_tree))) {
722 		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
723 		gl = rgd->rd_gl;
724 
725 		rb_erase(n, &sdp->sd_rindex_tree);
726 
727 		if (gl) {
728 			if (gl->gl_state != LM_ST_UNLOCKED) {
729 				gfs2_glock_cb(gl, LM_ST_UNLOCKED);
730 				flush_delayed_work(&gl->gl_work);
731 			}
732 			gfs2_rgrp_brelse(rgd);
733 			glock_clear_object(gl, rgd);
734 			gfs2_glock_put(gl);
735 		}
736 
737 		gfs2_free_clones(rgd);
738 		return_all_reservations(rgd);
739 		kfree(rgd->rd_bits);
740 		rgd->rd_bits = NULL;
741 		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
742 	}
743 }
744 
745 /**
746  * compute_bitstructs - Compute the bitmap sizes
747  * @rgd: The resource group descriptor
748  *
749  * Calculates bitmap descriptors, one for each block that contains bitmap data
750  *
751  * Returns: errno
752  */
753 
754 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
755 {
756 	struct gfs2_sbd *sdp = rgd->rd_sbd;
757 	struct gfs2_bitmap *bi;
758 	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
759 	u32 bytes_left, bytes;
760 	int x;
761 
762 	if (!length)
763 		return -EINVAL;
764 
765 	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
766 	if (!rgd->rd_bits)
767 		return -ENOMEM;
768 
769 	bytes_left = rgd->rd_bitbytes;
770 
771 	for (x = 0; x < length; x++) {
772 		bi = rgd->rd_bits + x;
773 
774 		bi->bi_flags = 0;
775 		/* small rgrp; bitmap stored completely in header block */
776 		if (length == 1) {
777 			bytes = bytes_left;
778 			bi->bi_offset = sizeof(struct gfs2_rgrp);
779 			bi->bi_start = 0;
780 			bi->bi_bytes = bytes;
781 			bi->bi_blocks = bytes * GFS2_NBBY;
782 		/* header block */
783 		} else if (x == 0) {
784 			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
785 			bi->bi_offset = sizeof(struct gfs2_rgrp);
786 			bi->bi_start = 0;
787 			bi->bi_bytes = bytes;
788 			bi->bi_blocks = bytes * GFS2_NBBY;
789 		/* last block */
790 		} else if (x + 1 == length) {
791 			bytes = bytes_left;
792 			bi->bi_offset = sizeof(struct gfs2_meta_header);
793 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
794 			bi->bi_bytes = bytes;
795 			bi->bi_blocks = bytes * GFS2_NBBY;
796 		/* other blocks */
797 		} else {
798 			bytes = sdp->sd_sb.sb_bsize -
799 				sizeof(struct gfs2_meta_header);
800 			bi->bi_offset = sizeof(struct gfs2_meta_header);
801 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
802 			bi->bi_bytes = bytes;
803 			bi->bi_blocks = bytes * GFS2_NBBY;
804 		}
805 
806 		bytes_left -= bytes;
807 	}
808 
809 	if (bytes_left) {
810 		gfs2_consist_rgrpd(rgd);
811 		return -EIO;
812 	}
813 	bi = rgd->rd_bits + (length - 1);
814 	if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) {
815 		gfs2_lm(sdp,
816 			"ri_addr = %llu\n"
817 			"ri_length = %u\n"
818 			"ri_data0 = %llu\n"
819 			"ri_data = %u\n"
820 			"ri_bitbytes = %u\n"
821 			"start=%u len=%u offset=%u\n",
822 			(unsigned long long)rgd->rd_addr,
823 			rgd->rd_length,
824 			(unsigned long long)rgd->rd_data0,
825 			rgd->rd_data,
826 			rgd->rd_bitbytes,
827 			bi->bi_start, bi->bi_bytes, bi->bi_offset);
828 		gfs2_consist_rgrpd(rgd);
829 		return -EIO;
830 	}
831 
832 	return 0;
833 }
834 
835 /**
836  * gfs2_ri_total - Total up the file system space, according to the rindex.
837  * @sdp: the filesystem
838  *
839  */
840 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
841 {
842 	u64 total_data = 0;
843 	struct inode *inode = sdp->sd_rindex;
844 	struct gfs2_inode *ip = GFS2_I(inode);
845 	char buf[sizeof(struct gfs2_rindex)];
846 	int error, rgrps;
847 
848 	for (rgrps = 0;; rgrps++) {
849 		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
850 
851 		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
852 			break;
853 		error = gfs2_internal_read(ip, buf, &pos,
854 					   sizeof(struct gfs2_rindex));
855 		if (error != sizeof(struct gfs2_rindex))
856 			break;
857 		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
858 	}
859 	return total_data;
860 }
861 
862 static int rgd_insert(struct gfs2_rgrpd *rgd)
863 {
864 	struct gfs2_sbd *sdp = rgd->rd_sbd;
865 	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
866 
867 	/* Figure out where to put new node */
868 	while (*newn) {
869 		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
870 						  rd_node);
871 
872 		parent = *newn;
873 		if (rgd->rd_addr < cur->rd_addr)
874 			newn = &((*newn)->rb_left);
875 		else if (rgd->rd_addr > cur->rd_addr)
876 			newn = &((*newn)->rb_right);
877 		else
878 			return -EEXIST;
879 	}
880 
881 	rb_link_node(&rgd->rd_node, parent, newn);
882 	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
883 	sdp->sd_rgrps++;
884 	return 0;
885 }
886 
887 /**
888  * read_rindex_entry - Pull in a new resource index entry from the disk
889  * @ip: Pointer to the rindex inode
890  *
891  * Returns: 0 on success, > 0 on EOF, error code otherwise
892  */
893 
894 static int read_rindex_entry(struct gfs2_inode *ip)
895 {
896 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
897 	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
898 	struct gfs2_rindex buf;
899 	int error;
900 	struct gfs2_rgrpd *rgd;
901 
902 	if (pos >= i_size_read(&ip->i_inode))
903 		return 1;
904 
905 	error = gfs2_internal_read(ip, (char *)&buf, &pos,
906 				   sizeof(struct gfs2_rindex));
907 
908 	if (error != sizeof(struct gfs2_rindex))
909 		return (error == 0) ? 1 : error;
910 
911 	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
912 	error = -ENOMEM;
913 	if (!rgd)
914 		return error;
915 
916 	rgd->rd_sbd = sdp;
917 	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
918 	rgd->rd_length = be32_to_cpu(buf.ri_length);
919 	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
920 	rgd->rd_data = be32_to_cpu(buf.ri_data);
921 	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
922 	spin_lock_init(&rgd->rd_rsspin);
923 	mutex_init(&rgd->rd_mutex);
924 
925 	error = compute_bitstructs(rgd);
926 	if (error)
927 		goto fail;
928 
929 	error = gfs2_glock_get(sdp, rgd->rd_addr,
930 			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
931 	if (error)
932 		goto fail;
933 
934 	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
935 	rgd->rd_flags &= ~GFS2_RDF_PREFERRED;
936 	if (rgd->rd_data > sdp->sd_max_rg_data)
937 		sdp->sd_max_rg_data = rgd->rd_data;
938 	spin_lock(&sdp->sd_rindex_spin);
939 	error = rgd_insert(rgd);
940 	spin_unlock(&sdp->sd_rindex_spin);
941 	if (!error) {
942 		glock_set_object(rgd->rd_gl, rgd);
943 		return 0;
944 	}
945 
946 	error = 0; /* someone else read in the rgrp; free it and ignore it */
947 	gfs2_glock_put(rgd->rd_gl);
948 
949 fail:
950 	kfree(rgd->rd_bits);
951 	rgd->rd_bits = NULL;
952 	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
953 	return error;
954 }
955 
956 /**
957  * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
958  * @sdp: the GFS2 superblock
959  *
960  * The purpose of this function is to select a subset of the resource groups
961  * and mark them as PREFERRED. We do it in such a way that each node prefers
962  * to use a unique set of rgrps to minimize glock contention.
963  */
964 static void set_rgrp_preferences(struct gfs2_sbd *sdp)
965 {
966 	struct gfs2_rgrpd *rgd, *first;
967 	int i;
968 
969 	/* Skip an initial number of rgrps, based on this node's journal ID.
970 	   That should start each node out on its own set. */
971 	rgd = gfs2_rgrpd_get_first(sdp);
972 	for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
973 		rgd = gfs2_rgrpd_get_next(rgd);
974 	first = rgd;
975 
976 	do {
977 		rgd->rd_flags |= GFS2_RDF_PREFERRED;
978 		for (i = 0; i < sdp->sd_journals; i++) {
979 			rgd = gfs2_rgrpd_get_next(rgd);
980 			if (!rgd || rgd == first)
981 				break;
982 		}
983 	} while (rgd && rgd != first);
984 }
985 
986 /**
987  * gfs2_ri_update - Pull in a new resource index from the disk
988  * @ip: pointer to the rindex inode
989  *
990  * Returns: 0 on successful update, error code otherwise
991  */
992 
993 static int gfs2_ri_update(struct gfs2_inode *ip)
994 {
995 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
996 	int error;
997 
998 	do {
999 		error = read_rindex_entry(ip);
1000 	} while (error == 0);
1001 
1002 	if (error < 0)
1003 		return error;
1004 
1005 	if (RB_EMPTY_ROOT(&sdp->sd_rindex_tree)) {
1006 		fs_err(sdp, "no resource groups found in the file system.\n");
1007 		return -ENOENT;
1008 	}
1009 	set_rgrp_preferences(sdp);
1010 
1011 	sdp->sd_rindex_uptodate = 1;
1012 	return 0;
1013 }
1014 
1015 /**
1016  * gfs2_rindex_update - Update the rindex if required
1017  * @sdp: The GFS2 superblock
1018  *
1019  * We grab a lock on the rindex inode to make sure that it doesn't
1020  * change whilst we are performing an operation. We keep this lock
1021  * for quite long periods of time compared to other locks. This
1022  * doesn't matter, since it is shared and it is very, very rarely
1023  * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1024  *
1025  * This makes sure that we're using the latest copy of the resource index
1026  * special file, which might have been updated if someone expanded the
1027  * filesystem (via gfs2_grow utility), which adds new resource groups.
1028  *
1029  * Returns: 0 on succeess, error code otherwise
1030  */
1031 
1032 int gfs2_rindex_update(struct gfs2_sbd *sdp)
1033 {
1034 	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1035 	struct gfs2_glock *gl = ip->i_gl;
1036 	struct gfs2_holder ri_gh;
1037 	int error = 0;
1038 	int unlock_required = 0;
1039 
1040 	/* Read new copy from disk if we don't have the latest */
1041 	if (!sdp->sd_rindex_uptodate) {
1042 		if (!gfs2_glock_is_locked_by_me(gl)) {
1043 			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1044 			if (error)
1045 				return error;
1046 			unlock_required = 1;
1047 		}
1048 		if (!sdp->sd_rindex_uptodate)
1049 			error = gfs2_ri_update(ip);
1050 		if (unlock_required)
1051 			gfs2_glock_dq_uninit(&ri_gh);
1052 	}
1053 
1054 	return error;
1055 }
1056 
1057 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1058 {
1059 	const struct gfs2_rgrp *str = buf;
1060 	u32 rg_flags;
1061 
1062 	rg_flags = be32_to_cpu(str->rg_flags);
1063 	rg_flags &= ~GFS2_RDF_MASK;
1064 	rgd->rd_flags &= GFS2_RDF_MASK;
1065 	rgd->rd_flags |= rg_flags;
1066 	rgd->rd_free = be32_to_cpu(str->rg_free);
1067 	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1068 	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1069 	/* rd_data0, rd_data and rd_bitbytes already set from rindex */
1070 }
1071 
1072 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1073 {
1074 	const struct gfs2_rgrp *str = buf;
1075 
1076 	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1077 	rgl->rl_flags = str->rg_flags;
1078 	rgl->rl_free = str->rg_free;
1079 	rgl->rl_dinodes = str->rg_dinodes;
1080 	rgl->rl_igeneration = str->rg_igeneration;
1081 	rgl->__pad = 0UL;
1082 }
1083 
1084 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1085 {
1086 	struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd);
1087 	struct gfs2_rgrp *str = buf;
1088 	u32 crc;
1089 
1090 	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1091 	str->rg_free = cpu_to_be32(rgd->rd_free);
1092 	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1093 	if (next == NULL)
1094 		str->rg_skip = 0;
1095 	else if (next->rd_addr > rgd->rd_addr)
1096 		str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr);
1097 	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1098 	str->rg_data0 = cpu_to_be64(rgd->rd_data0);
1099 	str->rg_data = cpu_to_be32(rgd->rd_data);
1100 	str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes);
1101 	str->rg_crc = 0;
1102 	crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp));
1103 	str->rg_crc = cpu_to_be32(crc);
1104 
1105 	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1106 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf);
1107 }
1108 
1109 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1110 {
1111 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1112 	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1113 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1114 	int valid = 1;
1115 
1116 	if (rgl->rl_flags != str->rg_flags) {
1117 		fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u",
1118 			(unsigned long long)rgd->rd_addr,
1119 		       be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags));
1120 		valid = 0;
1121 	}
1122 	if (rgl->rl_free != str->rg_free) {
1123 		fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u",
1124 			(unsigned long long)rgd->rd_addr,
1125 			be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free));
1126 		valid = 0;
1127 	}
1128 	if (rgl->rl_dinodes != str->rg_dinodes) {
1129 		fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u",
1130 			(unsigned long long)rgd->rd_addr,
1131 			be32_to_cpu(rgl->rl_dinodes),
1132 			be32_to_cpu(str->rg_dinodes));
1133 		valid = 0;
1134 	}
1135 	if (rgl->rl_igeneration != str->rg_igeneration) {
1136 		fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu",
1137 			(unsigned long long)rgd->rd_addr,
1138 			(unsigned long long)be64_to_cpu(rgl->rl_igeneration),
1139 			(unsigned long long)be64_to_cpu(str->rg_igeneration));
1140 		valid = 0;
1141 	}
1142 	return valid;
1143 }
1144 
1145 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1146 {
1147 	struct gfs2_bitmap *bi;
1148 	const u32 length = rgd->rd_length;
1149 	const u8 *buffer = NULL;
1150 	u32 i, goal, count = 0;
1151 
1152 	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1153 		goal = 0;
1154 		buffer = bi->bi_bh->b_data + bi->bi_offset;
1155 		WARN_ON(!buffer_uptodate(bi->bi_bh));
1156 		while (goal < bi->bi_blocks) {
1157 			goal = gfs2_bitfit(buffer, bi->bi_bytes, goal,
1158 					   GFS2_BLKST_UNLINKED);
1159 			if (goal == BFITNOENT)
1160 				break;
1161 			count++;
1162 			goal++;
1163 		}
1164 	}
1165 
1166 	return count;
1167 }
1168 
1169 static void rgrp_set_bitmap_flags(struct gfs2_rgrpd *rgd)
1170 {
1171 	struct gfs2_bitmap *bi;
1172 	int x;
1173 
1174 	if (rgd->rd_free) {
1175 		for (x = 0; x < rgd->rd_length; x++) {
1176 			bi = rgd->rd_bits + x;
1177 			clear_bit(GBF_FULL, &bi->bi_flags);
1178 		}
1179 	} else {
1180 		for (x = 0; x < rgd->rd_length; x++) {
1181 			bi = rgd->rd_bits + x;
1182 			set_bit(GBF_FULL, &bi->bi_flags);
1183 		}
1184 	}
1185 }
1186 
1187 /**
1188  * gfs2_rgrp_go_instantiate - Read in a RG's header and bitmaps
1189  * @gh: the glock holder representing the rgrpd to read in
1190  *
1191  * Read in all of a Resource Group's header and bitmap blocks.
1192  * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps.
1193  *
1194  * Returns: errno
1195  */
1196 
1197 int gfs2_rgrp_go_instantiate(struct gfs2_holder *gh)
1198 {
1199 	struct gfs2_glock *gl = gh->gh_gl;
1200 	struct gfs2_rgrpd *rgd = gl->gl_object;
1201 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1202 	unsigned int length = rgd->rd_length;
1203 	struct gfs2_bitmap *bi;
1204 	unsigned int x, y;
1205 	int error;
1206 
1207 	if (rgd->rd_bits[0].bi_bh != NULL)
1208 		return 0;
1209 
1210 	for (x = 0; x < length; x++) {
1211 		bi = rgd->rd_bits + x;
1212 		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1213 		if (error)
1214 			goto fail;
1215 	}
1216 
1217 	for (y = length; y--;) {
1218 		bi = rgd->rd_bits + y;
1219 		error = gfs2_meta_wait(sdp, bi->bi_bh);
1220 		if (error)
1221 			goto fail;
1222 		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1223 					      GFS2_METATYPE_RG)) {
1224 			error = -EIO;
1225 			goto fail;
1226 		}
1227 	}
1228 
1229 	gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1230 	rgrp_set_bitmap_flags(rgd);
1231 	rgd->rd_flags |= GFS2_RDF_CHECK;
1232 	rgd->rd_free_clone = rgd->rd_free;
1233 	GLOCK_BUG_ON(rgd->rd_gl, rgd->rd_reserved);
1234 	/* max out the rgrp allocation failure point */
1235 	rgd->rd_extfail_pt = rgd->rd_free;
1236 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1237 		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1238 		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1239 				     rgd->rd_bits[0].bi_bh->b_data);
1240 	} else if (sdp->sd_args.ar_rgrplvb) {
1241 		if (!gfs2_rgrp_lvb_valid(rgd)){
1242 			gfs2_consist_rgrpd(rgd);
1243 			error = -EIO;
1244 			goto fail;
1245 		}
1246 		if (rgd->rd_rgl->rl_unlinked == 0)
1247 			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1248 	}
1249 	return 0;
1250 
1251 fail:
1252 	while (x--) {
1253 		bi = rgd->rd_bits + x;
1254 		brelse(bi->bi_bh);
1255 		bi->bi_bh = NULL;
1256 		gfs2_assert_warn(sdp, !bi->bi_clone);
1257 	}
1258 	return error;
1259 }
1260 
1261 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd, struct gfs2_holder *gh)
1262 {
1263 	u32 rl_flags;
1264 
1265 	if (!test_bit(GLF_INSTANTIATE_NEEDED, &gh->gh_gl->gl_flags))
1266 		return 0;
1267 
1268 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1269 		return gfs2_instantiate(gh);
1270 
1271 	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1272 	rl_flags &= ~GFS2_RDF_MASK;
1273 	rgd->rd_flags &= GFS2_RDF_MASK;
1274 	rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK);
1275 	if (rgd->rd_rgl->rl_unlinked == 0)
1276 		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1277 	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1278 	rgrp_set_bitmap_flags(rgd);
1279 	rgd->rd_free_clone = rgd->rd_free;
1280 	GLOCK_BUG_ON(rgd->rd_gl, rgd->rd_reserved);
1281 	/* max out the rgrp allocation failure point */
1282 	rgd->rd_extfail_pt = rgd->rd_free;
1283 	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1284 	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1285 	return 0;
1286 }
1287 
1288 /**
1289  * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1290  * @rgd: The resource group
1291  *
1292  */
1293 
1294 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1295 {
1296 	int x, length = rgd->rd_length;
1297 
1298 	for (x = 0; x < length; x++) {
1299 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1300 		if (bi->bi_bh) {
1301 			brelse(bi->bi_bh);
1302 			bi->bi_bh = NULL;
1303 		}
1304 	}
1305 	set_bit(GLF_INSTANTIATE_NEEDED, &rgd->rd_gl->gl_flags);
1306 }
1307 
1308 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1309 			     struct buffer_head *bh,
1310 			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1311 {
1312 	struct super_block *sb = sdp->sd_vfs;
1313 	u64 blk;
1314 	sector_t start = 0;
1315 	sector_t nr_blks = 0;
1316 	int rv;
1317 	unsigned int x;
1318 	u32 trimmed = 0;
1319 	u8 diff;
1320 
1321 	for (x = 0; x < bi->bi_bytes; x++) {
1322 		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1323 		clone += bi->bi_offset;
1324 		clone += x;
1325 		if (bh) {
1326 			const u8 *orig = bh->b_data + bi->bi_offset + x;
1327 			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1328 		} else {
1329 			diff = ~(*clone | (*clone >> 1));
1330 		}
1331 		diff &= 0x55;
1332 		if (diff == 0)
1333 			continue;
1334 		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1335 		while(diff) {
1336 			if (diff & 1) {
1337 				if (nr_blks == 0)
1338 					goto start_new_extent;
1339 				if ((start + nr_blks) != blk) {
1340 					if (nr_blks >= minlen) {
1341 						rv = sb_issue_discard(sb,
1342 							start, nr_blks,
1343 							GFP_NOFS, 0);
1344 						if (rv)
1345 							goto fail;
1346 						trimmed += nr_blks;
1347 					}
1348 					nr_blks = 0;
1349 start_new_extent:
1350 					start = blk;
1351 				}
1352 				nr_blks++;
1353 			}
1354 			diff >>= 2;
1355 			blk++;
1356 		}
1357 	}
1358 	if (nr_blks >= minlen) {
1359 		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1360 		if (rv)
1361 			goto fail;
1362 		trimmed += nr_blks;
1363 	}
1364 	if (ptrimmed)
1365 		*ptrimmed = trimmed;
1366 	return 0;
1367 
1368 fail:
1369 	if (sdp->sd_args.ar_discard)
1370 		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv);
1371 	sdp->sd_args.ar_discard = 0;
1372 	return -EIO;
1373 }
1374 
1375 /**
1376  * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1377  * @filp: Any file on the filesystem
1378  * @argp: Pointer to the arguments (also used to pass result)
1379  *
1380  * Returns: 0 on success, otherwise error code
1381  */
1382 
1383 int gfs2_fitrim(struct file *filp, void __user *argp)
1384 {
1385 	struct inode *inode = file_inode(filp);
1386 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1387 	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1388 	struct buffer_head *bh;
1389 	struct gfs2_rgrpd *rgd;
1390 	struct gfs2_rgrpd *rgd_end;
1391 	struct gfs2_holder gh;
1392 	struct fstrim_range r;
1393 	int ret = 0;
1394 	u64 amt;
1395 	u64 trimmed = 0;
1396 	u64 start, end, minlen;
1397 	unsigned int x;
1398 	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1399 
1400 	if (!capable(CAP_SYS_ADMIN))
1401 		return -EPERM;
1402 
1403 	if (!test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags))
1404 		return -EROFS;
1405 
1406 	if (!blk_queue_discard(q))
1407 		return -EOPNOTSUPP;
1408 
1409 	if (copy_from_user(&r, argp, sizeof(r)))
1410 		return -EFAULT;
1411 
1412 	ret = gfs2_rindex_update(sdp);
1413 	if (ret)
1414 		return ret;
1415 
1416 	start = r.start >> bs_shift;
1417 	end = start + (r.len >> bs_shift);
1418 	minlen = max_t(u64, r.minlen,
1419 		       q->limits.discard_granularity) >> bs_shift;
1420 
1421 	if (end <= start || minlen > sdp->sd_max_rg_data)
1422 		return -EINVAL;
1423 
1424 	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1425 	rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1426 
1427 	if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1428 	    && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1429 		return -EINVAL; /* start is beyond the end of the fs */
1430 
1431 	while (1) {
1432 
1433 		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1434 					 LM_FLAG_NODE_SCOPE, &gh);
1435 		if (ret)
1436 			goto out;
1437 
1438 		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1439 			/* Trim each bitmap in the rgrp */
1440 			for (x = 0; x < rgd->rd_length; x++) {
1441 				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1442 				rgrp_lock_local(rgd);
1443 				ret = gfs2_rgrp_send_discards(sdp,
1444 						rgd->rd_data0, NULL, bi, minlen,
1445 						&amt);
1446 				rgrp_unlock_local(rgd);
1447 				if (ret) {
1448 					gfs2_glock_dq_uninit(&gh);
1449 					goto out;
1450 				}
1451 				trimmed += amt;
1452 			}
1453 
1454 			/* Mark rgrp as having been trimmed */
1455 			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1456 			if (ret == 0) {
1457 				bh = rgd->rd_bits[0].bi_bh;
1458 				rgrp_lock_local(rgd);
1459 				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1460 				gfs2_trans_add_meta(rgd->rd_gl, bh);
1461 				gfs2_rgrp_out(rgd, bh->b_data);
1462 				rgrp_unlock_local(rgd);
1463 				gfs2_trans_end(sdp);
1464 			}
1465 		}
1466 		gfs2_glock_dq_uninit(&gh);
1467 
1468 		if (rgd == rgd_end)
1469 			break;
1470 
1471 		rgd = gfs2_rgrpd_get_next(rgd);
1472 	}
1473 
1474 out:
1475 	r.len = trimmed << bs_shift;
1476 	if (copy_to_user(argp, &r, sizeof(r)))
1477 		return -EFAULT;
1478 
1479 	return ret;
1480 }
1481 
1482 /**
1483  * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1484  * @ip: the inode structure
1485  *
1486  */
1487 static void rs_insert(struct gfs2_inode *ip)
1488 {
1489 	struct rb_node **newn, *parent = NULL;
1490 	int rc;
1491 	struct gfs2_blkreserv *rs = &ip->i_res;
1492 	struct gfs2_rgrpd *rgd = rs->rs_rgd;
1493 
1494 	BUG_ON(gfs2_rs_active(rs));
1495 
1496 	spin_lock(&rgd->rd_rsspin);
1497 	newn = &rgd->rd_rstree.rb_node;
1498 	while (*newn) {
1499 		struct gfs2_blkreserv *cur =
1500 			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1501 
1502 		parent = *newn;
1503 		rc = rs_cmp(rs->rs_start, rs->rs_requested, cur);
1504 		if (rc > 0)
1505 			newn = &((*newn)->rb_right);
1506 		else if (rc < 0)
1507 			newn = &((*newn)->rb_left);
1508 		else {
1509 			spin_unlock(&rgd->rd_rsspin);
1510 			WARN_ON(1);
1511 			return;
1512 		}
1513 	}
1514 
1515 	rb_link_node(&rs->rs_node, parent, newn);
1516 	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1517 
1518 	/* Do our rgrp accounting for the reservation */
1519 	rgd->rd_requested += rs->rs_requested; /* blocks requested */
1520 	spin_unlock(&rgd->rd_rsspin);
1521 	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1522 }
1523 
1524 /**
1525  * rgd_free - return the number of free blocks we can allocate
1526  * @rgd: the resource group
1527  * @rs: The reservation to free
1528  *
1529  * This function returns the number of free blocks for an rgrp.
1530  * That's the clone-free blocks (blocks that are free, not including those
1531  * still being used for unlinked files that haven't been deleted.)
1532  *
1533  * It also subtracts any blocks reserved by someone else, but does not
1534  * include free blocks that are still part of our current reservation,
1535  * because obviously we can (and will) allocate them.
1536  */
1537 static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs)
1538 {
1539 	u32 tot_reserved, tot_free;
1540 
1541 	if (WARN_ON_ONCE(rgd->rd_requested < rs->rs_requested))
1542 		return 0;
1543 	tot_reserved = rgd->rd_requested - rs->rs_requested;
1544 
1545 	if (rgd->rd_free_clone < tot_reserved)
1546 		tot_reserved = 0;
1547 
1548 	tot_free = rgd->rd_free_clone - tot_reserved;
1549 
1550 	return tot_free;
1551 }
1552 
1553 /**
1554  * rg_mblk_search - find a group of multiple free blocks to form a reservation
1555  * @rgd: the resource group descriptor
1556  * @ip: pointer to the inode for which we're reserving blocks
1557  * @ap: the allocation parameters
1558  *
1559  */
1560 
1561 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1562 			   const struct gfs2_alloc_parms *ap)
1563 {
1564 	struct gfs2_rbm rbm = { .rgd = rgd, };
1565 	u64 goal;
1566 	struct gfs2_blkreserv *rs = &ip->i_res;
1567 	u32 extlen;
1568 	u32 free_blocks, blocks_available;
1569 	int ret;
1570 	struct inode *inode = &ip->i_inode;
1571 
1572 	spin_lock(&rgd->rd_rsspin);
1573 	free_blocks = rgd_free(rgd, rs);
1574 	if (rgd->rd_free_clone < rgd->rd_requested)
1575 		free_blocks = 0;
1576 	blocks_available = rgd->rd_free_clone - rgd->rd_reserved;
1577 	if (rgd == rs->rs_rgd)
1578 		blocks_available += rs->rs_reserved;
1579 	spin_unlock(&rgd->rd_rsspin);
1580 
1581 	if (S_ISDIR(inode->i_mode))
1582 		extlen = 1;
1583 	else {
1584 		extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target);
1585 		extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks);
1586 	}
1587 	if (free_blocks < extlen || blocks_available < extlen)
1588 		return;
1589 
1590 	/* Find bitmap block that contains bits for goal block */
1591 	if (rgrp_contains_block(rgd, ip->i_goal))
1592 		goal = ip->i_goal;
1593 	else
1594 		goal = rgd->rd_last_alloc + rgd->rd_data0;
1595 
1596 	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1597 		return;
1598 
1599 	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, &ip->i_res, true);
1600 	if (ret == 0) {
1601 		rs->rs_start = gfs2_rbm_to_block(&rbm);
1602 		rs->rs_requested = extlen;
1603 		rs_insert(ip);
1604 	} else {
1605 		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1606 			rgd->rd_last_alloc = 0;
1607 	}
1608 }
1609 
1610 /**
1611  * gfs2_next_unreserved_block - Return next block that is not reserved
1612  * @rgd: The resource group
1613  * @block: The starting block
1614  * @length: The required length
1615  * @ignore_rs: Reservation to ignore
1616  *
1617  * If the block does not appear in any reservation, then return the
1618  * block number unchanged. If it does appear in the reservation, then
1619  * keep looking through the tree of reservations in order to find the
1620  * first block number which is not reserved.
1621  */
1622 
1623 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1624 				      u32 length,
1625 				      struct gfs2_blkreserv *ignore_rs)
1626 {
1627 	struct gfs2_blkreserv *rs;
1628 	struct rb_node *n;
1629 	int rc;
1630 
1631 	spin_lock(&rgd->rd_rsspin);
1632 	n = rgd->rd_rstree.rb_node;
1633 	while (n) {
1634 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1635 		rc = rs_cmp(block, length, rs);
1636 		if (rc < 0)
1637 			n = n->rb_left;
1638 		else if (rc > 0)
1639 			n = n->rb_right;
1640 		else
1641 			break;
1642 	}
1643 
1644 	if (n) {
1645 		while (rs_cmp(block, length, rs) == 0 && rs != ignore_rs) {
1646 			block = rs->rs_start + rs->rs_requested;
1647 			n = n->rb_right;
1648 			if (n == NULL)
1649 				break;
1650 			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1651 		}
1652 	}
1653 
1654 	spin_unlock(&rgd->rd_rsspin);
1655 	return block;
1656 }
1657 
1658 /**
1659  * gfs2_reservation_check_and_update - Check for reservations during block alloc
1660  * @rbm: The current position in the resource group
1661  * @rs: Our own reservation
1662  * @minext: The minimum extent length
1663  * @maxext: A pointer to the maximum extent structure
1664  *
1665  * This checks the current position in the rgrp to see whether there is
1666  * a reservation covering this block. If not then this function is a
1667  * no-op. If there is, then the position is moved to the end of the
1668  * contiguous reservation(s) so that we are pointing at the first
1669  * non-reserved block.
1670  *
1671  * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1672  */
1673 
1674 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1675 					     struct gfs2_blkreserv *rs,
1676 					     u32 minext,
1677 					     struct gfs2_extent *maxext)
1678 {
1679 	u64 block = gfs2_rbm_to_block(rbm);
1680 	u32 extlen = 1;
1681 	u64 nblock;
1682 
1683 	/*
1684 	 * If we have a minimum extent length, then skip over any extent
1685 	 * which is less than the min extent length in size.
1686 	 */
1687 	if (minext > 1) {
1688 		extlen = gfs2_free_extlen(rbm, minext);
1689 		if (extlen <= maxext->len)
1690 			goto fail;
1691 	}
1692 
1693 	/*
1694 	 * Check the extent which has been found against the reservations
1695 	 * and skip if parts of it are already reserved
1696 	 */
1697 	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, rs);
1698 	if (nblock == block) {
1699 		if (!minext || extlen >= minext)
1700 			return 0;
1701 
1702 		if (extlen > maxext->len) {
1703 			maxext->len = extlen;
1704 			maxext->rbm = *rbm;
1705 		}
1706 	} else {
1707 		u64 len = nblock - block;
1708 		if (len >= (u64)1 << 32)
1709 			return -E2BIG;
1710 		extlen = len;
1711 	}
1712 fail:
1713 	if (gfs2_rbm_add(rbm, extlen))
1714 		return -E2BIG;
1715 	return 1;
1716 }
1717 
1718 /**
1719  * gfs2_rbm_find - Look for blocks of a particular state
1720  * @rbm: Value/result starting position and final position
1721  * @state: The state which we want to find
1722  * @minext: Pointer to the requested extent length
1723  *          This is updated to be the actual reservation size.
1724  * @rs: Our own reservation (NULL to skip checking for reservations)
1725  * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1726  *          around until we've reached the starting point.
1727  *
1728  * Side effects:
1729  * - If looking for free blocks, we set GBF_FULL on each bitmap which
1730  *   has no free blocks in it.
1731  * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1732  *   has come up short on a free block search.
1733  *
1734  * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1735  */
1736 
1737 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1738 			 struct gfs2_blkreserv *rs, bool nowrap)
1739 {
1740 	bool scan_from_start = rbm->bii == 0 && rbm->offset == 0;
1741 	struct buffer_head *bh;
1742 	int last_bii;
1743 	u32 offset;
1744 	u8 *buffer;
1745 	bool wrapped = false;
1746 	int ret;
1747 	struct gfs2_bitmap *bi;
1748 	struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1749 
1750 	/*
1751 	 * Determine the last bitmap to search.  If we're not starting at the
1752 	 * beginning of a bitmap, we need to search that bitmap twice to scan
1753 	 * the entire resource group.
1754 	 */
1755 	last_bii = rbm->bii - (rbm->offset == 0);
1756 
1757 	while(1) {
1758 		bi = rbm_bi(rbm);
1759 		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1760 		    (state == GFS2_BLKST_FREE))
1761 			goto next_bitmap;
1762 
1763 		bh = bi->bi_bh;
1764 		buffer = bh->b_data + bi->bi_offset;
1765 		WARN_ON(!buffer_uptodate(bh));
1766 		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1767 			buffer = bi->bi_clone + bi->bi_offset;
1768 		offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state);
1769 		if (offset == BFITNOENT) {
1770 			if (state == GFS2_BLKST_FREE && rbm->offset == 0)
1771 				set_bit(GBF_FULL, &bi->bi_flags);
1772 			goto next_bitmap;
1773 		}
1774 		rbm->offset = offset;
1775 		if (!rs || !minext)
1776 			return 0;
1777 
1778 		ret = gfs2_reservation_check_and_update(rbm, rs, *minext,
1779 							&maxext);
1780 		if (ret == 0)
1781 			return 0;
1782 		if (ret > 0)
1783 			goto next_iter;
1784 		if (ret == -E2BIG) {
1785 			rbm->bii = 0;
1786 			rbm->offset = 0;
1787 			goto res_covered_end_of_rgrp;
1788 		}
1789 		return ret;
1790 
1791 next_bitmap:	/* Find next bitmap in the rgrp */
1792 		rbm->offset = 0;
1793 		rbm->bii++;
1794 		if (rbm->bii == rbm->rgd->rd_length)
1795 			rbm->bii = 0;
1796 res_covered_end_of_rgrp:
1797 		if (rbm->bii == 0) {
1798 			if (wrapped)
1799 				break;
1800 			wrapped = true;
1801 			if (nowrap)
1802 				break;
1803 		}
1804 next_iter:
1805 		/* Have we scanned the entire resource group? */
1806 		if (wrapped && rbm->bii > last_bii)
1807 			break;
1808 	}
1809 
1810 	if (state != GFS2_BLKST_FREE)
1811 		return -ENOSPC;
1812 
1813 	/* If the extent was too small, and it's smaller than the smallest
1814 	   to have failed before, remember for future reference that it's
1815 	   useless to search this rgrp again for this amount or more. */
1816 	if (wrapped && (scan_from_start || rbm->bii > last_bii) &&
1817 	    *minext < rbm->rgd->rd_extfail_pt)
1818 		rbm->rgd->rd_extfail_pt = *minext - 1;
1819 
1820 	/* If the maximum extent we found is big enough to fulfill the
1821 	   minimum requirements, use it anyway. */
1822 	if (maxext.len) {
1823 		*rbm = maxext.rbm;
1824 		*minext = maxext.len;
1825 		return 0;
1826 	}
1827 
1828 	return -ENOSPC;
1829 }
1830 
1831 /**
1832  * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1833  * @rgd: The rgrp
1834  * @last_unlinked: block address of the last dinode we unlinked
1835  * @skip: block address we should explicitly not unlink
1836  *
1837  * Returns: 0 if no error
1838  *          The inode, if one has been found, in inode.
1839  */
1840 
1841 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1842 {
1843 	u64 block;
1844 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1845 	struct gfs2_glock *gl;
1846 	struct gfs2_inode *ip;
1847 	int error;
1848 	int found = 0;
1849 	struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1850 
1851 	while (1) {
1852 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1853 				      true);
1854 		if (error == -ENOSPC)
1855 			break;
1856 		if (WARN_ON_ONCE(error))
1857 			break;
1858 
1859 		block = gfs2_rbm_to_block(&rbm);
1860 		if (gfs2_rbm_from_block(&rbm, block + 1))
1861 			break;
1862 		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1863 			continue;
1864 		if (block == skip)
1865 			continue;
1866 		*last_unlinked = block;
1867 
1868 		error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1869 		if (error)
1870 			continue;
1871 
1872 		/* If the inode is already in cache, we can ignore it here
1873 		 * because the existing inode disposal code will deal with
1874 		 * it when all refs have gone away. Accessing gl_object like
1875 		 * this is not safe in general. Here it is ok because we do
1876 		 * not dereference the pointer, and we only need an approx
1877 		 * answer to whether it is NULL or not.
1878 		 */
1879 		ip = gl->gl_object;
1880 
1881 		if (ip || !gfs2_queue_delete_work(gl, 0))
1882 			gfs2_glock_put(gl);
1883 		else
1884 			found++;
1885 
1886 		/* Limit reclaim to sensible number of tasks */
1887 		if (found > NR_CPUS)
1888 			return;
1889 	}
1890 
1891 	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1892 	return;
1893 }
1894 
1895 /**
1896  * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1897  * @rgd: The rgrp in question
1898  * @loops: An indication of how picky we can be (0=very, 1=less so)
1899  *
1900  * This function uses the recently added glock statistics in order to
1901  * figure out whether a parciular resource group is suffering from
1902  * contention from multiple nodes. This is done purely on the basis
1903  * of timings, since this is the only data we have to work with and
1904  * our aim here is to reject a resource group which is highly contended
1905  * but (very important) not to do this too often in order to ensure that
1906  * we do not land up introducing fragmentation by changing resource
1907  * groups when not actually required.
1908  *
1909  * The calculation is fairly simple, we want to know whether the SRTTB
1910  * (i.e. smoothed round trip time for blocking operations) to acquire
1911  * the lock for this rgrp's glock is significantly greater than the
1912  * time taken for resource groups on average. We introduce a margin in
1913  * the form of the variable @var which is computed as the sum of the two
1914  * respective variences, and multiplied by a factor depending on @loops
1915  * and whether we have a lot of data to base the decision on. This is
1916  * then tested against the square difference of the means in order to
1917  * decide whether the result is statistically significant or not.
1918  *
1919  * Returns: A boolean verdict on the congestion status
1920  */
1921 
1922 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1923 {
1924 	const struct gfs2_glock *gl = rgd->rd_gl;
1925 	const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1926 	struct gfs2_lkstats *st;
1927 	u64 r_dcount, l_dcount;
1928 	u64 l_srttb, a_srttb = 0;
1929 	s64 srttb_diff;
1930 	u64 sqr_diff;
1931 	u64 var;
1932 	int cpu, nonzero = 0;
1933 
1934 	preempt_disable();
1935 	for_each_present_cpu(cpu) {
1936 		st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1937 		if (st->stats[GFS2_LKS_SRTTB]) {
1938 			a_srttb += st->stats[GFS2_LKS_SRTTB];
1939 			nonzero++;
1940 		}
1941 	}
1942 	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1943 	if (nonzero)
1944 		do_div(a_srttb, nonzero);
1945 	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1946 	var = st->stats[GFS2_LKS_SRTTVARB] +
1947 	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1948 	preempt_enable();
1949 
1950 	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1951 	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1952 
1953 	if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1954 		return false;
1955 
1956 	srttb_diff = a_srttb - l_srttb;
1957 	sqr_diff = srttb_diff * srttb_diff;
1958 
1959 	var *= 2;
1960 	if (l_dcount < 8 || r_dcount < 8)
1961 		var *= 2;
1962 	if (loops == 1)
1963 		var *= 2;
1964 
1965 	return ((srttb_diff < 0) && (sqr_diff > var));
1966 }
1967 
1968 /**
1969  * gfs2_rgrp_used_recently
1970  * @rs: The block reservation with the rgrp to test
1971  * @msecs: The time limit in milliseconds
1972  *
1973  * Returns: True if the rgrp glock has been used within the time limit
1974  */
1975 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1976 				    u64 msecs)
1977 {
1978 	u64 tdiff;
1979 
1980 	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1981                             rs->rs_rgd->rd_gl->gl_dstamp));
1982 
1983 	return tdiff > (msecs * 1000 * 1000);
1984 }
1985 
1986 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1987 {
1988 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1989 	u32 skip;
1990 
1991 	get_random_bytes(&skip, sizeof(skip));
1992 	return skip % sdp->sd_rgrps;
1993 }
1994 
1995 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1996 {
1997 	struct gfs2_rgrpd *rgd = *pos;
1998 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1999 
2000 	rgd = gfs2_rgrpd_get_next(rgd);
2001 	if (rgd == NULL)
2002 		rgd = gfs2_rgrpd_get_first(sdp);
2003 	*pos = rgd;
2004 	if (rgd != begin) /* If we didn't wrap */
2005 		return true;
2006 	return false;
2007 }
2008 
2009 /**
2010  * fast_to_acquire - determine if a resource group will be fast to acquire
2011  * @rgd: The rgrp
2012  *
2013  * If this is one of our preferred rgrps, it should be quicker to acquire,
2014  * because we tried to set ourselves up as dlm lock master.
2015  */
2016 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
2017 {
2018 	struct gfs2_glock *gl = rgd->rd_gl;
2019 
2020 	if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
2021 	    !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
2022 	    !test_bit(GLF_DEMOTE, &gl->gl_flags))
2023 		return 1;
2024 	if (rgd->rd_flags & GFS2_RDF_PREFERRED)
2025 		return 1;
2026 	return 0;
2027 }
2028 
2029 /**
2030  * gfs2_inplace_reserve - Reserve space in the filesystem
2031  * @ip: the inode to reserve space for
2032  * @ap: the allocation parameters
2033  *
2034  * We try our best to find an rgrp that has at least ap->target blocks
2035  * available. After a couple of passes (loops == 2), the prospects of finding
2036  * such an rgrp diminish. At this stage, we return the first rgrp that has
2037  * at least ap->min_target blocks available.
2038  *
2039  * Returns: 0 on success,
2040  *          -ENOMEM if a suitable rgrp can't be found
2041  *          errno otherwise
2042  */
2043 
2044 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
2045 {
2046 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2047 	struct gfs2_rgrpd *begin = NULL;
2048 	struct gfs2_blkreserv *rs = &ip->i_res;
2049 	int error = 0, flags = LM_FLAG_NODE_SCOPE;
2050 	bool rg_locked;
2051 	u64 last_unlinked = NO_BLOCK;
2052 	u32 target = ap->target;
2053 	int loops = 0;
2054 	u32 free_blocks, blocks_available, skip = 0;
2055 
2056 	BUG_ON(rs->rs_reserved);
2057 
2058 	if (sdp->sd_args.ar_rgrplvb)
2059 		flags |= GL_SKIP;
2060 	if (gfs2_assert_warn(sdp, target))
2061 		return -EINVAL;
2062 	if (gfs2_rs_active(rs)) {
2063 		begin = rs->rs_rgd;
2064 	} else if (rs->rs_rgd &&
2065 		   rgrp_contains_block(rs->rs_rgd, ip->i_goal)) {
2066 		begin = rs->rs_rgd;
2067 	} else {
2068 		check_and_update_goal(ip);
2069 		rs->rs_rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
2070 	}
2071 	if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
2072 		skip = gfs2_orlov_skip(ip);
2073 	if (rs->rs_rgd == NULL)
2074 		return -EBADSLT;
2075 
2076 	while (loops < 3) {
2077 		struct gfs2_rgrpd *rgd;
2078 
2079 		rg_locked = gfs2_glock_is_locked_by_me(rs->rs_rgd->rd_gl);
2080 		if (rg_locked) {
2081 			rgrp_lock_local(rs->rs_rgd);
2082 		} else {
2083 			if (skip && skip--)
2084 				goto next_rgrp;
2085 			if (!gfs2_rs_active(rs)) {
2086 				if (loops == 0 &&
2087 				    !fast_to_acquire(rs->rs_rgd))
2088 					goto next_rgrp;
2089 				if ((loops < 2) &&
2090 				    gfs2_rgrp_used_recently(rs, 1000) &&
2091 				    gfs2_rgrp_congested(rs->rs_rgd, loops))
2092 					goto next_rgrp;
2093 			}
2094 			error = gfs2_glock_nq_init(rs->rs_rgd->rd_gl,
2095 						   LM_ST_EXCLUSIVE, flags,
2096 						   &ip->i_rgd_gh);
2097 			if (unlikely(error))
2098 				return error;
2099 			rgrp_lock_local(rs->rs_rgd);
2100 			if (!gfs2_rs_active(rs) && (loops < 2) &&
2101 			    gfs2_rgrp_congested(rs->rs_rgd, loops))
2102 				goto skip_rgrp;
2103 			if (sdp->sd_args.ar_rgrplvb) {
2104 				error = update_rgrp_lvb(rs->rs_rgd,
2105 							&ip->i_rgd_gh);
2106 				if (unlikely(error)) {
2107 					rgrp_unlock_local(rs->rs_rgd);
2108 					gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2109 					return error;
2110 				}
2111 			}
2112 		}
2113 
2114 		/* Skip unusable resource groups */
2115 		if ((rs->rs_rgd->rd_flags & (GFS2_RGF_NOALLOC |
2116 						 GFS2_RDF_ERROR)) ||
2117 		    (loops == 0 && target > rs->rs_rgd->rd_extfail_pt))
2118 			goto skip_rgrp;
2119 
2120 		if (sdp->sd_args.ar_rgrplvb) {
2121 			error = gfs2_instantiate(&ip->i_rgd_gh);
2122 			if (error)
2123 				goto skip_rgrp;
2124 		}
2125 
2126 		/* Get a reservation if we don't already have one */
2127 		if (!gfs2_rs_active(rs))
2128 			rg_mblk_search(rs->rs_rgd, ip, ap);
2129 
2130 		/* Skip rgrps when we can't get a reservation on first pass */
2131 		if (!gfs2_rs_active(rs) && (loops < 1))
2132 			goto check_rgrp;
2133 
2134 		/* If rgrp has enough free space, use it */
2135 		rgd = rs->rs_rgd;
2136 		spin_lock(&rgd->rd_rsspin);
2137 		free_blocks = rgd_free(rgd, rs);
2138 		blocks_available = rgd->rd_free_clone - rgd->rd_reserved;
2139 		if (free_blocks < target || blocks_available < target) {
2140 			spin_unlock(&rgd->rd_rsspin);
2141 			goto check_rgrp;
2142 		}
2143 		rs->rs_reserved = ap->target;
2144 		if (rs->rs_reserved > blocks_available)
2145 			rs->rs_reserved = blocks_available;
2146 		rgd->rd_reserved += rs->rs_reserved;
2147 		spin_unlock(&rgd->rd_rsspin);
2148 		rgrp_unlock_local(rs->rs_rgd);
2149 		return 0;
2150 check_rgrp:
2151 		/* Check for unlinked inodes which can be reclaimed */
2152 		if (rs->rs_rgd->rd_flags & GFS2_RDF_CHECK)
2153 			try_rgrp_unlink(rs->rs_rgd, &last_unlinked,
2154 					ip->i_no_addr);
2155 skip_rgrp:
2156 		rgrp_unlock_local(rs->rs_rgd);
2157 
2158 		/* Drop reservation, if we couldn't use reserved rgrp */
2159 		if (gfs2_rs_active(rs))
2160 			gfs2_rs_deltree(rs);
2161 
2162 		/* Unlock rgrp if required */
2163 		if (!rg_locked)
2164 			gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2165 next_rgrp:
2166 		/* Find the next rgrp, and continue looking */
2167 		if (gfs2_select_rgrp(&rs->rs_rgd, begin))
2168 			continue;
2169 		if (skip)
2170 			continue;
2171 
2172 		/* If we've scanned all the rgrps, but found no free blocks
2173 		 * then this checks for some less likely conditions before
2174 		 * trying again.
2175 		 */
2176 		loops++;
2177 		/* Check that fs hasn't grown if writing to rindex */
2178 		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2179 			error = gfs2_ri_update(ip);
2180 			if (error)
2181 				return error;
2182 		}
2183 		/* Flushing the log may release space */
2184 		if (loops == 2) {
2185 			if (ap->min_target)
2186 				target = ap->min_target;
2187 			gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
2188 				       GFS2_LFC_INPLACE_RESERVE);
2189 		}
2190 	}
2191 
2192 	return -ENOSPC;
2193 }
2194 
2195 /**
2196  * gfs2_inplace_release - release an inplace reservation
2197  * @ip: the inode the reservation was taken out on
2198  *
2199  * Release a reservation made by gfs2_inplace_reserve().
2200  */
2201 
2202 void gfs2_inplace_release(struct gfs2_inode *ip)
2203 {
2204 	struct gfs2_blkreserv *rs = &ip->i_res;
2205 
2206 	if (rs->rs_reserved) {
2207 		struct gfs2_rgrpd *rgd = rs->rs_rgd;
2208 
2209 		spin_lock(&rgd->rd_rsspin);
2210 		GLOCK_BUG_ON(rgd->rd_gl, rgd->rd_reserved < rs->rs_reserved);
2211 		rgd->rd_reserved -= rs->rs_reserved;
2212 		spin_unlock(&rgd->rd_rsspin);
2213 		rs->rs_reserved = 0;
2214 	}
2215 	if (gfs2_holder_initialized(&ip->i_rgd_gh))
2216 		gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2217 }
2218 
2219 /**
2220  * gfs2_alloc_extent - allocate an extent from a given bitmap
2221  * @rbm: the resource group information
2222  * @dinode: TRUE if the first block we allocate is for a dinode
2223  * @n: The extent length (value/result)
2224  *
2225  * Add the bitmap buffer to the transaction.
2226  * Set the found bits to @new_state to change block's allocation state.
2227  */
2228 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2229 			     unsigned int *n)
2230 {
2231 	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2232 	const unsigned int elen = *n;
2233 	u64 block;
2234 	int ret;
2235 
2236 	*n = 1;
2237 	block = gfs2_rbm_to_block(rbm);
2238 	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2239 	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2240 	block++;
2241 	while (*n < elen) {
2242 		ret = gfs2_rbm_from_block(&pos, block);
2243 		if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE)
2244 			break;
2245 		gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2246 		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2247 		(*n)++;
2248 		block++;
2249 	}
2250 }
2251 
2252 /**
2253  * rgblk_free - Change alloc state of given block(s)
2254  * @sdp: the filesystem
2255  * @rgd: the resource group the blocks are in
2256  * @bstart: the start of a run of blocks to free
2257  * @blen: the length of the block run (all must lie within ONE RG!)
2258  * @new_state: GFS2_BLKST_XXX the after-allocation block state
2259  */
2260 
2261 static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd,
2262 		       u64 bstart, u32 blen, unsigned char new_state)
2263 {
2264 	struct gfs2_rbm rbm;
2265 	struct gfs2_bitmap *bi, *bi_prev = NULL;
2266 
2267 	rbm.rgd = rgd;
2268 	if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart)))
2269 		return;
2270 	while (blen--) {
2271 		bi = rbm_bi(&rbm);
2272 		if (bi != bi_prev) {
2273 			if (!bi->bi_clone) {
2274 				bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2275 						      GFP_NOFS | __GFP_NOFAIL);
2276 				memcpy(bi->bi_clone + bi->bi_offset,
2277 				       bi->bi_bh->b_data + bi->bi_offset,
2278 				       bi->bi_bytes);
2279 			}
2280 			gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2281 			bi_prev = bi;
2282 		}
2283 		gfs2_setbit(&rbm, false, new_state);
2284 		gfs2_rbm_add(&rbm, 1);
2285 	}
2286 }
2287 
2288 /**
2289  * gfs2_rgrp_dump - print out an rgrp
2290  * @seq: The iterator
2291  * @rgd: The rgrp in question
2292  * @fs_id_buf: pointer to file system id (if requested)
2293  *
2294  */
2295 
2296 void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_rgrpd *rgd,
2297 		    const char *fs_id_buf)
2298 {
2299 	struct gfs2_blkreserv *trs;
2300 	const struct rb_node *n;
2301 
2302 	spin_lock(&rgd->rd_rsspin);
2303 	gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u q:%u r:%u e:%u\n",
2304 		       fs_id_buf,
2305 		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2306 		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2307 		       rgd->rd_requested, rgd->rd_reserved, rgd->rd_extfail_pt);
2308 	if (rgd->rd_sbd->sd_args.ar_rgrplvb) {
2309 		struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
2310 
2311 		gfs2_print_dbg(seq, "%s  L: f:%02x b:%u i:%u\n", fs_id_buf,
2312 			       be32_to_cpu(rgl->rl_flags),
2313 			       be32_to_cpu(rgl->rl_free),
2314 			       be32_to_cpu(rgl->rl_dinodes));
2315 	}
2316 	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2317 		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2318 		dump_rs(seq, trs, fs_id_buf);
2319 	}
2320 	spin_unlock(&rgd->rd_rsspin);
2321 }
2322 
2323 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2324 {
2325 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2326 	char fs_id_buf[sizeof(sdp->sd_fsname) + 7];
2327 
2328 	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2329 		(unsigned long long)rgd->rd_addr);
2330 	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2331 	sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname);
2332 	gfs2_rgrp_dump(NULL, rgd, fs_id_buf);
2333 	rgd->rd_flags |= GFS2_RDF_ERROR;
2334 }
2335 
2336 /**
2337  * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2338  * @ip: The inode we have just allocated blocks for
2339  * @rbm: The start of the allocated blocks
2340  * @len: The extent length
2341  *
2342  * Adjusts a reservation after an allocation has taken place. If the
2343  * reservation does not match the allocation, or if it is now empty
2344  * then it is removed.
2345  */
2346 
2347 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2348 				    const struct gfs2_rbm *rbm, unsigned len)
2349 {
2350 	struct gfs2_blkreserv *rs = &ip->i_res;
2351 	struct gfs2_rgrpd *rgd = rbm->rgd;
2352 
2353 	BUG_ON(rs->rs_reserved < len);
2354 	rs->rs_reserved -= len;
2355 	if (gfs2_rs_active(rs)) {
2356 		u64 start = gfs2_rbm_to_block(rbm);
2357 
2358 		if (rs->rs_start == start) {
2359 			unsigned int rlen;
2360 
2361 			rs->rs_start += len;
2362 			rlen = min(rs->rs_requested, len);
2363 			rs->rs_requested -= rlen;
2364 			rgd->rd_requested -= rlen;
2365 			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2366 			if (rs->rs_start < rgd->rd_data0 + rgd->rd_data &&
2367 			    rs->rs_requested)
2368 				return;
2369 			/* We used up our block reservation, so we should
2370 			   reserve more blocks next time. */
2371 			atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint);
2372 		}
2373 		__rs_deltree(rs);
2374 	}
2375 }
2376 
2377 /**
2378  * gfs2_set_alloc_start - Set starting point for block allocation
2379  * @rbm: The rbm which will be set to the required location
2380  * @ip: The gfs2 inode
2381  * @dinode: Flag to say if allocation includes a new inode
2382  *
2383  * This sets the starting point from the reservation if one is active
2384  * otherwise it falls back to guessing a start point based on the
2385  * inode's goal block or the last allocation point in the rgrp.
2386  */
2387 
2388 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2389 				 const struct gfs2_inode *ip, bool dinode)
2390 {
2391 	u64 goal;
2392 
2393 	if (gfs2_rs_active(&ip->i_res)) {
2394 		goal = ip->i_res.rs_start;
2395 	} else {
2396 		if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2397 			goal = ip->i_goal;
2398 		else
2399 			goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2400 	}
2401 	if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) {
2402 		rbm->bii = 0;
2403 		rbm->offset = 0;
2404 	}
2405 }
2406 
2407 /**
2408  * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2409  * @ip: the inode to allocate the block for
2410  * @bn: Used to return the starting block number
2411  * @nblocks: requested number of blocks/extent length (value/result)
2412  * @dinode: 1 if we're allocating a dinode block, else 0
2413  * @generation: the generation number of the inode
2414  *
2415  * Returns: 0 or error
2416  */
2417 
2418 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2419 		      bool dinode, u64 *generation)
2420 {
2421 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2422 	struct buffer_head *dibh;
2423 	struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rgd, };
2424 	u64 block; /* block, within the file system scope */
2425 	u32 minext = 1;
2426 	int error = -ENOSPC;
2427 
2428 	BUG_ON(ip->i_res.rs_reserved < *nblocks);
2429 
2430 	rgrp_lock_local(rbm.rgd);
2431 	if (gfs2_rs_active(&ip->i_res)) {
2432 		gfs2_set_alloc_start(&rbm, ip, dinode);
2433 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, &ip->i_res, false);
2434 	}
2435 	if (error == -ENOSPC) {
2436 		gfs2_set_alloc_start(&rbm, ip, dinode);
2437 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, NULL, false);
2438 	}
2439 
2440 	/* Since all blocks are reserved in advance, this shouldn't happen */
2441 	if (error) {
2442 		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2443 			(unsigned long long)ip->i_no_addr, error, *nblocks,
2444 			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2445 			rbm.rgd->rd_extfail_pt);
2446 		goto rgrp_error;
2447 	}
2448 
2449 	gfs2_alloc_extent(&rbm, dinode, nblocks);
2450 	block = gfs2_rbm_to_block(&rbm);
2451 	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2452 	if (!dinode) {
2453 		ip->i_goal = block + *nblocks - 1;
2454 		error = gfs2_meta_inode_buffer(ip, &dibh);
2455 		if (error == 0) {
2456 			struct gfs2_dinode *di =
2457 				(struct gfs2_dinode *)dibh->b_data;
2458 			gfs2_trans_add_meta(ip->i_gl, dibh);
2459 			di->di_goal_meta = di->di_goal_data =
2460 				cpu_to_be64(ip->i_goal);
2461 			brelse(dibh);
2462 		}
2463 	}
2464 	spin_lock(&rbm.rgd->rd_rsspin);
2465 	gfs2_adjust_reservation(ip, &rbm, *nblocks);
2466 	if (rbm.rgd->rd_free < *nblocks || rbm.rgd->rd_reserved < *nblocks) {
2467 		fs_warn(sdp, "nblocks=%u\n", *nblocks);
2468 		spin_unlock(&rbm.rgd->rd_rsspin);
2469 		goto rgrp_error;
2470 	}
2471 	GLOCK_BUG_ON(rbm.rgd->rd_gl, rbm.rgd->rd_reserved < *nblocks);
2472 	GLOCK_BUG_ON(rbm.rgd->rd_gl, rbm.rgd->rd_free_clone < *nblocks);
2473 	GLOCK_BUG_ON(rbm.rgd->rd_gl, rbm.rgd->rd_free < *nblocks);
2474 	rbm.rgd->rd_reserved -= *nblocks;
2475 	rbm.rgd->rd_free_clone -= *nblocks;
2476 	rbm.rgd->rd_free -= *nblocks;
2477 	spin_unlock(&rbm.rgd->rd_rsspin);
2478 	if (dinode) {
2479 		rbm.rgd->rd_dinodes++;
2480 		*generation = rbm.rgd->rd_igeneration++;
2481 		if (*generation == 0)
2482 			*generation = rbm.rgd->rd_igeneration++;
2483 	}
2484 
2485 	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2486 	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2487 	rgrp_unlock_local(rbm.rgd);
2488 
2489 	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2490 	if (dinode)
2491 		gfs2_trans_remove_revoke(sdp, block, *nblocks);
2492 
2493 	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2494 
2495 	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2496 			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2497 	*bn = block;
2498 	return 0;
2499 
2500 rgrp_error:
2501 	rgrp_unlock_local(rbm.rgd);
2502 	gfs2_rgrp_error(rbm.rgd);
2503 	return -EIO;
2504 }
2505 
2506 /**
2507  * __gfs2_free_blocks - free a contiguous run of block(s)
2508  * @ip: the inode these blocks are being freed from
2509  * @rgd: the resource group the blocks are in
2510  * @bstart: first block of a run of contiguous blocks
2511  * @blen: the length of the block run
2512  * @meta: 1 if the blocks represent metadata
2513  *
2514  */
2515 
2516 void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2517 			u64 bstart, u32 blen, int meta)
2518 {
2519 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2520 
2521 	rgrp_lock_local(rgd);
2522 	rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE);
2523 	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2524 	rgd->rd_free += blen;
2525 	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2526 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2527 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2528 	rgrp_unlock_local(rgd);
2529 
2530 	/* Directories keep their data in the metadata address space */
2531 	if (meta || ip->i_depth || gfs2_is_jdata(ip))
2532 		gfs2_journal_wipe(ip, bstart, blen);
2533 }
2534 
2535 /**
2536  * gfs2_free_meta - free a contiguous run of data block(s)
2537  * @ip: the inode these blocks are being freed from
2538  * @rgd: the resource group the blocks are in
2539  * @bstart: first block of a run of contiguous blocks
2540  * @blen: the length of the block run
2541  *
2542  */
2543 
2544 void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2545 		    u64 bstart, u32 blen)
2546 {
2547 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2548 
2549 	__gfs2_free_blocks(ip, rgd, bstart, blen, 1);
2550 	gfs2_statfs_change(sdp, 0, +blen, 0);
2551 	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2552 }
2553 
2554 void gfs2_unlink_di(struct inode *inode)
2555 {
2556 	struct gfs2_inode *ip = GFS2_I(inode);
2557 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2558 	struct gfs2_rgrpd *rgd;
2559 	u64 blkno = ip->i_no_addr;
2560 
2561 	rgd = gfs2_blk2rgrpd(sdp, blkno, true);
2562 	if (!rgd)
2563 		return;
2564 	rgrp_lock_local(rgd);
2565 	rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2566 	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2567 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2568 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2569 	be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1);
2570 	rgrp_unlock_local(rgd);
2571 }
2572 
2573 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2574 {
2575 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2576 
2577 	rgrp_lock_local(rgd);
2578 	rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2579 	if (!rgd->rd_dinodes)
2580 		gfs2_consist_rgrpd(rgd);
2581 	rgd->rd_dinodes--;
2582 	rgd->rd_free++;
2583 
2584 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2585 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2586 	rgrp_unlock_local(rgd);
2587 	be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1);
2588 
2589 	gfs2_statfs_change(sdp, 0, +1, -1);
2590 	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2591 	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2592 	gfs2_journal_wipe(ip, ip->i_no_addr, 1);
2593 }
2594 
2595 /**
2596  * gfs2_check_blk_type - Check the type of a block
2597  * @sdp: The superblock
2598  * @no_addr: The block number to check
2599  * @type: The block type we are looking for
2600  *
2601  * The inode glock of @no_addr must be held.  The @type to check for is either
2602  * GFS2_BLKST_DINODE or GFS2_BLKST_UNLINKED; checking for type GFS2_BLKST_FREE
2603  * or GFS2_BLKST_USED would make no sense.
2604  *
2605  * Returns: 0 if the block type matches the expected type
2606  *          -ESTALE if it doesn't match
2607  *          or -ve errno if something went wrong while checking
2608  */
2609 
2610 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2611 {
2612 	struct gfs2_rgrpd *rgd;
2613 	struct gfs2_holder rgd_gh;
2614 	struct gfs2_rbm rbm;
2615 	int error = -EINVAL;
2616 
2617 	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2618 	if (!rgd)
2619 		goto fail;
2620 
2621 	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2622 	if (error)
2623 		goto fail;
2624 
2625 	rbm.rgd = rgd;
2626 	error = gfs2_rbm_from_block(&rbm, no_addr);
2627 	if (!WARN_ON_ONCE(error)) {
2628 		/*
2629 		 * No need to take the local resource group lock here; the
2630 		 * inode glock of @no_addr provides the necessary
2631 		 * synchronization in case the block is an inode.  (In case
2632 		 * the block is not an inode, the block type will not match
2633 		 * the @type we are looking for.)
2634 		 */
2635 		if (gfs2_testbit(&rbm, false) != type)
2636 			error = -ESTALE;
2637 	}
2638 
2639 	gfs2_glock_dq_uninit(&rgd_gh);
2640 
2641 fail:
2642 	return error;
2643 }
2644 
2645 /**
2646  * gfs2_rlist_add - add a RG to a list of RGs
2647  * @ip: the inode
2648  * @rlist: the list of resource groups
2649  * @block: the block
2650  *
2651  * Figure out what RG a block belongs to and add that RG to the list
2652  *
2653  * FIXME: Don't use NOFAIL
2654  *
2655  */
2656 
2657 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2658 		    u64 block)
2659 {
2660 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2661 	struct gfs2_rgrpd *rgd;
2662 	struct gfs2_rgrpd **tmp;
2663 	unsigned int new_space;
2664 	unsigned int x;
2665 
2666 	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2667 		return;
2668 
2669 	/*
2670 	 * The resource group last accessed is kept in the last position.
2671 	 */
2672 
2673 	if (rlist->rl_rgrps) {
2674 		rgd = rlist->rl_rgd[rlist->rl_rgrps - 1];
2675 		if (rgrp_contains_block(rgd, block))
2676 			return;
2677 		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2678 	} else {
2679 		rgd = ip->i_res.rs_rgd;
2680 		if (!rgd || !rgrp_contains_block(rgd, block))
2681 			rgd = gfs2_blk2rgrpd(sdp, block, 1);
2682 	}
2683 
2684 	if (!rgd) {
2685 		fs_err(sdp, "rlist_add: no rgrp for block %llu\n",
2686 		       (unsigned long long)block);
2687 		return;
2688 	}
2689 
2690 	for (x = 0; x < rlist->rl_rgrps; x++) {
2691 		if (rlist->rl_rgd[x] == rgd) {
2692 			swap(rlist->rl_rgd[x],
2693 			     rlist->rl_rgd[rlist->rl_rgrps - 1]);
2694 			return;
2695 		}
2696 	}
2697 
2698 	if (rlist->rl_rgrps == rlist->rl_space) {
2699 		new_space = rlist->rl_space + 10;
2700 
2701 		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2702 			      GFP_NOFS | __GFP_NOFAIL);
2703 
2704 		if (rlist->rl_rgd) {
2705 			memcpy(tmp, rlist->rl_rgd,
2706 			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2707 			kfree(rlist->rl_rgd);
2708 		}
2709 
2710 		rlist->rl_space = new_space;
2711 		rlist->rl_rgd = tmp;
2712 	}
2713 
2714 	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2715 }
2716 
2717 /**
2718  * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2719  *      and initialize an array of glock holders for them
2720  * @rlist: the list of resource groups
2721  *
2722  * FIXME: Don't use NOFAIL
2723  *
2724  */
2725 
2726 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist)
2727 {
2728 	unsigned int x;
2729 
2730 	rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps,
2731 				      sizeof(struct gfs2_holder),
2732 				      GFP_NOFS | __GFP_NOFAIL);
2733 	for (x = 0; x < rlist->rl_rgrps; x++)
2734 		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, LM_ST_EXCLUSIVE,
2735 				 LM_FLAG_NODE_SCOPE, &rlist->rl_ghs[x]);
2736 }
2737 
2738 /**
2739  * gfs2_rlist_free - free a resource group list
2740  * @rlist: the list of resource groups
2741  *
2742  */
2743 
2744 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2745 {
2746 	unsigned int x;
2747 
2748 	kfree(rlist->rl_rgd);
2749 
2750 	if (rlist->rl_ghs) {
2751 		for (x = 0; x < rlist->rl_rgrps; x++)
2752 			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2753 		kfree(rlist->rl_ghs);
2754 		rlist->rl_ghs = NULL;
2755 	}
2756 }
2757 
2758 void rgrp_lock_local(struct gfs2_rgrpd *rgd)
2759 {
2760 	mutex_lock(&rgd->rd_mutex);
2761 }
2762 
2763 void rgrp_unlock_local(struct gfs2_rgrpd *rgd)
2764 {
2765 	mutex_unlock(&rgd->rd_mutex);
2766 }
2767