1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/slab.h> 10 #include <linux/spinlock.h> 11 #include <linux/completion.h> 12 #include <linux/buffer_head.h> 13 #include <linux/fs.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/prefetch.h> 16 #include <linux/blkdev.h> 17 #include <linux/rbtree.h> 18 #include <linux/random.h> 19 20 #include "gfs2.h" 21 #include "incore.h" 22 #include "glock.h" 23 #include "glops.h" 24 #include "lops.h" 25 #include "meta_io.h" 26 #include "quota.h" 27 #include "rgrp.h" 28 #include "super.h" 29 #include "trans.h" 30 #include "util.h" 31 #include "log.h" 32 #include "inode.h" 33 #include "trace_gfs2.h" 34 #include "dir.h" 35 36 #define BFITNOENT ((u32)~0) 37 #define NO_BLOCK ((u64)~0) 38 39 struct gfs2_rbm { 40 struct gfs2_rgrpd *rgd; 41 u32 offset; /* The offset is bitmap relative */ 42 int bii; /* Bitmap index */ 43 }; 44 45 static inline struct gfs2_bitmap *rbm_bi(const struct gfs2_rbm *rbm) 46 { 47 return rbm->rgd->rd_bits + rbm->bii; 48 } 49 50 static inline u64 gfs2_rbm_to_block(const struct gfs2_rbm *rbm) 51 { 52 BUG_ON(rbm->offset >= rbm->rgd->rd_data); 53 return rbm->rgd->rd_data0 + (rbm_bi(rbm)->bi_start * GFS2_NBBY) + 54 rbm->offset; 55 } 56 57 /* 58 * These routines are used by the resource group routines (rgrp.c) 59 * to keep track of block allocation. Each block is represented by two 60 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. 61 * 62 * 0 = Free 63 * 1 = Used (not metadata) 64 * 2 = Unlinked (still in use) inode 65 * 3 = Used (metadata) 66 */ 67 68 struct gfs2_extent { 69 struct gfs2_rbm rbm; 70 u32 len; 71 }; 72 73 static const char valid_change[16] = { 74 /* current */ 75 /* n */ 0, 1, 1, 1, 76 /* e */ 1, 0, 0, 0, 77 /* w */ 0, 0, 0, 1, 78 1, 0, 0, 0 79 }; 80 81 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 82 struct gfs2_blkreserv *rs, bool nowrap); 83 84 85 /** 86 * gfs2_setbit - Set a bit in the bitmaps 87 * @rbm: The position of the bit to set 88 * @do_clone: Also set the clone bitmap, if it exists 89 * @new_state: the new state of the block 90 * 91 */ 92 93 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone, 94 unsigned char new_state) 95 { 96 unsigned char *byte1, *byte2, *end, cur_state; 97 struct gfs2_bitmap *bi = rbm_bi(rbm); 98 unsigned int buflen = bi->bi_bytes; 99 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 100 101 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY); 102 end = bi->bi_bh->b_data + bi->bi_offset + buflen; 103 104 BUG_ON(byte1 >= end); 105 106 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; 107 108 if (unlikely(!valid_change[new_state * 4 + cur_state])) { 109 struct gfs2_sbd *sdp = rbm->rgd->rd_sbd; 110 111 fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n", 112 rbm->offset, cur_state, new_state); 113 fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n", 114 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start, 115 (unsigned long long)bi->bi_bh->b_blocknr); 116 fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n", 117 bi->bi_offset, bi->bi_bytes, 118 (unsigned long long)gfs2_rbm_to_block(rbm)); 119 dump_stack(); 120 gfs2_consist_rgrpd(rbm->rgd); 121 return; 122 } 123 *byte1 ^= (cur_state ^ new_state) << bit; 124 125 if (do_clone && bi->bi_clone) { 126 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY); 127 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; 128 *byte2 ^= (cur_state ^ new_state) << bit; 129 } 130 } 131 132 /** 133 * gfs2_testbit - test a bit in the bitmaps 134 * @rbm: The bit to test 135 * @use_clone: If true, test the clone bitmap, not the official bitmap. 136 * 137 * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps, 138 * not the "real" bitmaps, to avoid allocating recently freed blocks. 139 * 140 * Returns: The two bit block state of the requested bit 141 */ 142 143 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone) 144 { 145 struct gfs2_bitmap *bi = rbm_bi(rbm); 146 const u8 *buffer; 147 const u8 *byte; 148 unsigned int bit; 149 150 if (use_clone && bi->bi_clone) 151 buffer = bi->bi_clone; 152 else 153 buffer = bi->bi_bh->b_data; 154 buffer += bi->bi_offset; 155 byte = buffer + (rbm->offset / GFS2_NBBY); 156 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 157 158 return (*byte >> bit) & GFS2_BIT_MASK; 159 } 160 161 /** 162 * gfs2_bit_search 163 * @ptr: Pointer to bitmap data 164 * @mask: Mask to use (normally 0x55555.... but adjusted for search start) 165 * @state: The state we are searching for 166 * 167 * We xor the bitmap data with a patter which is the bitwise opposite 168 * of what we are looking for, this gives rise to a pattern of ones 169 * wherever there is a match. Since we have two bits per entry, we 170 * take this pattern, shift it down by one place and then and it with 171 * the original. All the even bit positions (0,2,4, etc) then represent 172 * successful matches, so we mask with 0x55555..... to remove the unwanted 173 * odd bit positions. 174 * 175 * This allows searching of a whole u64 at once (32 blocks) with a 176 * single test (on 64 bit arches). 177 */ 178 179 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) 180 { 181 u64 tmp; 182 static const u64 search[] = { 183 [0] = 0xffffffffffffffffULL, 184 [1] = 0xaaaaaaaaaaaaaaaaULL, 185 [2] = 0x5555555555555555ULL, 186 [3] = 0x0000000000000000ULL, 187 }; 188 tmp = le64_to_cpu(*ptr) ^ search[state]; 189 tmp &= (tmp >> 1); 190 tmp &= mask; 191 return tmp; 192 } 193 194 /** 195 * rs_cmp - multi-block reservation range compare 196 * @start: start of the new reservation 197 * @len: number of blocks in the new reservation 198 * @rs: existing reservation to compare against 199 * 200 * returns: 1 if the block range is beyond the reach of the reservation 201 * -1 if the block range is before the start of the reservation 202 * 0 if the block range overlaps with the reservation 203 */ 204 static inline int rs_cmp(u64 start, u32 len, struct gfs2_blkreserv *rs) 205 { 206 if (start >= rs->rs_start + rs->rs_requested) 207 return 1; 208 if (rs->rs_start >= start + len) 209 return -1; 210 return 0; 211 } 212 213 /** 214 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing 215 * a block in a given allocation state. 216 * @buf: the buffer that holds the bitmaps 217 * @len: the length (in bytes) of the buffer 218 * @goal: start search at this block's bit-pair (within @buffer) 219 * @state: GFS2_BLKST_XXX the state of the block we're looking for. 220 * 221 * Scope of @goal and returned block number is only within this bitmap buffer, 222 * not entire rgrp or filesystem. @buffer will be offset from the actual 223 * beginning of a bitmap block buffer, skipping any header structures, but 224 * headers are always a multiple of 64 bits long so that the buffer is 225 * always aligned to a 64 bit boundary. 226 * 227 * The size of the buffer is in bytes, but is it assumed that it is 228 * always ok to read a complete multiple of 64 bits at the end 229 * of the block in case the end is no aligned to a natural boundary. 230 * 231 * Return: the block number (bitmap buffer scope) that was found 232 */ 233 234 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, 235 u32 goal, u8 state) 236 { 237 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); 238 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); 239 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); 240 u64 tmp; 241 u64 mask = 0x5555555555555555ULL; 242 u32 bit; 243 244 /* Mask off bits we don't care about at the start of the search */ 245 mask <<= spoint; 246 tmp = gfs2_bit_search(ptr, mask, state); 247 ptr++; 248 while(tmp == 0 && ptr < end) { 249 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); 250 ptr++; 251 } 252 /* Mask off any bits which are more than len bytes from the start */ 253 if (ptr == end && (len & (sizeof(u64) - 1))) 254 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); 255 /* Didn't find anything, so return */ 256 if (tmp == 0) 257 return BFITNOENT; 258 ptr--; 259 bit = __ffs64(tmp); 260 bit /= 2; /* two bits per entry in the bitmap */ 261 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; 262 } 263 264 /** 265 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number 266 * @rbm: The rbm with rgd already set correctly 267 * @block: The block number (filesystem relative) 268 * 269 * This sets the bi and offset members of an rbm based on a 270 * resource group and a filesystem relative block number. The 271 * resource group must be set in the rbm on entry, the bi and 272 * offset members will be set by this function. 273 * 274 * Returns: 0 on success, or an error code 275 */ 276 277 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block) 278 { 279 if (!rgrp_contains_block(rbm->rgd, block)) 280 return -E2BIG; 281 rbm->bii = 0; 282 rbm->offset = block - rbm->rgd->rd_data0; 283 /* Check if the block is within the first block */ 284 if (rbm->offset < rbm_bi(rbm)->bi_blocks) 285 return 0; 286 287 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */ 288 rbm->offset += (sizeof(struct gfs2_rgrp) - 289 sizeof(struct gfs2_meta_header)) * GFS2_NBBY; 290 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 291 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 292 return 0; 293 } 294 295 /** 296 * gfs2_rbm_add - add a number of blocks to an rbm 297 * @rbm: The rbm with rgd already set correctly 298 * @blocks: The number of blocks to add to rpm 299 * 300 * This function takes an existing rbm structure and adds a number of blocks to 301 * it. 302 * 303 * Returns: True if the new rbm would point past the end of the rgrp. 304 */ 305 306 static bool gfs2_rbm_add(struct gfs2_rbm *rbm, u32 blocks) 307 { 308 struct gfs2_rgrpd *rgd = rbm->rgd; 309 struct gfs2_bitmap *bi = rgd->rd_bits + rbm->bii; 310 311 if (rbm->offset + blocks < bi->bi_blocks) { 312 rbm->offset += blocks; 313 return false; 314 } 315 blocks -= bi->bi_blocks - rbm->offset; 316 317 for(;;) { 318 bi++; 319 if (bi == rgd->rd_bits + rgd->rd_length) 320 return true; 321 if (blocks < bi->bi_blocks) { 322 rbm->offset = blocks; 323 rbm->bii = bi - rgd->rd_bits; 324 return false; 325 } 326 blocks -= bi->bi_blocks; 327 } 328 } 329 330 /** 331 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned 332 * @rbm: Position to search (value/result) 333 * @n_unaligned: Number of unaligned blocks to check 334 * @len: Decremented for each block found (terminate on zero) 335 * 336 * Returns: true if a non-free block is encountered or the end of the resource 337 * group is reached. 338 */ 339 340 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len) 341 { 342 u32 n; 343 u8 res; 344 345 for (n = 0; n < n_unaligned; n++) { 346 res = gfs2_testbit(rbm, true); 347 if (res != GFS2_BLKST_FREE) 348 return true; 349 (*len)--; 350 if (*len == 0) 351 return true; 352 if (gfs2_rbm_add(rbm, 1)) 353 return true; 354 } 355 356 return false; 357 } 358 359 /** 360 * gfs2_free_extlen - Return extent length of free blocks 361 * @rrbm: Starting position 362 * @len: Max length to check 363 * 364 * Starting at the block specified by the rbm, see how many free blocks 365 * there are, not reading more than len blocks ahead. This can be done 366 * using memchr_inv when the blocks are byte aligned, but has to be done 367 * on a block by block basis in case of unaligned blocks. Also this 368 * function can cope with bitmap boundaries (although it must stop on 369 * a resource group boundary) 370 * 371 * Returns: Number of free blocks in the extent 372 */ 373 374 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len) 375 { 376 struct gfs2_rbm rbm = *rrbm; 377 u32 n_unaligned = rbm.offset & 3; 378 u32 size = len; 379 u32 bytes; 380 u32 chunk_size; 381 u8 *ptr, *start, *end; 382 u64 block; 383 struct gfs2_bitmap *bi; 384 385 if (n_unaligned && 386 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len)) 387 goto out; 388 389 n_unaligned = len & 3; 390 /* Start is now byte aligned */ 391 while (len > 3) { 392 bi = rbm_bi(&rbm); 393 start = bi->bi_bh->b_data; 394 if (bi->bi_clone) 395 start = bi->bi_clone; 396 start += bi->bi_offset; 397 end = start + bi->bi_bytes; 398 BUG_ON(rbm.offset & 3); 399 start += (rbm.offset / GFS2_NBBY); 400 bytes = min_t(u32, len / GFS2_NBBY, (end - start)); 401 ptr = memchr_inv(start, 0, bytes); 402 chunk_size = ((ptr == NULL) ? bytes : (ptr - start)); 403 chunk_size *= GFS2_NBBY; 404 BUG_ON(len < chunk_size); 405 len -= chunk_size; 406 block = gfs2_rbm_to_block(&rbm); 407 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) { 408 n_unaligned = 0; 409 break; 410 } 411 if (ptr) { 412 n_unaligned = 3; 413 break; 414 } 415 n_unaligned = len & 3; 416 } 417 418 /* Deal with any bits left over at the end */ 419 if (n_unaligned) 420 gfs2_unaligned_extlen(&rbm, n_unaligned, &len); 421 out: 422 return size - len; 423 } 424 425 /** 426 * gfs2_bitcount - count the number of bits in a certain state 427 * @rgd: the resource group descriptor 428 * @buffer: the buffer that holds the bitmaps 429 * @buflen: the length (in bytes) of the buffer 430 * @state: the state of the block we're looking for 431 * 432 * Returns: The number of bits 433 */ 434 435 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, 436 unsigned int buflen, u8 state) 437 { 438 const u8 *byte = buffer; 439 const u8 *end = buffer + buflen; 440 const u8 state1 = state << 2; 441 const u8 state2 = state << 4; 442 const u8 state3 = state << 6; 443 u32 count = 0; 444 445 for (; byte < end; byte++) { 446 if (((*byte) & 0x03) == state) 447 count++; 448 if (((*byte) & 0x0C) == state1) 449 count++; 450 if (((*byte) & 0x30) == state2) 451 count++; 452 if (((*byte) & 0xC0) == state3) 453 count++; 454 } 455 456 return count; 457 } 458 459 /** 460 * gfs2_rgrp_verify - Verify that a resource group is consistent 461 * @rgd: the rgrp 462 * 463 */ 464 465 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) 466 { 467 struct gfs2_sbd *sdp = rgd->rd_sbd; 468 struct gfs2_bitmap *bi = NULL; 469 u32 length = rgd->rd_length; 470 u32 count[4], tmp; 471 int buf, x; 472 473 memset(count, 0, 4 * sizeof(u32)); 474 475 /* Count # blocks in each of 4 possible allocation states */ 476 for (buf = 0; buf < length; buf++) { 477 bi = rgd->rd_bits + buf; 478 for (x = 0; x < 4; x++) 479 count[x] += gfs2_bitcount(rgd, 480 bi->bi_bh->b_data + 481 bi->bi_offset, 482 bi->bi_bytes, x); 483 } 484 485 if (count[0] != rgd->rd_free) { 486 gfs2_lm(sdp, "free data mismatch: %u != %u\n", 487 count[0], rgd->rd_free); 488 gfs2_consist_rgrpd(rgd); 489 return; 490 } 491 492 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; 493 if (count[1] != tmp) { 494 gfs2_lm(sdp, "used data mismatch: %u != %u\n", 495 count[1], tmp); 496 gfs2_consist_rgrpd(rgd); 497 return; 498 } 499 500 if (count[2] + count[3] != rgd->rd_dinodes) { 501 gfs2_lm(sdp, "used metadata mismatch: %u != %u\n", 502 count[2] + count[3], rgd->rd_dinodes); 503 gfs2_consist_rgrpd(rgd); 504 return; 505 } 506 } 507 508 /** 509 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number 510 * @sdp: The GFS2 superblock 511 * @blk: The data block number 512 * @exact: True if this needs to be an exact match 513 * 514 * The @exact argument should be set to true by most callers. The exception 515 * is when we need to match blocks which are not represented by the rgrp 516 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are 517 * there for alignment purposes. Another way of looking at it is that @exact 518 * matches only valid data/metadata blocks, but with @exact false, it will 519 * match any block within the extent of the rgrp. 520 * 521 * Returns: The resource group, or NULL if not found 522 */ 523 524 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact) 525 { 526 struct rb_node *n, *next; 527 struct gfs2_rgrpd *cur; 528 529 spin_lock(&sdp->sd_rindex_spin); 530 n = sdp->sd_rindex_tree.rb_node; 531 while (n) { 532 cur = rb_entry(n, struct gfs2_rgrpd, rd_node); 533 next = NULL; 534 if (blk < cur->rd_addr) 535 next = n->rb_left; 536 else if (blk >= cur->rd_data0 + cur->rd_data) 537 next = n->rb_right; 538 if (next == NULL) { 539 spin_unlock(&sdp->sd_rindex_spin); 540 if (exact) { 541 if (blk < cur->rd_addr) 542 return NULL; 543 if (blk >= cur->rd_data0 + cur->rd_data) 544 return NULL; 545 } 546 return cur; 547 } 548 n = next; 549 } 550 spin_unlock(&sdp->sd_rindex_spin); 551 552 return NULL; 553 } 554 555 /** 556 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem 557 * @sdp: The GFS2 superblock 558 * 559 * Returns: The first rgrp in the filesystem 560 */ 561 562 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) 563 { 564 const struct rb_node *n; 565 struct gfs2_rgrpd *rgd; 566 567 spin_lock(&sdp->sd_rindex_spin); 568 n = rb_first(&sdp->sd_rindex_tree); 569 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 570 spin_unlock(&sdp->sd_rindex_spin); 571 572 return rgd; 573 } 574 575 /** 576 * gfs2_rgrpd_get_next - get the next RG 577 * @rgd: the resource group descriptor 578 * 579 * Returns: The next rgrp 580 */ 581 582 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) 583 { 584 struct gfs2_sbd *sdp = rgd->rd_sbd; 585 const struct rb_node *n; 586 587 spin_lock(&sdp->sd_rindex_spin); 588 n = rb_next(&rgd->rd_node); 589 if (n == NULL) 590 n = rb_first(&sdp->sd_rindex_tree); 591 592 if (unlikely(&rgd->rd_node == n)) { 593 spin_unlock(&sdp->sd_rindex_spin); 594 return NULL; 595 } 596 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 597 spin_unlock(&sdp->sd_rindex_spin); 598 return rgd; 599 } 600 601 void check_and_update_goal(struct gfs2_inode *ip) 602 { 603 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 604 if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL) 605 ip->i_goal = ip->i_no_addr; 606 } 607 608 void gfs2_free_clones(struct gfs2_rgrpd *rgd) 609 { 610 int x; 611 612 for (x = 0; x < rgd->rd_length; x++) { 613 struct gfs2_bitmap *bi = rgd->rd_bits + x; 614 kfree(bi->bi_clone); 615 bi->bi_clone = NULL; 616 } 617 } 618 619 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs, 620 const char *fs_id_buf) 621 { 622 struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res); 623 624 gfs2_print_dbg(seq, "%s B: n:%llu s:%llu f:%u\n", 625 fs_id_buf, 626 (unsigned long long)ip->i_no_addr, 627 (unsigned long long)rs->rs_start, 628 rs->rs_requested); 629 } 630 631 /** 632 * __rs_deltree - remove a multi-block reservation from the rgd tree 633 * @rs: The reservation to remove 634 * 635 */ 636 static void __rs_deltree(struct gfs2_blkreserv *rs) 637 { 638 struct gfs2_rgrpd *rgd; 639 640 if (!gfs2_rs_active(rs)) 641 return; 642 643 rgd = rs->rs_rgd; 644 trace_gfs2_rs(rs, TRACE_RS_TREEDEL); 645 rb_erase(&rs->rs_node, &rgd->rd_rstree); 646 RB_CLEAR_NODE(&rs->rs_node); 647 648 if (rs->rs_requested) { 649 /* return requested blocks to the rgrp */ 650 BUG_ON(rs->rs_rgd->rd_requested < rs->rs_requested); 651 rs->rs_rgd->rd_requested -= rs->rs_requested; 652 653 /* The rgrp extent failure point is likely not to increase; 654 it will only do so if the freed blocks are somehow 655 contiguous with a span of free blocks that follows. Still, 656 it will force the number to be recalculated later. */ 657 rgd->rd_extfail_pt += rs->rs_requested; 658 rs->rs_requested = 0; 659 } 660 } 661 662 /** 663 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree 664 * @rs: The reservation to remove 665 * 666 */ 667 void gfs2_rs_deltree(struct gfs2_blkreserv *rs) 668 { 669 struct gfs2_rgrpd *rgd; 670 671 rgd = rs->rs_rgd; 672 if (rgd) { 673 spin_lock(&rgd->rd_rsspin); 674 __rs_deltree(rs); 675 BUG_ON(rs->rs_requested); 676 spin_unlock(&rgd->rd_rsspin); 677 } 678 } 679 680 /** 681 * gfs2_rs_delete - delete a multi-block reservation 682 * @ip: The inode for this reservation 683 * @wcount: The inode's write count, or NULL 684 * 685 */ 686 void gfs2_rs_delete(struct gfs2_inode *ip, atomic_t *wcount) 687 { 688 down_write(&ip->i_rw_mutex); 689 if ((wcount == NULL) || (atomic_read(wcount) <= 1)) 690 gfs2_rs_deltree(&ip->i_res); 691 up_write(&ip->i_rw_mutex); 692 } 693 694 /** 695 * return_all_reservations - return all reserved blocks back to the rgrp. 696 * @rgd: the rgrp that needs its space back 697 * 698 * We previously reserved a bunch of blocks for allocation. Now we need to 699 * give them back. This leave the reservation structures in tact, but removes 700 * all of their corresponding "no-fly zones". 701 */ 702 static void return_all_reservations(struct gfs2_rgrpd *rgd) 703 { 704 struct rb_node *n; 705 struct gfs2_blkreserv *rs; 706 707 spin_lock(&rgd->rd_rsspin); 708 while ((n = rb_first(&rgd->rd_rstree))) { 709 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 710 __rs_deltree(rs); 711 } 712 spin_unlock(&rgd->rd_rsspin); 713 } 714 715 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) 716 { 717 struct rb_node *n; 718 struct gfs2_rgrpd *rgd; 719 struct gfs2_glock *gl; 720 721 while ((n = rb_first(&sdp->sd_rindex_tree))) { 722 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 723 gl = rgd->rd_gl; 724 725 rb_erase(n, &sdp->sd_rindex_tree); 726 727 if (gl) { 728 if (gl->gl_state != LM_ST_UNLOCKED) { 729 gfs2_glock_cb(gl, LM_ST_UNLOCKED); 730 flush_delayed_work(&gl->gl_work); 731 } 732 gfs2_rgrp_brelse(rgd); 733 glock_clear_object(gl, rgd); 734 gfs2_glock_put(gl); 735 } 736 737 gfs2_free_clones(rgd); 738 return_all_reservations(rgd); 739 kfree(rgd->rd_bits); 740 rgd->rd_bits = NULL; 741 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 742 } 743 } 744 745 /** 746 * compute_bitstructs - Compute the bitmap sizes 747 * @rgd: The resource group descriptor 748 * 749 * Calculates bitmap descriptors, one for each block that contains bitmap data 750 * 751 * Returns: errno 752 */ 753 754 static int compute_bitstructs(struct gfs2_rgrpd *rgd) 755 { 756 struct gfs2_sbd *sdp = rgd->rd_sbd; 757 struct gfs2_bitmap *bi; 758 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ 759 u32 bytes_left, bytes; 760 int x; 761 762 if (!length) 763 return -EINVAL; 764 765 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); 766 if (!rgd->rd_bits) 767 return -ENOMEM; 768 769 bytes_left = rgd->rd_bitbytes; 770 771 for (x = 0; x < length; x++) { 772 bi = rgd->rd_bits + x; 773 774 bi->bi_flags = 0; 775 /* small rgrp; bitmap stored completely in header block */ 776 if (length == 1) { 777 bytes = bytes_left; 778 bi->bi_offset = sizeof(struct gfs2_rgrp); 779 bi->bi_start = 0; 780 bi->bi_bytes = bytes; 781 bi->bi_blocks = bytes * GFS2_NBBY; 782 /* header block */ 783 } else if (x == 0) { 784 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); 785 bi->bi_offset = sizeof(struct gfs2_rgrp); 786 bi->bi_start = 0; 787 bi->bi_bytes = bytes; 788 bi->bi_blocks = bytes * GFS2_NBBY; 789 /* last block */ 790 } else if (x + 1 == length) { 791 bytes = bytes_left; 792 bi->bi_offset = sizeof(struct gfs2_meta_header); 793 bi->bi_start = rgd->rd_bitbytes - bytes_left; 794 bi->bi_bytes = bytes; 795 bi->bi_blocks = bytes * GFS2_NBBY; 796 /* other blocks */ 797 } else { 798 bytes = sdp->sd_sb.sb_bsize - 799 sizeof(struct gfs2_meta_header); 800 bi->bi_offset = sizeof(struct gfs2_meta_header); 801 bi->bi_start = rgd->rd_bitbytes - bytes_left; 802 bi->bi_bytes = bytes; 803 bi->bi_blocks = bytes * GFS2_NBBY; 804 } 805 806 bytes_left -= bytes; 807 } 808 809 if (bytes_left) { 810 gfs2_consist_rgrpd(rgd); 811 return -EIO; 812 } 813 bi = rgd->rd_bits + (length - 1); 814 if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) { 815 gfs2_lm(sdp, 816 "ri_addr = %llu\n" 817 "ri_length = %u\n" 818 "ri_data0 = %llu\n" 819 "ri_data = %u\n" 820 "ri_bitbytes = %u\n" 821 "start=%u len=%u offset=%u\n", 822 (unsigned long long)rgd->rd_addr, 823 rgd->rd_length, 824 (unsigned long long)rgd->rd_data0, 825 rgd->rd_data, 826 rgd->rd_bitbytes, 827 bi->bi_start, bi->bi_bytes, bi->bi_offset); 828 gfs2_consist_rgrpd(rgd); 829 return -EIO; 830 } 831 832 return 0; 833 } 834 835 /** 836 * gfs2_ri_total - Total up the file system space, according to the rindex. 837 * @sdp: the filesystem 838 * 839 */ 840 u64 gfs2_ri_total(struct gfs2_sbd *sdp) 841 { 842 u64 total_data = 0; 843 struct inode *inode = sdp->sd_rindex; 844 struct gfs2_inode *ip = GFS2_I(inode); 845 char buf[sizeof(struct gfs2_rindex)]; 846 int error, rgrps; 847 848 for (rgrps = 0;; rgrps++) { 849 loff_t pos = rgrps * sizeof(struct gfs2_rindex); 850 851 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) 852 break; 853 error = gfs2_internal_read(ip, buf, &pos, 854 sizeof(struct gfs2_rindex)); 855 if (error != sizeof(struct gfs2_rindex)) 856 break; 857 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); 858 } 859 return total_data; 860 } 861 862 static int rgd_insert(struct gfs2_rgrpd *rgd) 863 { 864 struct gfs2_sbd *sdp = rgd->rd_sbd; 865 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; 866 867 /* Figure out where to put new node */ 868 while (*newn) { 869 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, 870 rd_node); 871 872 parent = *newn; 873 if (rgd->rd_addr < cur->rd_addr) 874 newn = &((*newn)->rb_left); 875 else if (rgd->rd_addr > cur->rd_addr) 876 newn = &((*newn)->rb_right); 877 else 878 return -EEXIST; 879 } 880 881 rb_link_node(&rgd->rd_node, parent, newn); 882 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); 883 sdp->sd_rgrps++; 884 return 0; 885 } 886 887 /** 888 * read_rindex_entry - Pull in a new resource index entry from the disk 889 * @ip: Pointer to the rindex inode 890 * 891 * Returns: 0 on success, > 0 on EOF, error code otherwise 892 */ 893 894 static int read_rindex_entry(struct gfs2_inode *ip) 895 { 896 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 897 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); 898 struct gfs2_rindex buf; 899 int error; 900 struct gfs2_rgrpd *rgd; 901 902 if (pos >= i_size_read(&ip->i_inode)) 903 return 1; 904 905 error = gfs2_internal_read(ip, (char *)&buf, &pos, 906 sizeof(struct gfs2_rindex)); 907 908 if (error != sizeof(struct gfs2_rindex)) 909 return (error == 0) ? 1 : error; 910 911 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); 912 error = -ENOMEM; 913 if (!rgd) 914 return error; 915 916 rgd->rd_sbd = sdp; 917 rgd->rd_addr = be64_to_cpu(buf.ri_addr); 918 rgd->rd_length = be32_to_cpu(buf.ri_length); 919 rgd->rd_data0 = be64_to_cpu(buf.ri_data0); 920 rgd->rd_data = be32_to_cpu(buf.ri_data); 921 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); 922 spin_lock_init(&rgd->rd_rsspin); 923 mutex_init(&rgd->rd_mutex); 924 925 error = compute_bitstructs(rgd); 926 if (error) 927 goto fail; 928 929 error = gfs2_glock_get(sdp, rgd->rd_addr, 930 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); 931 if (error) 932 goto fail; 933 934 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr; 935 rgd->rd_flags &= ~GFS2_RDF_PREFERRED; 936 if (rgd->rd_data > sdp->sd_max_rg_data) 937 sdp->sd_max_rg_data = rgd->rd_data; 938 spin_lock(&sdp->sd_rindex_spin); 939 error = rgd_insert(rgd); 940 spin_unlock(&sdp->sd_rindex_spin); 941 if (!error) { 942 glock_set_object(rgd->rd_gl, rgd); 943 return 0; 944 } 945 946 error = 0; /* someone else read in the rgrp; free it and ignore it */ 947 gfs2_glock_put(rgd->rd_gl); 948 949 fail: 950 kfree(rgd->rd_bits); 951 rgd->rd_bits = NULL; 952 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 953 return error; 954 } 955 956 /** 957 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use 958 * @sdp: the GFS2 superblock 959 * 960 * The purpose of this function is to select a subset of the resource groups 961 * and mark them as PREFERRED. We do it in such a way that each node prefers 962 * to use a unique set of rgrps to minimize glock contention. 963 */ 964 static void set_rgrp_preferences(struct gfs2_sbd *sdp) 965 { 966 struct gfs2_rgrpd *rgd, *first; 967 int i; 968 969 /* Skip an initial number of rgrps, based on this node's journal ID. 970 That should start each node out on its own set. */ 971 rgd = gfs2_rgrpd_get_first(sdp); 972 for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++) 973 rgd = gfs2_rgrpd_get_next(rgd); 974 first = rgd; 975 976 do { 977 rgd->rd_flags |= GFS2_RDF_PREFERRED; 978 for (i = 0; i < sdp->sd_journals; i++) { 979 rgd = gfs2_rgrpd_get_next(rgd); 980 if (!rgd || rgd == first) 981 break; 982 } 983 } while (rgd && rgd != first); 984 } 985 986 /** 987 * gfs2_ri_update - Pull in a new resource index from the disk 988 * @ip: pointer to the rindex inode 989 * 990 * Returns: 0 on successful update, error code otherwise 991 */ 992 993 static int gfs2_ri_update(struct gfs2_inode *ip) 994 { 995 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 996 int error; 997 998 do { 999 error = read_rindex_entry(ip); 1000 } while (error == 0); 1001 1002 if (error < 0) 1003 return error; 1004 1005 if (RB_EMPTY_ROOT(&sdp->sd_rindex_tree)) { 1006 fs_err(sdp, "no resource groups found in the file system.\n"); 1007 return -ENOENT; 1008 } 1009 set_rgrp_preferences(sdp); 1010 1011 sdp->sd_rindex_uptodate = 1; 1012 return 0; 1013 } 1014 1015 /** 1016 * gfs2_rindex_update - Update the rindex if required 1017 * @sdp: The GFS2 superblock 1018 * 1019 * We grab a lock on the rindex inode to make sure that it doesn't 1020 * change whilst we are performing an operation. We keep this lock 1021 * for quite long periods of time compared to other locks. This 1022 * doesn't matter, since it is shared and it is very, very rarely 1023 * accessed in the exclusive mode (i.e. only when expanding the filesystem). 1024 * 1025 * This makes sure that we're using the latest copy of the resource index 1026 * special file, which might have been updated if someone expanded the 1027 * filesystem (via gfs2_grow utility), which adds new resource groups. 1028 * 1029 * Returns: 0 on succeess, error code otherwise 1030 */ 1031 1032 int gfs2_rindex_update(struct gfs2_sbd *sdp) 1033 { 1034 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); 1035 struct gfs2_glock *gl = ip->i_gl; 1036 struct gfs2_holder ri_gh; 1037 int error = 0; 1038 int unlock_required = 0; 1039 1040 /* Read new copy from disk if we don't have the latest */ 1041 if (!sdp->sd_rindex_uptodate) { 1042 if (!gfs2_glock_is_locked_by_me(gl)) { 1043 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); 1044 if (error) 1045 return error; 1046 unlock_required = 1; 1047 } 1048 if (!sdp->sd_rindex_uptodate) 1049 error = gfs2_ri_update(ip); 1050 if (unlock_required) 1051 gfs2_glock_dq_uninit(&ri_gh); 1052 } 1053 1054 return error; 1055 } 1056 1057 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) 1058 { 1059 const struct gfs2_rgrp *str = buf; 1060 u32 rg_flags; 1061 1062 rg_flags = be32_to_cpu(str->rg_flags); 1063 rg_flags &= ~GFS2_RDF_MASK; 1064 rgd->rd_flags &= GFS2_RDF_MASK; 1065 rgd->rd_flags |= rg_flags; 1066 rgd->rd_free = be32_to_cpu(str->rg_free); 1067 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); 1068 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); 1069 /* rd_data0, rd_data and rd_bitbytes already set from rindex */ 1070 } 1071 1072 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf) 1073 { 1074 const struct gfs2_rgrp *str = buf; 1075 1076 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC); 1077 rgl->rl_flags = str->rg_flags; 1078 rgl->rl_free = str->rg_free; 1079 rgl->rl_dinodes = str->rg_dinodes; 1080 rgl->rl_igeneration = str->rg_igeneration; 1081 rgl->__pad = 0UL; 1082 } 1083 1084 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) 1085 { 1086 struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd); 1087 struct gfs2_rgrp *str = buf; 1088 u32 crc; 1089 1090 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); 1091 str->rg_free = cpu_to_be32(rgd->rd_free); 1092 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); 1093 if (next == NULL) 1094 str->rg_skip = 0; 1095 else if (next->rd_addr > rgd->rd_addr) 1096 str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr); 1097 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); 1098 str->rg_data0 = cpu_to_be64(rgd->rd_data0); 1099 str->rg_data = cpu_to_be32(rgd->rd_data); 1100 str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes); 1101 str->rg_crc = 0; 1102 crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp)); 1103 str->rg_crc = cpu_to_be32(crc); 1104 1105 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); 1106 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf); 1107 } 1108 1109 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd) 1110 { 1111 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1112 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data; 1113 struct gfs2_sbd *sdp = rgd->rd_sbd; 1114 int valid = 1; 1115 1116 if (rgl->rl_flags != str->rg_flags) { 1117 fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u", 1118 (unsigned long long)rgd->rd_addr, 1119 be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags)); 1120 valid = 0; 1121 } 1122 if (rgl->rl_free != str->rg_free) { 1123 fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u", 1124 (unsigned long long)rgd->rd_addr, 1125 be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free)); 1126 valid = 0; 1127 } 1128 if (rgl->rl_dinodes != str->rg_dinodes) { 1129 fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u", 1130 (unsigned long long)rgd->rd_addr, 1131 be32_to_cpu(rgl->rl_dinodes), 1132 be32_to_cpu(str->rg_dinodes)); 1133 valid = 0; 1134 } 1135 if (rgl->rl_igeneration != str->rg_igeneration) { 1136 fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu", 1137 (unsigned long long)rgd->rd_addr, 1138 (unsigned long long)be64_to_cpu(rgl->rl_igeneration), 1139 (unsigned long long)be64_to_cpu(str->rg_igeneration)); 1140 valid = 0; 1141 } 1142 return valid; 1143 } 1144 1145 static u32 count_unlinked(struct gfs2_rgrpd *rgd) 1146 { 1147 struct gfs2_bitmap *bi; 1148 const u32 length = rgd->rd_length; 1149 const u8 *buffer = NULL; 1150 u32 i, goal, count = 0; 1151 1152 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) { 1153 goal = 0; 1154 buffer = bi->bi_bh->b_data + bi->bi_offset; 1155 WARN_ON(!buffer_uptodate(bi->bi_bh)); 1156 while (goal < bi->bi_blocks) { 1157 goal = gfs2_bitfit(buffer, bi->bi_bytes, goal, 1158 GFS2_BLKST_UNLINKED); 1159 if (goal == BFITNOENT) 1160 break; 1161 count++; 1162 goal++; 1163 } 1164 } 1165 1166 return count; 1167 } 1168 1169 static void rgrp_set_bitmap_flags(struct gfs2_rgrpd *rgd) 1170 { 1171 struct gfs2_bitmap *bi; 1172 int x; 1173 1174 if (rgd->rd_free) { 1175 for (x = 0; x < rgd->rd_length; x++) { 1176 bi = rgd->rd_bits + x; 1177 clear_bit(GBF_FULL, &bi->bi_flags); 1178 } 1179 } else { 1180 for (x = 0; x < rgd->rd_length; x++) { 1181 bi = rgd->rd_bits + x; 1182 set_bit(GBF_FULL, &bi->bi_flags); 1183 } 1184 } 1185 } 1186 1187 /** 1188 * gfs2_rgrp_go_instantiate - Read in a RG's header and bitmaps 1189 * @gh: the glock holder representing the rgrpd to read in 1190 * 1191 * Read in all of a Resource Group's header and bitmap blocks. 1192 * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps. 1193 * 1194 * Returns: errno 1195 */ 1196 1197 int gfs2_rgrp_go_instantiate(struct gfs2_holder *gh) 1198 { 1199 struct gfs2_glock *gl = gh->gh_gl; 1200 struct gfs2_rgrpd *rgd = gl->gl_object; 1201 struct gfs2_sbd *sdp = rgd->rd_sbd; 1202 unsigned int length = rgd->rd_length; 1203 struct gfs2_bitmap *bi; 1204 unsigned int x, y; 1205 int error; 1206 1207 if (rgd->rd_bits[0].bi_bh != NULL) 1208 return 0; 1209 1210 for (x = 0; x < length; x++) { 1211 bi = rgd->rd_bits + x; 1212 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh); 1213 if (error) 1214 goto fail; 1215 } 1216 1217 for (y = length; y--;) { 1218 bi = rgd->rd_bits + y; 1219 error = gfs2_meta_wait(sdp, bi->bi_bh); 1220 if (error) 1221 goto fail; 1222 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : 1223 GFS2_METATYPE_RG)) { 1224 error = -EIO; 1225 goto fail; 1226 } 1227 } 1228 1229 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); 1230 rgrp_set_bitmap_flags(rgd); 1231 rgd->rd_flags |= GFS2_RDF_CHECK; 1232 rgd->rd_free_clone = rgd->rd_free; 1233 GLOCK_BUG_ON(rgd->rd_gl, rgd->rd_reserved); 1234 /* max out the rgrp allocation failure point */ 1235 rgd->rd_extfail_pt = rgd->rd_free; 1236 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) { 1237 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd)); 1238 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, 1239 rgd->rd_bits[0].bi_bh->b_data); 1240 } else if (sdp->sd_args.ar_rgrplvb) { 1241 if (!gfs2_rgrp_lvb_valid(rgd)){ 1242 gfs2_consist_rgrpd(rgd); 1243 error = -EIO; 1244 goto fail; 1245 } 1246 if (rgd->rd_rgl->rl_unlinked == 0) 1247 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1248 } 1249 return 0; 1250 1251 fail: 1252 while (x--) { 1253 bi = rgd->rd_bits + x; 1254 brelse(bi->bi_bh); 1255 bi->bi_bh = NULL; 1256 gfs2_assert_warn(sdp, !bi->bi_clone); 1257 } 1258 return error; 1259 } 1260 1261 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd, struct gfs2_holder *gh) 1262 { 1263 u32 rl_flags; 1264 1265 if (!test_bit(GLF_INSTANTIATE_NEEDED, &gh->gh_gl->gl_flags)) 1266 return 0; 1267 1268 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) 1269 return gfs2_instantiate(gh); 1270 1271 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags); 1272 rl_flags &= ~GFS2_RDF_MASK; 1273 rgd->rd_flags &= GFS2_RDF_MASK; 1274 rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK); 1275 if (rgd->rd_rgl->rl_unlinked == 0) 1276 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1277 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free); 1278 rgrp_set_bitmap_flags(rgd); 1279 rgd->rd_free_clone = rgd->rd_free; 1280 GLOCK_BUG_ON(rgd->rd_gl, rgd->rd_reserved); 1281 /* max out the rgrp allocation failure point */ 1282 rgd->rd_extfail_pt = rgd->rd_free; 1283 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes); 1284 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration); 1285 return 0; 1286 } 1287 1288 /** 1289 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get() 1290 * @rgd: The resource group 1291 * 1292 */ 1293 1294 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd) 1295 { 1296 int x, length = rgd->rd_length; 1297 1298 for (x = 0; x < length; x++) { 1299 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1300 if (bi->bi_bh) { 1301 brelse(bi->bi_bh); 1302 bi->bi_bh = NULL; 1303 } 1304 } 1305 set_bit(GLF_INSTANTIATE_NEEDED, &rgd->rd_gl->gl_flags); 1306 } 1307 1308 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, 1309 struct buffer_head *bh, 1310 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed) 1311 { 1312 struct super_block *sb = sdp->sd_vfs; 1313 u64 blk; 1314 sector_t start = 0; 1315 sector_t nr_blks = 0; 1316 int rv; 1317 unsigned int x; 1318 u32 trimmed = 0; 1319 u8 diff; 1320 1321 for (x = 0; x < bi->bi_bytes; x++) { 1322 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data; 1323 clone += bi->bi_offset; 1324 clone += x; 1325 if (bh) { 1326 const u8 *orig = bh->b_data + bi->bi_offset + x; 1327 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); 1328 } else { 1329 diff = ~(*clone | (*clone >> 1)); 1330 } 1331 diff &= 0x55; 1332 if (diff == 0) 1333 continue; 1334 blk = offset + ((bi->bi_start + x) * GFS2_NBBY); 1335 while(diff) { 1336 if (diff & 1) { 1337 if (nr_blks == 0) 1338 goto start_new_extent; 1339 if ((start + nr_blks) != blk) { 1340 if (nr_blks >= minlen) { 1341 rv = sb_issue_discard(sb, 1342 start, nr_blks, 1343 GFP_NOFS, 0); 1344 if (rv) 1345 goto fail; 1346 trimmed += nr_blks; 1347 } 1348 nr_blks = 0; 1349 start_new_extent: 1350 start = blk; 1351 } 1352 nr_blks++; 1353 } 1354 diff >>= 2; 1355 blk++; 1356 } 1357 } 1358 if (nr_blks >= minlen) { 1359 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0); 1360 if (rv) 1361 goto fail; 1362 trimmed += nr_blks; 1363 } 1364 if (ptrimmed) 1365 *ptrimmed = trimmed; 1366 return 0; 1367 1368 fail: 1369 if (sdp->sd_args.ar_discard) 1370 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv); 1371 sdp->sd_args.ar_discard = 0; 1372 return -EIO; 1373 } 1374 1375 /** 1376 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem 1377 * @filp: Any file on the filesystem 1378 * @argp: Pointer to the arguments (also used to pass result) 1379 * 1380 * Returns: 0 on success, otherwise error code 1381 */ 1382 1383 int gfs2_fitrim(struct file *filp, void __user *argp) 1384 { 1385 struct inode *inode = file_inode(filp); 1386 struct gfs2_sbd *sdp = GFS2_SB(inode); 1387 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev); 1388 struct buffer_head *bh; 1389 struct gfs2_rgrpd *rgd; 1390 struct gfs2_rgrpd *rgd_end; 1391 struct gfs2_holder gh; 1392 struct fstrim_range r; 1393 int ret = 0; 1394 u64 amt; 1395 u64 trimmed = 0; 1396 u64 start, end, minlen; 1397 unsigned int x; 1398 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift; 1399 1400 if (!capable(CAP_SYS_ADMIN)) 1401 return -EPERM; 1402 1403 if (!test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags)) 1404 return -EROFS; 1405 1406 if (!blk_queue_discard(q)) 1407 return -EOPNOTSUPP; 1408 1409 if (copy_from_user(&r, argp, sizeof(r))) 1410 return -EFAULT; 1411 1412 ret = gfs2_rindex_update(sdp); 1413 if (ret) 1414 return ret; 1415 1416 start = r.start >> bs_shift; 1417 end = start + (r.len >> bs_shift); 1418 minlen = max_t(u64, r.minlen, 1419 q->limits.discard_granularity) >> bs_shift; 1420 1421 if (end <= start || minlen > sdp->sd_max_rg_data) 1422 return -EINVAL; 1423 1424 rgd = gfs2_blk2rgrpd(sdp, start, 0); 1425 rgd_end = gfs2_blk2rgrpd(sdp, end, 0); 1426 1427 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end)) 1428 && (start > rgd_end->rd_data0 + rgd_end->rd_data)) 1429 return -EINVAL; /* start is beyond the end of the fs */ 1430 1431 while (1) { 1432 1433 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 1434 LM_FLAG_NODE_SCOPE, &gh); 1435 if (ret) 1436 goto out; 1437 1438 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) { 1439 /* Trim each bitmap in the rgrp */ 1440 for (x = 0; x < rgd->rd_length; x++) { 1441 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1442 rgrp_lock_local(rgd); 1443 ret = gfs2_rgrp_send_discards(sdp, 1444 rgd->rd_data0, NULL, bi, minlen, 1445 &amt); 1446 rgrp_unlock_local(rgd); 1447 if (ret) { 1448 gfs2_glock_dq_uninit(&gh); 1449 goto out; 1450 } 1451 trimmed += amt; 1452 } 1453 1454 /* Mark rgrp as having been trimmed */ 1455 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0); 1456 if (ret == 0) { 1457 bh = rgd->rd_bits[0].bi_bh; 1458 rgrp_lock_local(rgd); 1459 rgd->rd_flags |= GFS2_RGF_TRIMMED; 1460 gfs2_trans_add_meta(rgd->rd_gl, bh); 1461 gfs2_rgrp_out(rgd, bh->b_data); 1462 rgrp_unlock_local(rgd); 1463 gfs2_trans_end(sdp); 1464 } 1465 } 1466 gfs2_glock_dq_uninit(&gh); 1467 1468 if (rgd == rgd_end) 1469 break; 1470 1471 rgd = gfs2_rgrpd_get_next(rgd); 1472 } 1473 1474 out: 1475 r.len = trimmed << bs_shift; 1476 if (copy_to_user(argp, &r, sizeof(r))) 1477 return -EFAULT; 1478 1479 return ret; 1480 } 1481 1482 /** 1483 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree 1484 * @ip: the inode structure 1485 * 1486 */ 1487 static void rs_insert(struct gfs2_inode *ip) 1488 { 1489 struct rb_node **newn, *parent = NULL; 1490 int rc; 1491 struct gfs2_blkreserv *rs = &ip->i_res; 1492 struct gfs2_rgrpd *rgd = rs->rs_rgd; 1493 1494 BUG_ON(gfs2_rs_active(rs)); 1495 1496 spin_lock(&rgd->rd_rsspin); 1497 newn = &rgd->rd_rstree.rb_node; 1498 while (*newn) { 1499 struct gfs2_blkreserv *cur = 1500 rb_entry(*newn, struct gfs2_blkreserv, rs_node); 1501 1502 parent = *newn; 1503 rc = rs_cmp(rs->rs_start, rs->rs_requested, cur); 1504 if (rc > 0) 1505 newn = &((*newn)->rb_right); 1506 else if (rc < 0) 1507 newn = &((*newn)->rb_left); 1508 else { 1509 spin_unlock(&rgd->rd_rsspin); 1510 WARN_ON(1); 1511 return; 1512 } 1513 } 1514 1515 rb_link_node(&rs->rs_node, parent, newn); 1516 rb_insert_color(&rs->rs_node, &rgd->rd_rstree); 1517 1518 /* Do our rgrp accounting for the reservation */ 1519 rgd->rd_requested += rs->rs_requested; /* blocks requested */ 1520 spin_unlock(&rgd->rd_rsspin); 1521 trace_gfs2_rs(rs, TRACE_RS_INSERT); 1522 } 1523 1524 /** 1525 * rgd_free - return the number of free blocks we can allocate 1526 * @rgd: the resource group 1527 * @rs: The reservation to free 1528 * 1529 * This function returns the number of free blocks for an rgrp. 1530 * That's the clone-free blocks (blocks that are free, not including those 1531 * still being used for unlinked files that haven't been deleted.) 1532 * 1533 * It also subtracts any blocks reserved by someone else, but does not 1534 * include free blocks that are still part of our current reservation, 1535 * because obviously we can (and will) allocate them. 1536 */ 1537 static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs) 1538 { 1539 u32 tot_reserved, tot_free; 1540 1541 if (WARN_ON_ONCE(rgd->rd_requested < rs->rs_requested)) 1542 return 0; 1543 tot_reserved = rgd->rd_requested - rs->rs_requested; 1544 1545 if (rgd->rd_free_clone < tot_reserved) 1546 tot_reserved = 0; 1547 1548 tot_free = rgd->rd_free_clone - tot_reserved; 1549 1550 return tot_free; 1551 } 1552 1553 /** 1554 * rg_mblk_search - find a group of multiple free blocks to form a reservation 1555 * @rgd: the resource group descriptor 1556 * @ip: pointer to the inode for which we're reserving blocks 1557 * @ap: the allocation parameters 1558 * 1559 */ 1560 1561 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip, 1562 const struct gfs2_alloc_parms *ap) 1563 { 1564 struct gfs2_rbm rbm = { .rgd = rgd, }; 1565 u64 goal; 1566 struct gfs2_blkreserv *rs = &ip->i_res; 1567 u32 extlen; 1568 u32 free_blocks, blocks_available; 1569 int ret; 1570 struct inode *inode = &ip->i_inode; 1571 1572 spin_lock(&rgd->rd_rsspin); 1573 free_blocks = rgd_free(rgd, rs); 1574 if (rgd->rd_free_clone < rgd->rd_requested) 1575 free_blocks = 0; 1576 blocks_available = rgd->rd_free_clone - rgd->rd_reserved; 1577 if (rgd == rs->rs_rgd) 1578 blocks_available += rs->rs_reserved; 1579 spin_unlock(&rgd->rd_rsspin); 1580 1581 if (S_ISDIR(inode->i_mode)) 1582 extlen = 1; 1583 else { 1584 extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target); 1585 extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks); 1586 } 1587 if (free_blocks < extlen || blocks_available < extlen) 1588 return; 1589 1590 /* Find bitmap block that contains bits for goal block */ 1591 if (rgrp_contains_block(rgd, ip->i_goal)) 1592 goal = ip->i_goal; 1593 else 1594 goal = rgd->rd_last_alloc + rgd->rd_data0; 1595 1596 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal))) 1597 return; 1598 1599 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, &ip->i_res, true); 1600 if (ret == 0) { 1601 rs->rs_start = gfs2_rbm_to_block(&rbm); 1602 rs->rs_requested = extlen; 1603 rs_insert(ip); 1604 } else { 1605 if (goal == rgd->rd_last_alloc + rgd->rd_data0) 1606 rgd->rd_last_alloc = 0; 1607 } 1608 } 1609 1610 /** 1611 * gfs2_next_unreserved_block - Return next block that is not reserved 1612 * @rgd: The resource group 1613 * @block: The starting block 1614 * @length: The required length 1615 * @ignore_rs: Reservation to ignore 1616 * 1617 * If the block does not appear in any reservation, then return the 1618 * block number unchanged. If it does appear in the reservation, then 1619 * keep looking through the tree of reservations in order to find the 1620 * first block number which is not reserved. 1621 */ 1622 1623 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block, 1624 u32 length, 1625 struct gfs2_blkreserv *ignore_rs) 1626 { 1627 struct gfs2_blkreserv *rs; 1628 struct rb_node *n; 1629 int rc; 1630 1631 spin_lock(&rgd->rd_rsspin); 1632 n = rgd->rd_rstree.rb_node; 1633 while (n) { 1634 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1635 rc = rs_cmp(block, length, rs); 1636 if (rc < 0) 1637 n = n->rb_left; 1638 else if (rc > 0) 1639 n = n->rb_right; 1640 else 1641 break; 1642 } 1643 1644 if (n) { 1645 while (rs_cmp(block, length, rs) == 0 && rs != ignore_rs) { 1646 block = rs->rs_start + rs->rs_requested; 1647 n = n->rb_right; 1648 if (n == NULL) 1649 break; 1650 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1651 } 1652 } 1653 1654 spin_unlock(&rgd->rd_rsspin); 1655 return block; 1656 } 1657 1658 /** 1659 * gfs2_reservation_check_and_update - Check for reservations during block alloc 1660 * @rbm: The current position in the resource group 1661 * @rs: Our own reservation 1662 * @minext: The minimum extent length 1663 * @maxext: A pointer to the maximum extent structure 1664 * 1665 * This checks the current position in the rgrp to see whether there is 1666 * a reservation covering this block. If not then this function is a 1667 * no-op. If there is, then the position is moved to the end of the 1668 * contiguous reservation(s) so that we are pointing at the first 1669 * non-reserved block. 1670 * 1671 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error 1672 */ 1673 1674 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm, 1675 struct gfs2_blkreserv *rs, 1676 u32 minext, 1677 struct gfs2_extent *maxext) 1678 { 1679 u64 block = gfs2_rbm_to_block(rbm); 1680 u32 extlen = 1; 1681 u64 nblock; 1682 1683 /* 1684 * If we have a minimum extent length, then skip over any extent 1685 * which is less than the min extent length in size. 1686 */ 1687 if (minext > 1) { 1688 extlen = gfs2_free_extlen(rbm, minext); 1689 if (extlen <= maxext->len) 1690 goto fail; 1691 } 1692 1693 /* 1694 * Check the extent which has been found against the reservations 1695 * and skip if parts of it are already reserved 1696 */ 1697 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, rs); 1698 if (nblock == block) { 1699 if (!minext || extlen >= minext) 1700 return 0; 1701 1702 if (extlen > maxext->len) { 1703 maxext->len = extlen; 1704 maxext->rbm = *rbm; 1705 } 1706 } else { 1707 u64 len = nblock - block; 1708 if (len >= (u64)1 << 32) 1709 return -E2BIG; 1710 extlen = len; 1711 } 1712 fail: 1713 if (gfs2_rbm_add(rbm, extlen)) 1714 return -E2BIG; 1715 return 1; 1716 } 1717 1718 /** 1719 * gfs2_rbm_find - Look for blocks of a particular state 1720 * @rbm: Value/result starting position and final position 1721 * @state: The state which we want to find 1722 * @minext: Pointer to the requested extent length 1723 * This is updated to be the actual reservation size. 1724 * @rs: Our own reservation (NULL to skip checking for reservations) 1725 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping 1726 * around until we've reached the starting point. 1727 * 1728 * Side effects: 1729 * - If looking for free blocks, we set GBF_FULL on each bitmap which 1730 * has no free blocks in it. 1731 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which 1732 * has come up short on a free block search. 1733 * 1734 * Returns: 0 on success, -ENOSPC if there is no block of the requested state 1735 */ 1736 1737 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 1738 struct gfs2_blkreserv *rs, bool nowrap) 1739 { 1740 bool scan_from_start = rbm->bii == 0 && rbm->offset == 0; 1741 struct buffer_head *bh; 1742 int last_bii; 1743 u32 offset; 1744 u8 *buffer; 1745 bool wrapped = false; 1746 int ret; 1747 struct gfs2_bitmap *bi; 1748 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, }; 1749 1750 /* 1751 * Determine the last bitmap to search. If we're not starting at the 1752 * beginning of a bitmap, we need to search that bitmap twice to scan 1753 * the entire resource group. 1754 */ 1755 last_bii = rbm->bii - (rbm->offset == 0); 1756 1757 while(1) { 1758 bi = rbm_bi(rbm); 1759 if (test_bit(GBF_FULL, &bi->bi_flags) && 1760 (state == GFS2_BLKST_FREE)) 1761 goto next_bitmap; 1762 1763 bh = bi->bi_bh; 1764 buffer = bh->b_data + bi->bi_offset; 1765 WARN_ON(!buffer_uptodate(bh)); 1766 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone) 1767 buffer = bi->bi_clone + bi->bi_offset; 1768 offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state); 1769 if (offset == BFITNOENT) { 1770 if (state == GFS2_BLKST_FREE && rbm->offset == 0) 1771 set_bit(GBF_FULL, &bi->bi_flags); 1772 goto next_bitmap; 1773 } 1774 rbm->offset = offset; 1775 if (!rs || !minext) 1776 return 0; 1777 1778 ret = gfs2_reservation_check_and_update(rbm, rs, *minext, 1779 &maxext); 1780 if (ret == 0) 1781 return 0; 1782 if (ret > 0) 1783 goto next_iter; 1784 if (ret == -E2BIG) { 1785 rbm->bii = 0; 1786 rbm->offset = 0; 1787 goto res_covered_end_of_rgrp; 1788 } 1789 return ret; 1790 1791 next_bitmap: /* Find next bitmap in the rgrp */ 1792 rbm->offset = 0; 1793 rbm->bii++; 1794 if (rbm->bii == rbm->rgd->rd_length) 1795 rbm->bii = 0; 1796 res_covered_end_of_rgrp: 1797 if (rbm->bii == 0) { 1798 if (wrapped) 1799 break; 1800 wrapped = true; 1801 if (nowrap) 1802 break; 1803 } 1804 next_iter: 1805 /* Have we scanned the entire resource group? */ 1806 if (wrapped && rbm->bii > last_bii) 1807 break; 1808 } 1809 1810 if (state != GFS2_BLKST_FREE) 1811 return -ENOSPC; 1812 1813 /* If the extent was too small, and it's smaller than the smallest 1814 to have failed before, remember for future reference that it's 1815 useless to search this rgrp again for this amount or more. */ 1816 if (wrapped && (scan_from_start || rbm->bii > last_bii) && 1817 *minext < rbm->rgd->rd_extfail_pt) 1818 rbm->rgd->rd_extfail_pt = *minext - 1; 1819 1820 /* If the maximum extent we found is big enough to fulfill the 1821 minimum requirements, use it anyway. */ 1822 if (maxext.len) { 1823 *rbm = maxext.rbm; 1824 *minext = maxext.len; 1825 return 0; 1826 } 1827 1828 return -ENOSPC; 1829 } 1830 1831 /** 1832 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes 1833 * @rgd: The rgrp 1834 * @last_unlinked: block address of the last dinode we unlinked 1835 * @skip: block address we should explicitly not unlink 1836 * 1837 * Returns: 0 if no error 1838 * The inode, if one has been found, in inode. 1839 */ 1840 1841 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) 1842 { 1843 u64 block; 1844 struct gfs2_sbd *sdp = rgd->rd_sbd; 1845 struct gfs2_glock *gl; 1846 struct gfs2_inode *ip; 1847 int error; 1848 int found = 0; 1849 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 }; 1850 1851 while (1) { 1852 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL, 1853 true); 1854 if (error == -ENOSPC) 1855 break; 1856 if (WARN_ON_ONCE(error)) 1857 break; 1858 1859 block = gfs2_rbm_to_block(&rbm); 1860 if (gfs2_rbm_from_block(&rbm, block + 1)) 1861 break; 1862 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked) 1863 continue; 1864 if (block == skip) 1865 continue; 1866 *last_unlinked = block; 1867 1868 error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl); 1869 if (error) 1870 continue; 1871 1872 /* If the inode is already in cache, we can ignore it here 1873 * because the existing inode disposal code will deal with 1874 * it when all refs have gone away. Accessing gl_object like 1875 * this is not safe in general. Here it is ok because we do 1876 * not dereference the pointer, and we only need an approx 1877 * answer to whether it is NULL or not. 1878 */ 1879 ip = gl->gl_object; 1880 1881 if (ip || !gfs2_queue_delete_work(gl, 0)) 1882 gfs2_glock_put(gl); 1883 else 1884 found++; 1885 1886 /* Limit reclaim to sensible number of tasks */ 1887 if (found > NR_CPUS) 1888 return; 1889 } 1890 1891 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1892 return; 1893 } 1894 1895 /** 1896 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested 1897 * @rgd: The rgrp in question 1898 * @loops: An indication of how picky we can be (0=very, 1=less so) 1899 * 1900 * This function uses the recently added glock statistics in order to 1901 * figure out whether a parciular resource group is suffering from 1902 * contention from multiple nodes. This is done purely on the basis 1903 * of timings, since this is the only data we have to work with and 1904 * our aim here is to reject a resource group which is highly contended 1905 * but (very important) not to do this too often in order to ensure that 1906 * we do not land up introducing fragmentation by changing resource 1907 * groups when not actually required. 1908 * 1909 * The calculation is fairly simple, we want to know whether the SRTTB 1910 * (i.e. smoothed round trip time for blocking operations) to acquire 1911 * the lock for this rgrp's glock is significantly greater than the 1912 * time taken for resource groups on average. We introduce a margin in 1913 * the form of the variable @var which is computed as the sum of the two 1914 * respective variences, and multiplied by a factor depending on @loops 1915 * and whether we have a lot of data to base the decision on. This is 1916 * then tested against the square difference of the means in order to 1917 * decide whether the result is statistically significant or not. 1918 * 1919 * Returns: A boolean verdict on the congestion status 1920 */ 1921 1922 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops) 1923 { 1924 const struct gfs2_glock *gl = rgd->rd_gl; 1925 const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 1926 struct gfs2_lkstats *st; 1927 u64 r_dcount, l_dcount; 1928 u64 l_srttb, a_srttb = 0; 1929 s64 srttb_diff; 1930 u64 sqr_diff; 1931 u64 var; 1932 int cpu, nonzero = 0; 1933 1934 preempt_disable(); 1935 for_each_present_cpu(cpu) { 1936 st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP]; 1937 if (st->stats[GFS2_LKS_SRTTB]) { 1938 a_srttb += st->stats[GFS2_LKS_SRTTB]; 1939 nonzero++; 1940 } 1941 } 1942 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP]; 1943 if (nonzero) 1944 do_div(a_srttb, nonzero); 1945 r_dcount = st->stats[GFS2_LKS_DCOUNT]; 1946 var = st->stats[GFS2_LKS_SRTTVARB] + 1947 gl->gl_stats.stats[GFS2_LKS_SRTTVARB]; 1948 preempt_enable(); 1949 1950 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB]; 1951 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT]; 1952 1953 if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0)) 1954 return false; 1955 1956 srttb_diff = a_srttb - l_srttb; 1957 sqr_diff = srttb_diff * srttb_diff; 1958 1959 var *= 2; 1960 if (l_dcount < 8 || r_dcount < 8) 1961 var *= 2; 1962 if (loops == 1) 1963 var *= 2; 1964 1965 return ((srttb_diff < 0) && (sqr_diff > var)); 1966 } 1967 1968 /** 1969 * gfs2_rgrp_used_recently 1970 * @rs: The block reservation with the rgrp to test 1971 * @msecs: The time limit in milliseconds 1972 * 1973 * Returns: True if the rgrp glock has been used within the time limit 1974 */ 1975 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs, 1976 u64 msecs) 1977 { 1978 u64 tdiff; 1979 1980 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(), 1981 rs->rs_rgd->rd_gl->gl_dstamp)); 1982 1983 return tdiff > (msecs * 1000 * 1000); 1984 } 1985 1986 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip) 1987 { 1988 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1989 u32 skip; 1990 1991 get_random_bytes(&skip, sizeof(skip)); 1992 return skip % sdp->sd_rgrps; 1993 } 1994 1995 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin) 1996 { 1997 struct gfs2_rgrpd *rgd = *pos; 1998 struct gfs2_sbd *sdp = rgd->rd_sbd; 1999 2000 rgd = gfs2_rgrpd_get_next(rgd); 2001 if (rgd == NULL) 2002 rgd = gfs2_rgrpd_get_first(sdp); 2003 *pos = rgd; 2004 if (rgd != begin) /* If we didn't wrap */ 2005 return true; 2006 return false; 2007 } 2008 2009 /** 2010 * fast_to_acquire - determine if a resource group will be fast to acquire 2011 * @rgd: The rgrp 2012 * 2013 * If this is one of our preferred rgrps, it should be quicker to acquire, 2014 * because we tried to set ourselves up as dlm lock master. 2015 */ 2016 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd) 2017 { 2018 struct gfs2_glock *gl = rgd->rd_gl; 2019 2020 if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) && 2021 !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) && 2022 !test_bit(GLF_DEMOTE, &gl->gl_flags)) 2023 return 1; 2024 if (rgd->rd_flags & GFS2_RDF_PREFERRED) 2025 return 1; 2026 return 0; 2027 } 2028 2029 /** 2030 * gfs2_inplace_reserve - Reserve space in the filesystem 2031 * @ip: the inode to reserve space for 2032 * @ap: the allocation parameters 2033 * 2034 * We try our best to find an rgrp that has at least ap->target blocks 2035 * available. After a couple of passes (loops == 2), the prospects of finding 2036 * such an rgrp diminish. At this stage, we return the first rgrp that has 2037 * at least ap->min_target blocks available. 2038 * 2039 * Returns: 0 on success, 2040 * -ENOMEM if a suitable rgrp can't be found 2041 * errno otherwise 2042 */ 2043 2044 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap) 2045 { 2046 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2047 struct gfs2_rgrpd *begin = NULL; 2048 struct gfs2_blkreserv *rs = &ip->i_res; 2049 int error = 0, flags = LM_FLAG_NODE_SCOPE; 2050 bool rg_locked; 2051 u64 last_unlinked = NO_BLOCK; 2052 u32 target = ap->target; 2053 int loops = 0; 2054 u32 free_blocks, blocks_available, skip = 0; 2055 2056 BUG_ON(rs->rs_reserved); 2057 2058 if (sdp->sd_args.ar_rgrplvb) 2059 flags |= GL_SKIP; 2060 if (gfs2_assert_warn(sdp, target)) 2061 return -EINVAL; 2062 if (gfs2_rs_active(rs)) { 2063 begin = rs->rs_rgd; 2064 } else if (rs->rs_rgd && 2065 rgrp_contains_block(rs->rs_rgd, ip->i_goal)) { 2066 begin = rs->rs_rgd; 2067 } else { 2068 check_and_update_goal(ip); 2069 rs->rs_rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1); 2070 } 2071 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV)) 2072 skip = gfs2_orlov_skip(ip); 2073 if (rs->rs_rgd == NULL) 2074 return -EBADSLT; 2075 2076 while (loops < 3) { 2077 struct gfs2_rgrpd *rgd; 2078 2079 rg_locked = gfs2_glock_is_locked_by_me(rs->rs_rgd->rd_gl); 2080 if (rg_locked) { 2081 rgrp_lock_local(rs->rs_rgd); 2082 } else { 2083 if (skip && skip--) 2084 goto next_rgrp; 2085 if (!gfs2_rs_active(rs)) { 2086 if (loops == 0 && 2087 !fast_to_acquire(rs->rs_rgd)) 2088 goto next_rgrp; 2089 if ((loops < 2) && 2090 gfs2_rgrp_used_recently(rs, 1000) && 2091 gfs2_rgrp_congested(rs->rs_rgd, loops)) 2092 goto next_rgrp; 2093 } 2094 error = gfs2_glock_nq_init(rs->rs_rgd->rd_gl, 2095 LM_ST_EXCLUSIVE, flags, 2096 &ip->i_rgd_gh); 2097 if (unlikely(error)) 2098 return error; 2099 rgrp_lock_local(rs->rs_rgd); 2100 if (!gfs2_rs_active(rs) && (loops < 2) && 2101 gfs2_rgrp_congested(rs->rs_rgd, loops)) 2102 goto skip_rgrp; 2103 if (sdp->sd_args.ar_rgrplvb) { 2104 error = update_rgrp_lvb(rs->rs_rgd, 2105 &ip->i_rgd_gh); 2106 if (unlikely(error)) { 2107 rgrp_unlock_local(rs->rs_rgd); 2108 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2109 return error; 2110 } 2111 } 2112 } 2113 2114 /* Skip unusable resource groups */ 2115 if ((rs->rs_rgd->rd_flags & (GFS2_RGF_NOALLOC | 2116 GFS2_RDF_ERROR)) || 2117 (loops == 0 && target > rs->rs_rgd->rd_extfail_pt)) 2118 goto skip_rgrp; 2119 2120 if (sdp->sd_args.ar_rgrplvb) { 2121 error = gfs2_instantiate(&ip->i_rgd_gh); 2122 if (error) 2123 goto skip_rgrp; 2124 } 2125 2126 /* Get a reservation if we don't already have one */ 2127 if (!gfs2_rs_active(rs)) 2128 rg_mblk_search(rs->rs_rgd, ip, ap); 2129 2130 /* Skip rgrps when we can't get a reservation on first pass */ 2131 if (!gfs2_rs_active(rs) && (loops < 1)) 2132 goto check_rgrp; 2133 2134 /* If rgrp has enough free space, use it */ 2135 rgd = rs->rs_rgd; 2136 spin_lock(&rgd->rd_rsspin); 2137 free_blocks = rgd_free(rgd, rs); 2138 blocks_available = rgd->rd_free_clone - rgd->rd_reserved; 2139 if (free_blocks < target || blocks_available < target) { 2140 spin_unlock(&rgd->rd_rsspin); 2141 goto check_rgrp; 2142 } 2143 rs->rs_reserved = ap->target; 2144 if (rs->rs_reserved > blocks_available) 2145 rs->rs_reserved = blocks_available; 2146 rgd->rd_reserved += rs->rs_reserved; 2147 spin_unlock(&rgd->rd_rsspin); 2148 rgrp_unlock_local(rs->rs_rgd); 2149 return 0; 2150 check_rgrp: 2151 /* Check for unlinked inodes which can be reclaimed */ 2152 if (rs->rs_rgd->rd_flags & GFS2_RDF_CHECK) 2153 try_rgrp_unlink(rs->rs_rgd, &last_unlinked, 2154 ip->i_no_addr); 2155 skip_rgrp: 2156 rgrp_unlock_local(rs->rs_rgd); 2157 2158 /* Drop reservation, if we couldn't use reserved rgrp */ 2159 if (gfs2_rs_active(rs)) 2160 gfs2_rs_deltree(rs); 2161 2162 /* Unlock rgrp if required */ 2163 if (!rg_locked) 2164 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2165 next_rgrp: 2166 /* Find the next rgrp, and continue looking */ 2167 if (gfs2_select_rgrp(&rs->rs_rgd, begin)) 2168 continue; 2169 if (skip) 2170 continue; 2171 2172 /* If we've scanned all the rgrps, but found no free blocks 2173 * then this checks for some less likely conditions before 2174 * trying again. 2175 */ 2176 loops++; 2177 /* Check that fs hasn't grown if writing to rindex */ 2178 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { 2179 error = gfs2_ri_update(ip); 2180 if (error) 2181 return error; 2182 } 2183 /* Flushing the log may release space */ 2184 if (loops == 2) { 2185 if (ap->min_target) 2186 target = ap->min_target; 2187 gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL | 2188 GFS2_LFC_INPLACE_RESERVE); 2189 } 2190 } 2191 2192 return -ENOSPC; 2193 } 2194 2195 /** 2196 * gfs2_inplace_release - release an inplace reservation 2197 * @ip: the inode the reservation was taken out on 2198 * 2199 * Release a reservation made by gfs2_inplace_reserve(). 2200 */ 2201 2202 void gfs2_inplace_release(struct gfs2_inode *ip) 2203 { 2204 struct gfs2_blkreserv *rs = &ip->i_res; 2205 2206 if (rs->rs_reserved) { 2207 struct gfs2_rgrpd *rgd = rs->rs_rgd; 2208 2209 spin_lock(&rgd->rd_rsspin); 2210 GLOCK_BUG_ON(rgd->rd_gl, rgd->rd_reserved < rs->rs_reserved); 2211 rgd->rd_reserved -= rs->rs_reserved; 2212 spin_unlock(&rgd->rd_rsspin); 2213 rs->rs_reserved = 0; 2214 } 2215 if (gfs2_holder_initialized(&ip->i_rgd_gh)) 2216 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2217 } 2218 2219 /** 2220 * gfs2_alloc_extent - allocate an extent from a given bitmap 2221 * @rbm: the resource group information 2222 * @dinode: TRUE if the first block we allocate is for a dinode 2223 * @n: The extent length (value/result) 2224 * 2225 * Add the bitmap buffer to the transaction. 2226 * Set the found bits to @new_state to change block's allocation state. 2227 */ 2228 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode, 2229 unsigned int *n) 2230 { 2231 struct gfs2_rbm pos = { .rgd = rbm->rgd, }; 2232 const unsigned int elen = *n; 2233 u64 block; 2234 int ret; 2235 2236 *n = 1; 2237 block = gfs2_rbm_to_block(rbm); 2238 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh); 2239 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2240 block++; 2241 while (*n < elen) { 2242 ret = gfs2_rbm_from_block(&pos, block); 2243 if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE) 2244 break; 2245 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh); 2246 gfs2_setbit(&pos, true, GFS2_BLKST_USED); 2247 (*n)++; 2248 block++; 2249 } 2250 } 2251 2252 /** 2253 * rgblk_free - Change alloc state of given block(s) 2254 * @sdp: the filesystem 2255 * @rgd: the resource group the blocks are in 2256 * @bstart: the start of a run of blocks to free 2257 * @blen: the length of the block run (all must lie within ONE RG!) 2258 * @new_state: GFS2_BLKST_XXX the after-allocation block state 2259 */ 2260 2261 static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd, 2262 u64 bstart, u32 blen, unsigned char new_state) 2263 { 2264 struct gfs2_rbm rbm; 2265 struct gfs2_bitmap *bi, *bi_prev = NULL; 2266 2267 rbm.rgd = rgd; 2268 if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart))) 2269 return; 2270 while (blen--) { 2271 bi = rbm_bi(&rbm); 2272 if (bi != bi_prev) { 2273 if (!bi->bi_clone) { 2274 bi->bi_clone = kmalloc(bi->bi_bh->b_size, 2275 GFP_NOFS | __GFP_NOFAIL); 2276 memcpy(bi->bi_clone + bi->bi_offset, 2277 bi->bi_bh->b_data + bi->bi_offset, 2278 bi->bi_bytes); 2279 } 2280 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh); 2281 bi_prev = bi; 2282 } 2283 gfs2_setbit(&rbm, false, new_state); 2284 gfs2_rbm_add(&rbm, 1); 2285 } 2286 } 2287 2288 /** 2289 * gfs2_rgrp_dump - print out an rgrp 2290 * @seq: The iterator 2291 * @rgd: The rgrp in question 2292 * @fs_id_buf: pointer to file system id (if requested) 2293 * 2294 */ 2295 2296 void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_rgrpd *rgd, 2297 const char *fs_id_buf) 2298 { 2299 struct gfs2_blkreserv *trs; 2300 const struct rb_node *n; 2301 2302 spin_lock(&rgd->rd_rsspin); 2303 gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u q:%u r:%u e:%u\n", 2304 fs_id_buf, 2305 (unsigned long long)rgd->rd_addr, rgd->rd_flags, 2306 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes, 2307 rgd->rd_requested, rgd->rd_reserved, rgd->rd_extfail_pt); 2308 if (rgd->rd_sbd->sd_args.ar_rgrplvb) { 2309 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 2310 2311 gfs2_print_dbg(seq, "%s L: f:%02x b:%u i:%u\n", fs_id_buf, 2312 be32_to_cpu(rgl->rl_flags), 2313 be32_to_cpu(rgl->rl_free), 2314 be32_to_cpu(rgl->rl_dinodes)); 2315 } 2316 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) { 2317 trs = rb_entry(n, struct gfs2_blkreserv, rs_node); 2318 dump_rs(seq, trs, fs_id_buf); 2319 } 2320 spin_unlock(&rgd->rd_rsspin); 2321 } 2322 2323 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) 2324 { 2325 struct gfs2_sbd *sdp = rgd->rd_sbd; 2326 char fs_id_buf[sizeof(sdp->sd_fsname) + 7]; 2327 2328 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", 2329 (unsigned long long)rgd->rd_addr); 2330 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); 2331 sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname); 2332 gfs2_rgrp_dump(NULL, rgd, fs_id_buf); 2333 rgd->rd_flags |= GFS2_RDF_ERROR; 2334 } 2335 2336 /** 2337 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation 2338 * @ip: The inode we have just allocated blocks for 2339 * @rbm: The start of the allocated blocks 2340 * @len: The extent length 2341 * 2342 * Adjusts a reservation after an allocation has taken place. If the 2343 * reservation does not match the allocation, or if it is now empty 2344 * then it is removed. 2345 */ 2346 2347 static void gfs2_adjust_reservation(struct gfs2_inode *ip, 2348 const struct gfs2_rbm *rbm, unsigned len) 2349 { 2350 struct gfs2_blkreserv *rs = &ip->i_res; 2351 struct gfs2_rgrpd *rgd = rbm->rgd; 2352 2353 BUG_ON(rs->rs_reserved < len); 2354 rs->rs_reserved -= len; 2355 if (gfs2_rs_active(rs)) { 2356 u64 start = gfs2_rbm_to_block(rbm); 2357 2358 if (rs->rs_start == start) { 2359 unsigned int rlen; 2360 2361 rs->rs_start += len; 2362 rlen = min(rs->rs_requested, len); 2363 rs->rs_requested -= rlen; 2364 rgd->rd_requested -= rlen; 2365 trace_gfs2_rs(rs, TRACE_RS_CLAIM); 2366 if (rs->rs_start < rgd->rd_data0 + rgd->rd_data && 2367 rs->rs_requested) 2368 return; 2369 /* We used up our block reservation, so we should 2370 reserve more blocks next time. */ 2371 atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint); 2372 } 2373 __rs_deltree(rs); 2374 } 2375 } 2376 2377 /** 2378 * gfs2_set_alloc_start - Set starting point for block allocation 2379 * @rbm: The rbm which will be set to the required location 2380 * @ip: The gfs2 inode 2381 * @dinode: Flag to say if allocation includes a new inode 2382 * 2383 * This sets the starting point from the reservation if one is active 2384 * otherwise it falls back to guessing a start point based on the 2385 * inode's goal block or the last allocation point in the rgrp. 2386 */ 2387 2388 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm, 2389 const struct gfs2_inode *ip, bool dinode) 2390 { 2391 u64 goal; 2392 2393 if (gfs2_rs_active(&ip->i_res)) { 2394 goal = ip->i_res.rs_start; 2395 } else { 2396 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal)) 2397 goal = ip->i_goal; 2398 else 2399 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0; 2400 } 2401 if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) { 2402 rbm->bii = 0; 2403 rbm->offset = 0; 2404 } 2405 } 2406 2407 /** 2408 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode 2409 * @ip: the inode to allocate the block for 2410 * @bn: Used to return the starting block number 2411 * @nblocks: requested number of blocks/extent length (value/result) 2412 * @dinode: 1 if we're allocating a dinode block, else 0 2413 * @generation: the generation number of the inode 2414 * 2415 * Returns: 0 or error 2416 */ 2417 2418 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks, 2419 bool dinode, u64 *generation) 2420 { 2421 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2422 struct buffer_head *dibh; 2423 struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rgd, }; 2424 u64 block; /* block, within the file system scope */ 2425 u32 minext = 1; 2426 int error = -ENOSPC; 2427 2428 BUG_ON(ip->i_res.rs_reserved < *nblocks); 2429 2430 rgrp_lock_local(rbm.rgd); 2431 if (gfs2_rs_active(&ip->i_res)) { 2432 gfs2_set_alloc_start(&rbm, ip, dinode); 2433 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, &ip->i_res, false); 2434 } 2435 if (error == -ENOSPC) { 2436 gfs2_set_alloc_start(&rbm, ip, dinode); 2437 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, NULL, false); 2438 } 2439 2440 /* Since all blocks are reserved in advance, this shouldn't happen */ 2441 if (error) { 2442 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n", 2443 (unsigned long long)ip->i_no_addr, error, *nblocks, 2444 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags), 2445 rbm.rgd->rd_extfail_pt); 2446 goto rgrp_error; 2447 } 2448 2449 gfs2_alloc_extent(&rbm, dinode, nblocks); 2450 block = gfs2_rbm_to_block(&rbm); 2451 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0; 2452 if (!dinode) { 2453 ip->i_goal = block + *nblocks - 1; 2454 error = gfs2_meta_inode_buffer(ip, &dibh); 2455 if (error == 0) { 2456 struct gfs2_dinode *di = 2457 (struct gfs2_dinode *)dibh->b_data; 2458 gfs2_trans_add_meta(ip->i_gl, dibh); 2459 di->di_goal_meta = di->di_goal_data = 2460 cpu_to_be64(ip->i_goal); 2461 brelse(dibh); 2462 } 2463 } 2464 spin_lock(&rbm.rgd->rd_rsspin); 2465 gfs2_adjust_reservation(ip, &rbm, *nblocks); 2466 if (rbm.rgd->rd_free < *nblocks || rbm.rgd->rd_reserved < *nblocks) { 2467 fs_warn(sdp, "nblocks=%u\n", *nblocks); 2468 spin_unlock(&rbm.rgd->rd_rsspin); 2469 goto rgrp_error; 2470 } 2471 GLOCK_BUG_ON(rbm.rgd->rd_gl, rbm.rgd->rd_reserved < *nblocks); 2472 GLOCK_BUG_ON(rbm.rgd->rd_gl, rbm.rgd->rd_free_clone < *nblocks); 2473 GLOCK_BUG_ON(rbm.rgd->rd_gl, rbm.rgd->rd_free < *nblocks); 2474 rbm.rgd->rd_reserved -= *nblocks; 2475 rbm.rgd->rd_free_clone -= *nblocks; 2476 rbm.rgd->rd_free -= *nblocks; 2477 spin_unlock(&rbm.rgd->rd_rsspin); 2478 if (dinode) { 2479 rbm.rgd->rd_dinodes++; 2480 *generation = rbm.rgd->rd_igeneration++; 2481 if (*generation == 0) 2482 *generation = rbm.rgd->rd_igeneration++; 2483 } 2484 2485 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh); 2486 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data); 2487 rgrp_unlock_local(rbm.rgd); 2488 2489 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0); 2490 if (dinode) 2491 gfs2_trans_remove_revoke(sdp, block, *nblocks); 2492 2493 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid); 2494 2495 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks, 2496 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2497 *bn = block; 2498 return 0; 2499 2500 rgrp_error: 2501 rgrp_unlock_local(rbm.rgd); 2502 gfs2_rgrp_error(rbm.rgd); 2503 return -EIO; 2504 } 2505 2506 /** 2507 * __gfs2_free_blocks - free a contiguous run of block(s) 2508 * @ip: the inode these blocks are being freed from 2509 * @rgd: the resource group the blocks are in 2510 * @bstart: first block of a run of contiguous blocks 2511 * @blen: the length of the block run 2512 * @meta: 1 if the blocks represent metadata 2513 * 2514 */ 2515 2516 void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd, 2517 u64 bstart, u32 blen, int meta) 2518 { 2519 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2520 2521 rgrp_lock_local(rgd); 2522 rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE); 2523 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE); 2524 rgd->rd_free += blen; 2525 rgd->rd_flags &= ~GFS2_RGF_TRIMMED; 2526 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2527 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2528 rgrp_unlock_local(rgd); 2529 2530 /* Directories keep their data in the metadata address space */ 2531 if (meta || ip->i_depth || gfs2_is_jdata(ip)) 2532 gfs2_journal_wipe(ip, bstart, blen); 2533 } 2534 2535 /** 2536 * gfs2_free_meta - free a contiguous run of data block(s) 2537 * @ip: the inode these blocks are being freed from 2538 * @rgd: the resource group the blocks are in 2539 * @bstart: first block of a run of contiguous blocks 2540 * @blen: the length of the block run 2541 * 2542 */ 2543 2544 void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd, 2545 u64 bstart, u32 blen) 2546 { 2547 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2548 2549 __gfs2_free_blocks(ip, rgd, bstart, blen, 1); 2550 gfs2_statfs_change(sdp, 0, +blen, 0); 2551 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); 2552 } 2553 2554 void gfs2_unlink_di(struct inode *inode) 2555 { 2556 struct gfs2_inode *ip = GFS2_I(inode); 2557 struct gfs2_sbd *sdp = GFS2_SB(inode); 2558 struct gfs2_rgrpd *rgd; 2559 u64 blkno = ip->i_no_addr; 2560 2561 rgd = gfs2_blk2rgrpd(sdp, blkno, true); 2562 if (!rgd) 2563 return; 2564 rgrp_lock_local(rgd); 2565 rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2566 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2567 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2568 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2569 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1); 2570 rgrp_unlock_local(rgd); 2571 } 2572 2573 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) 2574 { 2575 struct gfs2_sbd *sdp = rgd->rd_sbd; 2576 2577 rgrp_lock_local(rgd); 2578 rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2579 if (!rgd->rd_dinodes) 2580 gfs2_consist_rgrpd(rgd); 2581 rgd->rd_dinodes--; 2582 rgd->rd_free++; 2583 2584 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2585 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2586 rgrp_unlock_local(rgd); 2587 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1); 2588 2589 gfs2_statfs_change(sdp, 0, +1, -1); 2590 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2591 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); 2592 gfs2_journal_wipe(ip, ip->i_no_addr, 1); 2593 } 2594 2595 /** 2596 * gfs2_check_blk_type - Check the type of a block 2597 * @sdp: The superblock 2598 * @no_addr: The block number to check 2599 * @type: The block type we are looking for 2600 * 2601 * The inode glock of @no_addr must be held. The @type to check for is either 2602 * GFS2_BLKST_DINODE or GFS2_BLKST_UNLINKED; checking for type GFS2_BLKST_FREE 2603 * or GFS2_BLKST_USED would make no sense. 2604 * 2605 * Returns: 0 if the block type matches the expected type 2606 * -ESTALE if it doesn't match 2607 * or -ve errno if something went wrong while checking 2608 */ 2609 2610 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) 2611 { 2612 struct gfs2_rgrpd *rgd; 2613 struct gfs2_holder rgd_gh; 2614 struct gfs2_rbm rbm; 2615 int error = -EINVAL; 2616 2617 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1); 2618 if (!rgd) 2619 goto fail; 2620 2621 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); 2622 if (error) 2623 goto fail; 2624 2625 rbm.rgd = rgd; 2626 error = gfs2_rbm_from_block(&rbm, no_addr); 2627 if (!WARN_ON_ONCE(error)) { 2628 /* 2629 * No need to take the local resource group lock here; the 2630 * inode glock of @no_addr provides the necessary 2631 * synchronization in case the block is an inode. (In case 2632 * the block is not an inode, the block type will not match 2633 * the @type we are looking for.) 2634 */ 2635 if (gfs2_testbit(&rbm, false) != type) 2636 error = -ESTALE; 2637 } 2638 2639 gfs2_glock_dq_uninit(&rgd_gh); 2640 2641 fail: 2642 return error; 2643 } 2644 2645 /** 2646 * gfs2_rlist_add - add a RG to a list of RGs 2647 * @ip: the inode 2648 * @rlist: the list of resource groups 2649 * @block: the block 2650 * 2651 * Figure out what RG a block belongs to and add that RG to the list 2652 * 2653 * FIXME: Don't use NOFAIL 2654 * 2655 */ 2656 2657 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, 2658 u64 block) 2659 { 2660 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2661 struct gfs2_rgrpd *rgd; 2662 struct gfs2_rgrpd **tmp; 2663 unsigned int new_space; 2664 unsigned int x; 2665 2666 if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) 2667 return; 2668 2669 /* 2670 * The resource group last accessed is kept in the last position. 2671 */ 2672 2673 if (rlist->rl_rgrps) { 2674 rgd = rlist->rl_rgd[rlist->rl_rgrps - 1]; 2675 if (rgrp_contains_block(rgd, block)) 2676 return; 2677 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2678 } else { 2679 rgd = ip->i_res.rs_rgd; 2680 if (!rgd || !rgrp_contains_block(rgd, block)) 2681 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2682 } 2683 2684 if (!rgd) { 2685 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", 2686 (unsigned long long)block); 2687 return; 2688 } 2689 2690 for (x = 0; x < rlist->rl_rgrps; x++) { 2691 if (rlist->rl_rgd[x] == rgd) { 2692 swap(rlist->rl_rgd[x], 2693 rlist->rl_rgd[rlist->rl_rgrps - 1]); 2694 return; 2695 } 2696 } 2697 2698 if (rlist->rl_rgrps == rlist->rl_space) { 2699 new_space = rlist->rl_space + 10; 2700 2701 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), 2702 GFP_NOFS | __GFP_NOFAIL); 2703 2704 if (rlist->rl_rgd) { 2705 memcpy(tmp, rlist->rl_rgd, 2706 rlist->rl_space * sizeof(struct gfs2_rgrpd *)); 2707 kfree(rlist->rl_rgd); 2708 } 2709 2710 rlist->rl_space = new_space; 2711 rlist->rl_rgd = tmp; 2712 } 2713 2714 rlist->rl_rgd[rlist->rl_rgrps++] = rgd; 2715 } 2716 2717 /** 2718 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate 2719 * and initialize an array of glock holders for them 2720 * @rlist: the list of resource groups 2721 * 2722 * FIXME: Don't use NOFAIL 2723 * 2724 */ 2725 2726 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist) 2727 { 2728 unsigned int x; 2729 2730 rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps, 2731 sizeof(struct gfs2_holder), 2732 GFP_NOFS | __GFP_NOFAIL); 2733 for (x = 0; x < rlist->rl_rgrps; x++) 2734 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, LM_ST_EXCLUSIVE, 2735 LM_FLAG_NODE_SCOPE, &rlist->rl_ghs[x]); 2736 } 2737 2738 /** 2739 * gfs2_rlist_free - free a resource group list 2740 * @rlist: the list of resource groups 2741 * 2742 */ 2743 2744 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) 2745 { 2746 unsigned int x; 2747 2748 kfree(rlist->rl_rgd); 2749 2750 if (rlist->rl_ghs) { 2751 for (x = 0; x < rlist->rl_rgrps; x++) 2752 gfs2_holder_uninit(&rlist->rl_ghs[x]); 2753 kfree(rlist->rl_ghs); 2754 rlist->rl_ghs = NULL; 2755 } 2756 } 2757 2758 void rgrp_lock_local(struct gfs2_rgrpd *rgd) 2759 { 2760 mutex_lock(&rgd->rd_mutex); 2761 } 2762 2763 void rgrp_unlock_local(struct gfs2_rgrpd *rgd) 2764 { 2765 mutex_unlock(&rgd->rd_mutex); 2766 } 2767