xref: /openbmc/linux/fs/gfs2/rgrp.c (revision 24b1944f)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <linux/completion.h>
13 #include <linux/buffer_head.h>
14 #include <linux/fs.h>
15 #include <linux/gfs2_ondisk.h>
16 #include <linux/prefetch.h>
17 #include <linux/blkdev.h>
18 #include <linux/rbtree.h>
19 #include <linux/random.h>
20 
21 #include "gfs2.h"
22 #include "incore.h"
23 #include "glock.h"
24 #include "glops.h"
25 #include "lops.h"
26 #include "meta_io.h"
27 #include "quota.h"
28 #include "rgrp.h"
29 #include "super.h"
30 #include "trans.h"
31 #include "util.h"
32 #include "log.h"
33 #include "inode.h"
34 #include "trace_gfs2.h"
35 
36 #define BFITNOENT ((u32)~0)
37 #define NO_BLOCK ((u64)~0)
38 
39 #if BITS_PER_LONG == 32
40 #define LBITMASK   (0x55555555UL)
41 #define LBITSKIP55 (0x55555555UL)
42 #define LBITSKIP00 (0x00000000UL)
43 #else
44 #define LBITMASK   (0x5555555555555555UL)
45 #define LBITSKIP55 (0x5555555555555555UL)
46 #define LBITSKIP00 (0x0000000000000000UL)
47 #endif
48 
49 /*
50  * These routines are used by the resource group routines (rgrp.c)
51  * to keep track of block allocation.  Each block is represented by two
52  * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
53  *
54  * 0 = Free
55  * 1 = Used (not metadata)
56  * 2 = Unlinked (still in use) inode
57  * 3 = Used (metadata)
58  */
59 
60 static const char valid_change[16] = {
61 	        /* current */
62 	/* n */ 0, 1, 1, 1,
63 	/* e */ 1, 0, 0, 0,
64 	/* w */ 0, 0, 0, 1,
65 	        1, 0, 0, 0
66 };
67 
68 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext,
69                          const struct gfs2_inode *ip, bool nowrap);
70 
71 
72 /**
73  * gfs2_setbit - Set a bit in the bitmaps
74  * @rbm: The position of the bit to set
75  * @do_clone: Also set the clone bitmap, if it exists
76  * @new_state: the new state of the block
77  *
78  */
79 
80 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
81 			       unsigned char new_state)
82 {
83 	unsigned char *byte1, *byte2, *end, cur_state;
84 	unsigned int buflen = rbm->bi->bi_len;
85 	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
86 
87 	byte1 = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset + (rbm->offset / GFS2_NBBY);
88 	end = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset + buflen;
89 
90 	BUG_ON(byte1 >= end);
91 
92 	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
93 
94 	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
95 		printk(KERN_WARNING "GFS2: buf_blk = 0x%x old_state=%d, "
96 		       "new_state=%d\n", rbm->offset, cur_state, new_state);
97 		printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%x\n",
98 		       (unsigned long long)rbm->rgd->rd_addr,
99 		       rbm->bi->bi_start);
100 		printk(KERN_WARNING "GFS2: bi_offset=0x%x bi_len=0x%x\n",
101 		       rbm->bi->bi_offset, rbm->bi->bi_len);
102 		dump_stack();
103 		gfs2_consist_rgrpd(rbm->rgd);
104 		return;
105 	}
106 	*byte1 ^= (cur_state ^ new_state) << bit;
107 
108 	if (do_clone && rbm->bi->bi_clone) {
109 		byte2 = rbm->bi->bi_clone + rbm->bi->bi_offset + (rbm->offset / GFS2_NBBY);
110 		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
111 		*byte2 ^= (cur_state ^ new_state) << bit;
112 	}
113 }
114 
115 /**
116  * gfs2_testbit - test a bit in the bitmaps
117  * @rbm: The bit to test
118  *
119  * Returns: The two bit block state of the requested bit
120  */
121 
122 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
123 {
124 	const u8 *buffer = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset;
125 	const u8 *byte;
126 	unsigned int bit;
127 
128 	byte = buffer + (rbm->offset / GFS2_NBBY);
129 	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
130 
131 	return (*byte >> bit) & GFS2_BIT_MASK;
132 }
133 
134 /**
135  * gfs2_bit_search
136  * @ptr: Pointer to bitmap data
137  * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
138  * @state: The state we are searching for
139  *
140  * We xor the bitmap data with a patter which is the bitwise opposite
141  * of what we are looking for, this gives rise to a pattern of ones
142  * wherever there is a match. Since we have two bits per entry, we
143  * take this pattern, shift it down by one place and then and it with
144  * the original. All the even bit positions (0,2,4, etc) then represent
145  * successful matches, so we mask with 0x55555..... to remove the unwanted
146  * odd bit positions.
147  *
148  * This allows searching of a whole u64 at once (32 blocks) with a
149  * single test (on 64 bit arches).
150  */
151 
152 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
153 {
154 	u64 tmp;
155 	static const u64 search[] = {
156 		[0] = 0xffffffffffffffffULL,
157 		[1] = 0xaaaaaaaaaaaaaaaaULL,
158 		[2] = 0x5555555555555555ULL,
159 		[3] = 0x0000000000000000ULL,
160 	};
161 	tmp = le64_to_cpu(*ptr) ^ search[state];
162 	tmp &= (tmp >> 1);
163 	tmp &= mask;
164 	return tmp;
165 }
166 
167 /**
168  * rs_cmp - multi-block reservation range compare
169  * @blk: absolute file system block number of the new reservation
170  * @len: number of blocks in the new reservation
171  * @rs: existing reservation to compare against
172  *
173  * returns: 1 if the block range is beyond the reach of the reservation
174  *         -1 if the block range is before the start of the reservation
175  *          0 if the block range overlaps with the reservation
176  */
177 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
178 {
179 	u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
180 
181 	if (blk >= startblk + rs->rs_free)
182 		return 1;
183 	if (blk + len - 1 < startblk)
184 		return -1;
185 	return 0;
186 }
187 
188 /**
189  * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
190  *       a block in a given allocation state.
191  * @buf: the buffer that holds the bitmaps
192  * @len: the length (in bytes) of the buffer
193  * @goal: start search at this block's bit-pair (within @buffer)
194  * @state: GFS2_BLKST_XXX the state of the block we're looking for.
195  *
196  * Scope of @goal and returned block number is only within this bitmap buffer,
197  * not entire rgrp or filesystem.  @buffer will be offset from the actual
198  * beginning of a bitmap block buffer, skipping any header structures, but
199  * headers are always a multiple of 64 bits long so that the buffer is
200  * always aligned to a 64 bit boundary.
201  *
202  * The size of the buffer is in bytes, but is it assumed that it is
203  * always ok to read a complete multiple of 64 bits at the end
204  * of the block in case the end is no aligned to a natural boundary.
205  *
206  * Return: the block number (bitmap buffer scope) that was found
207  */
208 
209 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
210 		       u32 goal, u8 state)
211 {
212 	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
213 	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
214 	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
215 	u64 tmp;
216 	u64 mask = 0x5555555555555555ULL;
217 	u32 bit;
218 
219 	/* Mask off bits we don't care about at the start of the search */
220 	mask <<= spoint;
221 	tmp = gfs2_bit_search(ptr, mask, state);
222 	ptr++;
223 	while(tmp == 0 && ptr < end) {
224 		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
225 		ptr++;
226 	}
227 	/* Mask off any bits which are more than len bytes from the start */
228 	if (ptr == end && (len & (sizeof(u64) - 1)))
229 		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
230 	/* Didn't find anything, so return */
231 	if (tmp == 0)
232 		return BFITNOENT;
233 	ptr--;
234 	bit = __ffs64(tmp);
235 	bit /= 2;	/* two bits per entry in the bitmap */
236 	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
237 }
238 
239 /**
240  * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
241  * @rbm: The rbm with rgd already set correctly
242  * @block: The block number (filesystem relative)
243  *
244  * This sets the bi and offset members of an rbm based on a
245  * resource group and a filesystem relative block number. The
246  * resource group must be set in the rbm on entry, the bi and
247  * offset members will be set by this function.
248  *
249  * Returns: 0 on success, or an error code
250  */
251 
252 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
253 {
254 	u64 rblock = block - rbm->rgd->rd_data0;
255 	u32 x;
256 
257 	if (WARN_ON_ONCE(rblock > UINT_MAX))
258 		return -EINVAL;
259 	if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
260 		return -E2BIG;
261 
262 	rbm->bi = rbm->rgd->rd_bits;
263 	rbm->offset = (u32)(rblock);
264 	/* Check if the block is within the first block */
265 	if (rbm->offset < (rbm->bi->bi_start + rbm->bi->bi_len) * GFS2_NBBY)
266 		return 0;
267 
268 	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
269 	rbm->offset += (sizeof(struct gfs2_rgrp) -
270 			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
271 	x = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
272 	rbm->offset -= x * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
273 	rbm->bi += x;
274 	return 0;
275 }
276 
277 /**
278  * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
279  * @rbm: Position to search (value/result)
280  * @n_unaligned: Number of unaligned blocks to check
281  * @len: Decremented for each block found (terminate on zero)
282  *
283  * Returns: true if a non-free block is encountered
284  */
285 
286 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
287 {
288 	u64 block;
289 	u32 n;
290 	u8 res;
291 
292 	for (n = 0; n < n_unaligned; n++) {
293 		res = gfs2_testbit(rbm);
294 		if (res != GFS2_BLKST_FREE)
295 			return true;
296 		(*len)--;
297 		if (*len == 0)
298 			return true;
299 		block = gfs2_rbm_to_block(rbm);
300 		if (gfs2_rbm_from_block(rbm, block + 1))
301 			return true;
302 	}
303 
304 	return false;
305 }
306 
307 /**
308  * gfs2_free_extlen - Return extent length of free blocks
309  * @rbm: Starting position
310  * @len: Max length to check
311  *
312  * Starting at the block specified by the rbm, see how many free blocks
313  * there are, not reading more than len blocks ahead. This can be done
314  * using memchr_inv when the blocks are byte aligned, but has to be done
315  * on a block by block basis in case of unaligned blocks. Also this
316  * function can cope with bitmap boundaries (although it must stop on
317  * a resource group boundary)
318  *
319  * Returns: Number of free blocks in the extent
320  */
321 
322 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
323 {
324 	struct gfs2_rbm rbm = *rrbm;
325 	u32 n_unaligned = rbm.offset & 3;
326 	u32 size = len;
327 	u32 bytes;
328 	u32 chunk_size;
329 	u8 *ptr, *start, *end;
330 	u64 block;
331 
332 	if (n_unaligned &&
333 	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
334 		goto out;
335 
336 	n_unaligned = len & 3;
337 	/* Start is now byte aligned */
338 	while (len > 3) {
339 		start = rbm.bi->bi_bh->b_data;
340 		if (rbm.bi->bi_clone)
341 			start = rbm.bi->bi_clone;
342 		end = start + rbm.bi->bi_bh->b_size;
343 		start += rbm.bi->bi_offset;
344 		BUG_ON(rbm.offset & 3);
345 		start += (rbm.offset / GFS2_NBBY);
346 		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
347 		ptr = memchr_inv(start, 0, bytes);
348 		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
349 		chunk_size *= GFS2_NBBY;
350 		BUG_ON(len < chunk_size);
351 		len -= chunk_size;
352 		block = gfs2_rbm_to_block(&rbm);
353 		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
354 			n_unaligned = 0;
355 			break;
356 		}
357 		if (ptr) {
358 			n_unaligned = 3;
359 			break;
360 		}
361 		n_unaligned = len & 3;
362 	}
363 
364 	/* Deal with any bits left over at the end */
365 	if (n_unaligned)
366 		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
367 out:
368 	return size - len;
369 }
370 
371 /**
372  * gfs2_bitcount - count the number of bits in a certain state
373  * @rgd: the resource group descriptor
374  * @buffer: the buffer that holds the bitmaps
375  * @buflen: the length (in bytes) of the buffer
376  * @state: the state of the block we're looking for
377  *
378  * Returns: The number of bits
379  */
380 
381 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
382 			 unsigned int buflen, u8 state)
383 {
384 	const u8 *byte = buffer;
385 	const u8 *end = buffer + buflen;
386 	const u8 state1 = state << 2;
387 	const u8 state2 = state << 4;
388 	const u8 state3 = state << 6;
389 	u32 count = 0;
390 
391 	for (; byte < end; byte++) {
392 		if (((*byte) & 0x03) == state)
393 			count++;
394 		if (((*byte) & 0x0C) == state1)
395 			count++;
396 		if (((*byte) & 0x30) == state2)
397 			count++;
398 		if (((*byte) & 0xC0) == state3)
399 			count++;
400 	}
401 
402 	return count;
403 }
404 
405 /**
406  * gfs2_rgrp_verify - Verify that a resource group is consistent
407  * @rgd: the rgrp
408  *
409  */
410 
411 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
412 {
413 	struct gfs2_sbd *sdp = rgd->rd_sbd;
414 	struct gfs2_bitmap *bi = NULL;
415 	u32 length = rgd->rd_length;
416 	u32 count[4], tmp;
417 	int buf, x;
418 
419 	memset(count, 0, 4 * sizeof(u32));
420 
421 	/* Count # blocks in each of 4 possible allocation states */
422 	for (buf = 0; buf < length; buf++) {
423 		bi = rgd->rd_bits + buf;
424 		for (x = 0; x < 4; x++)
425 			count[x] += gfs2_bitcount(rgd,
426 						  bi->bi_bh->b_data +
427 						  bi->bi_offset,
428 						  bi->bi_len, x);
429 	}
430 
431 	if (count[0] != rgd->rd_free) {
432 		if (gfs2_consist_rgrpd(rgd))
433 			fs_err(sdp, "free data mismatch:  %u != %u\n",
434 			       count[0], rgd->rd_free);
435 		return;
436 	}
437 
438 	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
439 	if (count[1] != tmp) {
440 		if (gfs2_consist_rgrpd(rgd))
441 			fs_err(sdp, "used data mismatch:  %u != %u\n",
442 			       count[1], tmp);
443 		return;
444 	}
445 
446 	if (count[2] + count[3] != rgd->rd_dinodes) {
447 		if (gfs2_consist_rgrpd(rgd))
448 			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
449 			       count[2] + count[3], rgd->rd_dinodes);
450 		return;
451 	}
452 }
453 
454 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
455 {
456 	u64 first = rgd->rd_data0;
457 	u64 last = first + rgd->rd_data;
458 	return first <= block && block < last;
459 }
460 
461 /**
462  * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
463  * @sdp: The GFS2 superblock
464  * @blk: The data block number
465  * @exact: True if this needs to be an exact match
466  *
467  * Returns: The resource group, or NULL if not found
468  */
469 
470 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
471 {
472 	struct rb_node *n, *next;
473 	struct gfs2_rgrpd *cur;
474 
475 	spin_lock(&sdp->sd_rindex_spin);
476 	n = sdp->sd_rindex_tree.rb_node;
477 	while (n) {
478 		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
479 		next = NULL;
480 		if (blk < cur->rd_addr)
481 			next = n->rb_left;
482 		else if (blk >= cur->rd_data0 + cur->rd_data)
483 			next = n->rb_right;
484 		if (next == NULL) {
485 			spin_unlock(&sdp->sd_rindex_spin);
486 			if (exact) {
487 				if (blk < cur->rd_addr)
488 					return NULL;
489 				if (blk >= cur->rd_data0 + cur->rd_data)
490 					return NULL;
491 			}
492 			return cur;
493 		}
494 		n = next;
495 	}
496 	spin_unlock(&sdp->sd_rindex_spin);
497 
498 	return NULL;
499 }
500 
501 /**
502  * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
503  * @sdp: The GFS2 superblock
504  *
505  * Returns: The first rgrp in the filesystem
506  */
507 
508 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
509 {
510 	const struct rb_node *n;
511 	struct gfs2_rgrpd *rgd;
512 
513 	spin_lock(&sdp->sd_rindex_spin);
514 	n = rb_first(&sdp->sd_rindex_tree);
515 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
516 	spin_unlock(&sdp->sd_rindex_spin);
517 
518 	return rgd;
519 }
520 
521 /**
522  * gfs2_rgrpd_get_next - get the next RG
523  * @rgd: the resource group descriptor
524  *
525  * Returns: The next rgrp
526  */
527 
528 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
529 {
530 	struct gfs2_sbd *sdp = rgd->rd_sbd;
531 	const struct rb_node *n;
532 
533 	spin_lock(&sdp->sd_rindex_spin);
534 	n = rb_next(&rgd->rd_node);
535 	if (n == NULL)
536 		n = rb_first(&sdp->sd_rindex_tree);
537 
538 	if (unlikely(&rgd->rd_node == n)) {
539 		spin_unlock(&sdp->sd_rindex_spin);
540 		return NULL;
541 	}
542 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
543 	spin_unlock(&sdp->sd_rindex_spin);
544 	return rgd;
545 }
546 
547 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
548 {
549 	int x;
550 
551 	for (x = 0; x < rgd->rd_length; x++) {
552 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
553 		kfree(bi->bi_clone);
554 		bi->bi_clone = NULL;
555 	}
556 }
557 
558 /**
559  * gfs2_rs_alloc - make sure we have a reservation assigned to the inode
560  * @ip: the inode for this reservation
561  */
562 int gfs2_rs_alloc(struct gfs2_inode *ip)
563 {
564 	int error = 0;
565 
566 	down_write(&ip->i_rw_mutex);
567 	if (ip->i_res)
568 		goto out;
569 
570 	ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS);
571 	if (!ip->i_res) {
572 		error = -ENOMEM;
573 		goto out;
574 	}
575 
576 	RB_CLEAR_NODE(&ip->i_res->rs_node);
577 out:
578 	up_write(&ip->i_rw_mutex);
579 	return error;
580 }
581 
582 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
583 {
584 	gfs2_print_dbg(seq, "  B: n:%llu s:%llu b:%u f:%u\n",
585 		       (unsigned long long)rs->rs_inum,
586 		       (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
587 		       rs->rs_rbm.offset, rs->rs_free);
588 }
589 
590 /**
591  * __rs_deltree - remove a multi-block reservation from the rgd tree
592  * @rs: The reservation to remove
593  *
594  */
595 static void __rs_deltree(struct gfs2_blkreserv *rs)
596 {
597 	struct gfs2_rgrpd *rgd;
598 
599 	if (!gfs2_rs_active(rs))
600 		return;
601 
602 	rgd = rs->rs_rbm.rgd;
603 	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
604 	rb_erase(&rs->rs_node, &rgd->rd_rstree);
605 	RB_CLEAR_NODE(&rs->rs_node);
606 
607 	if (rs->rs_free) {
608 		/* return reserved blocks to the rgrp */
609 		BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
610 		rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
611 		rs->rs_free = 0;
612 		clear_bit(GBF_FULL, &rs->rs_rbm.bi->bi_flags);
613 		smp_mb__after_clear_bit();
614 	}
615 }
616 
617 /**
618  * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
619  * @rs: The reservation to remove
620  *
621  */
622 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
623 {
624 	struct gfs2_rgrpd *rgd;
625 
626 	rgd = rs->rs_rbm.rgd;
627 	if (rgd) {
628 		spin_lock(&rgd->rd_rsspin);
629 		__rs_deltree(rs);
630 		spin_unlock(&rgd->rd_rsspin);
631 	}
632 }
633 
634 /**
635  * gfs2_rs_delete - delete a multi-block reservation
636  * @ip: The inode for this reservation
637  *
638  */
639 void gfs2_rs_delete(struct gfs2_inode *ip)
640 {
641 	struct inode *inode = &ip->i_inode;
642 
643 	down_write(&ip->i_rw_mutex);
644 	if (ip->i_res && atomic_read(&inode->i_writecount) <= 1) {
645 		gfs2_rs_deltree(ip->i_res);
646 		BUG_ON(ip->i_res->rs_free);
647 		kmem_cache_free(gfs2_rsrv_cachep, ip->i_res);
648 		ip->i_res = NULL;
649 	}
650 	up_write(&ip->i_rw_mutex);
651 }
652 
653 /**
654  * return_all_reservations - return all reserved blocks back to the rgrp.
655  * @rgd: the rgrp that needs its space back
656  *
657  * We previously reserved a bunch of blocks for allocation. Now we need to
658  * give them back. This leave the reservation structures in tact, but removes
659  * all of their corresponding "no-fly zones".
660  */
661 static void return_all_reservations(struct gfs2_rgrpd *rgd)
662 {
663 	struct rb_node *n;
664 	struct gfs2_blkreserv *rs;
665 
666 	spin_lock(&rgd->rd_rsspin);
667 	while ((n = rb_first(&rgd->rd_rstree))) {
668 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
669 		__rs_deltree(rs);
670 	}
671 	spin_unlock(&rgd->rd_rsspin);
672 }
673 
674 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
675 {
676 	struct rb_node *n;
677 	struct gfs2_rgrpd *rgd;
678 	struct gfs2_glock *gl;
679 
680 	while ((n = rb_first(&sdp->sd_rindex_tree))) {
681 		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
682 		gl = rgd->rd_gl;
683 
684 		rb_erase(n, &sdp->sd_rindex_tree);
685 
686 		if (gl) {
687 			spin_lock(&gl->gl_spin);
688 			gl->gl_object = NULL;
689 			spin_unlock(&gl->gl_spin);
690 			gfs2_glock_add_to_lru(gl);
691 			gfs2_glock_put(gl);
692 		}
693 
694 		gfs2_free_clones(rgd);
695 		kfree(rgd->rd_bits);
696 		return_all_reservations(rgd);
697 		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
698 	}
699 }
700 
701 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
702 {
703 	printk(KERN_INFO "  ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
704 	printk(KERN_INFO "  ri_length = %u\n", rgd->rd_length);
705 	printk(KERN_INFO "  ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
706 	printk(KERN_INFO "  ri_data = %u\n", rgd->rd_data);
707 	printk(KERN_INFO "  ri_bitbytes = %u\n", rgd->rd_bitbytes);
708 }
709 
710 /**
711  * gfs2_compute_bitstructs - Compute the bitmap sizes
712  * @rgd: The resource group descriptor
713  *
714  * Calculates bitmap descriptors, one for each block that contains bitmap data
715  *
716  * Returns: errno
717  */
718 
719 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
720 {
721 	struct gfs2_sbd *sdp = rgd->rd_sbd;
722 	struct gfs2_bitmap *bi;
723 	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
724 	u32 bytes_left, bytes;
725 	int x;
726 
727 	if (!length)
728 		return -EINVAL;
729 
730 	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
731 	if (!rgd->rd_bits)
732 		return -ENOMEM;
733 
734 	bytes_left = rgd->rd_bitbytes;
735 
736 	for (x = 0; x < length; x++) {
737 		bi = rgd->rd_bits + x;
738 
739 		bi->bi_flags = 0;
740 		/* small rgrp; bitmap stored completely in header block */
741 		if (length == 1) {
742 			bytes = bytes_left;
743 			bi->bi_offset = sizeof(struct gfs2_rgrp);
744 			bi->bi_start = 0;
745 			bi->bi_len = bytes;
746 		/* header block */
747 		} else if (x == 0) {
748 			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
749 			bi->bi_offset = sizeof(struct gfs2_rgrp);
750 			bi->bi_start = 0;
751 			bi->bi_len = bytes;
752 		/* last block */
753 		} else if (x + 1 == length) {
754 			bytes = bytes_left;
755 			bi->bi_offset = sizeof(struct gfs2_meta_header);
756 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
757 			bi->bi_len = bytes;
758 		/* other blocks */
759 		} else {
760 			bytes = sdp->sd_sb.sb_bsize -
761 				sizeof(struct gfs2_meta_header);
762 			bi->bi_offset = sizeof(struct gfs2_meta_header);
763 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
764 			bi->bi_len = bytes;
765 		}
766 
767 		bytes_left -= bytes;
768 	}
769 
770 	if (bytes_left) {
771 		gfs2_consist_rgrpd(rgd);
772 		return -EIO;
773 	}
774 	bi = rgd->rd_bits + (length - 1);
775 	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
776 		if (gfs2_consist_rgrpd(rgd)) {
777 			gfs2_rindex_print(rgd);
778 			fs_err(sdp, "start=%u len=%u offset=%u\n",
779 			       bi->bi_start, bi->bi_len, bi->bi_offset);
780 		}
781 		return -EIO;
782 	}
783 
784 	return 0;
785 }
786 
787 /**
788  * gfs2_ri_total - Total up the file system space, according to the rindex.
789  * @sdp: the filesystem
790  *
791  */
792 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
793 {
794 	u64 total_data = 0;
795 	struct inode *inode = sdp->sd_rindex;
796 	struct gfs2_inode *ip = GFS2_I(inode);
797 	char buf[sizeof(struct gfs2_rindex)];
798 	int error, rgrps;
799 
800 	for (rgrps = 0;; rgrps++) {
801 		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
802 
803 		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
804 			break;
805 		error = gfs2_internal_read(ip, buf, &pos,
806 					   sizeof(struct gfs2_rindex));
807 		if (error != sizeof(struct gfs2_rindex))
808 			break;
809 		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
810 	}
811 	return total_data;
812 }
813 
814 static int rgd_insert(struct gfs2_rgrpd *rgd)
815 {
816 	struct gfs2_sbd *sdp = rgd->rd_sbd;
817 	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
818 
819 	/* Figure out where to put new node */
820 	while (*newn) {
821 		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
822 						  rd_node);
823 
824 		parent = *newn;
825 		if (rgd->rd_addr < cur->rd_addr)
826 			newn = &((*newn)->rb_left);
827 		else if (rgd->rd_addr > cur->rd_addr)
828 			newn = &((*newn)->rb_right);
829 		else
830 			return -EEXIST;
831 	}
832 
833 	rb_link_node(&rgd->rd_node, parent, newn);
834 	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
835 	sdp->sd_rgrps++;
836 	return 0;
837 }
838 
839 /**
840  * read_rindex_entry - Pull in a new resource index entry from the disk
841  * @ip: Pointer to the rindex inode
842  *
843  * Returns: 0 on success, > 0 on EOF, error code otherwise
844  */
845 
846 static int read_rindex_entry(struct gfs2_inode *ip)
847 {
848 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
849 	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
850 	struct gfs2_rindex buf;
851 	int error;
852 	struct gfs2_rgrpd *rgd;
853 
854 	if (pos >= i_size_read(&ip->i_inode))
855 		return 1;
856 
857 	error = gfs2_internal_read(ip, (char *)&buf, &pos,
858 				   sizeof(struct gfs2_rindex));
859 
860 	if (error != sizeof(struct gfs2_rindex))
861 		return (error == 0) ? 1 : error;
862 
863 	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
864 	error = -ENOMEM;
865 	if (!rgd)
866 		return error;
867 
868 	rgd->rd_sbd = sdp;
869 	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
870 	rgd->rd_length = be32_to_cpu(buf.ri_length);
871 	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
872 	rgd->rd_data = be32_to_cpu(buf.ri_data);
873 	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
874 	spin_lock_init(&rgd->rd_rsspin);
875 
876 	error = compute_bitstructs(rgd);
877 	if (error)
878 		goto fail;
879 
880 	error = gfs2_glock_get(sdp, rgd->rd_addr,
881 			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
882 	if (error)
883 		goto fail;
884 
885 	rgd->rd_gl->gl_object = rgd;
886 	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
887 	rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
888 	if (rgd->rd_data > sdp->sd_max_rg_data)
889 		sdp->sd_max_rg_data = rgd->rd_data;
890 	spin_lock(&sdp->sd_rindex_spin);
891 	error = rgd_insert(rgd);
892 	spin_unlock(&sdp->sd_rindex_spin);
893 	if (!error)
894 		return 0;
895 
896 	error = 0; /* someone else read in the rgrp; free it and ignore it */
897 	gfs2_glock_put(rgd->rd_gl);
898 
899 fail:
900 	kfree(rgd->rd_bits);
901 	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
902 	return error;
903 }
904 
905 /**
906  * gfs2_ri_update - Pull in a new resource index from the disk
907  * @ip: pointer to the rindex inode
908  *
909  * Returns: 0 on successful update, error code otherwise
910  */
911 
912 static int gfs2_ri_update(struct gfs2_inode *ip)
913 {
914 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
915 	int error;
916 
917 	do {
918 		error = read_rindex_entry(ip);
919 	} while (error == 0);
920 
921 	if (error < 0)
922 		return error;
923 
924 	sdp->sd_rindex_uptodate = 1;
925 	return 0;
926 }
927 
928 /**
929  * gfs2_rindex_update - Update the rindex if required
930  * @sdp: The GFS2 superblock
931  *
932  * We grab a lock on the rindex inode to make sure that it doesn't
933  * change whilst we are performing an operation. We keep this lock
934  * for quite long periods of time compared to other locks. This
935  * doesn't matter, since it is shared and it is very, very rarely
936  * accessed in the exclusive mode (i.e. only when expanding the filesystem).
937  *
938  * This makes sure that we're using the latest copy of the resource index
939  * special file, which might have been updated if someone expanded the
940  * filesystem (via gfs2_grow utility), which adds new resource groups.
941  *
942  * Returns: 0 on succeess, error code otherwise
943  */
944 
945 int gfs2_rindex_update(struct gfs2_sbd *sdp)
946 {
947 	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
948 	struct gfs2_glock *gl = ip->i_gl;
949 	struct gfs2_holder ri_gh;
950 	int error = 0;
951 	int unlock_required = 0;
952 
953 	/* Read new copy from disk if we don't have the latest */
954 	if (!sdp->sd_rindex_uptodate) {
955 		if (!gfs2_glock_is_locked_by_me(gl)) {
956 			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
957 			if (error)
958 				return error;
959 			unlock_required = 1;
960 		}
961 		if (!sdp->sd_rindex_uptodate)
962 			error = gfs2_ri_update(ip);
963 		if (unlock_required)
964 			gfs2_glock_dq_uninit(&ri_gh);
965 	}
966 
967 	return error;
968 }
969 
970 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
971 {
972 	const struct gfs2_rgrp *str = buf;
973 	u32 rg_flags;
974 
975 	rg_flags = be32_to_cpu(str->rg_flags);
976 	rg_flags &= ~GFS2_RDF_MASK;
977 	rgd->rd_flags &= GFS2_RDF_MASK;
978 	rgd->rd_flags |= rg_flags;
979 	rgd->rd_free = be32_to_cpu(str->rg_free);
980 	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
981 	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
982 }
983 
984 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
985 {
986 	struct gfs2_rgrp *str = buf;
987 
988 	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
989 	str->rg_free = cpu_to_be32(rgd->rd_free);
990 	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
991 	str->__pad = cpu_to_be32(0);
992 	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
993 	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
994 }
995 
996 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
997 {
998 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
999 	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1000 
1001 	if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1002 	    rgl->rl_dinodes != str->rg_dinodes ||
1003 	    rgl->rl_igeneration != str->rg_igeneration)
1004 		return 0;
1005 	return 1;
1006 }
1007 
1008 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1009 {
1010 	const struct gfs2_rgrp *str = buf;
1011 
1012 	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1013 	rgl->rl_flags = str->rg_flags;
1014 	rgl->rl_free = str->rg_free;
1015 	rgl->rl_dinodes = str->rg_dinodes;
1016 	rgl->rl_igeneration = str->rg_igeneration;
1017 	rgl->__pad = 0UL;
1018 }
1019 
1020 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1021 {
1022 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1023 	u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1024 	rgl->rl_unlinked = cpu_to_be32(unlinked);
1025 }
1026 
1027 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1028 {
1029 	struct gfs2_bitmap *bi;
1030 	const u32 length = rgd->rd_length;
1031 	const u8 *buffer = NULL;
1032 	u32 i, goal, count = 0;
1033 
1034 	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1035 		goal = 0;
1036 		buffer = bi->bi_bh->b_data + bi->bi_offset;
1037 		WARN_ON(!buffer_uptodate(bi->bi_bh));
1038 		while (goal < bi->bi_len * GFS2_NBBY) {
1039 			goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1040 					   GFS2_BLKST_UNLINKED);
1041 			if (goal == BFITNOENT)
1042 				break;
1043 			count++;
1044 			goal++;
1045 		}
1046 	}
1047 
1048 	return count;
1049 }
1050 
1051 
1052 /**
1053  * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1054  * @rgd: the struct gfs2_rgrpd describing the RG to read in
1055  *
1056  * Read in all of a Resource Group's header and bitmap blocks.
1057  * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1058  *
1059  * Returns: errno
1060  */
1061 
1062 int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1063 {
1064 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1065 	struct gfs2_glock *gl = rgd->rd_gl;
1066 	unsigned int length = rgd->rd_length;
1067 	struct gfs2_bitmap *bi;
1068 	unsigned int x, y;
1069 	int error;
1070 
1071 	if (rgd->rd_bits[0].bi_bh != NULL)
1072 		return 0;
1073 
1074 	for (x = 0; x < length; x++) {
1075 		bi = rgd->rd_bits + x;
1076 		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
1077 		if (error)
1078 			goto fail;
1079 	}
1080 
1081 	for (y = length; y--;) {
1082 		bi = rgd->rd_bits + y;
1083 		error = gfs2_meta_wait(sdp, bi->bi_bh);
1084 		if (error)
1085 			goto fail;
1086 		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1087 					      GFS2_METATYPE_RG)) {
1088 			error = -EIO;
1089 			goto fail;
1090 		}
1091 	}
1092 
1093 	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1094 		for (x = 0; x < length; x++)
1095 			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1096 		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1097 		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1098 		rgd->rd_free_clone = rgd->rd_free;
1099 	}
1100 	if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1101 		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1102 		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1103 				     rgd->rd_bits[0].bi_bh->b_data);
1104 	}
1105 	else if (sdp->sd_args.ar_rgrplvb) {
1106 		if (!gfs2_rgrp_lvb_valid(rgd)){
1107 			gfs2_consist_rgrpd(rgd);
1108 			error = -EIO;
1109 			goto fail;
1110 		}
1111 		if (rgd->rd_rgl->rl_unlinked == 0)
1112 			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1113 	}
1114 	return 0;
1115 
1116 fail:
1117 	while (x--) {
1118 		bi = rgd->rd_bits + x;
1119 		brelse(bi->bi_bh);
1120 		bi->bi_bh = NULL;
1121 		gfs2_assert_warn(sdp, !bi->bi_clone);
1122 	}
1123 
1124 	return error;
1125 }
1126 
1127 int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1128 {
1129 	u32 rl_flags;
1130 
1131 	if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1132 		return 0;
1133 
1134 	if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1135 		return gfs2_rgrp_bh_get(rgd);
1136 
1137 	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1138 	rl_flags &= ~GFS2_RDF_MASK;
1139 	rgd->rd_flags &= GFS2_RDF_MASK;
1140 	rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1141 	if (rgd->rd_rgl->rl_unlinked == 0)
1142 		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1143 	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1144 	rgd->rd_free_clone = rgd->rd_free;
1145 	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1146 	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1147 	return 0;
1148 }
1149 
1150 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1151 {
1152 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1153 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1154 
1155 	if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1156 		return 0;
1157 	return gfs2_rgrp_bh_get((struct gfs2_rgrpd *)gh->gh_gl->gl_object);
1158 }
1159 
1160 /**
1161  * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1162  * @gh: The glock holder for the resource group
1163  *
1164  */
1165 
1166 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1167 {
1168 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1169 	int x, length = rgd->rd_length;
1170 
1171 	for (x = 0; x < length; x++) {
1172 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1173 		if (bi->bi_bh) {
1174 			brelse(bi->bi_bh);
1175 			bi->bi_bh = NULL;
1176 		}
1177 	}
1178 
1179 }
1180 
1181 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1182 			     struct buffer_head *bh,
1183 			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1184 {
1185 	struct super_block *sb = sdp->sd_vfs;
1186 	u64 blk;
1187 	sector_t start = 0;
1188 	sector_t nr_blks = 0;
1189 	int rv;
1190 	unsigned int x;
1191 	u32 trimmed = 0;
1192 	u8 diff;
1193 
1194 	for (x = 0; x < bi->bi_len; x++) {
1195 		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1196 		clone += bi->bi_offset;
1197 		clone += x;
1198 		if (bh) {
1199 			const u8 *orig = bh->b_data + bi->bi_offset + x;
1200 			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1201 		} else {
1202 			diff = ~(*clone | (*clone >> 1));
1203 		}
1204 		diff &= 0x55;
1205 		if (diff == 0)
1206 			continue;
1207 		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1208 		while(diff) {
1209 			if (diff & 1) {
1210 				if (nr_blks == 0)
1211 					goto start_new_extent;
1212 				if ((start + nr_blks) != blk) {
1213 					if (nr_blks >= minlen) {
1214 						rv = sb_issue_discard(sb,
1215 							start, nr_blks,
1216 							GFP_NOFS, 0);
1217 						if (rv)
1218 							goto fail;
1219 						trimmed += nr_blks;
1220 					}
1221 					nr_blks = 0;
1222 start_new_extent:
1223 					start = blk;
1224 				}
1225 				nr_blks++;
1226 			}
1227 			diff >>= 2;
1228 			blk++;
1229 		}
1230 	}
1231 	if (nr_blks >= minlen) {
1232 		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1233 		if (rv)
1234 			goto fail;
1235 		trimmed += nr_blks;
1236 	}
1237 	if (ptrimmed)
1238 		*ptrimmed = trimmed;
1239 	return 0;
1240 
1241 fail:
1242 	if (sdp->sd_args.ar_discard)
1243 		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1244 	sdp->sd_args.ar_discard = 0;
1245 	return -EIO;
1246 }
1247 
1248 /**
1249  * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1250  * @filp: Any file on the filesystem
1251  * @argp: Pointer to the arguments (also used to pass result)
1252  *
1253  * Returns: 0 on success, otherwise error code
1254  */
1255 
1256 int gfs2_fitrim(struct file *filp, void __user *argp)
1257 {
1258 	struct inode *inode = file_inode(filp);
1259 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1260 	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1261 	struct buffer_head *bh;
1262 	struct gfs2_rgrpd *rgd;
1263 	struct gfs2_rgrpd *rgd_end;
1264 	struct gfs2_holder gh;
1265 	struct fstrim_range r;
1266 	int ret = 0;
1267 	u64 amt;
1268 	u64 trimmed = 0;
1269 	u64 start, end, minlen;
1270 	unsigned int x;
1271 	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1272 
1273 	if (!capable(CAP_SYS_ADMIN))
1274 		return -EPERM;
1275 
1276 	if (!blk_queue_discard(q))
1277 		return -EOPNOTSUPP;
1278 
1279 	if (copy_from_user(&r, argp, sizeof(r)))
1280 		return -EFAULT;
1281 
1282 	ret = gfs2_rindex_update(sdp);
1283 	if (ret)
1284 		return ret;
1285 
1286 	start = r.start >> bs_shift;
1287 	end = start + (r.len >> bs_shift);
1288 	minlen = max_t(u64, r.minlen,
1289 		       q->limits.discard_granularity) >> bs_shift;
1290 
1291 	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1292 	rgd_end = gfs2_blk2rgrpd(sdp, end - 1, 0);
1293 
1294 	if (end <= start ||
1295 	    minlen > sdp->sd_max_rg_data ||
1296 	    start > rgd_end->rd_data0 + rgd_end->rd_data)
1297 		return -EINVAL;
1298 
1299 	while (1) {
1300 
1301 		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1302 		if (ret)
1303 			goto out;
1304 
1305 		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1306 			/* Trim each bitmap in the rgrp */
1307 			for (x = 0; x < rgd->rd_length; x++) {
1308 				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1309 				ret = gfs2_rgrp_send_discards(sdp,
1310 						rgd->rd_data0, NULL, bi, minlen,
1311 						&amt);
1312 				if (ret) {
1313 					gfs2_glock_dq_uninit(&gh);
1314 					goto out;
1315 				}
1316 				trimmed += amt;
1317 			}
1318 
1319 			/* Mark rgrp as having been trimmed */
1320 			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1321 			if (ret == 0) {
1322 				bh = rgd->rd_bits[0].bi_bh;
1323 				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1324 				gfs2_trans_add_meta(rgd->rd_gl, bh);
1325 				gfs2_rgrp_out(rgd, bh->b_data);
1326 				gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1327 				gfs2_trans_end(sdp);
1328 			}
1329 		}
1330 		gfs2_glock_dq_uninit(&gh);
1331 
1332 		if (rgd == rgd_end)
1333 			break;
1334 
1335 		rgd = gfs2_rgrpd_get_next(rgd);
1336 	}
1337 
1338 out:
1339 	r.len = trimmed << 9;
1340 	if (copy_to_user(argp, &r, sizeof(r)))
1341 		return -EFAULT;
1342 
1343 	return ret;
1344 }
1345 
1346 /**
1347  * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1348  * @ip: the inode structure
1349  *
1350  */
1351 static void rs_insert(struct gfs2_inode *ip)
1352 {
1353 	struct rb_node **newn, *parent = NULL;
1354 	int rc;
1355 	struct gfs2_blkreserv *rs = ip->i_res;
1356 	struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1357 	u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1358 
1359 	BUG_ON(gfs2_rs_active(rs));
1360 
1361 	spin_lock(&rgd->rd_rsspin);
1362 	newn = &rgd->rd_rstree.rb_node;
1363 	while (*newn) {
1364 		struct gfs2_blkreserv *cur =
1365 			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1366 
1367 		parent = *newn;
1368 		rc = rs_cmp(fsblock, rs->rs_free, cur);
1369 		if (rc > 0)
1370 			newn = &((*newn)->rb_right);
1371 		else if (rc < 0)
1372 			newn = &((*newn)->rb_left);
1373 		else {
1374 			spin_unlock(&rgd->rd_rsspin);
1375 			WARN_ON(1);
1376 			return;
1377 		}
1378 	}
1379 
1380 	rb_link_node(&rs->rs_node, parent, newn);
1381 	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1382 
1383 	/* Do our rgrp accounting for the reservation */
1384 	rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1385 	spin_unlock(&rgd->rd_rsspin);
1386 	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1387 }
1388 
1389 /**
1390  * rg_mblk_search - find a group of multiple free blocks to form a reservation
1391  * @rgd: the resource group descriptor
1392  * @ip: pointer to the inode for which we're reserving blocks
1393  * @requested: number of blocks required for this allocation
1394  *
1395  */
1396 
1397 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1398 			   unsigned requested)
1399 {
1400 	struct gfs2_rbm rbm = { .rgd = rgd, };
1401 	u64 goal;
1402 	struct gfs2_blkreserv *rs = ip->i_res;
1403 	u32 extlen;
1404 	u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1405 	int ret;
1406 	struct inode *inode = &ip->i_inode;
1407 
1408 	if (S_ISDIR(inode->i_mode))
1409 		extlen = 1;
1410 	else {
1411 		extlen = max_t(u32, atomic_read(&rs->rs_sizehint), requested);
1412 		extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1413 	}
1414 	if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1415 		return;
1416 
1417 	/* Find bitmap block that contains bits for goal block */
1418 	if (rgrp_contains_block(rgd, ip->i_goal))
1419 		goal = ip->i_goal;
1420 	else
1421 		goal = rgd->rd_last_alloc + rgd->rd_data0;
1422 
1423 	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1424 		return;
1425 
1426 	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, extlen, ip, true);
1427 	if (ret == 0) {
1428 		rs->rs_rbm = rbm;
1429 		rs->rs_free = extlen;
1430 		rs->rs_inum = ip->i_no_addr;
1431 		rs_insert(ip);
1432 	} else {
1433 		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1434 			rgd->rd_last_alloc = 0;
1435 	}
1436 }
1437 
1438 /**
1439  * gfs2_next_unreserved_block - Return next block that is not reserved
1440  * @rgd: The resource group
1441  * @block: The starting block
1442  * @length: The required length
1443  * @ip: Ignore any reservations for this inode
1444  *
1445  * If the block does not appear in any reservation, then return the
1446  * block number unchanged. If it does appear in the reservation, then
1447  * keep looking through the tree of reservations in order to find the
1448  * first block number which is not reserved.
1449  */
1450 
1451 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1452 				      u32 length,
1453 				      const struct gfs2_inode *ip)
1454 {
1455 	struct gfs2_blkreserv *rs;
1456 	struct rb_node *n;
1457 	int rc;
1458 
1459 	spin_lock(&rgd->rd_rsspin);
1460 	n = rgd->rd_rstree.rb_node;
1461 	while (n) {
1462 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1463 		rc = rs_cmp(block, length, rs);
1464 		if (rc < 0)
1465 			n = n->rb_left;
1466 		else if (rc > 0)
1467 			n = n->rb_right;
1468 		else
1469 			break;
1470 	}
1471 
1472 	if (n) {
1473 		while ((rs_cmp(block, length, rs) == 0) && (ip->i_res != rs)) {
1474 			block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1475 			n = n->rb_right;
1476 			if (n == NULL)
1477 				break;
1478 			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1479 		}
1480 	}
1481 
1482 	spin_unlock(&rgd->rd_rsspin);
1483 	return block;
1484 }
1485 
1486 /**
1487  * gfs2_reservation_check_and_update - Check for reservations during block alloc
1488  * @rbm: The current position in the resource group
1489  * @ip: The inode for which we are searching for blocks
1490  * @minext: The minimum extent length
1491  *
1492  * This checks the current position in the rgrp to see whether there is
1493  * a reservation covering this block. If not then this function is a
1494  * no-op. If there is, then the position is moved to the end of the
1495  * contiguous reservation(s) so that we are pointing at the first
1496  * non-reserved block.
1497  *
1498  * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1499  */
1500 
1501 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1502 					     const struct gfs2_inode *ip,
1503 					     u32 minext)
1504 {
1505 	u64 block = gfs2_rbm_to_block(rbm);
1506 	u32 extlen = 1;
1507 	u64 nblock;
1508 	int ret;
1509 
1510 	/*
1511 	 * If we have a minimum extent length, then skip over any extent
1512 	 * which is less than the min extent length in size.
1513 	 */
1514 	if (minext) {
1515 		extlen = gfs2_free_extlen(rbm, minext);
1516 		nblock = block + extlen;
1517 		if (extlen < minext)
1518 			goto fail;
1519 	}
1520 
1521 	/*
1522 	 * Check the extent which has been found against the reservations
1523 	 * and skip if parts of it are already reserved
1524 	 */
1525 	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1526 	if (nblock == block)
1527 		return 0;
1528 fail:
1529 	ret = gfs2_rbm_from_block(rbm, nblock);
1530 	if (ret < 0)
1531 		return ret;
1532 	return 1;
1533 }
1534 
1535 /**
1536  * gfs2_rbm_find - Look for blocks of a particular state
1537  * @rbm: Value/result starting position and final position
1538  * @state: The state which we want to find
1539  * @minext: The requested extent length (0 for a single block)
1540  * @ip: If set, check for reservations
1541  * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1542  *          around until we've reached the starting point.
1543  *
1544  * Side effects:
1545  * - If looking for free blocks, we set GBF_FULL on each bitmap which
1546  *   has no free blocks in it.
1547  *
1548  * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1549  */
1550 
1551 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext,
1552 			 const struct gfs2_inode *ip, bool nowrap)
1553 {
1554 	struct buffer_head *bh;
1555 	struct gfs2_bitmap *initial_bi;
1556 	u32 initial_offset;
1557 	u32 offset;
1558 	u8 *buffer;
1559 	int index;
1560 	int n = 0;
1561 	int iters = rbm->rgd->rd_length;
1562 	int ret;
1563 
1564 	/* If we are not starting at the beginning of a bitmap, then we
1565 	 * need to add one to the bitmap count to ensure that we search
1566 	 * the starting bitmap twice.
1567 	 */
1568 	if (rbm->offset != 0)
1569 		iters++;
1570 
1571 	while(1) {
1572 		if (test_bit(GBF_FULL, &rbm->bi->bi_flags) &&
1573 		    (state == GFS2_BLKST_FREE))
1574 			goto next_bitmap;
1575 
1576 		bh = rbm->bi->bi_bh;
1577 		buffer = bh->b_data + rbm->bi->bi_offset;
1578 		WARN_ON(!buffer_uptodate(bh));
1579 		if (state != GFS2_BLKST_UNLINKED && rbm->bi->bi_clone)
1580 			buffer = rbm->bi->bi_clone + rbm->bi->bi_offset;
1581 		initial_offset = rbm->offset;
1582 		offset = gfs2_bitfit(buffer, rbm->bi->bi_len, rbm->offset, state);
1583 		if (offset == BFITNOENT)
1584 			goto bitmap_full;
1585 		rbm->offset = offset;
1586 		if (ip == NULL)
1587 			return 0;
1588 
1589 		initial_bi = rbm->bi;
1590 		ret = gfs2_reservation_check_and_update(rbm, ip, minext);
1591 		if (ret == 0)
1592 			return 0;
1593 		if (ret > 0) {
1594 			n += (rbm->bi - initial_bi);
1595 			goto next_iter;
1596 		}
1597 		if (ret == -E2BIG) {
1598 			index = 0;
1599 			rbm->offset = 0;
1600 			n += (rbm->bi - initial_bi);
1601 			goto res_covered_end_of_rgrp;
1602 		}
1603 		return ret;
1604 
1605 bitmap_full:	/* Mark bitmap as full and fall through */
1606 		if ((state == GFS2_BLKST_FREE) && initial_offset == 0)
1607 			set_bit(GBF_FULL, &rbm->bi->bi_flags);
1608 
1609 next_bitmap:	/* Find next bitmap in the rgrp */
1610 		rbm->offset = 0;
1611 		index = rbm->bi - rbm->rgd->rd_bits;
1612 		index++;
1613 		if (index == rbm->rgd->rd_length)
1614 			index = 0;
1615 res_covered_end_of_rgrp:
1616 		rbm->bi = &rbm->rgd->rd_bits[index];
1617 		if ((index == 0) && nowrap)
1618 			break;
1619 		n++;
1620 next_iter:
1621 		if (n >= iters)
1622 			break;
1623 	}
1624 
1625 	return -ENOSPC;
1626 }
1627 
1628 /**
1629  * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1630  * @rgd: The rgrp
1631  * @last_unlinked: block address of the last dinode we unlinked
1632  * @skip: block address we should explicitly not unlink
1633  *
1634  * Returns: 0 if no error
1635  *          The inode, if one has been found, in inode.
1636  */
1637 
1638 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1639 {
1640 	u64 block;
1641 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1642 	struct gfs2_glock *gl;
1643 	struct gfs2_inode *ip;
1644 	int error;
1645 	int found = 0;
1646 	struct gfs2_rbm rbm = { .rgd = rgd, .bi = rgd->rd_bits, .offset = 0 };
1647 
1648 	while (1) {
1649 		down_write(&sdp->sd_log_flush_lock);
1650 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, 0, NULL, true);
1651 		up_write(&sdp->sd_log_flush_lock);
1652 		if (error == -ENOSPC)
1653 			break;
1654 		if (WARN_ON_ONCE(error))
1655 			break;
1656 
1657 		block = gfs2_rbm_to_block(&rbm);
1658 		if (gfs2_rbm_from_block(&rbm, block + 1))
1659 			break;
1660 		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1661 			continue;
1662 		if (block == skip)
1663 			continue;
1664 		*last_unlinked = block;
1665 
1666 		error = gfs2_glock_get(sdp, block, &gfs2_inode_glops, CREATE, &gl);
1667 		if (error)
1668 			continue;
1669 
1670 		/* If the inode is already in cache, we can ignore it here
1671 		 * because the existing inode disposal code will deal with
1672 		 * it when all refs have gone away. Accessing gl_object like
1673 		 * this is not safe in general. Here it is ok because we do
1674 		 * not dereference the pointer, and we only need an approx
1675 		 * answer to whether it is NULL or not.
1676 		 */
1677 		ip = gl->gl_object;
1678 
1679 		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1680 			gfs2_glock_put(gl);
1681 		else
1682 			found++;
1683 
1684 		/* Limit reclaim to sensible number of tasks */
1685 		if (found > NR_CPUS)
1686 			return;
1687 	}
1688 
1689 	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1690 	return;
1691 }
1692 
1693 /**
1694  * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1695  * @rgd: The rgrp in question
1696  * @loops: An indication of how picky we can be (0=very, 1=less so)
1697  *
1698  * This function uses the recently added glock statistics in order to
1699  * figure out whether a parciular resource group is suffering from
1700  * contention from multiple nodes. This is done purely on the basis
1701  * of timings, since this is the only data we have to work with and
1702  * our aim here is to reject a resource group which is highly contended
1703  * but (very important) not to do this too often in order to ensure that
1704  * we do not land up introducing fragmentation by changing resource
1705  * groups when not actually required.
1706  *
1707  * The calculation is fairly simple, we want to know whether the SRTTB
1708  * (i.e. smoothed round trip time for blocking operations) to acquire
1709  * the lock for this rgrp's glock is significantly greater than the
1710  * time taken for resource groups on average. We introduce a margin in
1711  * the form of the variable @var which is computed as the sum of the two
1712  * respective variences, and multiplied by a factor depending on @loops
1713  * and whether we have a lot of data to base the decision on. This is
1714  * then tested against the square difference of the means in order to
1715  * decide whether the result is statistically significant or not.
1716  *
1717  * Returns: A boolean verdict on the congestion status
1718  */
1719 
1720 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1721 {
1722 	const struct gfs2_glock *gl = rgd->rd_gl;
1723 	const struct gfs2_sbd *sdp = gl->gl_sbd;
1724 	struct gfs2_lkstats *st;
1725 	s64 r_dcount, l_dcount;
1726 	s64 r_srttb, l_srttb;
1727 	s64 srttb_diff;
1728 	s64 sqr_diff;
1729 	s64 var;
1730 
1731 	preempt_disable();
1732 	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1733 	r_srttb = st->stats[GFS2_LKS_SRTTB];
1734 	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1735 	var = st->stats[GFS2_LKS_SRTTVARB] +
1736 	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1737 	preempt_enable();
1738 
1739 	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1740 	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1741 
1742 	if ((l_dcount < 1) || (r_dcount < 1) || (r_srttb == 0))
1743 		return false;
1744 
1745 	srttb_diff = r_srttb - l_srttb;
1746 	sqr_diff = srttb_diff * srttb_diff;
1747 
1748 	var *= 2;
1749 	if (l_dcount < 8 || r_dcount < 8)
1750 		var *= 2;
1751 	if (loops == 1)
1752 		var *= 2;
1753 
1754 	return ((srttb_diff < 0) && (sqr_diff > var));
1755 }
1756 
1757 /**
1758  * gfs2_rgrp_used_recently
1759  * @rs: The block reservation with the rgrp to test
1760  * @msecs: The time limit in milliseconds
1761  *
1762  * Returns: True if the rgrp glock has been used within the time limit
1763  */
1764 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1765 				    u64 msecs)
1766 {
1767 	u64 tdiff;
1768 
1769 	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1770                             rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1771 
1772 	return tdiff > (msecs * 1000 * 1000);
1773 }
1774 
1775 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1776 {
1777 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1778 	u32 skip;
1779 
1780 	get_random_bytes(&skip, sizeof(skip));
1781 	return skip % sdp->sd_rgrps;
1782 }
1783 
1784 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1785 {
1786 	struct gfs2_rgrpd *rgd = *pos;
1787 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1788 
1789 	rgd = gfs2_rgrpd_get_next(rgd);
1790 	if (rgd == NULL)
1791 		rgd = gfs2_rgrpd_get_first(sdp);
1792 	*pos = rgd;
1793 	if (rgd != begin) /* If we didn't wrap */
1794 		return true;
1795 	return false;
1796 }
1797 
1798 /**
1799  * gfs2_inplace_reserve - Reserve space in the filesystem
1800  * @ip: the inode to reserve space for
1801  * @requested: the number of blocks to be reserved
1802  *
1803  * Returns: errno
1804  */
1805 
1806 int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested, u32 aflags)
1807 {
1808 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1809 	struct gfs2_rgrpd *begin = NULL;
1810 	struct gfs2_blkreserv *rs = ip->i_res;
1811 	int error = 0, rg_locked, flags = 0;
1812 	u64 last_unlinked = NO_BLOCK;
1813 	int loops = 0;
1814 	u32 skip = 0;
1815 
1816 	if (sdp->sd_args.ar_rgrplvb)
1817 		flags |= GL_SKIP;
1818 	if (gfs2_assert_warn(sdp, requested))
1819 		return -EINVAL;
1820 	if (gfs2_rs_active(rs)) {
1821 		begin = rs->rs_rbm.rgd;
1822 		flags = 0; /* Yoda: Do or do not. There is no try */
1823 	} else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1824 		rs->rs_rbm.rgd = begin = ip->i_rgd;
1825 	} else {
1826 		rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1827 	}
1828 	if (S_ISDIR(ip->i_inode.i_mode) && (aflags & GFS2_AF_ORLOV))
1829 		skip = gfs2_orlov_skip(ip);
1830 	if (rs->rs_rbm.rgd == NULL)
1831 		return -EBADSLT;
1832 
1833 	while (loops < 3) {
1834 		rg_locked = 1;
1835 
1836 		if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
1837 			rg_locked = 0;
1838 			if (skip && skip--)
1839 				goto next_rgrp;
1840 			if (!gfs2_rs_active(rs) && (loops < 2) &&
1841 			     gfs2_rgrp_used_recently(rs, 1000) &&
1842 			     gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1843 				goto next_rgrp;
1844 			error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
1845 						   LM_ST_EXCLUSIVE, flags,
1846 						   &rs->rs_rgd_gh);
1847 			if (unlikely(error))
1848 				return error;
1849 			if (!gfs2_rs_active(rs) && (loops < 2) &&
1850 			    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1851 				goto skip_rgrp;
1852 			if (sdp->sd_args.ar_rgrplvb) {
1853 				error = update_rgrp_lvb(rs->rs_rbm.rgd);
1854 				if (unlikely(error)) {
1855 					gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1856 					return error;
1857 				}
1858 			}
1859 		}
1860 
1861 		/* Skip unuseable resource groups */
1862 		if (rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR))
1863 			goto skip_rgrp;
1864 
1865 		if (sdp->sd_args.ar_rgrplvb)
1866 			gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
1867 
1868 		/* Get a reservation if we don't already have one */
1869 		if (!gfs2_rs_active(rs))
1870 			rg_mblk_search(rs->rs_rbm.rgd, ip, requested);
1871 
1872 		/* Skip rgrps when we can't get a reservation on first pass */
1873 		if (!gfs2_rs_active(rs) && (loops < 1))
1874 			goto check_rgrp;
1875 
1876 		/* If rgrp has enough free space, use it */
1877 		if (rs->rs_rbm.rgd->rd_free_clone >= requested) {
1878 			ip->i_rgd = rs->rs_rbm.rgd;
1879 			return 0;
1880 		}
1881 
1882 		/* Drop reservation, if we couldn't use reserved rgrp */
1883 		if (gfs2_rs_active(rs))
1884 			gfs2_rs_deltree(rs);
1885 check_rgrp:
1886 		/* Check for unlinked inodes which can be reclaimed */
1887 		if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
1888 			try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
1889 					ip->i_no_addr);
1890 skip_rgrp:
1891 		/* Unlock rgrp if required */
1892 		if (!rg_locked)
1893 			gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1894 next_rgrp:
1895 		/* Find the next rgrp, and continue looking */
1896 		if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
1897 			continue;
1898 		if (skip)
1899 			continue;
1900 
1901 		/* If we've scanned all the rgrps, but found no free blocks
1902 		 * then this checks for some less likely conditions before
1903 		 * trying again.
1904 		 */
1905 		loops++;
1906 		/* Check that fs hasn't grown if writing to rindex */
1907 		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
1908 			error = gfs2_ri_update(ip);
1909 			if (error)
1910 				return error;
1911 		}
1912 		/* Flushing the log may release space */
1913 		if (loops == 2)
1914 			gfs2_log_flush(sdp, NULL);
1915 	}
1916 
1917 	return -ENOSPC;
1918 }
1919 
1920 /**
1921  * gfs2_inplace_release - release an inplace reservation
1922  * @ip: the inode the reservation was taken out on
1923  *
1924  * Release a reservation made by gfs2_inplace_reserve().
1925  */
1926 
1927 void gfs2_inplace_release(struct gfs2_inode *ip)
1928 {
1929 	struct gfs2_blkreserv *rs = ip->i_res;
1930 
1931 	if (rs->rs_rgd_gh.gh_gl)
1932 		gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1933 }
1934 
1935 /**
1936  * gfs2_get_block_type - Check a block in a RG is of given type
1937  * @rgd: the resource group holding the block
1938  * @block: the block number
1939  *
1940  * Returns: The block type (GFS2_BLKST_*)
1941  */
1942 
1943 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
1944 {
1945 	struct gfs2_rbm rbm = { .rgd = rgd, };
1946 	int ret;
1947 
1948 	ret = gfs2_rbm_from_block(&rbm, block);
1949 	WARN_ON_ONCE(ret != 0);
1950 
1951 	return gfs2_testbit(&rbm);
1952 }
1953 
1954 
1955 /**
1956  * gfs2_alloc_extent - allocate an extent from a given bitmap
1957  * @rbm: the resource group information
1958  * @dinode: TRUE if the first block we allocate is for a dinode
1959  * @n: The extent length (value/result)
1960  *
1961  * Add the bitmap buffer to the transaction.
1962  * Set the found bits to @new_state to change block's allocation state.
1963  */
1964 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
1965 			     unsigned int *n)
1966 {
1967 	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
1968 	const unsigned int elen = *n;
1969 	u64 block;
1970 	int ret;
1971 
1972 	*n = 1;
1973 	block = gfs2_rbm_to_block(rbm);
1974 	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm->bi->bi_bh);
1975 	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1976 	block++;
1977 	while (*n < elen) {
1978 		ret = gfs2_rbm_from_block(&pos, block);
1979 		if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
1980 			break;
1981 		gfs2_trans_add_meta(pos.rgd->rd_gl, pos.bi->bi_bh);
1982 		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
1983 		(*n)++;
1984 		block++;
1985 	}
1986 }
1987 
1988 /**
1989  * rgblk_free - Change alloc state of given block(s)
1990  * @sdp: the filesystem
1991  * @bstart: the start of a run of blocks to free
1992  * @blen: the length of the block run (all must lie within ONE RG!)
1993  * @new_state: GFS2_BLKST_XXX the after-allocation block state
1994  *
1995  * Returns:  Resource group containing the block(s)
1996  */
1997 
1998 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
1999 				     u32 blen, unsigned char new_state)
2000 {
2001 	struct gfs2_rbm rbm;
2002 
2003 	rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2004 	if (!rbm.rgd) {
2005 		if (gfs2_consist(sdp))
2006 			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2007 		return NULL;
2008 	}
2009 
2010 	while (blen--) {
2011 		gfs2_rbm_from_block(&rbm, bstart);
2012 		bstart++;
2013 		if (!rbm.bi->bi_clone) {
2014 			rbm.bi->bi_clone = kmalloc(rbm.bi->bi_bh->b_size,
2015 						   GFP_NOFS | __GFP_NOFAIL);
2016 			memcpy(rbm.bi->bi_clone + rbm.bi->bi_offset,
2017 			       rbm.bi->bi_bh->b_data + rbm.bi->bi_offset,
2018 			       rbm.bi->bi_len);
2019 		}
2020 		gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.bi->bi_bh);
2021 		gfs2_setbit(&rbm, false, new_state);
2022 	}
2023 
2024 	return rbm.rgd;
2025 }
2026 
2027 /**
2028  * gfs2_rgrp_dump - print out an rgrp
2029  * @seq: The iterator
2030  * @gl: The glock in question
2031  *
2032  */
2033 
2034 int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2035 {
2036 	struct gfs2_rgrpd *rgd = gl->gl_object;
2037 	struct gfs2_blkreserv *trs;
2038 	const struct rb_node *n;
2039 
2040 	if (rgd == NULL)
2041 		return 0;
2042 	gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u\n",
2043 		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2044 		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2045 		       rgd->rd_reserved);
2046 	spin_lock(&rgd->rd_rsspin);
2047 	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2048 		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2049 		dump_rs(seq, trs);
2050 	}
2051 	spin_unlock(&rgd->rd_rsspin);
2052 	return 0;
2053 }
2054 
2055 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2056 {
2057 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2058 	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2059 		(unsigned long long)rgd->rd_addr);
2060 	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2061 	gfs2_rgrp_dump(NULL, rgd->rd_gl);
2062 	rgd->rd_flags |= GFS2_RDF_ERROR;
2063 }
2064 
2065 /**
2066  * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2067  * @ip: The inode we have just allocated blocks for
2068  * @rbm: The start of the allocated blocks
2069  * @len: The extent length
2070  *
2071  * Adjusts a reservation after an allocation has taken place. If the
2072  * reservation does not match the allocation, or if it is now empty
2073  * then it is removed.
2074  */
2075 
2076 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2077 				    const struct gfs2_rbm *rbm, unsigned len)
2078 {
2079 	struct gfs2_blkreserv *rs = ip->i_res;
2080 	struct gfs2_rgrpd *rgd = rbm->rgd;
2081 	unsigned rlen;
2082 	u64 block;
2083 	int ret;
2084 
2085 	spin_lock(&rgd->rd_rsspin);
2086 	if (gfs2_rs_active(rs)) {
2087 		if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2088 			block = gfs2_rbm_to_block(rbm);
2089 			ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2090 			rlen = min(rs->rs_free, len);
2091 			rs->rs_free -= rlen;
2092 			rgd->rd_reserved -= rlen;
2093 			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2094 			if (rs->rs_free && !ret)
2095 				goto out;
2096 		}
2097 		__rs_deltree(rs);
2098 	}
2099 out:
2100 	spin_unlock(&rgd->rd_rsspin);
2101 }
2102 
2103 /**
2104  * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2105  * @ip: the inode to allocate the block for
2106  * @bn: Used to return the starting block number
2107  * @nblocks: requested number of blocks/extent length (value/result)
2108  * @dinode: 1 if we're allocating a dinode block, else 0
2109  * @generation: the generation number of the inode
2110  *
2111  * Returns: 0 or error
2112  */
2113 
2114 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2115 		      bool dinode, u64 *generation)
2116 {
2117 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2118 	struct buffer_head *dibh;
2119 	struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2120 	unsigned int ndata;
2121 	u64 goal;
2122 	u64 block; /* block, within the file system scope */
2123 	int error;
2124 
2125 	if (gfs2_rs_active(ip->i_res))
2126 		goal = gfs2_rbm_to_block(&ip->i_res->rs_rbm);
2127 	else if (!dinode && rgrp_contains_block(rbm.rgd, ip->i_goal))
2128 		goal = ip->i_goal;
2129 	else
2130 		goal = rbm.rgd->rd_last_alloc + rbm.rgd->rd_data0;
2131 
2132 	gfs2_rbm_from_block(&rbm, goal);
2133 	error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, ip, false);
2134 
2135 	if (error == -ENOSPC) {
2136 		gfs2_rbm_from_block(&rbm, goal);
2137 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, NULL, false);
2138 	}
2139 
2140 	/* Since all blocks are reserved in advance, this shouldn't happen */
2141 	if (error) {
2142 		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d\n",
2143 			(unsigned long long)ip->i_no_addr, error, *nblocks,
2144 			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags));
2145 		goto rgrp_error;
2146 	}
2147 
2148 	gfs2_alloc_extent(&rbm, dinode, nblocks);
2149 	block = gfs2_rbm_to_block(&rbm);
2150 	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2151 	if (gfs2_rs_active(ip->i_res))
2152 		gfs2_adjust_reservation(ip, &rbm, *nblocks);
2153 	ndata = *nblocks;
2154 	if (dinode)
2155 		ndata--;
2156 
2157 	if (!dinode) {
2158 		ip->i_goal = block + ndata - 1;
2159 		error = gfs2_meta_inode_buffer(ip, &dibh);
2160 		if (error == 0) {
2161 			struct gfs2_dinode *di =
2162 				(struct gfs2_dinode *)dibh->b_data;
2163 			gfs2_trans_add_meta(ip->i_gl, dibh);
2164 			di->di_goal_meta = di->di_goal_data =
2165 				cpu_to_be64(ip->i_goal);
2166 			brelse(dibh);
2167 		}
2168 	}
2169 	if (rbm.rgd->rd_free < *nblocks) {
2170 		printk(KERN_WARNING "nblocks=%u\n", *nblocks);
2171 		goto rgrp_error;
2172 	}
2173 
2174 	rbm.rgd->rd_free -= *nblocks;
2175 	if (dinode) {
2176 		rbm.rgd->rd_dinodes++;
2177 		*generation = rbm.rgd->rd_igeneration++;
2178 		if (*generation == 0)
2179 			*generation = rbm.rgd->rd_igeneration++;
2180 	}
2181 
2182 	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2183 	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2184 	gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2185 
2186 	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2187 	if (dinode)
2188 		gfs2_trans_add_unrevoke(sdp, block, 1);
2189 
2190 	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2191 
2192 	rbm.rgd->rd_free_clone -= *nblocks;
2193 	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2194 			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2195 	*bn = block;
2196 	return 0;
2197 
2198 rgrp_error:
2199 	gfs2_rgrp_error(rbm.rgd);
2200 	return -EIO;
2201 }
2202 
2203 /**
2204  * __gfs2_free_blocks - free a contiguous run of block(s)
2205  * @ip: the inode these blocks are being freed from
2206  * @bstart: first block of a run of contiguous blocks
2207  * @blen: the length of the block run
2208  * @meta: 1 if the blocks represent metadata
2209  *
2210  */
2211 
2212 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2213 {
2214 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2215 	struct gfs2_rgrpd *rgd;
2216 
2217 	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2218 	if (!rgd)
2219 		return;
2220 	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2221 	rgd->rd_free += blen;
2222 	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2223 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2224 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2225 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2226 
2227 	/* Directories keep their data in the metadata address space */
2228 	if (meta || ip->i_depth)
2229 		gfs2_meta_wipe(ip, bstart, blen);
2230 }
2231 
2232 /**
2233  * gfs2_free_meta - free a contiguous run of data block(s)
2234  * @ip: the inode these blocks are being freed from
2235  * @bstart: first block of a run of contiguous blocks
2236  * @blen: the length of the block run
2237  *
2238  */
2239 
2240 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2241 {
2242 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2243 
2244 	__gfs2_free_blocks(ip, bstart, blen, 1);
2245 	gfs2_statfs_change(sdp, 0, +blen, 0);
2246 	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2247 }
2248 
2249 void gfs2_unlink_di(struct inode *inode)
2250 {
2251 	struct gfs2_inode *ip = GFS2_I(inode);
2252 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2253 	struct gfs2_rgrpd *rgd;
2254 	u64 blkno = ip->i_no_addr;
2255 
2256 	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2257 	if (!rgd)
2258 		return;
2259 	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2260 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2261 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2262 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2263 	update_rgrp_lvb_unlinked(rgd, 1);
2264 }
2265 
2266 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2267 {
2268 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2269 	struct gfs2_rgrpd *tmp_rgd;
2270 
2271 	tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2272 	if (!tmp_rgd)
2273 		return;
2274 	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2275 
2276 	if (!rgd->rd_dinodes)
2277 		gfs2_consist_rgrpd(rgd);
2278 	rgd->rd_dinodes--;
2279 	rgd->rd_free++;
2280 
2281 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2282 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2283 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2284 	update_rgrp_lvb_unlinked(rgd, -1);
2285 
2286 	gfs2_statfs_change(sdp, 0, +1, -1);
2287 }
2288 
2289 
2290 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2291 {
2292 	gfs2_free_uninit_di(rgd, ip->i_no_addr);
2293 	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2294 	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2295 	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2296 }
2297 
2298 /**
2299  * gfs2_check_blk_type - Check the type of a block
2300  * @sdp: The superblock
2301  * @no_addr: The block number to check
2302  * @type: The block type we are looking for
2303  *
2304  * Returns: 0 if the block type matches the expected type
2305  *          -ESTALE if it doesn't match
2306  *          or -ve errno if something went wrong while checking
2307  */
2308 
2309 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2310 {
2311 	struct gfs2_rgrpd *rgd;
2312 	struct gfs2_holder rgd_gh;
2313 	int error = -EINVAL;
2314 
2315 	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2316 	if (!rgd)
2317 		goto fail;
2318 
2319 	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2320 	if (error)
2321 		goto fail;
2322 
2323 	if (gfs2_get_block_type(rgd, no_addr) != type)
2324 		error = -ESTALE;
2325 
2326 	gfs2_glock_dq_uninit(&rgd_gh);
2327 fail:
2328 	return error;
2329 }
2330 
2331 /**
2332  * gfs2_rlist_add - add a RG to a list of RGs
2333  * @ip: the inode
2334  * @rlist: the list of resource groups
2335  * @block: the block
2336  *
2337  * Figure out what RG a block belongs to and add that RG to the list
2338  *
2339  * FIXME: Don't use NOFAIL
2340  *
2341  */
2342 
2343 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2344 		    u64 block)
2345 {
2346 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2347 	struct gfs2_rgrpd *rgd;
2348 	struct gfs2_rgrpd **tmp;
2349 	unsigned int new_space;
2350 	unsigned int x;
2351 
2352 	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2353 		return;
2354 
2355 	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2356 		rgd = ip->i_rgd;
2357 	else
2358 		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2359 	if (!rgd) {
2360 		fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2361 		return;
2362 	}
2363 	ip->i_rgd = rgd;
2364 
2365 	for (x = 0; x < rlist->rl_rgrps; x++)
2366 		if (rlist->rl_rgd[x] == rgd)
2367 			return;
2368 
2369 	if (rlist->rl_rgrps == rlist->rl_space) {
2370 		new_space = rlist->rl_space + 10;
2371 
2372 		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2373 			      GFP_NOFS | __GFP_NOFAIL);
2374 
2375 		if (rlist->rl_rgd) {
2376 			memcpy(tmp, rlist->rl_rgd,
2377 			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2378 			kfree(rlist->rl_rgd);
2379 		}
2380 
2381 		rlist->rl_space = new_space;
2382 		rlist->rl_rgd = tmp;
2383 	}
2384 
2385 	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2386 }
2387 
2388 /**
2389  * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2390  *      and initialize an array of glock holders for them
2391  * @rlist: the list of resource groups
2392  * @state: the lock state to acquire the RG lock in
2393  *
2394  * FIXME: Don't use NOFAIL
2395  *
2396  */
2397 
2398 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2399 {
2400 	unsigned int x;
2401 
2402 	rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
2403 				GFP_NOFS | __GFP_NOFAIL);
2404 	for (x = 0; x < rlist->rl_rgrps; x++)
2405 		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2406 				state, 0,
2407 				&rlist->rl_ghs[x]);
2408 }
2409 
2410 /**
2411  * gfs2_rlist_free - free a resource group list
2412  * @list: the list of resource groups
2413  *
2414  */
2415 
2416 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2417 {
2418 	unsigned int x;
2419 
2420 	kfree(rlist->rl_rgd);
2421 
2422 	if (rlist->rl_ghs) {
2423 		for (x = 0; x < rlist->rl_rgrps; x++)
2424 			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2425 		kfree(rlist->rl_ghs);
2426 		rlist->rl_ghs = NULL;
2427 	}
2428 }
2429 
2430