xref: /openbmc/linux/fs/gfs2/rgrp.c (revision 239480ab)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/slab.h>
13 #include <linux/spinlock.h>
14 #include <linux/completion.h>
15 #include <linux/buffer_head.h>
16 #include <linux/fs.h>
17 #include <linux/gfs2_ondisk.h>
18 #include <linux/prefetch.h>
19 #include <linux/blkdev.h>
20 #include <linux/rbtree.h>
21 #include <linux/random.h>
22 
23 #include "gfs2.h"
24 #include "incore.h"
25 #include "glock.h"
26 #include "glops.h"
27 #include "lops.h"
28 #include "meta_io.h"
29 #include "quota.h"
30 #include "rgrp.h"
31 #include "super.h"
32 #include "trans.h"
33 #include "util.h"
34 #include "log.h"
35 #include "inode.h"
36 #include "trace_gfs2.h"
37 
38 #define BFITNOENT ((u32)~0)
39 #define NO_BLOCK ((u64)~0)
40 
41 #if BITS_PER_LONG == 32
42 #define LBITMASK   (0x55555555UL)
43 #define LBITSKIP55 (0x55555555UL)
44 #define LBITSKIP00 (0x00000000UL)
45 #else
46 #define LBITMASK   (0x5555555555555555UL)
47 #define LBITSKIP55 (0x5555555555555555UL)
48 #define LBITSKIP00 (0x0000000000000000UL)
49 #endif
50 
51 /*
52  * These routines are used by the resource group routines (rgrp.c)
53  * to keep track of block allocation.  Each block is represented by two
54  * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
55  *
56  * 0 = Free
57  * 1 = Used (not metadata)
58  * 2 = Unlinked (still in use) inode
59  * 3 = Used (metadata)
60  */
61 
62 struct gfs2_extent {
63 	struct gfs2_rbm rbm;
64 	u32 len;
65 };
66 
67 static const char valid_change[16] = {
68 	        /* current */
69 	/* n */ 0, 1, 1, 1,
70 	/* e */ 1, 0, 0, 0,
71 	/* w */ 0, 0, 0, 1,
72 	        1, 0, 0, 0
73 };
74 
75 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
76 			 const struct gfs2_inode *ip, bool nowrap);
77 
78 
79 /**
80  * gfs2_setbit - Set a bit in the bitmaps
81  * @rbm: The position of the bit to set
82  * @do_clone: Also set the clone bitmap, if it exists
83  * @new_state: the new state of the block
84  *
85  */
86 
87 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
88 			       unsigned char new_state)
89 {
90 	unsigned char *byte1, *byte2, *end, cur_state;
91 	struct gfs2_bitmap *bi = rbm_bi(rbm);
92 	unsigned int buflen = bi->bi_len;
93 	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
94 
95 	byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
96 	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
97 
98 	BUG_ON(byte1 >= end);
99 
100 	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
101 
102 	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
103 		pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n",
104 			rbm->offset, cur_state, new_state);
105 		pr_warn("rgrp=0x%llx bi_start=0x%x\n",
106 			(unsigned long long)rbm->rgd->rd_addr, bi->bi_start);
107 		pr_warn("bi_offset=0x%x bi_len=0x%x\n",
108 			bi->bi_offset, bi->bi_len);
109 		dump_stack();
110 		gfs2_consist_rgrpd(rbm->rgd);
111 		return;
112 	}
113 	*byte1 ^= (cur_state ^ new_state) << bit;
114 
115 	if (do_clone && bi->bi_clone) {
116 		byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
117 		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
118 		*byte2 ^= (cur_state ^ new_state) << bit;
119 	}
120 }
121 
122 /**
123  * gfs2_testbit - test a bit in the bitmaps
124  * @rbm: The bit to test
125  *
126  * Returns: The two bit block state of the requested bit
127  */
128 
129 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
130 {
131 	struct gfs2_bitmap *bi = rbm_bi(rbm);
132 	const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset;
133 	const u8 *byte;
134 	unsigned int bit;
135 
136 	byte = buffer + (rbm->offset / GFS2_NBBY);
137 	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
138 
139 	return (*byte >> bit) & GFS2_BIT_MASK;
140 }
141 
142 /**
143  * gfs2_bit_search
144  * @ptr: Pointer to bitmap data
145  * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
146  * @state: The state we are searching for
147  *
148  * We xor the bitmap data with a patter which is the bitwise opposite
149  * of what we are looking for, this gives rise to a pattern of ones
150  * wherever there is a match. Since we have two bits per entry, we
151  * take this pattern, shift it down by one place and then and it with
152  * the original. All the even bit positions (0,2,4, etc) then represent
153  * successful matches, so we mask with 0x55555..... to remove the unwanted
154  * odd bit positions.
155  *
156  * This allows searching of a whole u64 at once (32 blocks) with a
157  * single test (on 64 bit arches).
158  */
159 
160 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
161 {
162 	u64 tmp;
163 	static const u64 search[] = {
164 		[0] = 0xffffffffffffffffULL,
165 		[1] = 0xaaaaaaaaaaaaaaaaULL,
166 		[2] = 0x5555555555555555ULL,
167 		[3] = 0x0000000000000000ULL,
168 	};
169 	tmp = le64_to_cpu(*ptr) ^ search[state];
170 	tmp &= (tmp >> 1);
171 	tmp &= mask;
172 	return tmp;
173 }
174 
175 /**
176  * rs_cmp - multi-block reservation range compare
177  * @blk: absolute file system block number of the new reservation
178  * @len: number of blocks in the new reservation
179  * @rs: existing reservation to compare against
180  *
181  * returns: 1 if the block range is beyond the reach of the reservation
182  *         -1 if the block range is before the start of the reservation
183  *          0 if the block range overlaps with the reservation
184  */
185 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
186 {
187 	u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
188 
189 	if (blk >= startblk + rs->rs_free)
190 		return 1;
191 	if (blk + len - 1 < startblk)
192 		return -1;
193 	return 0;
194 }
195 
196 /**
197  * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
198  *       a block in a given allocation state.
199  * @buf: the buffer that holds the bitmaps
200  * @len: the length (in bytes) of the buffer
201  * @goal: start search at this block's bit-pair (within @buffer)
202  * @state: GFS2_BLKST_XXX the state of the block we're looking for.
203  *
204  * Scope of @goal and returned block number is only within this bitmap buffer,
205  * not entire rgrp or filesystem.  @buffer will be offset from the actual
206  * beginning of a bitmap block buffer, skipping any header structures, but
207  * headers are always a multiple of 64 bits long so that the buffer is
208  * always aligned to a 64 bit boundary.
209  *
210  * The size of the buffer is in bytes, but is it assumed that it is
211  * always ok to read a complete multiple of 64 bits at the end
212  * of the block in case the end is no aligned to a natural boundary.
213  *
214  * Return: the block number (bitmap buffer scope) that was found
215  */
216 
217 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
218 		       u32 goal, u8 state)
219 {
220 	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
221 	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
222 	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
223 	u64 tmp;
224 	u64 mask = 0x5555555555555555ULL;
225 	u32 bit;
226 
227 	/* Mask off bits we don't care about at the start of the search */
228 	mask <<= spoint;
229 	tmp = gfs2_bit_search(ptr, mask, state);
230 	ptr++;
231 	while(tmp == 0 && ptr < end) {
232 		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
233 		ptr++;
234 	}
235 	/* Mask off any bits which are more than len bytes from the start */
236 	if (ptr == end && (len & (sizeof(u64) - 1)))
237 		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
238 	/* Didn't find anything, so return */
239 	if (tmp == 0)
240 		return BFITNOENT;
241 	ptr--;
242 	bit = __ffs64(tmp);
243 	bit /= 2;	/* two bits per entry in the bitmap */
244 	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
245 }
246 
247 /**
248  * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
249  * @rbm: The rbm with rgd already set correctly
250  * @block: The block number (filesystem relative)
251  *
252  * This sets the bi and offset members of an rbm based on a
253  * resource group and a filesystem relative block number. The
254  * resource group must be set in the rbm on entry, the bi and
255  * offset members will be set by this function.
256  *
257  * Returns: 0 on success, or an error code
258  */
259 
260 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
261 {
262 	u64 rblock = block - rbm->rgd->rd_data0;
263 
264 	if (WARN_ON_ONCE(rblock > UINT_MAX))
265 		return -EINVAL;
266 	if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
267 		return -E2BIG;
268 
269 	rbm->bii = 0;
270 	rbm->offset = (u32)(rblock);
271 	/* Check if the block is within the first block */
272 	if (rbm->offset < rbm_bi(rbm)->bi_blocks)
273 		return 0;
274 
275 	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
276 	rbm->offset += (sizeof(struct gfs2_rgrp) -
277 			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
278 	rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
279 	rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
280 	return 0;
281 }
282 
283 /**
284  * gfs2_rbm_incr - increment an rbm structure
285  * @rbm: The rbm with rgd already set correctly
286  *
287  * This function takes an existing rbm structure and increments it to the next
288  * viable block offset.
289  *
290  * Returns: If incrementing the offset would cause the rbm to go past the
291  *          end of the rgrp, true is returned, otherwise false.
292  *
293  */
294 
295 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
296 {
297 	if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
298 		rbm->offset++;
299 		return false;
300 	}
301 	if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
302 		return true;
303 
304 	rbm->offset = 0;
305 	rbm->bii++;
306 	return false;
307 }
308 
309 /**
310  * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
311  * @rbm: Position to search (value/result)
312  * @n_unaligned: Number of unaligned blocks to check
313  * @len: Decremented for each block found (terminate on zero)
314  *
315  * Returns: true if a non-free block is encountered
316  */
317 
318 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
319 {
320 	u32 n;
321 	u8 res;
322 
323 	for (n = 0; n < n_unaligned; n++) {
324 		res = gfs2_testbit(rbm);
325 		if (res != GFS2_BLKST_FREE)
326 			return true;
327 		(*len)--;
328 		if (*len == 0)
329 			return true;
330 		if (gfs2_rbm_incr(rbm))
331 			return true;
332 	}
333 
334 	return false;
335 }
336 
337 /**
338  * gfs2_free_extlen - Return extent length of free blocks
339  * @rrbm: Starting position
340  * @len: Max length to check
341  *
342  * Starting at the block specified by the rbm, see how many free blocks
343  * there are, not reading more than len blocks ahead. This can be done
344  * using memchr_inv when the blocks are byte aligned, but has to be done
345  * on a block by block basis in case of unaligned blocks. Also this
346  * function can cope with bitmap boundaries (although it must stop on
347  * a resource group boundary)
348  *
349  * Returns: Number of free blocks in the extent
350  */
351 
352 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
353 {
354 	struct gfs2_rbm rbm = *rrbm;
355 	u32 n_unaligned = rbm.offset & 3;
356 	u32 size = len;
357 	u32 bytes;
358 	u32 chunk_size;
359 	u8 *ptr, *start, *end;
360 	u64 block;
361 	struct gfs2_bitmap *bi;
362 
363 	if (n_unaligned &&
364 	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
365 		goto out;
366 
367 	n_unaligned = len & 3;
368 	/* Start is now byte aligned */
369 	while (len > 3) {
370 		bi = rbm_bi(&rbm);
371 		start = bi->bi_bh->b_data;
372 		if (bi->bi_clone)
373 			start = bi->bi_clone;
374 		end = start + bi->bi_bh->b_size;
375 		start += bi->bi_offset;
376 		BUG_ON(rbm.offset & 3);
377 		start += (rbm.offset / GFS2_NBBY);
378 		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
379 		ptr = memchr_inv(start, 0, bytes);
380 		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
381 		chunk_size *= GFS2_NBBY;
382 		BUG_ON(len < chunk_size);
383 		len -= chunk_size;
384 		block = gfs2_rbm_to_block(&rbm);
385 		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
386 			n_unaligned = 0;
387 			break;
388 		}
389 		if (ptr) {
390 			n_unaligned = 3;
391 			break;
392 		}
393 		n_unaligned = len & 3;
394 	}
395 
396 	/* Deal with any bits left over at the end */
397 	if (n_unaligned)
398 		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
399 out:
400 	return size - len;
401 }
402 
403 /**
404  * gfs2_bitcount - count the number of bits in a certain state
405  * @rgd: the resource group descriptor
406  * @buffer: the buffer that holds the bitmaps
407  * @buflen: the length (in bytes) of the buffer
408  * @state: the state of the block we're looking for
409  *
410  * Returns: The number of bits
411  */
412 
413 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
414 			 unsigned int buflen, u8 state)
415 {
416 	const u8 *byte = buffer;
417 	const u8 *end = buffer + buflen;
418 	const u8 state1 = state << 2;
419 	const u8 state2 = state << 4;
420 	const u8 state3 = state << 6;
421 	u32 count = 0;
422 
423 	for (; byte < end; byte++) {
424 		if (((*byte) & 0x03) == state)
425 			count++;
426 		if (((*byte) & 0x0C) == state1)
427 			count++;
428 		if (((*byte) & 0x30) == state2)
429 			count++;
430 		if (((*byte) & 0xC0) == state3)
431 			count++;
432 	}
433 
434 	return count;
435 }
436 
437 /**
438  * gfs2_rgrp_verify - Verify that a resource group is consistent
439  * @rgd: the rgrp
440  *
441  */
442 
443 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
444 {
445 	struct gfs2_sbd *sdp = rgd->rd_sbd;
446 	struct gfs2_bitmap *bi = NULL;
447 	u32 length = rgd->rd_length;
448 	u32 count[4], tmp;
449 	int buf, x;
450 
451 	memset(count, 0, 4 * sizeof(u32));
452 
453 	/* Count # blocks in each of 4 possible allocation states */
454 	for (buf = 0; buf < length; buf++) {
455 		bi = rgd->rd_bits + buf;
456 		for (x = 0; x < 4; x++)
457 			count[x] += gfs2_bitcount(rgd,
458 						  bi->bi_bh->b_data +
459 						  bi->bi_offset,
460 						  bi->bi_len, x);
461 	}
462 
463 	if (count[0] != rgd->rd_free) {
464 		if (gfs2_consist_rgrpd(rgd))
465 			fs_err(sdp, "free data mismatch:  %u != %u\n",
466 			       count[0], rgd->rd_free);
467 		return;
468 	}
469 
470 	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
471 	if (count[1] != tmp) {
472 		if (gfs2_consist_rgrpd(rgd))
473 			fs_err(sdp, "used data mismatch:  %u != %u\n",
474 			       count[1], tmp);
475 		return;
476 	}
477 
478 	if (count[2] + count[3] != rgd->rd_dinodes) {
479 		if (gfs2_consist_rgrpd(rgd))
480 			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
481 			       count[2] + count[3], rgd->rd_dinodes);
482 		return;
483 	}
484 }
485 
486 /**
487  * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
488  * @sdp: The GFS2 superblock
489  * @blk: The data block number
490  * @exact: True if this needs to be an exact match
491  *
492  * Returns: The resource group, or NULL if not found
493  */
494 
495 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
496 {
497 	struct rb_node *n, *next;
498 	struct gfs2_rgrpd *cur;
499 
500 	spin_lock(&sdp->sd_rindex_spin);
501 	n = sdp->sd_rindex_tree.rb_node;
502 	while (n) {
503 		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
504 		next = NULL;
505 		if (blk < cur->rd_addr)
506 			next = n->rb_left;
507 		else if (blk >= cur->rd_data0 + cur->rd_data)
508 			next = n->rb_right;
509 		if (next == NULL) {
510 			spin_unlock(&sdp->sd_rindex_spin);
511 			if (exact) {
512 				if (blk < cur->rd_addr)
513 					return NULL;
514 				if (blk >= cur->rd_data0 + cur->rd_data)
515 					return NULL;
516 			}
517 			return cur;
518 		}
519 		n = next;
520 	}
521 	spin_unlock(&sdp->sd_rindex_spin);
522 
523 	return NULL;
524 }
525 
526 /**
527  * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
528  * @sdp: The GFS2 superblock
529  *
530  * Returns: The first rgrp in the filesystem
531  */
532 
533 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
534 {
535 	const struct rb_node *n;
536 	struct gfs2_rgrpd *rgd;
537 
538 	spin_lock(&sdp->sd_rindex_spin);
539 	n = rb_first(&sdp->sd_rindex_tree);
540 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
541 	spin_unlock(&sdp->sd_rindex_spin);
542 
543 	return rgd;
544 }
545 
546 /**
547  * gfs2_rgrpd_get_next - get the next RG
548  * @rgd: the resource group descriptor
549  *
550  * Returns: The next rgrp
551  */
552 
553 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
554 {
555 	struct gfs2_sbd *sdp = rgd->rd_sbd;
556 	const struct rb_node *n;
557 
558 	spin_lock(&sdp->sd_rindex_spin);
559 	n = rb_next(&rgd->rd_node);
560 	if (n == NULL)
561 		n = rb_first(&sdp->sd_rindex_tree);
562 
563 	if (unlikely(&rgd->rd_node == n)) {
564 		spin_unlock(&sdp->sd_rindex_spin);
565 		return NULL;
566 	}
567 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
568 	spin_unlock(&sdp->sd_rindex_spin);
569 	return rgd;
570 }
571 
572 void check_and_update_goal(struct gfs2_inode *ip)
573 {
574 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
575 	if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
576 		ip->i_goal = ip->i_no_addr;
577 }
578 
579 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
580 {
581 	int x;
582 
583 	for (x = 0; x < rgd->rd_length; x++) {
584 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
585 		kfree(bi->bi_clone);
586 		bi->bi_clone = NULL;
587 	}
588 }
589 
590 /**
591  * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode
592  *                 plus a quota allocations data structure, if necessary
593  * @ip: the inode for this reservation
594  */
595 int gfs2_rsqa_alloc(struct gfs2_inode *ip)
596 {
597 	return gfs2_qa_alloc(ip);
598 }
599 
600 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
601 {
602 	gfs2_print_dbg(seq, "  B: n:%llu s:%llu b:%u f:%u\n",
603 		       (unsigned long long)rs->rs_inum,
604 		       (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
605 		       rs->rs_rbm.offset, rs->rs_free);
606 }
607 
608 /**
609  * __rs_deltree - remove a multi-block reservation from the rgd tree
610  * @rs: The reservation to remove
611  *
612  */
613 static void __rs_deltree(struct gfs2_blkreserv *rs)
614 {
615 	struct gfs2_rgrpd *rgd;
616 
617 	if (!gfs2_rs_active(rs))
618 		return;
619 
620 	rgd = rs->rs_rbm.rgd;
621 	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
622 	rb_erase(&rs->rs_node, &rgd->rd_rstree);
623 	RB_CLEAR_NODE(&rs->rs_node);
624 
625 	if (rs->rs_free) {
626 		struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm);
627 
628 		/* return reserved blocks to the rgrp */
629 		BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
630 		rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
631 		/* The rgrp extent failure point is likely not to increase;
632 		   it will only do so if the freed blocks are somehow
633 		   contiguous with a span of free blocks that follows. Still,
634 		   it will force the number to be recalculated later. */
635 		rgd->rd_extfail_pt += rs->rs_free;
636 		rs->rs_free = 0;
637 		clear_bit(GBF_FULL, &bi->bi_flags);
638 	}
639 }
640 
641 /**
642  * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
643  * @rs: The reservation to remove
644  *
645  */
646 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
647 {
648 	struct gfs2_rgrpd *rgd;
649 
650 	rgd = rs->rs_rbm.rgd;
651 	if (rgd) {
652 		spin_lock(&rgd->rd_rsspin);
653 		__rs_deltree(rs);
654 		BUG_ON(rs->rs_free);
655 		spin_unlock(&rgd->rd_rsspin);
656 	}
657 }
658 
659 /**
660  * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation
661  * @ip: The inode for this reservation
662  * @wcount: The inode's write count, or NULL
663  *
664  */
665 void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount)
666 {
667 	down_write(&ip->i_rw_mutex);
668 	if ((wcount == NULL) || (atomic_read(wcount) <= 1))
669 		gfs2_rs_deltree(&ip->i_res);
670 	up_write(&ip->i_rw_mutex);
671 	gfs2_qa_delete(ip, wcount);
672 }
673 
674 /**
675  * return_all_reservations - return all reserved blocks back to the rgrp.
676  * @rgd: the rgrp that needs its space back
677  *
678  * We previously reserved a bunch of blocks for allocation. Now we need to
679  * give them back. This leave the reservation structures in tact, but removes
680  * all of their corresponding "no-fly zones".
681  */
682 static void return_all_reservations(struct gfs2_rgrpd *rgd)
683 {
684 	struct rb_node *n;
685 	struct gfs2_blkreserv *rs;
686 
687 	spin_lock(&rgd->rd_rsspin);
688 	while ((n = rb_first(&rgd->rd_rstree))) {
689 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
690 		__rs_deltree(rs);
691 	}
692 	spin_unlock(&rgd->rd_rsspin);
693 }
694 
695 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
696 {
697 	struct rb_node *n;
698 	struct gfs2_rgrpd *rgd;
699 	struct gfs2_glock *gl;
700 
701 	while ((n = rb_first(&sdp->sd_rindex_tree))) {
702 		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
703 		gl = rgd->rd_gl;
704 
705 		rb_erase(n, &sdp->sd_rindex_tree);
706 
707 		if (gl) {
708 			spin_lock(&gl->gl_lockref.lock);
709 			gl->gl_object = NULL;
710 			spin_unlock(&gl->gl_lockref.lock);
711 			gfs2_glock_add_to_lru(gl);
712 			gfs2_glock_put(gl);
713 		}
714 
715 		gfs2_free_clones(rgd);
716 		kfree(rgd->rd_bits);
717 		rgd->rd_bits = NULL;
718 		return_all_reservations(rgd);
719 		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
720 	}
721 }
722 
723 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
724 {
725 	pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
726 	pr_info("ri_length = %u\n", rgd->rd_length);
727 	pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
728 	pr_info("ri_data = %u\n", rgd->rd_data);
729 	pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes);
730 }
731 
732 /**
733  * gfs2_compute_bitstructs - Compute the bitmap sizes
734  * @rgd: The resource group descriptor
735  *
736  * Calculates bitmap descriptors, one for each block that contains bitmap data
737  *
738  * Returns: errno
739  */
740 
741 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
742 {
743 	struct gfs2_sbd *sdp = rgd->rd_sbd;
744 	struct gfs2_bitmap *bi;
745 	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
746 	u32 bytes_left, bytes;
747 	int x;
748 
749 	if (!length)
750 		return -EINVAL;
751 
752 	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
753 	if (!rgd->rd_bits)
754 		return -ENOMEM;
755 
756 	bytes_left = rgd->rd_bitbytes;
757 
758 	for (x = 0; x < length; x++) {
759 		bi = rgd->rd_bits + x;
760 
761 		bi->bi_flags = 0;
762 		/* small rgrp; bitmap stored completely in header block */
763 		if (length == 1) {
764 			bytes = bytes_left;
765 			bi->bi_offset = sizeof(struct gfs2_rgrp);
766 			bi->bi_start = 0;
767 			bi->bi_len = bytes;
768 			bi->bi_blocks = bytes * GFS2_NBBY;
769 		/* header block */
770 		} else if (x == 0) {
771 			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
772 			bi->bi_offset = sizeof(struct gfs2_rgrp);
773 			bi->bi_start = 0;
774 			bi->bi_len = bytes;
775 			bi->bi_blocks = bytes * GFS2_NBBY;
776 		/* last block */
777 		} else if (x + 1 == length) {
778 			bytes = bytes_left;
779 			bi->bi_offset = sizeof(struct gfs2_meta_header);
780 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
781 			bi->bi_len = bytes;
782 			bi->bi_blocks = bytes * GFS2_NBBY;
783 		/* other blocks */
784 		} else {
785 			bytes = sdp->sd_sb.sb_bsize -
786 				sizeof(struct gfs2_meta_header);
787 			bi->bi_offset = sizeof(struct gfs2_meta_header);
788 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
789 			bi->bi_len = bytes;
790 			bi->bi_blocks = bytes * GFS2_NBBY;
791 		}
792 
793 		bytes_left -= bytes;
794 	}
795 
796 	if (bytes_left) {
797 		gfs2_consist_rgrpd(rgd);
798 		return -EIO;
799 	}
800 	bi = rgd->rd_bits + (length - 1);
801 	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
802 		if (gfs2_consist_rgrpd(rgd)) {
803 			gfs2_rindex_print(rgd);
804 			fs_err(sdp, "start=%u len=%u offset=%u\n",
805 			       bi->bi_start, bi->bi_len, bi->bi_offset);
806 		}
807 		return -EIO;
808 	}
809 
810 	return 0;
811 }
812 
813 /**
814  * gfs2_ri_total - Total up the file system space, according to the rindex.
815  * @sdp: the filesystem
816  *
817  */
818 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
819 {
820 	u64 total_data = 0;
821 	struct inode *inode = sdp->sd_rindex;
822 	struct gfs2_inode *ip = GFS2_I(inode);
823 	char buf[sizeof(struct gfs2_rindex)];
824 	int error, rgrps;
825 
826 	for (rgrps = 0;; rgrps++) {
827 		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
828 
829 		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
830 			break;
831 		error = gfs2_internal_read(ip, buf, &pos,
832 					   sizeof(struct gfs2_rindex));
833 		if (error != sizeof(struct gfs2_rindex))
834 			break;
835 		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
836 	}
837 	return total_data;
838 }
839 
840 static int rgd_insert(struct gfs2_rgrpd *rgd)
841 {
842 	struct gfs2_sbd *sdp = rgd->rd_sbd;
843 	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
844 
845 	/* Figure out where to put new node */
846 	while (*newn) {
847 		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
848 						  rd_node);
849 
850 		parent = *newn;
851 		if (rgd->rd_addr < cur->rd_addr)
852 			newn = &((*newn)->rb_left);
853 		else if (rgd->rd_addr > cur->rd_addr)
854 			newn = &((*newn)->rb_right);
855 		else
856 			return -EEXIST;
857 	}
858 
859 	rb_link_node(&rgd->rd_node, parent, newn);
860 	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
861 	sdp->sd_rgrps++;
862 	return 0;
863 }
864 
865 /**
866  * read_rindex_entry - Pull in a new resource index entry from the disk
867  * @ip: Pointer to the rindex inode
868  *
869  * Returns: 0 on success, > 0 on EOF, error code otherwise
870  */
871 
872 static int read_rindex_entry(struct gfs2_inode *ip)
873 {
874 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
875 	const unsigned bsize = sdp->sd_sb.sb_bsize;
876 	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
877 	struct gfs2_rindex buf;
878 	int error;
879 	struct gfs2_rgrpd *rgd;
880 
881 	if (pos >= i_size_read(&ip->i_inode))
882 		return 1;
883 
884 	error = gfs2_internal_read(ip, (char *)&buf, &pos,
885 				   sizeof(struct gfs2_rindex));
886 
887 	if (error != sizeof(struct gfs2_rindex))
888 		return (error == 0) ? 1 : error;
889 
890 	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
891 	error = -ENOMEM;
892 	if (!rgd)
893 		return error;
894 
895 	rgd->rd_sbd = sdp;
896 	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
897 	rgd->rd_length = be32_to_cpu(buf.ri_length);
898 	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
899 	rgd->rd_data = be32_to_cpu(buf.ri_data);
900 	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
901 	spin_lock_init(&rgd->rd_rsspin);
902 
903 	error = compute_bitstructs(rgd);
904 	if (error)
905 		goto fail;
906 
907 	error = gfs2_glock_get(sdp, rgd->rd_addr,
908 			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
909 	if (error)
910 		goto fail;
911 
912 	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
913 	rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
914 	if (rgd->rd_data > sdp->sd_max_rg_data)
915 		sdp->sd_max_rg_data = rgd->rd_data;
916 	spin_lock(&sdp->sd_rindex_spin);
917 	error = rgd_insert(rgd);
918 	spin_unlock(&sdp->sd_rindex_spin);
919 	if (!error) {
920 		rgd->rd_gl->gl_object = rgd;
921 		rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK;
922 		rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr +
923 						    rgd->rd_length) * bsize) - 1;
924 		return 0;
925 	}
926 
927 	error = 0; /* someone else read in the rgrp; free it and ignore it */
928 	gfs2_glock_put(rgd->rd_gl);
929 
930 fail:
931 	kfree(rgd->rd_bits);
932 	rgd->rd_bits = NULL;
933 	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
934 	return error;
935 }
936 
937 /**
938  * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
939  * @sdp: the GFS2 superblock
940  *
941  * The purpose of this function is to select a subset of the resource groups
942  * and mark them as PREFERRED. We do it in such a way that each node prefers
943  * to use a unique set of rgrps to minimize glock contention.
944  */
945 static void set_rgrp_preferences(struct gfs2_sbd *sdp)
946 {
947 	struct gfs2_rgrpd *rgd, *first;
948 	int i;
949 
950 	/* Skip an initial number of rgrps, based on this node's journal ID.
951 	   That should start each node out on its own set. */
952 	rgd = gfs2_rgrpd_get_first(sdp);
953 	for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
954 		rgd = gfs2_rgrpd_get_next(rgd);
955 	first = rgd;
956 
957 	do {
958 		rgd->rd_flags |= GFS2_RDF_PREFERRED;
959 		for (i = 0; i < sdp->sd_journals; i++) {
960 			rgd = gfs2_rgrpd_get_next(rgd);
961 			if (!rgd || rgd == first)
962 				break;
963 		}
964 	} while (rgd && rgd != first);
965 }
966 
967 /**
968  * gfs2_ri_update - Pull in a new resource index from the disk
969  * @ip: pointer to the rindex inode
970  *
971  * Returns: 0 on successful update, error code otherwise
972  */
973 
974 static int gfs2_ri_update(struct gfs2_inode *ip)
975 {
976 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
977 	int error;
978 
979 	do {
980 		error = read_rindex_entry(ip);
981 	} while (error == 0);
982 
983 	if (error < 0)
984 		return error;
985 
986 	set_rgrp_preferences(sdp);
987 
988 	sdp->sd_rindex_uptodate = 1;
989 	return 0;
990 }
991 
992 /**
993  * gfs2_rindex_update - Update the rindex if required
994  * @sdp: The GFS2 superblock
995  *
996  * We grab a lock on the rindex inode to make sure that it doesn't
997  * change whilst we are performing an operation. We keep this lock
998  * for quite long periods of time compared to other locks. This
999  * doesn't matter, since it is shared and it is very, very rarely
1000  * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1001  *
1002  * This makes sure that we're using the latest copy of the resource index
1003  * special file, which might have been updated if someone expanded the
1004  * filesystem (via gfs2_grow utility), which adds new resource groups.
1005  *
1006  * Returns: 0 on succeess, error code otherwise
1007  */
1008 
1009 int gfs2_rindex_update(struct gfs2_sbd *sdp)
1010 {
1011 	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1012 	struct gfs2_glock *gl = ip->i_gl;
1013 	struct gfs2_holder ri_gh;
1014 	int error = 0;
1015 	int unlock_required = 0;
1016 
1017 	/* Read new copy from disk if we don't have the latest */
1018 	if (!sdp->sd_rindex_uptodate) {
1019 		if (!gfs2_glock_is_locked_by_me(gl)) {
1020 			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1021 			if (error)
1022 				return error;
1023 			unlock_required = 1;
1024 		}
1025 		if (!sdp->sd_rindex_uptodate)
1026 			error = gfs2_ri_update(ip);
1027 		if (unlock_required)
1028 			gfs2_glock_dq_uninit(&ri_gh);
1029 	}
1030 
1031 	return error;
1032 }
1033 
1034 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1035 {
1036 	const struct gfs2_rgrp *str = buf;
1037 	u32 rg_flags;
1038 
1039 	rg_flags = be32_to_cpu(str->rg_flags);
1040 	rg_flags &= ~GFS2_RDF_MASK;
1041 	rgd->rd_flags &= GFS2_RDF_MASK;
1042 	rgd->rd_flags |= rg_flags;
1043 	rgd->rd_free = be32_to_cpu(str->rg_free);
1044 	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1045 	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1046 }
1047 
1048 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1049 {
1050 	struct gfs2_rgrp *str = buf;
1051 
1052 	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1053 	str->rg_free = cpu_to_be32(rgd->rd_free);
1054 	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1055 	str->__pad = cpu_to_be32(0);
1056 	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1057 	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1058 }
1059 
1060 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1061 {
1062 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1063 	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1064 
1065 	if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1066 	    rgl->rl_dinodes != str->rg_dinodes ||
1067 	    rgl->rl_igeneration != str->rg_igeneration)
1068 		return 0;
1069 	return 1;
1070 }
1071 
1072 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1073 {
1074 	const struct gfs2_rgrp *str = buf;
1075 
1076 	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1077 	rgl->rl_flags = str->rg_flags;
1078 	rgl->rl_free = str->rg_free;
1079 	rgl->rl_dinodes = str->rg_dinodes;
1080 	rgl->rl_igeneration = str->rg_igeneration;
1081 	rgl->__pad = 0UL;
1082 }
1083 
1084 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1085 {
1086 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1087 	u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1088 	rgl->rl_unlinked = cpu_to_be32(unlinked);
1089 }
1090 
1091 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1092 {
1093 	struct gfs2_bitmap *bi;
1094 	const u32 length = rgd->rd_length;
1095 	const u8 *buffer = NULL;
1096 	u32 i, goal, count = 0;
1097 
1098 	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1099 		goal = 0;
1100 		buffer = bi->bi_bh->b_data + bi->bi_offset;
1101 		WARN_ON(!buffer_uptodate(bi->bi_bh));
1102 		while (goal < bi->bi_len * GFS2_NBBY) {
1103 			goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1104 					   GFS2_BLKST_UNLINKED);
1105 			if (goal == BFITNOENT)
1106 				break;
1107 			count++;
1108 			goal++;
1109 		}
1110 	}
1111 
1112 	return count;
1113 }
1114 
1115 
1116 /**
1117  * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1118  * @rgd: the struct gfs2_rgrpd describing the RG to read in
1119  *
1120  * Read in all of a Resource Group's header and bitmap blocks.
1121  * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1122  *
1123  * Returns: errno
1124  */
1125 
1126 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1127 {
1128 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1129 	struct gfs2_glock *gl = rgd->rd_gl;
1130 	unsigned int length = rgd->rd_length;
1131 	struct gfs2_bitmap *bi;
1132 	unsigned int x, y;
1133 	int error;
1134 
1135 	if (rgd->rd_bits[0].bi_bh != NULL)
1136 		return 0;
1137 
1138 	for (x = 0; x < length; x++) {
1139 		bi = rgd->rd_bits + x;
1140 		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1141 		if (error)
1142 			goto fail;
1143 	}
1144 
1145 	for (y = length; y--;) {
1146 		bi = rgd->rd_bits + y;
1147 		error = gfs2_meta_wait(sdp, bi->bi_bh);
1148 		if (error)
1149 			goto fail;
1150 		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1151 					      GFS2_METATYPE_RG)) {
1152 			error = -EIO;
1153 			goto fail;
1154 		}
1155 	}
1156 
1157 	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1158 		for (x = 0; x < length; x++)
1159 			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1160 		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1161 		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1162 		rgd->rd_free_clone = rgd->rd_free;
1163 		/* max out the rgrp allocation failure point */
1164 		rgd->rd_extfail_pt = rgd->rd_free;
1165 	}
1166 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1167 		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1168 		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1169 				     rgd->rd_bits[0].bi_bh->b_data);
1170 	}
1171 	else if (sdp->sd_args.ar_rgrplvb) {
1172 		if (!gfs2_rgrp_lvb_valid(rgd)){
1173 			gfs2_consist_rgrpd(rgd);
1174 			error = -EIO;
1175 			goto fail;
1176 		}
1177 		if (rgd->rd_rgl->rl_unlinked == 0)
1178 			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1179 	}
1180 	return 0;
1181 
1182 fail:
1183 	while (x--) {
1184 		bi = rgd->rd_bits + x;
1185 		brelse(bi->bi_bh);
1186 		bi->bi_bh = NULL;
1187 		gfs2_assert_warn(sdp, !bi->bi_clone);
1188 	}
1189 
1190 	return error;
1191 }
1192 
1193 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1194 {
1195 	u32 rl_flags;
1196 
1197 	if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1198 		return 0;
1199 
1200 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1201 		return gfs2_rgrp_bh_get(rgd);
1202 
1203 	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1204 	rl_flags &= ~GFS2_RDF_MASK;
1205 	rgd->rd_flags &= GFS2_RDF_MASK;
1206 	rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1207 	if (rgd->rd_rgl->rl_unlinked == 0)
1208 		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1209 	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1210 	rgd->rd_free_clone = rgd->rd_free;
1211 	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1212 	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1213 	return 0;
1214 }
1215 
1216 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1217 {
1218 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1219 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1220 
1221 	if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1222 		return 0;
1223 	return gfs2_rgrp_bh_get(rgd);
1224 }
1225 
1226 /**
1227  * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1228  * @rgd: The resource group
1229  *
1230  */
1231 
1232 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1233 {
1234 	int x, length = rgd->rd_length;
1235 
1236 	for (x = 0; x < length; x++) {
1237 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1238 		if (bi->bi_bh) {
1239 			brelse(bi->bi_bh);
1240 			bi->bi_bh = NULL;
1241 		}
1242 	}
1243 
1244 }
1245 
1246 /**
1247  * gfs2_rgrp_go_unlock - Unlock a rgrp glock
1248  * @gh: The glock holder for the resource group
1249  *
1250  */
1251 
1252 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1253 {
1254 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1255 	int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) |
1256 		test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags);
1257 
1258 	if (rgd && demote_requested)
1259 		gfs2_rgrp_brelse(rgd);
1260 }
1261 
1262 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1263 			     struct buffer_head *bh,
1264 			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1265 {
1266 	struct super_block *sb = sdp->sd_vfs;
1267 	u64 blk;
1268 	sector_t start = 0;
1269 	sector_t nr_blks = 0;
1270 	int rv;
1271 	unsigned int x;
1272 	u32 trimmed = 0;
1273 	u8 diff;
1274 
1275 	for (x = 0; x < bi->bi_len; x++) {
1276 		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1277 		clone += bi->bi_offset;
1278 		clone += x;
1279 		if (bh) {
1280 			const u8 *orig = bh->b_data + bi->bi_offset + x;
1281 			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1282 		} else {
1283 			diff = ~(*clone | (*clone >> 1));
1284 		}
1285 		diff &= 0x55;
1286 		if (diff == 0)
1287 			continue;
1288 		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1289 		while(diff) {
1290 			if (diff & 1) {
1291 				if (nr_blks == 0)
1292 					goto start_new_extent;
1293 				if ((start + nr_blks) != blk) {
1294 					if (nr_blks >= minlen) {
1295 						rv = sb_issue_discard(sb,
1296 							start, nr_blks,
1297 							GFP_NOFS, 0);
1298 						if (rv)
1299 							goto fail;
1300 						trimmed += nr_blks;
1301 					}
1302 					nr_blks = 0;
1303 start_new_extent:
1304 					start = blk;
1305 				}
1306 				nr_blks++;
1307 			}
1308 			diff >>= 2;
1309 			blk++;
1310 		}
1311 	}
1312 	if (nr_blks >= minlen) {
1313 		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1314 		if (rv)
1315 			goto fail;
1316 		trimmed += nr_blks;
1317 	}
1318 	if (ptrimmed)
1319 		*ptrimmed = trimmed;
1320 	return 0;
1321 
1322 fail:
1323 	if (sdp->sd_args.ar_discard)
1324 		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1325 	sdp->sd_args.ar_discard = 0;
1326 	return -EIO;
1327 }
1328 
1329 /**
1330  * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1331  * @filp: Any file on the filesystem
1332  * @argp: Pointer to the arguments (also used to pass result)
1333  *
1334  * Returns: 0 on success, otherwise error code
1335  */
1336 
1337 int gfs2_fitrim(struct file *filp, void __user *argp)
1338 {
1339 	struct inode *inode = file_inode(filp);
1340 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1341 	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1342 	struct buffer_head *bh;
1343 	struct gfs2_rgrpd *rgd;
1344 	struct gfs2_rgrpd *rgd_end;
1345 	struct gfs2_holder gh;
1346 	struct fstrim_range r;
1347 	int ret = 0;
1348 	u64 amt;
1349 	u64 trimmed = 0;
1350 	u64 start, end, minlen;
1351 	unsigned int x;
1352 	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1353 
1354 	if (!capable(CAP_SYS_ADMIN))
1355 		return -EPERM;
1356 
1357 	if (!blk_queue_discard(q))
1358 		return -EOPNOTSUPP;
1359 
1360 	if (copy_from_user(&r, argp, sizeof(r)))
1361 		return -EFAULT;
1362 
1363 	ret = gfs2_rindex_update(sdp);
1364 	if (ret)
1365 		return ret;
1366 
1367 	start = r.start >> bs_shift;
1368 	end = start + (r.len >> bs_shift);
1369 	minlen = max_t(u64, r.minlen,
1370 		       q->limits.discard_granularity) >> bs_shift;
1371 
1372 	if (end <= start || minlen > sdp->sd_max_rg_data)
1373 		return -EINVAL;
1374 
1375 	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1376 	rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1377 
1378 	if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1379 	    && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1380 		return -EINVAL; /* start is beyond the end of the fs */
1381 
1382 	while (1) {
1383 
1384 		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1385 		if (ret)
1386 			goto out;
1387 
1388 		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1389 			/* Trim each bitmap in the rgrp */
1390 			for (x = 0; x < rgd->rd_length; x++) {
1391 				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1392 				ret = gfs2_rgrp_send_discards(sdp,
1393 						rgd->rd_data0, NULL, bi, minlen,
1394 						&amt);
1395 				if (ret) {
1396 					gfs2_glock_dq_uninit(&gh);
1397 					goto out;
1398 				}
1399 				trimmed += amt;
1400 			}
1401 
1402 			/* Mark rgrp as having been trimmed */
1403 			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1404 			if (ret == 0) {
1405 				bh = rgd->rd_bits[0].bi_bh;
1406 				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1407 				gfs2_trans_add_meta(rgd->rd_gl, bh);
1408 				gfs2_rgrp_out(rgd, bh->b_data);
1409 				gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1410 				gfs2_trans_end(sdp);
1411 			}
1412 		}
1413 		gfs2_glock_dq_uninit(&gh);
1414 
1415 		if (rgd == rgd_end)
1416 			break;
1417 
1418 		rgd = gfs2_rgrpd_get_next(rgd);
1419 	}
1420 
1421 out:
1422 	r.len = trimmed << bs_shift;
1423 	if (copy_to_user(argp, &r, sizeof(r)))
1424 		return -EFAULT;
1425 
1426 	return ret;
1427 }
1428 
1429 /**
1430  * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1431  * @ip: the inode structure
1432  *
1433  */
1434 static void rs_insert(struct gfs2_inode *ip)
1435 {
1436 	struct rb_node **newn, *parent = NULL;
1437 	int rc;
1438 	struct gfs2_blkreserv *rs = &ip->i_res;
1439 	struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1440 	u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1441 
1442 	BUG_ON(gfs2_rs_active(rs));
1443 
1444 	spin_lock(&rgd->rd_rsspin);
1445 	newn = &rgd->rd_rstree.rb_node;
1446 	while (*newn) {
1447 		struct gfs2_blkreserv *cur =
1448 			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1449 
1450 		parent = *newn;
1451 		rc = rs_cmp(fsblock, rs->rs_free, cur);
1452 		if (rc > 0)
1453 			newn = &((*newn)->rb_right);
1454 		else if (rc < 0)
1455 			newn = &((*newn)->rb_left);
1456 		else {
1457 			spin_unlock(&rgd->rd_rsspin);
1458 			WARN_ON(1);
1459 			return;
1460 		}
1461 	}
1462 
1463 	rb_link_node(&rs->rs_node, parent, newn);
1464 	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1465 
1466 	/* Do our rgrp accounting for the reservation */
1467 	rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1468 	spin_unlock(&rgd->rd_rsspin);
1469 	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1470 }
1471 
1472 /**
1473  * rg_mblk_search - find a group of multiple free blocks to form a reservation
1474  * @rgd: the resource group descriptor
1475  * @ip: pointer to the inode for which we're reserving blocks
1476  * @ap: the allocation parameters
1477  *
1478  */
1479 
1480 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1481 			   const struct gfs2_alloc_parms *ap)
1482 {
1483 	struct gfs2_rbm rbm = { .rgd = rgd, };
1484 	u64 goal;
1485 	struct gfs2_blkreserv *rs = &ip->i_res;
1486 	u32 extlen;
1487 	u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1488 	int ret;
1489 	struct inode *inode = &ip->i_inode;
1490 
1491 	if (S_ISDIR(inode->i_mode))
1492 		extlen = 1;
1493 	else {
1494 		extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target);
1495 		extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1496 	}
1497 	if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1498 		return;
1499 
1500 	/* Find bitmap block that contains bits for goal block */
1501 	if (rgrp_contains_block(rgd, ip->i_goal))
1502 		goal = ip->i_goal;
1503 	else
1504 		goal = rgd->rd_last_alloc + rgd->rd_data0;
1505 
1506 	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1507 		return;
1508 
1509 	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true);
1510 	if (ret == 0) {
1511 		rs->rs_rbm = rbm;
1512 		rs->rs_free = extlen;
1513 		rs->rs_inum = ip->i_no_addr;
1514 		rs_insert(ip);
1515 	} else {
1516 		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1517 			rgd->rd_last_alloc = 0;
1518 	}
1519 }
1520 
1521 /**
1522  * gfs2_next_unreserved_block - Return next block that is not reserved
1523  * @rgd: The resource group
1524  * @block: The starting block
1525  * @length: The required length
1526  * @ip: Ignore any reservations for this inode
1527  *
1528  * If the block does not appear in any reservation, then return the
1529  * block number unchanged. If it does appear in the reservation, then
1530  * keep looking through the tree of reservations in order to find the
1531  * first block number which is not reserved.
1532  */
1533 
1534 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1535 				      u32 length,
1536 				      const struct gfs2_inode *ip)
1537 {
1538 	struct gfs2_blkreserv *rs;
1539 	struct rb_node *n;
1540 	int rc;
1541 
1542 	spin_lock(&rgd->rd_rsspin);
1543 	n = rgd->rd_rstree.rb_node;
1544 	while (n) {
1545 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1546 		rc = rs_cmp(block, length, rs);
1547 		if (rc < 0)
1548 			n = n->rb_left;
1549 		else if (rc > 0)
1550 			n = n->rb_right;
1551 		else
1552 			break;
1553 	}
1554 
1555 	if (n) {
1556 		while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) {
1557 			block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1558 			n = n->rb_right;
1559 			if (n == NULL)
1560 				break;
1561 			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1562 		}
1563 	}
1564 
1565 	spin_unlock(&rgd->rd_rsspin);
1566 	return block;
1567 }
1568 
1569 /**
1570  * gfs2_reservation_check_and_update - Check for reservations during block alloc
1571  * @rbm: The current position in the resource group
1572  * @ip: The inode for which we are searching for blocks
1573  * @minext: The minimum extent length
1574  * @maxext: A pointer to the maximum extent structure
1575  *
1576  * This checks the current position in the rgrp to see whether there is
1577  * a reservation covering this block. If not then this function is a
1578  * no-op. If there is, then the position is moved to the end of the
1579  * contiguous reservation(s) so that we are pointing at the first
1580  * non-reserved block.
1581  *
1582  * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1583  */
1584 
1585 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1586 					     const struct gfs2_inode *ip,
1587 					     u32 minext,
1588 					     struct gfs2_extent *maxext)
1589 {
1590 	u64 block = gfs2_rbm_to_block(rbm);
1591 	u32 extlen = 1;
1592 	u64 nblock;
1593 	int ret;
1594 
1595 	/*
1596 	 * If we have a minimum extent length, then skip over any extent
1597 	 * which is less than the min extent length in size.
1598 	 */
1599 	if (minext) {
1600 		extlen = gfs2_free_extlen(rbm, minext);
1601 		if (extlen <= maxext->len)
1602 			goto fail;
1603 	}
1604 
1605 	/*
1606 	 * Check the extent which has been found against the reservations
1607 	 * and skip if parts of it are already reserved
1608 	 */
1609 	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1610 	if (nblock == block) {
1611 		if (!minext || extlen >= minext)
1612 			return 0;
1613 
1614 		if (extlen > maxext->len) {
1615 			maxext->len = extlen;
1616 			maxext->rbm = *rbm;
1617 		}
1618 fail:
1619 		nblock = block + extlen;
1620 	}
1621 	ret = gfs2_rbm_from_block(rbm, nblock);
1622 	if (ret < 0)
1623 		return ret;
1624 	return 1;
1625 }
1626 
1627 /**
1628  * gfs2_rbm_find - Look for blocks of a particular state
1629  * @rbm: Value/result starting position and final position
1630  * @state: The state which we want to find
1631  * @minext: Pointer to the requested extent length (NULL for a single block)
1632  *          This is updated to be the actual reservation size.
1633  * @ip: If set, check for reservations
1634  * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1635  *          around until we've reached the starting point.
1636  *
1637  * Side effects:
1638  * - If looking for free blocks, we set GBF_FULL on each bitmap which
1639  *   has no free blocks in it.
1640  * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1641  *   has come up short on a free block search.
1642  *
1643  * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1644  */
1645 
1646 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1647 			 const struct gfs2_inode *ip, bool nowrap)
1648 {
1649 	struct buffer_head *bh;
1650 	int initial_bii;
1651 	u32 initial_offset;
1652 	int first_bii = rbm->bii;
1653 	u32 first_offset = rbm->offset;
1654 	u32 offset;
1655 	u8 *buffer;
1656 	int n = 0;
1657 	int iters = rbm->rgd->rd_length;
1658 	int ret;
1659 	struct gfs2_bitmap *bi;
1660 	struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1661 
1662 	/* If we are not starting at the beginning of a bitmap, then we
1663 	 * need to add one to the bitmap count to ensure that we search
1664 	 * the starting bitmap twice.
1665 	 */
1666 	if (rbm->offset != 0)
1667 		iters++;
1668 
1669 	while(1) {
1670 		bi = rbm_bi(rbm);
1671 		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1672 		    (state == GFS2_BLKST_FREE))
1673 			goto next_bitmap;
1674 
1675 		bh = bi->bi_bh;
1676 		buffer = bh->b_data + bi->bi_offset;
1677 		WARN_ON(!buffer_uptodate(bh));
1678 		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1679 			buffer = bi->bi_clone + bi->bi_offset;
1680 		initial_offset = rbm->offset;
1681 		offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state);
1682 		if (offset == BFITNOENT)
1683 			goto bitmap_full;
1684 		rbm->offset = offset;
1685 		if (ip == NULL)
1686 			return 0;
1687 
1688 		initial_bii = rbm->bii;
1689 		ret = gfs2_reservation_check_and_update(rbm, ip,
1690 							minext ? *minext : 0,
1691 							&maxext);
1692 		if (ret == 0)
1693 			return 0;
1694 		if (ret > 0) {
1695 			n += (rbm->bii - initial_bii);
1696 			goto next_iter;
1697 		}
1698 		if (ret == -E2BIG) {
1699 			rbm->bii = 0;
1700 			rbm->offset = 0;
1701 			n += (rbm->bii - initial_bii);
1702 			goto res_covered_end_of_rgrp;
1703 		}
1704 		return ret;
1705 
1706 bitmap_full:	/* Mark bitmap as full and fall through */
1707 		if ((state == GFS2_BLKST_FREE) && initial_offset == 0)
1708 			set_bit(GBF_FULL, &bi->bi_flags);
1709 
1710 next_bitmap:	/* Find next bitmap in the rgrp */
1711 		rbm->offset = 0;
1712 		rbm->bii++;
1713 		if (rbm->bii == rbm->rgd->rd_length)
1714 			rbm->bii = 0;
1715 res_covered_end_of_rgrp:
1716 		if ((rbm->bii == 0) && nowrap)
1717 			break;
1718 		n++;
1719 next_iter:
1720 		if (n >= iters)
1721 			break;
1722 	}
1723 
1724 	if (minext == NULL || state != GFS2_BLKST_FREE)
1725 		return -ENOSPC;
1726 
1727 	/* If the extent was too small, and it's smaller than the smallest
1728 	   to have failed before, remember for future reference that it's
1729 	   useless to search this rgrp again for this amount or more. */
1730 	if ((first_offset == 0) && (first_bii == 0) &&
1731 	    (*minext < rbm->rgd->rd_extfail_pt))
1732 		rbm->rgd->rd_extfail_pt = *minext;
1733 
1734 	/* If the maximum extent we found is big enough to fulfill the
1735 	   minimum requirements, use it anyway. */
1736 	if (maxext.len) {
1737 		*rbm = maxext.rbm;
1738 		*minext = maxext.len;
1739 		return 0;
1740 	}
1741 
1742 	return -ENOSPC;
1743 }
1744 
1745 /**
1746  * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1747  * @rgd: The rgrp
1748  * @last_unlinked: block address of the last dinode we unlinked
1749  * @skip: block address we should explicitly not unlink
1750  *
1751  * Returns: 0 if no error
1752  *          The inode, if one has been found, in inode.
1753  */
1754 
1755 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1756 {
1757 	u64 block;
1758 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1759 	struct gfs2_glock *gl;
1760 	struct gfs2_inode *ip;
1761 	int error;
1762 	int found = 0;
1763 	struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1764 
1765 	while (1) {
1766 		down_write(&sdp->sd_log_flush_lock);
1767 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1768 				      true);
1769 		up_write(&sdp->sd_log_flush_lock);
1770 		if (error == -ENOSPC)
1771 			break;
1772 		if (WARN_ON_ONCE(error))
1773 			break;
1774 
1775 		block = gfs2_rbm_to_block(&rbm);
1776 		if (gfs2_rbm_from_block(&rbm, block + 1))
1777 			break;
1778 		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1779 			continue;
1780 		if (block == skip)
1781 			continue;
1782 		*last_unlinked = block;
1783 
1784 		error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1785 		if (error)
1786 			continue;
1787 
1788 		/* If the inode is already in cache, we can ignore it here
1789 		 * because the existing inode disposal code will deal with
1790 		 * it when all refs have gone away. Accessing gl_object like
1791 		 * this is not safe in general. Here it is ok because we do
1792 		 * not dereference the pointer, and we only need an approx
1793 		 * answer to whether it is NULL or not.
1794 		 */
1795 		ip = gl->gl_object;
1796 
1797 		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1798 			gfs2_glock_put(gl);
1799 		else
1800 			found++;
1801 
1802 		/* Limit reclaim to sensible number of tasks */
1803 		if (found > NR_CPUS)
1804 			return;
1805 	}
1806 
1807 	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1808 	return;
1809 }
1810 
1811 /**
1812  * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1813  * @rgd: The rgrp in question
1814  * @loops: An indication of how picky we can be (0=very, 1=less so)
1815  *
1816  * This function uses the recently added glock statistics in order to
1817  * figure out whether a parciular resource group is suffering from
1818  * contention from multiple nodes. This is done purely on the basis
1819  * of timings, since this is the only data we have to work with and
1820  * our aim here is to reject a resource group which is highly contended
1821  * but (very important) not to do this too often in order to ensure that
1822  * we do not land up introducing fragmentation by changing resource
1823  * groups when not actually required.
1824  *
1825  * The calculation is fairly simple, we want to know whether the SRTTB
1826  * (i.e. smoothed round trip time for blocking operations) to acquire
1827  * the lock for this rgrp's glock is significantly greater than the
1828  * time taken for resource groups on average. We introduce a margin in
1829  * the form of the variable @var which is computed as the sum of the two
1830  * respective variences, and multiplied by a factor depending on @loops
1831  * and whether we have a lot of data to base the decision on. This is
1832  * then tested against the square difference of the means in order to
1833  * decide whether the result is statistically significant or not.
1834  *
1835  * Returns: A boolean verdict on the congestion status
1836  */
1837 
1838 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1839 {
1840 	const struct gfs2_glock *gl = rgd->rd_gl;
1841 	const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1842 	struct gfs2_lkstats *st;
1843 	u64 r_dcount, l_dcount;
1844 	u64 l_srttb, a_srttb = 0;
1845 	s64 srttb_diff;
1846 	u64 sqr_diff;
1847 	u64 var;
1848 	int cpu, nonzero = 0;
1849 
1850 	preempt_disable();
1851 	for_each_present_cpu(cpu) {
1852 		st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1853 		if (st->stats[GFS2_LKS_SRTTB]) {
1854 			a_srttb += st->stats[GFS2_LKS_SRTTB];
1855 			nonzero++;
1856 		}
1857 	}
1858 	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1859 	if (nonzero)
1860 		do_div(a_srttb, nonzero);
1861 	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1862 	var = st->stats[GFS2_LKS_SRTTVARB] +
1863 	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1864 	preempt_enable();
1865 
1866 	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1867 	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1868 
1869 	if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1870 		return false;
1871 
1872 	srttb_diff = a_srttb - l_srttb;
1873 	sqr_diff = srttb_diff * srttb_diff;
1874 
1875 	var *= 2;
1876 	if (l_dcount < 8 || r_dcount < 8)
1877 		var *= 2;
1878 	if (loops == 1)
1879 		var *= 2;
1880 
1881 	return ((srttb_diff < 0) && (sqr_diff > var));
1882 }
1883 
1884 /**
1885  * gfs2_rgrp_used_recently
1886  * @rs: The block reservation with the rgrp to test
1887  * @msecs: The time limit in milliseconds
1888  *
1889  * Returns: True if the rgrp glock has been used within the time limit
1890  */
1891 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1892 				    u64 msecs)
1893 {
1894 	u64 tdiff;
1895 
1896 	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1897                             rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1898 
1899 	return tdiff > (msecs * 1000 * 1000);
1900 }
1901 
1902 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1903 {
1904 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1905 	u32 skip;
1906 
1907 	get_random_bytes(&skip, sizeof(skip));
1908 	return skip % sdp->sd_rgrps;
1909 }
1910 
1911 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1912 {
1913 	struct gfs2_rgrpd *rgd = *pos;
1914 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1915 
1916 	rgd = gfs2_rgrpd_get_next(rgd);
1917 	if (rgd == NULL)
1918 		rgd = gfs2_rgrpd_get_first(sdp);
1919 	*pos = rgd;
1920 	if (rgd != begin) /* If we didn't wrap */
1921 		return true;
1922 	return false;
1923 }
1924 
1925 /**
1926  * fast_to_acquire - determine if a resource group will be fast to acquire
1927  *
1928  * If this is one of our preferred rgrps, it should be quicker to acquire,
1929  * because we tried to set ourselves up as dlm lock master.
1930  */
1931 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
1932 {
1933 	struct gfs2_glock *gl = rgd->rd_gl;
1934 
1935 	if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
1936 	    !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
1937 	    !test_bit(GLF_DEMOTE, &gl->gl_flags))
1938 		return 1;
1939 	if (rgd->rd_flags & GFS2_RDF_PREFERRED)
1940 		return 1;
1941 	return 0;
1942 }
1943 
1944 /**
1945  * gfs2_inplace_reserve - Reserve space in the filesystem
1946  * @ip: the inode to reserve space for
1947  * @ap: the allocation parameters
1948  *
1949  * We try our best to find an rgrp that has at least ap->target blocks
1950  * available. After a couple of passes (loops == 2), the prospects of finding
1951  * such an rgrp diminish. At this stage, we return the first rgrp that has
1952  * atleast ap->min_target blocks available. Either way, we set ap->allowed to
1953  * the number of blocks available in the chosen rgrp.
1954  *
1955  * Returns: 0 on success,
1956  *          -ENOMEM if a suitable rgrp can't be found
1957  *          errno otherwise
1958  */
1959 
1960 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
1961 {
1962 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1963 	struct gfs2_rgrpd *begin = NULL;
1964 	struct gfs2_blkreserv *rs = &ip->i_res;
1965 	int error = 0, rg_locked, flags = 0;
1966 	u64 last_unlinked = NO_BLOCK;
1967 	int loops = 0;
1968 	u32 skip = 0;
1969 
1970 	if (sdp->sd_args.ar_rgrplvb)
1971 		flags |= GL_SKIP;
1972 	if (gfs2_assert_warn(sdp, ap->target))
1973 		return -EINVAL;
1974 	if (gfs2_rs_active(rs)) {
1975 		begin = rs->rs_rbm.rgd;
1976 	} else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1977 		rs->rs_rbm.rgd = begin = ip->i_rgd;
1978 	} else {
1979 		check_and_update_goal(ip);
1980 		rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1981 	}
1982 	if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
1983 		skip = gfs2_orlov_skip(ip);
1984 	if (rs->rs_rbm.rgd == NULL)
1985 		return -EBADSLT;
1986 
1987 	while (loops < 3) {
1988 		rg_locked = 1;
1989 
1990 		if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
1991 			rg_locked = 0;
1992 			if (skip && skip--)
1993 				goto next_rgrp;
1994 			if (!gfs2_rs_active(rs)) {
1995 				if (loops == 0 &&
1996 				    !fast_to_acquire(rs->rs_rbm.rgd))
1997 					goto next_rgrp;
1998 				if ((loops < 2) &&
1999 				    gfs2_rgrp_used_recently(rs, 1000) &&
2000 				    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2001 					goto next_rgrp;
2002 			}
2003 			error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
2004 						   LM_ST_EXCLUSIVE, flags,
2005 						   &rs->rs_rgd_gh);
2006 			if (unlikely(error))
2007 				return error;
2008 			if (!gfs2_rs_active(rs) && (loops < 2) &&
2009 			    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2010 				goto skip_rgrp;
2011 			if (sdp->sd_args.ar_rgrplvb) {
2012 				error = update_rgrp_lvb(rs->rs_rbm.rgd);
2013 				if (unlikely(error)) {
2014 					gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2015 					return error;
2016 				}
2017 			}
2018 		}
2019 
2020 		/* Skip unuseable resource groups */
2021 		if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
2022 						 GFS2_RDF_ERROR)) ||
2023 		    (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
2024 			goto skip_rgrp;
2025 
2026 		if (sdp->sd_args.ar_rgrplvb)
2027 			gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
2028 
2029 		/* Get a reservation if we don't already have one */
2030 		if (!gfs2_rs_active(rs))
2031 			rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
2032 
2033 		/* Skip rgrps when we can't get a reservation on first pass */
2034 		if (!gfs2_rs_active(rs) && (loops < 1))
2035 			goto check_rgrp;
2036 
2037 		/* If rgrp has enough free space, use it */
2038 		if (rs->rs_rbm.rgd->rd_free_clone >= ap->target ||
2039 		    (loops == 2 && ap->min_target &&
2040 		     rs->rs_rbm.rgd->rd_free_clone >= ap->min_target)) {
2041 			ip->i_rgd = rs->rs_rbm.rgd;
2042 			ap->allowed = ip->i_rgd->rd_free_clone;
2043 			return 0;
2044 		}
2045 check_rgrp:
2046 		/* Check for unlinked inodes which can be reclaimed */
2047 		if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
2048 			try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
2049 					ip->i_no_addr);
2050 skip_rgrp:
2051 		/* Drop reservation, if we couldn't use reserved rgrp */
2052 		if (gfs2_rs_active(rs))
2053 			gfs2_rs_deltree(rs);
2054 
2055 		/* Unlock rgrp if required */
2056 		if (!rg_locked)
2057 			gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2058 next_rgrp:
2059 		/* Find the next rgrp, and continue looking */
2060 		if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
2061 			continue;
2062 		if (skip)
2063 			continue;
2064 
2065 		/* If we've scanned all the rgrps, but found no free blocks
2066 		 * then this checks for some less likely conditions before
2067 		 * trying again.
2068 		 */
2069 		loops++;
2070 		/* Check that fs hasn't grown if writing to rindex */
2071 		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2072 			error = gfs2_ri_update(ip);
2073 			if (error)
2074 				return error;
2075 		}
2076 		/* Flushing the log may release space */
2077 		if (loops == 2)
2078 			gfs2_log_flush(sdp, NULL, NORMAL_FLUSH);
2079 	}
2080 
2081 	return -ENOSPC;
2082 }
2083 
2084 /**
2085  * gfs2_inplace_release - release an inplace reservation
2086  * @ip: the inode the reservation was taken out on
2087  *
2088  * Release a reservation made by gfs2_inplace_reserve().
2089  */
2090 
2091 void gfs2_inplace_release(struct gfs2_inode *ip)
2092 {
2093 	struct gfs2_blkreserv *rs = &ip->i_res;
2094 
2095 	if (gfs2_holder_initialized(&rs->rs_rgd_gh))
2096 		gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2097 }
2098 
2099 /**
2100  * gfs2_get_block_type - Check a block in a RG is of given type
2101  * @rgd: the resource group holding the block
2102  * @block: the block number
2103  *
2104  * Returns: The block type (GFS2_BLKST_*)
2105  */
2106 
2107 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
2108 {
2109 	struct gfs2_rbm rbm = { .rgd = rgd, };
2110 	int ret;
2111 
2112 	ret = gfs2_rbm_from_block(&rbm, block);
2113 	WARN_ON_ONCE(ret != 0);
2114 
2115 	return gfs2_testbit(&rbm);
2116 }
2117 
2118 
2119 /**
2120  * gfs2_alloc_extent - allocate an extent from a given bitmap
2121  * @rbm: the resource group information
2122  * @dinode: TRUE if the first block we allocate is for a dinode
2123  * @n: The extent length (value/result)
2124  *
2125  * Add the bitmap buffer to the transaction.
2126  * Set the found bits to @new_state to change block's allocation state.
2127  */
2128 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2129 			     unsigned int *n)
2130 {
2131 	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2132 	const unsigned int elen = *n;
2133 	u64 block;
2134 	int ret;
2135 
2136 	*n = 1;
2137 	block = gfs2_rbm_to_block(rbm);
2138 	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2139 	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2140 	block++;
2141 	while (*n < elen) {
2142 		ret = gfs2_rbm_from_block(&pos, block);
2143 		if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
2144 			break;
2145 		gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2146 		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2147 		(*n)++;
2148 		block++;
2149 	}
2150 }
2151 
2152 /**
2153  * rgblk_free - Change alloc state of given block(s)
2154  * @sdp: the filesystem
2155  * @bstart: the start of a run of blocks to free
2156  * @blen: the length of the block run (all must lie within ONE RG!)
2157  * @new_state: GFS2_BLKST_XXX the after-allocation block state
2158  *
2159  * Returns:  Resource group containing the block(s)
2160  */
2161 
2162 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
2163 				     u32 blen, unsigned char new_state)
2164 {
2165 	struct gfs2_rbm rbm;
2166 	struct gfs2_bitmap *bi, *bi_prev = NULL;
2167 
2168 	rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2169 	if (!rbm.rgd) {
2170 		if (gfs2_consist(sdp))
2171 			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2172 		return NULL;
2173 	}
2174 
2175 	gfs2_rbm_from_block(&rbm, bstart);
2176 	while (blen--) {
2177 		bi = rbm_bi(&rbm);
2178 		if (bi != bi_prev) {
2179 			if (!bi->bi_clone) {
2180 				bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2181 						      GFP_NOFS | __GFP_NOFAIL);
2182 				memcpy(bi->bi_clone + bi->bi_offset,
2183 				       bi->bi_bh->b_data + bi->bi_offset,
2184 				       bi->bi_len);
2185 			}
2186 			gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2187 			bi_prev = bi;
2188 		}
2189 		gfs2_setbit(&rbm, false, new_state);
2190 		gfs2_rbm_incr(&rbm);
2191 	}
2192 
2193 	return rbm.rgd;
2194 }
2195 
2196 /**
2197  * gfs2_rgrp_dump - print out an rgrp
2198  * @seq: The iterator
2199  * @gl: The glock in question
2200  *
2201  */
2202 
2203 void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2204 {
2205 	struct gfs2_rgrpd *rgd = gl->gl_object;
2206 	struct gfs2_blkreserv *trs;
2207 	const struct rb_node *n;
2208 
2209 	if (rgd == NULL)
2210 		return;
2211 	gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2212 		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2213 		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2214 		       rgd->rd_reserved, rgd->rd_extfail_pt);
2215 	spin_lock(&rgd->rd_rsspin);
2216 	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2217 		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2218 		dump_rs(seq, trs);
2219 	}
2220 	spin_unlock(&rgd->rd_rsspin);
2221 }
2222 
2223 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2224 {
2225 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2226 	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2227 		(unsigned long long)rgd->rd_addr);
2228 	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2229 	gfs2_rgrp_dump(NULL, rgd->rd_gl);
2230 	rgd->rd_flags |= GFS2_RDF_ERROR;
2231 }
2232 
2233 /**
2234  * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2235  * @ip: The inode we have just allocated blocks for
2236  * @rbm: The start of the allocated blocks
2237  * @len: The extent length
2238  *
2239  * Adjusts a reservation after an allocation has taken place. If the
2240  * reservation does not match the allocation, or if it is now empty
2241  * then it is removed.
2242  */
2243 
2244 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2245 				    const struct gfs2_rbm *rbm, unsigned len)
2246 {
2247 	struct gfs2_blkreserv *rs = &ip->i_res;
2248 	struct gfs2_rgrpd *rgd = rbm->rgd;
2249 	unsigned rlen;
2250 	u64 block;
2251 	int ret;
2252 
2253 	spin_lock(&rgd->rd_rsspin);
2254 	if (gfs2_rs_active(rs)) {
2255 		if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2256 			block = gfs2_rbm_to_block(rbm);
2257 			ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2258 			rlen = min(rs->rs_free, len);
2259 			rs->rs_free -= rlen;
2260 			rgd->rd_reserved -= rlen;
2261 			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2262 			if (rs->rs_free && !ret)
2263 				goto out;
2264 			/* We used up our block reservation, so we should
2265 			   reserve more blocks next time. */
2266 			atomic_add(RGRP_RSRV_ADDBLKS, &rs->rs_sizehint);
2267 		}
2268 		__rs_deltree(rs);
2269 	}
2270 out:
2271 	spin_unlock(&rgd->rd_rsspin);
2272 }
2273 
2274 /**
2275  * gfs2_set_alloc_start - Set starting point for block allocation
2276  * @rbm: The rbm which will be set to the required location
2277  * @ip: The gfs2 inode
2278  * @dinode: Flag to say if allocation includes a new inode
2279  *
2280  * This sets the starting point from the reservation if one is active
2281  * otherwise it falls back to guessing a start point based on the
2282  * inode's goal block or the last allocation point in the rgrp.
2283  */
2284 
2285 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2286 				 const struct gfs2_inode *ip, bool dinode)
2287 {
2288 	u64 goal;
2289 
2290 	if (gfs2_rs_active(&ip->i_res)) {
2291 		*rbm = ip->i_res.rs_rbm;
2292 		return;
2293 	}
2294 
2295 	if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2296 		goal = ip->i_goal;
2297 	else
2298 		goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2299 
2300 	gfs2_rbm_from_block(rbm, goal);
2301 }
2302 
2303 /**
2304  * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2305  * @ip: the inode to allocate the block for
2306  * @bn: Used to return the starting block number
2307  * @nblocks: requested number of blocks/extent length (value/result)
2308  * @dinode: 1 if we're allocating a dinode block, else 0
2309  * @generation: the generation number of the inode
2310  *
2311  * Returns: 0 or error
2312  */
2313 
2314 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2315 		      bool dinode, u64 *generation)
2316 {
2317 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2318 	struct buffer_head *dibh;
2319 	struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2320 	unsigned int ndata;
2321 	u64 block; /* block, within the file system scope */
2322 	int error;
2323 
2324 	gfs2_set_alloc_start(&rbm, ip, dinode);
2325 	error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false);
2326 
2327 	if (error == -ENOSPC) {
2328 		gfs2_set_alloc_start(&rbm, ip, dinode);
2329 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false);
2330 	}
2331 
2332 	/* Since all blocks are reserved in advance, this shouldn't happen */
2333 	if (error) {
2334 		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2335 			(unsigned long long)ip->i_no_addr, error, *nblocks,
2336 			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2337 			rbm.rgd->rd_extfail_pt);
2338 		goto rgrp_error;
2339 	}
2340 
2341 	gfs2_alloc_extent(&rbm, dinode, nblocks);
2342 	block = gfs2_rbm_to_block(&rbm);
2343 	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2344 	if (gfs2_rs_active(&ip->i_res))
2345 		gfs2_adjust_reservation(ip, &rbm, *nblocks);
2346 	ndata = *nblocks;
2347 	if (dinode)
2348 		ndata--;
2349 
2350 	if (!dinode) {
2351 		ip->i_goal = block + ndata - 1;
2352 		error = gfs2_meta_inode_buffer(ip, &dibh);
2353 		if (error == 0) {
2354 			struct gfs2_dinode *di =
2355 				(struct gfs2_dinode *)dibh->b_data;
2356 			gfs2_trans_add_meta(ip->i_gl, dibh);
2357 			di->di_goal_meta = di->di_goal_data =
2358 				cpu_to_be64(ip->i_goal);
2359 			brelse(dibh);
2360 		}
2361 	}
2362 	if (rbm.rgd->rd_free < *nblocks) {
2363 		pr_warn("nblocks=%u\n", *nblocks);
2364 		goto rgrp_error;
2365 	}
2366 
2367 	rbm.rgd->rd_free -= *nblocks;
2368 	if (dinode) {
2369 		rbm.rgd->rd_dinodes++;
2370 		*generation = rbm.rgd->rd_igeneration++;
2371 		if (*generation == 0)
2372 			*generation = rbm.rgd->rd_igeneration++;
2373 	}
2374 
2375 	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2376 	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2377 	gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2378 
2379 	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2380 	if (dinode)
2381 		gfs2_trans_add_unrevoke(sdp, block, *nblocks);
2382 
2383 	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2384 
2385 	rbm.rgd->rd_free_clone -= *nblocks;
2386 	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2387 			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2388 	*bn = block;
2389 	return 0;
2390 
2391 rgrp_error:
2392 	gfs2_rgrp_error(rbm.rgd);
2393 	return -EIO;
2394 }
2395 
2396 /**
2397  * __gfs2_free_blocks - free a contiguous run of block(s)
2398  * @ip: the inode these blocks are being freed from
2399  * @bstart: first block of a run of contiguous blocks
2400  * @blen: the length of the block run
2401  * @meta: 1 if the blocks represent metadata
2402  *
2403  */
2404 
2405 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2406 {
2407 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2408 	struct gfs2_rgrpd *rgd;
2409 
2410 	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2411 	if (!rgd)
2412 		return;
2413 	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2414 	rgd->rd_free += blen;
2415 	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2416 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2417 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2418 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2419 
2420 	/* Directories keep their data in the metadata address space */
2421 	if (meta || ip->i_depth)
2422 		gfs2_meta_wipe(ip, bstart, blen);
2423 }
2424 
2425 /**
2426  * gfs2_free_meta - free a contiguous run of data block(s)
2427  * @ip: the inode these blocks are being freed from
2428  * @bstart: first block of a run of contiguous blocks
2429  * @blen: the length of the block run
2430  *
2431  */
2432 
2433 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2434 {
2435 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2436 
2437 	__gfs2_free_blocks(ip, bstart, blen, 1);
2438 	gfs2_statfs_change(sdp, 0, +blen, 0);
2439 	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2440 }
2441 
2442 void gfs2_unlink_di(struct inode *inode)
2443 {
2444 	struct gfs2_inode *ip = GFS2_I(inode);
2445 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2446 	struct gfs2_rgrpd *rgd;
2447 	u64 blkno = ip->i_no_addr;
2448 
2449 	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2450 	if (!rgd)
2451 		return;
2452 	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2453 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2454 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2455 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2456 	update_rgrp_lvb_unlinked(rgd, 1);
2457 }
2458 
2459 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2460 {
2461 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2462 	struct gfs2_rgrpd *tmp_rgd;
2463 
2464 	tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2465 	if (!tmp_rgd)
2466 		return;
2467 	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2468 
2469 	if (!rgd->rd_dinodes)
2470 		gfs2_consist_rgrpd(rgd);
2471 	rgd->rd_dinodes--;
2472 	rgd->rd_free++;
2473 
2474 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2475 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2476 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2477 	update_rgrp_lvb_unlinked(rgd, -1);
2478 
2479 	gfs2_statfs_change(sdp, 0, +1, -1);
2480 }
2481 
2482 
2483 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2484 {
2485 	gfs2_free_uninit_di(rgd, ip->i_no_addr);
2486 	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2487 	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2488 	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2489 }
2490 
2491 /**
2492  * gfs2_check_blk_type - Check the type of a block
2493  * @sdp: The superblock
2494  * @no_addr: The block number to check
2495  * @type: The block type we are looking for
2496  *
2497  * Returns: 0 if the block type matches the expected type
2498  *          -ESTALE if it doesn't match
2499  *          or -ve errno if something went wrong while checking
2500  */
2501 
2502 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2503 {
2504 	struct gfs2_rgrpd *rgd;
2505 	struct gfs2_holder rgd_gh;
2506 	int error = -EINVAL;
2507 
2508 	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2509 	if (!rgd)
2510 		goto fail;
2511 
2512 	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2513 	if (error)
2514 		goto fail;
2515 
2516 	if (gfs2_get_block_type(rgd, no_addr) != type)
2517 		error = -ESTALE;
2518 
2519 	gfs2_glock_dq_uninit(&rgd_gh);
2520 fail:
2521 	return error;
2522 }
2523 
2524 /**
2525  * gfs2_rlist_add - add a RG to a list of RGs
2526  * @ip: the inode
2527  * @rlist: the list of resource groups
2528  * @block: the block
2529  *
2530  * Figure out what RG a block belongs to and add that RG to the list
2531  *
2532  * FIXME: Don't use NOFAIL
2533  *
2534  */
2535 
2536 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2537 		    u64 block)
2538 {
2539 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2540 	struct gfs2_rgrpd *rgd;
2541 	struct gfs2_rgrpd **tmp;
2542 	unsigned int new_space;
2543 	unsigned int x;
2544 
2545 	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2546 		return;
2547 
2548 	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2549 		rgd = ip->i_rgd;
2550 	else
2551 		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2552 	if (!rgd) {
2553 		fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2554 		return;
2555 	}
2556 	ip->i_rgd = rgd;
2557 
2558 	for (x = 0; x < rlist->rl_rgrps; x++)
2559 		if (rlist->rl_rgd[x] == rgd)
2560 			return;
2561 
2562 	if (rlist->rl_rgrps == rlist->rl_space) {
2563 		new_space = rlist->rl_space + 10;
2564 
2565 		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2566 			      GFP_NOFS | __GFP_NOFAIL);
2567 
2568 		if (rlist->rl_rgd) {
2569 			memcpy(tmp, rlist->rl_rgd,
2570 			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2571 			kfree(rlist->rl_rgd);
2572 		}
2573 
2574 		rlist->rl_space = new_space;
2575 		rlist->rl_rgd = tmp;
2576 	}
2577 
2578 	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2579 }
2580 
2581 /**
2582  * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2583  *      and initialize an array of glock holders for them
2584  * @rlist: the list of resource groups
2585  * @state: the lock state to acquire the RG lock in
2586  *
2587  * FIXME: Don't use NOFAIL
2588  *
2589  */
2590 
2591 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2592 {
2593 	unsigned int x;
2594 
2595 	rlist->rl_ghs = kmalloc(rlist->rl_rgrps * sizeof(struct gfs2_holder),
2596 				GFP_NOFS | __GFP_NOFAIL);
2597 	for (x = 0; x < rlist->rl_rgrps; x++)
2598 		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2599 				state, 0,
2600 				&rlist->rl_ghs[x]);
2601 }
2602 
2603 /**
2604  * gfs2_rlist_free - free a resource group list
2605  * @rlist: the list of resource groups
2606  *
2607  */
2608 
2609 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2610 {
2611 	unsigned int x;
2612 
2613 	kfree(rlist->rl_rgd);
2614 
2615 	if (rlist->rl_ghs) {
2616 		for (x = 0; x < rlist->rl_rgrps; x++)
2617 			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2618 		kfree(rlist->rl_ghs);
2619 		rlist->rl_ghs = NULL;
2620 	}
2621 }
2622 
2623