1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/slab.h> 10 #include <linux/spinlock.h> 11 #include <linux/completion.h> 12 #include <linux/buffer_head.h> 13 #include <linux/fs.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/prefetch.h> 16 #include <linux/blkdev.h> 17 #include <linux/rbtree.h> 18 #include <linux/random.h> 19 20 #include "gfs2.h" 21 #include "incore.h" 22 #include "glock.h" 23 #include "glops.h" 24 #include "lops.h" 25 #include "meta_io.h" 26 #include "quota.h" 27 #include "rgrp.h" 28 #include "super.h" 29 #include "trans.h" 30 #include "util.h" 31 #include "log.h" 32 #include "inode.h" 33 #include "trace_gfs2.h" 34 #include "dir.h" 35 36 #define BFITNOENT ((u32)~0) 37 #define NO_BLOCK ((u64)~0) 38 39 /* 40 * These routines are used by the resource group routines (rgrp.c) 41 * to keep track of block allocation. Each block is represented by two 42 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. 43 * 44 * 0 = Free 45 * 1 = Used (not metadata) 46 * 2 = Unlinked (still in use) inode 47 * 3 = Used (metadata) 48 */ 49 50 struct gfs2_extent { 51 struct gfs2_rbm rbm; 52 u32 len; 53 }; 54 55 static const char valid_change[16] = { 56 /* current */ 57 /* n */ 0, 1, 1, 1, 58 /* e */ 1, 0, 0, 0, 59 /* w */ 0, 0, 0, 1, 60 1, 0, 0, 0 61 }; 62 63 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 64 const struct gfs2_inode *ip, bool nowrap); 65 66 67 /** 68 * gfs2_setbit - Set a bit in the bitmaps 69 * @rbm: The position of the bit to set 70 * @do_clone: Also set the clone bitmap, if it exists 71 * @new_state: the new state of the block 72 * 73 */ 74 75 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone, 76 unsigned char new_state) 77 { 78 unsigned char *byte1, *byte2, *end, cur_state; 79 struct gfs2_bitmap *bi = rbm_bi(rbm); 80 unsigned int buflen = bi->bi_bytes; 81 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 82 83 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY); 84 end = bi->bi_bh->b_data + bi->bi_offset + buflen; 85 86 BUG_ON(byte1 >= end); 87 88 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; 89 90 if (unlikely(!valid_change[new_state * 4 + cur_state])) { 91 struct gfs2_sbd *sdp = rbm->rgd->rd_sbd; 92 93 fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n", 94 rbm->offset, cur_state, new_state); 95 fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n", 96 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start, 97 (unsigned long long)bi->bi_bh->b_blocknr); 98 fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n", 99 bi->bi_offset, bi->bi_bytes, 100 (unsigned long long)gfs2_rbm_to_block(rbm)); 101 dump_stack(); 102 gfs2_consist_rgrpd(rbm->rgd); 103 return; 104 } 105 *byte1 ^= (cur_state ^ new_state) << bit; 106 107 if (do_clone && bi->bi_clone) { 108 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY); 109 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; 110 *byte2 ^= (cur_state ^ new_state) << bit; 111 } 112 } 113 114 /** 115 * gfs2_testbit - test a bit in the bitmaps 116 * @rbm: The bit to test 117 * @use_clone: If true, test the clone bitmap, not the official bitmap. 118 * 119 * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps, 120 * not the "real" bitmaps, to avoid allocating recently freed blocks. 121 * 122 * Returns: The two bit block state of the requested bit 123 */ 124 125 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone) 126 { 127 struct gfs2_bitmap *bi = rbm_bi(rbm); 128 const u8 *buffer; 129 const u8 *byte; 130 unsigned int bit; 131 132 if (use_clone && bi->bi_clone) 133 buffer = bi->bi_clone; 134 else 135 buffer = bi->bi_bh->b_data; 136 buffer += bi->bi_offset; 137 byte = buffer + (rbm->offset / GFS2_NBBY); 138 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 139 140 return (*byte >> bit) & GFS2_BIT_MASK; 141 } 142 143 /** 144 * gfs2_bit_search 145 * @ptr: Pointer to bitmap data 146 * @mask: Mask to use (normally 0x55555.... but adjusted for search start) 147 * @state: The state we are searching for 148 * 149 * We xor the bitmap data with a patter which is the bitwise opposite 150 * of what we are looking for, this gives rise to a pattern of ones 151 * wherever there is a match. Since we have two bits per entry, we 152 * take this pattern, shift it down by one place and then and it with 153 * the original. All the even bit positions (0,2,4, etc) then represent 154 * successful matches, so we mask with 0x55555..... to remove the unwanted 155 * odd bit positions. 156 * 157 * This allows searching of a whole u64 at once (32 blocks) with a 158 * single test (on 64 bit arches). 159 */ 160 161 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) 162 { 163 u64 tmp; 164 static const u64 search[] = { 165 [0] = 0xffffffffffffffffULL, 166 [1] = 0xaaaaaaaaaaaaaaaaULL, 167 [2] = 0x5555555555555555ULL, 168 [3] = 0x0000000000000000ULL, 169 }; 170 tmp = le64_to_cpu(*ptr) ^ search[state]; 171 tmp &= (tmp >> 1); 172 tmp &= mask; 173 return tmp; 174 } 175 176 /** 177 * rs_cmp - multi-block reservation range compare 178 * @blk: absolute file system block number of the new reservation 179 * @len: number of blocks in the new reservation 180 * @rs: existing reservation to compare against 181 * 182 * returns: 1 if the block range is beyond the reach of the reservation 183 * -1 if the block range is before the start of the reservation 184 * 0 if the block range overlaps with the reservation 185 */ 186 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs) 187 { 188 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm); 189 190 if (blk >= startblk + rs->rs_free) 191 return 1; 192 if (blk + len - 1 < startblk) 193 return -1; 194 return 0; 195 } 196 197 /** 198 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing 199 * a block in a given allocation state. 200 * @buf: the buffer that holds the bitmaps 201 * @len: the length (in bytes) of the buffer 202 * @goal: start search at this block's bit-pair (within @buffer) 203 * @state: GFS2_BLKST_XXX the state of the block we're looking for. 204 * 205 * Scope of @goal and returned block number is only within this bitmap buffer, 206 * not entire rgrp or filesystem. @buffer will be offset from the actual 207 * beginning of a bitmap block buffer, skipping any header structures, but 208 * headers are always a multiple of 64 bits long so that the buffer is 209 * always aligned to a 64 bit boundary. 210 * 211 * The size of the buffer is in bytes, but is it assumed that it is 212 * always ok to read a complete multiple of 64 bits at the end 213 * of the block in case the end is no aligned to a natural boundary. 214 * 215 * Return: the block number (bitmap buffer scope) that was found 216 */ 217 218 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, 219 u32 goal, u8 state) 220 { 221 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); 222 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); 223 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); 224 u64 tmp; 225 u64 mask = 0x5555555555555555ULL; 226 u32 bit; 227 228 /* Mask off bits we don't care about at the start of the search */ 229 mask <<= spoint; 230 tmp = gfs2_bit_search(ptr, mask, state); 231 ptr++; 232 while(tmp == 0 && ptr < end) { 233 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); 234 ptr++; 235 } 236 /* Mask off any bits which are more than len bytes from the start */ 237 if (ptr == end && (len & (sizeof(u64) - 1))) 238 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); 239 /* Didn't find anything, so return */ 240 if (tmp == 0) 241 return BFITNOENT; 242 ptr--; 243 bit = __ffs64(tmp); 244 bit /= 2; /* two bits per entry in the bitmap */ 245 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; 246 } 247 248 /** 249 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number 250 * @rbm: The rbm with rgd already set correctly 251 * @block: The block number (filesystem relative) 252 * 253 * This sets the bi and offset members of an rbm based on a 254 * resource group and a filesystem relative block number. The 255 * resource group must be set in the rbm on entry, the bi and 256 * offset members will be set by this function. 257 * 258 * Returns: 0 on success, or an error code 259 */ 260 261 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block) 262 { 263 if (!rgrp_contains_block(rbm->rgd, block)) 264 return -E2BIG; 265 rbm->bii = 0; 266 rbm->offset = block - rbm->rgd->rd_data0; 267 /* Check if the block is within the first block */ 268 if (rbm->offset < rbm_bi(rbm)->bi_blocks) 269 return 0; 270 271 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */ 272 rbm->offset += (sizeof(struct gfs2_rgrp) - 273 sizeof(struct gfs2_meta_header)) * GFS2_NBBY; 274 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 275 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 276 return 0; 277 } 278 279 /** 280 * gfs2_rbm_incr - increment an rbm structure 281 * @rbm: The rbm with rgd already set correctly 282 * 283 * This function takes an existing rbm structure and increments it to the next 284 * viable block offset. 285 * 286 * Returns: If incrementing the offset would cause the rbm to go past the 287 * end of the rgrp, true is returned, otherwise false. 288 * 289 */ 290 291 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm) 292 { 293 if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */ 294 rbm->offset++; 295 return false; 296 } 297 if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */ 298 return true; 299 300 rbm->offset = 0; 301 rbm->bii++; 302 return false; 303 } 304 305 /** 306 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned 307 * @rbm: Position to search (value/result) 308 * @n_unaligned: Number of unaligned blocks to check 309 * @len: Decremented for each block found (terminate on zero) 310 * 311 * Returns: true if a non-free block is encountered 312 */ 313 314 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len) 315 { 316 u32 n; 317 u8 res; 318 319 for (n = 0; n < n_unaligned; n++) { 320 res = gfs2_testbit(rbm, true); 321 if (res != GFS2_BLKST_FREE) 322 return true; 323 (*len)--; 324 if (*len == 0) 325 return true; 326 if (gfs2_rbm_incr(rbm)) 327 return true; 328 } 329 330 return false; 331 } 332 333 /** 334 * gfs2_free_extlen - Return extent length of free blocks 335 * @rrbm: Starting position 336 * @len: Max length to check 337 * 338 * Starting at the block specified by the rbm, see how many free blocks 339 * there are, not reading more than len blocks ahead. This can be done 340 * using memchr_inv when the blocks are byte aligned, but has to be done 341 * on a block by block basis in case of unaligned blocks. Also this 342 * function can cope with bitmap boundaries (although it must stop on 343 * a resource group boundary) 344 * 345 * Returns: Number of free blocks in the extent 346 */ 347 348 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len) 349 { 350 struct gfs2_rbm rbm = *rrbm; 351 u32 n_unaligned = rbm.offset & 3; 352 u32 size = len; 353 u32 bytes; 354 u32 chunk_size; 355 u8 *ptr, *start, *end; 356 u64 block; 357 struct gfs2_bitmap *bi; 358 359 if (n_unaligned && 360 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len)) 361 goto out; 362 363 n_unaligned = len & 3; 364 /* Start is now byte aligned */ 365 while (len > 3) { 366 bi = rbm_bi(&rbm); 367 start = bi->bi_bh->b_data; 368 if (bi->bi_clone) 369 start = bi->bi_clone; 370 start += bi->bi_offset; 371 end = start + bi->bi_bytes; 372 BUG_ON(rbm.offset & 3); 373 start += (rbm.offset / GFS2_NBBY); 374 bytes = min_t(u32, len / GFS2_NBBY, (end - start)); 375 ptr = memchr_inv(start, 0, bytes); 376 chunk_size = ((ptr == NULL) ? bytes : (ptr - start)); 377 chunk_size *= GFS2_NBBY; 378 BUG_ON(len < chunk_size); 379 len -= chunk_size; 380 block = gfs2_rbm_to_block(&rbm); 381 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) { 382 n_unaligned = 0; 383 break; 384 } 385 if (ptr) { 386 n_unaligned = 3; 387 break; 388 } 389 n_unaligned = len & 3; 390 } 391 392 /* Deal with any bits left over at the end */ 393 if (n_unaligned) 394 gfs2_unaligned_extlen(&rbm, n_unaligned, &len); 395 out: 396 return size - len; 397 } 398 399 /** 400 * gfs2_bitcount - count the number of bits in a certain state 401 * @rgd: the resource group descriptor 402 * @buffer: the buffer that holds the bitmaps 403 * @buflen: the length (in bytes) of the buffer 404 * @state: the state of the block we're looking for 405 * 406 * Returns: The number of bits 407 */ 408 409 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, 410 unsigned int buflen, u8 state) 411 { 412 const u8 *byte = buffer; 413 const u8 *end = buffer + buflen; 414 const u8 state1 = state << 2; 415 const u8 state2 = state << 4; 416 const u8 state3 = state << 6; 417 u32 count = 0; 418 419 for (; byte < end; byte++) { 420 if (((*byte) & 0x03) == state) 421 count++; 422 if (((*byte) & 0x0C) == state1) 423 count++; 424 if (((*byte) & 0x30) == state2) 425 count++; 426 if (((*byte) & 0xC0) == state3) 427 count++; 428 } 429 430 return count; 431 } 432 433 /** 434 * gfs2_rgrp_verify - Verify that a resource group is consistent 435 * @rgd: the rgrp 436 * 437 */ 438 439 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) 440 { 441 struct gfs2_sbd *sdp = rgd->rd_sbd; 442 struct gfs2_bitmap *bi = NULL; 443 u32 length = rgd->rd_length; 444 u32 count[4], tmp; 445 int buf, x; 446 447 memset(count, 0, 4 * sizeof(u32)); 448 449 /* Count # blocks in each of 4 possible allocation states */ 450 for (buf = 0; buf < length; buf++) { 451 bi = rgd->rd_bits + buf; 452 for (x = 0; x < 4; x++) 453 count[x] += gfs2_bitcount(rgd, 454 bi->bi_bh->b_data + 455 bi->bi_offset, 456 bi->bi_bytes, x); 457 } 458 459 if (count[0] != rgd->rd_free) { 460 gfs2_lm(sdp, "free data mismatch: %u != %u\n", 461 count[0], rgd->rd_free); 462 gfs2_consist_rgrpd(rgd); 463 return; 464 } 465 466 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; 467 if (count[1] != tmp) { 468 gfs2_lm(sdp, "used data mismatch: %u != %u\n", 469 count[1], tmp); 470 gfs2_consist_rgrpd(rgd); 471 return; 472 } 473 474 if (count[2] + count[3] != rgd->rd_dinodes) { 475 gfs2_lm(sdp, "used metadata mismatch: %u != %u\n", 476 count[2] + count[3], rgd->rd_dinodes); 477 gfs2_consist_rgrpd(rgd); 478 return; 479 } 480 } 481 482 /** 483 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number 484 * @sdp: The GFS2 superblock 485 * @blk: The data block number 486 * @exact: True if this needs to be an exact match 487 * 488 * The @exact argument should be set to true by most callers. The exception 489 * is when we need to match blocks which are not represented by the rgrp 490 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are 491 * there for alignment purposes. Another way of looking at it is that @exact 492 * matches only valid data/metadata blocks, but with @exact false, it will 493 * match any block within the extent of the rgrp. 494 * 495 * Returns: The resource group, or NULL if not found 496 */ 497 498 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact) 499 { 500 struct rb_node *n, *next; 501 struct gfs2_rgrpd *cur; 502 503 spin_lock(&sdp->sd_rindex_spin); 504 n = sdp->sd_rindex_tree.rb_node; 505 while (n) { 506 cur = rb_entry(n, struct gfs2_rgrpd, rd_node); 507 next = NULL; 508 if (blk < cur->rd_addr) 509 next = n->rb_left; 510 else if (blk >= cur->rd_data0 + cur->rd_data) 511 next = n->rb_right; 512 if (next == NULL) { 513 spin_unlock(&sdp->sd_rindex_spin); 514 if (exact) { 515 if (blk < cur->rd_addr) 516 return NULL; 517 if (blk >= cur->rd_data0 + cur->rd_data) 518 return NULL; 519 } 520 return cur; 521 } 522 n = next; 523 } 524 spin_unlock(&sdp->sd_rindex_spin); 525 526 return NULL; 527 } 528 529 /** 530 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem 531 * @sdp: The GFS2 superblock 532 * 533 * Returns: The first rgrp in the filesystem 534 */ 535 536 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) 537 { 538 const struct rb_node *n; 539 struct gfs2_rgrpd *rgd; 540 541 spin_lock(&sdp->sd_rindex_spin); 542 n = rb_first(&sdp->sd_rindex_tree); 543 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 544 spin_unlock(&sdp->sd_rindex_spin); 545 546 return rgd; 547 } 548 549 /** 550 * gfs2_rgrpd_get_next - get the next RG 551 * @rgd: the resource group descriptor 552 * 553 * Returns: The next rgrp 554 */ 555 556 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) 557 { 558 struct gfs2_sbd *sdp = rgd->rd_sbd; 559 const struct rb_node *n; 560 561 spin_lock(&sdp->sd_rindex_spin); 562 n = rb_next(&rgd->rd_node); 563 if (n == NULL) 564 n = rb_first(&sdp->sd_rindex_tree); 565 566 if (unlikely(&rgd->rd_node == n)) { 567 spin_unlock(&sdp->sd_rindex_spin); 568 return NULL; 569 } 570 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 571 spin_unlock(&sdp->sd_rindex_spin); 572 return rgd; 573 } 574 575 void check_and_update_goal(struct gfs2_inode *ip) 576 { 577 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 578 if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL) 579 ip->i_goal = ip->i_no_addr; 580 } 581 582 void gfs2_free_clones(struct gfs2_rgrpd *rgd) 583 { 584 int x; 585 586 for (x = 0; x < rgd->rd_length; x++) { 587 struct gfs2_bitmap *bi = rgd->rd_bits + x; 588 kfree(bi->bi_clone); 589 bi->bi_clone = NULL; 590 } 591 } 592 593 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs, 594 const char *fs_id_buf) 595 { 596 struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res); 597 598 gfs2_print_dbg(seq, "%s B: n:%llu s:%llu b:%u f:%u\n", fs_id_buf, 599 (unsigned long long)ip->i_no_addr, 600 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm), 601 rs->rs_rbm.offset, rs->rs_free); 602 } 603 604 /** 605 * __rs_deltree - remove a multi-block reservation from the rgd tree 606 * @rs: The reservation to remove 607 * 608 */ 609 static void __rs_deltree(struct gfs2_blkreserv *rs) 610 { 611 struct gfs2_rgrpd *rgd; 612 613 if (!gfs2_rs_active(rs)) 614 return; 615 616 rgd = rs->rs_rbm.rgd; 617 trace_gfs2_rs(rs, TRACE_RS_TREEDEL); 618 rb_erase(&rs->rs_node, &rgd->rd_rstree); 619 RB_CLEAR_NODE(&rs->rs_node); 620 621 if (rs->rs_free) { 622 u64 last_block = gfs2_rbm_to_block(&rs->rs_rbm) + 623 rs->rs_free - 1; 624 struct gfs2_rbm last_rbm = { .rgd = rs->rs_rbm.rgd, }; 625 struct gfs2_bitmap *start, *last; 626 627 /* return reserved blocks to the rgrp */ 628 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free); 629 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free; 630 /* The rgrp extent failure point is likely not to increase; 631 it will only do so if the freed blocks are somehow 632 contiguous with a span of free blocks that follows. Still, 633 it will force the number to be recalculated later. */ 634 rgd->rd_extfail_pt += rs->rs_free; 635 rs->rs_free = 0; 636 if (gfs2_rbm_from_block(&last_rbm, last_block)) 637 return; 638 start = rbm_bi(&rs->rs_rbm); 639 last = rbm_bi(&last_rbm); 640 do 641 clear_bit(GBF_FULL, &start->bi_flags); 642 while (start++ != last); 643 } 644 } 645 646 /** 647 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree 648 * @rs: The reservation to remove 649 * 650 */ 651 void gfs2_rs_deltree(struct gfs2_blkreserv *rs) 652 { 653 struct gfs2_rgrpd *rgd; 654 655 rgd = rs->rs_rbm.rgd; 656 if (rgd) { 657 spin_lock(&rgd->rd_rsspin); 658 __rs_deltree(rs); 659 BUG_ON(rs->rs_free); 660 spin_unlock(&rgd->rd_rsspin); 661 } 662 } 663 664 /** 665 * gfs2_rs_delete - delete a multi-block reservation 666 * @ip: The inode for this reservation 667 * @wcount: The inode's write count, or NULL 668 * 669 */ 670 void gfs2_rs_delete(struct gfs2_inode *ip, atomic_t *wcount) 671 { 672 down_write(&ip->i_rw_mutex); 673 if ((wcount == NULL) || (atomic_read(wcount) <= 1)) 674 gfs2_rs_deltree(&ip->i_res); 675 up_write(&ip->i_rw_mutex); 676 } 677 678 /** 679 * return_all_reservations - return all reserved blocks back to the rgrp. 680 * @rgd: the rgrp that needs its space back 681 * 682 * We previously reserved a bunch of blocks for allocation. Now we need to 683 * give them back. This leave the reservation structures in tact, but removes 684 * all of their corresponding "no-fly zones". 685 */ 686 static void return_all_reservations(struct gfs2_rgrpd *rgd) 687 { 688 struct rb_node *n; 689 struct gfs2_blkreserv *rs; 690 691 spin_lock(&rgd->rd_rsspin); 692 while ((n = rb_first(&rgd->rd_rstree))) { 693 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 694 __rs_deltree(rs); 695 } 696 spin_unlock(&rgd->rd_rsspin); 697 } 698 699 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) 700 { 701 struct rb_node *n; 702 struct gfs2_rgrpd *rgd; 703 struct gfs2_glock *gl; 704 705 while ((n = rb_first(&sdp->sd_rindex_tree))) { 706 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 707 gl = rgd->rd_gl; 708 709 rb_erase(n, &sdp->sd_rindex_tree); 710 711 if (gl) { 712 if (gl->gl_state != LM_ST_UNLOCKED) { 713 gfs2_glock_cb(gl, LM_ST_UNLOCKED); 714 flush_delayed_work(&gl->gl_work); 715 } 716 gfs2_rgrp_brelse(rgd); 717 glock_clear_object(gl, rgd); 718 gfs2_glock_put(gl); 719 } 720 721 gfs2_free_clones(rgd); 722 return_all_reservations(rgd); 723 kfree(rgd->rd_bits); 724 rgd->rd_bits = NULL; 725 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 726 } 727 } 728 729 /** 730 * gfs2_compute_bitstructs - Compute the bitmap sizes 731 * @rgd: The resource group descriptor 732 * 733 * Calculates bitmap descriptors, one for each block that contains bitmap data 734 * 735 * Returns: errno 736 */ 737 738 static int compute_bitstructs(struct gfs2_rgrpd *rgd) 739 { 740 struct gfs2_sbd *sdp = rgd->rd_sbd; 741 struct gfs2_bitmap *bi; 742 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ 743 u32 bytes_left, bytes; 744 int x; 745 746 if (!length) 747 return -EINVAL; 748 749 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); 750 if (!rgd->rd_bits) 751 return -ENOMEM; 752 753 bytes_left = rgd->rd_bitbytes; 754 755 for (x = 0; x < length; x++) { 756 bi = rgd->rd_bits + x; 757 758 bi->bi_flags = 0; 759 /* small rgrp; bitmap stored completely in header block */ 760 if (length == 1) { 761 bytes = bytes_left; 762 bi->bi_offset = sizeof(struct gfs2_rgrp); 763 bi->bi_start = 0; 764 bi->bi_bytes = bytes; 765 bi->bi_blocks = bytes * GFS2_NBBY; 766 /* header block */ 767 } else if (x == 0) { 768 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); 769 bi->bi_offset = sizeof(struct gfs2_rgrp); 770 bi->bi_start = 0; 771 bi->bi_bytes = bytes; 772 bi->bi_blocks = bytes * GFS2_NBBY; 773 /* last block */ 774 } else if (x + 1 == length) { 775 bytes = bytes_left; 776 bi->bi_offset = sizeof(struct gfs2_meta_header); 777 bi->bi_start = rgd->rd_bitbytes - bytes_left; 778 bi->bi_bytes = bytes; 779 bi->bi_blocks = bytes * GFS2_NBBY; 780 /* other blocks */ 781 } else { 782 bytes = sdp->sd_sb.sb_bsize - 783 sizeof(struct gfs2_meta_header); 784 bi->bi_offset = sizeof(struct gfs2_meta_header); 785 bi->bi_start = rgd->rd_bitbytes - bytes_left; 786 bi->bi_bytes = bytes; 787 bi->bi_blocks = bytes * GFS2_NBBY; 788 } 789 790 bytes_left -= bytes; 791 } 792 793 if (bytes_left) { 794 gfs2_consist_rgrpd(rgd); 795 return -EIO; 796 } 797 bi = rgd->rd_bits + (length - 1); 798 if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) { 799 gfs2_lm(sdp, 800 "ri_addr = %llu\n" 801 "ri_length = %u\n" 802 "ri_data0 = %llu\n" 803 "ri_data = %u\n" 804 "ri_bitbytes = %u\n" 805 "start=%u len=%u offset=%u\n", 806 (unsigned long long)rgd->rd_addr, 807 rgd->rd_length, 808 (unsigned long long)rgd->rd_data0, 809 rgd->rd_data, 810 rgd->rd_bitbytes, 811 bi->bi_start, bi->bi_bytes, bi->bi_offset); 812 gfs2_consist_rgrpd(rgd); 813 return -EIO; 814 } 815 816 return 0; 817 } 818 819 /** 820 * gfs2_ri_total - Total up the file system space, according to the rindex. 821 * @sdp: the filesystem 822 * 823 */ 824 u64 gfs2_ri_total(struct gfs2_sbd *sdp) 825 { 826 u64 total_data = 0; 827 struct inode *inode = sdp->sd_rindex; 828 struct gfs2_inode *ip = GFS2_I(inode); 829 char buf[sizeof(struct gfs2_rindex)]; 830 int error, rgrps; 831 832 for (rgrps = 0;; rgrps++) { 833 loff_t pos = rgrps * sizeof(struct gfs2_rindex); 834 835 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) 836 break; 837 error = gfs2_internal_read(ip, buf, &pos, 838 sizeof(struct gfs2_rindex)); 839 if (error != sizeof(struct gfs2_rindex)) 840 break; 841 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); 842 } 843 return total_data; 844 } 845 846 static int rgd_insert(struct gfs2_rgrpd *rgd) 847 { 848 struct gfs2_sbd *sdp = rgd->rd_sbd; 849 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; 850 851 /* Figure out where to put new node */ 852 while (*newn) { 853 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, 854 rd_node); 855 856 parent = *newn; 857 if (rgd->rd_addr < cur->rd_addr) 858 newn = &((*newn)->rb_left); 859 else if (rgd->rd_addr > cur->rd_addr) 860 newn = &((*newn)->rb_right); 861 else 862 return -EEXIST; 863 } 864 865 rb_link_node(&rgd->rd_node, parent, newn); 866 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); 867 sdp->sd_rgrps++; 868 return 0; 869 } 870 871 /** 872 * read_rindex_entry - Pull in a new resource index entry from the disk 873 * @ip: Pointer to the rindex inode 874 * 875 * Returns: 0 on success, > 0 on EOF, error code otherwise 876 */ 877 878 static int read_rindex_entry(struct gfs2_inode *ip) 879 { 880 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 881 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); 882 struct gfs2_rindex buf; 883 int error; 884 struct gfs2_rgrpd *rgd; 885 886 if (pos >= i_size_read(&ip->i_inode)) 887 return 1; 888 889 error = gfs2_internal_read(ip, (char *)&buf, &pos, 890 sizeof(struct gfs2_rindex)); 891 892 if (error != sizeof(struct gfs2_rindex)) 893 return (error == 0) ? 1 : error; 894 895 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); 896 error = -ENOMEM; 897 if (!rgd) 898 return error; 899 900 rgd->rd_sbd = sdp; 901 rgd->rd_addr = be64_to_cpu(buf.ri_addr); 902 rgd->rd_length = be32_to_cpu(buf.ri_length); 903 rgd->rd_data0 = be64_to_cpu(buf.ri_data0); 904 rgd->rd_data = be32_to_cpu(buf.ri_data); 905 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); 906 spin_lock_init(&rgd->rd_rsspin); 907 908 error = compute_bitstructs(rgd); 909 if (error) 910 goto fail; 911 912 error = gfs2_glock_get(sdp, rgd->rd_addr, 913 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); 914 if (error) 915 goto fail; 916 917 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr; 918 rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED); 919 if (rgd->rd_data > sdp->sd_max_rg_data) 920 sdp->sd_max_rg_data = rgd->rd_data; 921 spin_lock(&sdp->sd_rindex_spin); 922 error = rgd_insert(rgd); 923 spin_unlock(&sdp->sd_rindex_spin); 924 if (!error) { 925 glock_set_object(rgd->rd_gl, rgd); 926 return 0; 927 } 928 929 error = 0; /* someone else read in the rgrp; free it and ignore it */ 930 gfs2_glock_put(rgd->rd_gl); 931 932 fail: 933 kfree(rgd->rd_bits); 934 rgd->rd_bits = NULL; 935 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 936 return error; 937 } 938 939 /** 940 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use 941 * @sdp: the GFS2 superblock 942 * 943 * The purpose of this function is to select a subset of the resource groups 944 * and mark them as PREFERRED. We do it in such a way that each node prefers 945 * to use a unique set of rgrps to minimize glock contention. 946 */ 947 static void set_rgrp_preferences(struct gfs2_sbd *sdp) 948 { 949 struct gfs2_rgrpd *rgd, *first; 950 int i; 951 952 /* Skip an initial number of rgrps, based on this node's journal ID. 953 That should start each node out on its own set. */ 954 rgd = gfs2_rgrpd_get_first(sdp); 955 for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++) 956 rgd = gfs2_rgrpd_get_next(rgd); 957 first = rgd; 958 959 do { 960 rgd->rd_flags |= GFS2_RDF_PREFERRED; 961 for (i = 0; i < sdp->sd_journals; i++) { 962 rgd = gfs2_rgrpd_get_next(rgd); 963 if (!rgd || rgd == first) 964 break; 965 } 966 } while (rgd && rgd != first); 967 } 968 969 /** 970 * gfs2_ri_update - Pull in a new resource index from the disk 971 * @ip: pointer to the rindex inode 972 * 973 * Returns: 0 on successful update, error code otherwise 974 */ 975 976 static int gfs2_ri_update(struct gfs2_inode *ip) 977 { 978 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 979 int error; 980 981 do { 982 error = read_rindex_entry(ip); 983 } while (error == 0); 984 985 if (error < 0) 986 return error; 987 988 set_rgrp_preferences(sdp); 989 990 sdp->sd_rindex_uptodate = 1; 991 return 0; 992 } 993 994 /** 995 * gfs2_rindex_update - Update the rindex if required 996 * @sdp: The GFS2 superblock 997 * 998 * We grab a lock on the rindex inode to make sure that it doesn't 999 * change whilst we are performing an operation. We keep this lock 1000 * for quite long periods of time compared to other locks. This 1001 * doesn't matter, since it is shared and it is very, very rarely 1002 * accessed in the exclusive mode (i.e. only when expanding the filesystem). 1003 * 1004 * This makes sure that we're using the latest copy of the resource index 1005 * special file, which might have been updated if someone expanded the 1006 * filesystem (via gfs2_grow utility), which adds new resource groups. 1007 * 1008 * Returns: 0 on succeess, error code otherwise 1009 */ 1010 1011 int gfs2_rindex_update(struct gfs2_sbd *sdp) 1012 { 1013 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); 1014 struct gfs2_glock *gl = ip->i_gl; 1015 struct gfs2_holder ri_gh; 1016 int error = 0; 1017 int unlock_required = 0; 1018 1019 /* Read new copy from disk if we don't have the latest */ 1020 if (!sdp->sd_rindex_uptodate) { 1021 if (!gfs2_glock_is_locked_by_me(gl)) { 1022 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); 1023 if (error) 1024 return error; 1025 unlock_required = 1; 1026 } 1027 if (!sdp->sd_rindex_uptodate) 1028 error = gfs2_ri_update(ip); 1029 if (unlock_required) 1030 gfs2_glock_dq_uninit(&ri_gh); 1031 } 1032 1033 return error; 1034 } 1035 1036 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) 1037 { 1038 const struct gfs2_rgrp *str = buf; 1039 u32 rg_flags; 1040 1041 rg_flags = be32_to_cpu(str->rg_flags); 1042 rg_flags &= ~GFS2_RDF_MASK; 1043 rgd->rd_flags &= GFS2_RDF_MASK; 1044 rgd->rd_flags |= rg_flags; 1045 rgd->rd_free = be32_to_cpu(str->rg_free); 1046 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); 1047 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); 1048 /* rd_data0, rd_data and rd_bitbytes already set from rindex */ 1049 } 1050 1051 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf) 1052 { 1053 const struct gfs2_rgrp *str = buf; 1054 1055 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC); 1056 rgl->rl_flags = str->rg_flags; 1057 rgl->rl_free = str->rg_free; 1058 rgl->rl_dinodes = str->rg_dinodes; 1059 rgl->rl_igeneration = str->rg_igeneration; 1060 rgl->__pad = 0UL; 1061 } 1062 1063 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) 1064 { 1065 struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd); 1066 struct gfs2_rgrp *str = buf; 1067 u32 crc; 1068 1069 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); 1070 str->rg_free = cpu_to_be32(rgd->rd_free); 1071 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); 1072 if (next == NULL) 1073 str->rg_skip = 0; 1074 else if (next->rd_addr > rgd->rd_addr) 1075 str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr); 1076 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); 1077 str->rg_data0 = cpu_to_be64(rgd->rd_data0); 1078 str->rg_data = cpu_to_be32(rgd->rd_data); 1079 str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes); 1080 str->rg_crc = 0; 1081 crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp)); 1082 str->rg_crc = cpu_to_be32(crc); 1083 1084 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); 1085 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf); 1086 } 1087 1088 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd) 1089 { 1090 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1091 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data; 1092 struct gfs2_sbd *sdp = rgd->rd_sbd; 1093 int valid = 1; 1094 1095 if (rgl->rl_flags != str->rg_flags) { 1096 fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u", 1097 (unsigned long long)rgd->rd_addr, 1098 be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags)); 1099 valid = 0; 1100 } 1101 if (rgl->rl_free != str->rg_free) { 1102 fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u", 1103 (unsigned long long)rgd->rd_addr, 1104 be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free)); 1105 valid = 0; 1106 } 1107 if (rgl->rl_dinodes != str->rg_dinodes) { 1108 fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u", 1109 (unsigned long long)rgd->rd_addr, 1110 be32_to_cpu(rgl->rl_dinodes), 1111 be32_to_cpu(str->rg_dinodes)); 1112 valid = 0; 1113 } 1114 if (rgl->rl_igeneration != str->rg_igeneration) { 1115 fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu", 1116 (unsigned long long)rgd->rd_addr, 1117 (unsigned long long)be64_to_cpu(rgl->rl_igeneration), 1118 (unsigned long long)be64_to_cpu(str->rg_igeneration)); 1119 valid = 0; 1120 } 1121 return valid; 1122 } 1123 1124 static u32 count_unlinked(struct gfs2_rgrpd *rgd) 1125 { 1126 struct gfs2_bitmap *bi; 1127 const u32 length = rgd->rd_length; 1128 const u8 *buffer = NULL; 1129 u32 i, goal, count = 0; 1130 1131 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) { 1132 goal = 0; 1133 buffer = bi->bi_bh->b_data + bi->bi_offset; 1134 WARN_ON(!buffer_uptodate(bi->bi_bh)); 1135 while (goal < bi->bi_blocks) { 1136 goal = gfs2_bitfit(buffer, bi->bi_bytes, goal, 1137 GFS2_BLKST_UNLINKED); 1138 if (goal == BFITNOENT) 1139 break; 1140 count++; 1141 goal++; 1142 } 1143 } 1144 1145 return count; 1146 } 1147 1148 1149 /** 1150 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps 1151 * @rgd: the struct gfs2_rgrpd describing the RG to read in 1152 * 1153 * Read in all of a Resource Group's header and bitmap blocks. 1154 * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps. 1155 * 1156 * Returns: errno 1157 */ 1158 1159 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd) 1160 { 1161 struct gfs2_sbd *sdp = rgd->rd_sbd; 1162 struct gfs2_glock *gl = rgd->rd_gl; 1163 unsigned int length = rgd->rd_length; 1164 struct gfs2_bitmap *bi; 1165 unsigned int x, y; 1166 int error; 1167 1168 if (rgd->rd_bits[0].bi_bh != NULL) 1169 return 0; 1170 1171 for (x = 0; x < length; x++) { 1172 bi = rgd->rd_bits + x; 1173 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh); 1174 if (error) 1175 goto fail; 1176 } 1177 1178 for (y = length; y--;) { 1179 bi = rgd->rd_bits + y; 1180 error = gfs2_meta_wait(sdp, bi->bi_bh); 1181 if (error) 1182 goto fail; 1183 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : 1184 GFS2_METATYPE_RG)) { 1185 error = -EIO; 1186 goto fail; 1187 } 1188 } 1189 1190 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) { 1191 for (x = 0; x < length; x++) 1192 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags); 1193 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); 1194 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1195 rgd->rd_free_clone = rgd->rd_free; 1196 /* max out the rgrp allocation failure point */ 1197 rgd->rd_extfail_pt = rgd->rd_free; 1198 } 1199 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) { 1200 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd)); 1201 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, 1202 rgd->rd_bits[0].bi_bh->b_data); 1203 } 1204 else if (sdp->sd_args.ar_rgrplvb) { 1205 if (!gfs2_rgrp_lvb_valid(rgd)){ 1206 gfs2_consist_rgrpd(rgd); 1207 error = -EIO; 1208 goto fail; 1209 } 1210 if (rgd->rd_rgl->rl_unlinked == 0) 1211 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1212 } 1213 return 0; 1214 1215 fail: 1216 while (x--) { 1217 bi = rgd->rd_bits + x; 1218 brelse(bi->bi_bh); 1219 bi->bi_bh = NULL; 1220 gfs2_assert_warn(sdp, !bi->bi_clone); 1221 } 1222 1223 return error; 1224 } 1225 1226 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd) 1227 { 1228 u32 rl_flags; 1229 1230 if (rgd->rd_flags & GFS2_RDF_UPTODATE) 1231 return 0; 1232 1233 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) 1234 return gfs2_rgrp_bh_get(rgd); 1235 1236 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags); 1237 rl_flags &= ~GFS2_RDF_MASK; 1238 rgd->rd_flags &= GFS2_RDF_MASK; 1239 rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK); 1240 if (rgd->rd_rgl->rl_unlinked == 0) 1241 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1242 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free); 1243 rgd->rd_free_clone = rgd->rd_free; 1244 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes); 1245 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration); 1246 return 0; 1247 } 1248 1249 int gfs2_rgrp_go_lock(struct gfs2_holder *gh) 1250 { 1251 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1252 struct gfs2_sbd *sdp = rgd->rd_sbd; 1253 1254 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb) 1255 return 0; 1256 return gfs2_rgrp_bh_get(rgd); 1257 } 1258 1259 /** 1260 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get() 1261 * @rgd: The resource group 1262 * 1263 */ 1264 1265 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd) 1266 { 1267 int x, length = rgd->rd_length; 1268 1269 for (x = 0; x < length; x++) { 1270 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1271 if (bi->bi_bh) { 1272 brelse(bi->bi_bh); 1273 bi->bi_bh = NULL; 1274 } 1275 } 1276 } 1277 1278 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, 1279 struct buffer_head *bh, 1280 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed) 1281 { 1282 struct super_block *sb = sdp->sd_vfs; 1283 u64 blk; 1284 sector_t start = 0; 1285 sector_t nr_blks = 0; 1286 int rv; 1287 unsigned int x; 1288 u32 trimmed = 0; 1289 u8 diff; 1290 1291 for (x = 0; x < bi->bi_bytes; x++) { 1292 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data; 1293 clone += bi->bi_offset; 1294 clone += x; 1295 if (bh) { 1296 const u8 *orig = bh->b_data + bi->bi_offset + x; 1297 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); 1298 } else { 1299 diff = ~(*clone | (*clone >> 1)); 1300 } 1301 diff &= 0x55; 1302 if (diff == 0) 1303 continue; 1304 blk = offset + ((bi->bi_start + x) * GFS2_NBBY); 1305 while(diff) { 1306 if (diff & 1) { 1307 if (nr_blks == 0) 1308 goto start_new_extent; 1309 if ((start + nr_blks) != blk) { 1310 if (nr_blks >= minlen) { 1311 rv = sb_issue_discard(sb, 1312 start, nr_blks, 1313 GFP_NOFS, 0); 1314 if (rv) 1315 goto fail; 1316 trimmed += nr_blks; 1317 } 1318 nr_blks = 0; 1319 start_new_extent: 1320 start = blk; 1321 } 1322 nr_blks++; 1323 } 1324 diff >>= 2; 1325 blk++; 1326 } 1327 } 1328 if (nr_blks >= minlen) { 1329 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0); 1330 if (rv) 1331 goto fail; 1332 trimmed += nr_blks; 1333 } 1334 if (ptrimmed) 1335 *ptrimmed = trimmed; 1336 return 0; 1337 1338 fail: 1339 if (sdp->sd_args.ar_discard) 1340 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv); 1341 sdp->sd_args.ar_discard = 0; 1342 return -EIO; 1343 } 1344 1345 /** 1346 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem 1347 * @filp: Any file on the filesystem 1348 * @argp: Pointer to the arguments (also used to pass result) 1349 * 1350 * Returns: 0 on success, otherwise error code 1351 */ 1352 1353 int gfs2_fitrim(struct file *filp, void __user *argp) 1354 { 1355 struct inode *inode = file_inode(filp); 1356 struct gfs2_sbd *sdp = GFS2_SB(inode); 1357 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev); 1358 struct buffer_head *bh; 1359 struct gfs2_rgrpd *rgd; 1360 struct gfs2_rgrpd *rgd_end; 1361 struct gfs2_holder gh; 1362 struct fstrim_range r; 1363 int ret = 0; 1364 u64 amt; 1365 u64 trimmed = 0; 1366 u64 start, end, minlen; 1367 unsigned int x; 1368 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift; 1369 1370 if (!capable(CAP_SYS_ADMIN)) 1371 return -EPERM; 1372 1373 if (!test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags)) 1374 return -EROFS; 1375 1376 if (!blk_queue_discard(q)) 1377 return -EOPNOTSUPP; 1378 1379 if (copy_from_user(&r, argp, sizeof(r))) 1380 return -EFAULT; 1381 1382 ret = gfs2_rindex_update(sdp); 1383 if (ret) 1384 return ret; 1385 1386 start = r.start >> bs_shift; 1387 end = start + (r.len >> bs_shift); 1388 minlen = max_t(u64, r.minlen, 1389 q->limits.discard_granularity) >> bs_shift; 1390 1391 if (end <= start || minlen > sdp->sd_max_rg_data) 1392 return -EINVAL; 1393 1394 rgd = gfs2_blk2rgrpd(sdp, start, 0); 1395 rgd_end = gfs2_blk2rgrpd(sdp, end, 0); 1396 1397 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end)) 1398 && (start > rgd_end->rd_data0 + rgd_end->rd_data)) 1399 return -EINVAL; /* start is beyond the end of the fs */ 1400 1401 while (1) { 1402 1403 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh); 1404 if (ret) 1405 goto out; 1406 1407 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) { 1408 /* Trim each bitmap in the rgrp */ 1409 for (x = 0; x < rgd->rd_length; x++) { 1410 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1411 ret = gfs2_rgrp_send_discards(sdp, 1412 rgd->rd_data0, NULL, bi, minlen, 1413 &amt); 1414 if (ret) { 1415 gfs2_glock_dq_uninit(&gh); 1416 goto out; 1417 } 1418 trimmed += amt; 1419 } 1420 1421 /* Mark rgrp as having been trimmed */ 1422 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0); 1423 if (ret == 0) { 1424 bh = rgd->rd_bits[0].bi_bh; 1425 rgd->rd_flags |= GFS2_RGF_TRIMMED; 1426 gfs2_trans_add_meta(rgd->rd_gl, bh); 1427 gfs2_rgrp_out(rgd, bh->b_data); 1428 gfs2_trans_end(sdp); 1429 } 1430 } 1431 gfs2_glock_dq_uninit(&gh); 1432 1433 if (rgd == rgd_end) 1434 break; 1435 1436 rgd = gfs2_rgrpd_get_next(rgd); 1437 } 1438 1439 out: 1440 r.len = trimmed << bs_shift; 1441 if (copy_to_user(argp, &r, sizeof(r))) 1442 return -EFAULT; 1443 1444 return ret; 1445 } 1446 1447 /** 1448 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree 1449 * @ip: the inode structure 1450 * 1451 */ 1452 static void rs_insert(struct gfs2_inode *ip) 1453 { 1454 struct rb_node **newn, *parent = NULL; 1455 int rc; 1456 struct gfs2_blkreserv *rs = &ip->i_res; 1457 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd; 1458 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm); 1459 1460 BUG_ON(gfs2_rs_active(rs)); 1461 1462 spin_lock(&rgd->rd_rsspin); 1463 newn = &rgd->rd_rstree.rb_node; 1464 while (*newn) { 1465 struct gfs2_blkreserv *cur = 1466 rb_entry(*newn, struct gfs2_blkreserv, rs_node); 1467 1468 parent = *newn; 1469 rc = rs_cmp(fsblock, rs->rs_free, cur); 1470 if (rc > 0) 1471 newn = &((*newn)->rb_right); 1472 else if (rc < 0) 1473 newn = &((*newn)->rb_left); 1474 else { 1475 spin_unlock(&rgd->rd_rsspin); 1476 WARN_ON(1); 1477 return; 1478 } 1479 } 1480 1481 rb_link_node(&rs->rs_node, parent, newn); 1482 rb_insert_color(&rs->rs_node, &rgd->rd_rstree); 1483 1484 /* Do our rgrp accounting for the reservation */ 1485 rgd->rd_reserved += rs->rs_free; /* blocks reserved */ 1486 spin_unlock(&rgd->rd_rsspin); 1487 trace_gfs2_rs(rs, TRACE_RS_INSERT); 1488 } 1489 1490 /** 1491 * rgd_free - return the number of free blocks we can allocate. 1492 * @rgd: the resource group 1493 * 1494 * This function returns the number of free blocks for an rgrp. 1495 * That's the clone-free blocks (blocks that are free, not including those 1496 * still being used for unlinked files that haven't been deleted.) 1497 * 1498 * It also subtracts any blocks reserved by someone else, but does not 1499 * include free blocks that are still part of our current reservation, 1500 * because obviously we can (and will) allocate them. 1501 */ 1502 static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs) 1503 { 1504 u32 tot_reserved, tot_free; 1505 1506 if (WARN_ON_ONCE(rgd->rd_reserved < rs->rs_free)) 1507 return 0; 1508 tot_reserved = rgd->rd_reserved - rs->rs_free; 1509 1510 if (rgd->rd_free_clone < tot_reserved) 1511 tot_reserved = 0; 1512 1513 tot_free = rgd->rd_free_clone - tot_reserved; 1514 1515 return tot_free; 1516 } 1517 1518 /** 1519 * rg_mblk_search - find a group of multiple free blocks to form a reservation 1520 * @rgd: the resource group descriptor 1521 * @ip: pointer to the inode for which we're reserving blocks 1522 * @ap: the allocation parameters 1523 * 1524 */ 1525 1526 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip, 1527 const struct gfs2_alloc_parms *ap) 1528 { 1529 struct gfs2_rbm rbm = { .rgd = rgd, }; 1530 u64 goal; 1531 struct gfs2_blkreserv *rs = &ip->i_res; 1532 u32 extlen; 1533 u32 free_blocks = rgd_free(rgd, rs); 1534 int ret; 1535 struct inode *inode = &ip->i_inode; 1536 1537 if (S_ISDIR(inode->i_mode)) 1538 extlen = 1; 1539 else { 1540 extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target); 1541 extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks); 1542 } 1543 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen)) 1544 return; 1545 1546 /* Find bitmap block that contains bits for goal block */ 1547 if (rgrp_contains_block(rgd, ip->i_goal)) 1548 goal = ip->i_goal; 1549 else 1550 goal = rgd->rd_last_alloc + rgd->rd_data0; 1551 1552 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal))) 1553 return; 1554 1555 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true); 1556 if (ret == 0) { 1557 rs->rs_rbm = rbm; 1558 rs->rs_free = extlen; 1559 rs_insert(ip); 1560 } else { 1561 if (goal == rgd->rd_last_alloc + rgd->rd_data0) 1562 rgd->rd_last_alloc = 0; 1563 } 1564 } 1565 1566 /** 1567 * gfs2_next_unreserved_block - Return next block that is not reserved 1568 * @rgd: The resource group 1569 * @block: The starting block 1570 * @length: The required length 1571 * @ip: Ignore any reservations for this inode 1572 * 1573 * If the block does not appear in any reservation, then return the 1574 * block number unchanged. If it does appear in the reservation, then 1575 * keep looking through the tree of reservations in order to find the 1576 * first block number which is not reserved. 1577 */ 1578 1579 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block, 1580 u32 length, 1581 const struct gfs2_inode *ip) 1582 { 1583 struct gfs2_blkreserv *rs; 1584 struct rb_node *n; 1585 int rc; 1586 1587 spin_lock(&rgd->rd_rsspin); 1588 n = rgd->rd_rstree.rb_node; 1589 while (n) { 1590 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1591 rc = rs_cmp(block, length, rs); 1592 if (rc < 0) 1593 n = n->rb_left; 1594 else if (rc > 0) 1595 n = n->rb_right; 1596 else 1597 break; 1598 } 1599 1600 if (n) { 1601 while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) { 1602 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free; 1603 n = n->rb_right; 1604 if (n == NULL) 1605 break; 1606 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1607 } 1608 } 1609 1610 spin_unlock(&rgd->rd_rsspin); 1611 return block; 1612 } 1613 1614 /** 1615 * gfs2_reservation_check_and_update - Check for reservations during block alloc 1616 * @rbm: The current position in the resource group 1617 * @ip: The inode for which we are searching for blocks 1618 * @minext: The minimum extent length 1619 * @maxext: A pointer to the maximum extent structure 1620 * 1621 * This checks the current position in the rgrp to see whether there is 1622 * a reservation covering this block. If not then this function is a 1623 * no-op. If there is, then the position is moved to the end of the 1624 * contiguous reservation(s) so that we are pointing at the first 1625 * non-reserved block. 1626 * 1627 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error 1628 */ 1629 1630 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm, 1631 const struct gfs2_inode *ip, 1632 u32 minext, 1633 struct gfs2_extent *maxext) 1634 { 1635 u64 block = gfs2_rbm_to_block(rbm); 1636 u32 extlen = 1; 1637 u64 nblock; 1638 int ret; 1639 1640 /* 1641 * If we have a minimum extent length, then skip over any extent 1642 * which is less than the min extent length in size. 1643 */ 1644 if (minext) { 1645 extlen = gfs2_free_extlen(rbm, minext); 1646 if (extlen <= maxext->len) 1647 goto fail; 1648 } 1649 1650 /* 1651 * Check the extent which has been found against the reservations 1652 * and skip if parts of it are already reserved 1653 */ 1654 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip); 1655 if (nblock == block) { 1656 if (!minext || extlen >= minext) 1657 return 0; 1658 1659 if (extlen > maxext->len) { 1660 maxext->len = extlen; 1661 maxext->rbm = *rbm; 1662 } 1663 fail: 1664 nblock = block + extlen; 1665 } 1666 ret = gfs2_rbm_from_block(rbm, nblock); 1667 if (ret < 0) 1668 return ret; 1669 return 1; 1670 } 1671 1672 /** 1673 * gfs2_rbm_find - Look for blocks of a particular state 1674 * @rbm: Value/result starting position and final position 1675 * @state: The state which we want to find 1676 * @minext: Pointer to the requested extent length (NULL for a single block) 1677 * This is updated to be the actual reservation size. 1678 * @ip: If set, check for reservations 1679 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping 1680 * around until we've reached the starting point. 1681 * 1682 * Side effects: 1683 * - If looking for free blocks, we set GBF_FULL on each bitmap which 1684 * has no free blocks in it. 1685 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which 1686 * has come up short on a free block search. 1687 * 1688 * Returns: 0 on success, -ENOSPC if there is no block of the requested state 1689 */ 1690 1691 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 1692 const struct gfs2_inode *ip, bool nowrap) 1693 { 1694 bool scan_from_start = rbm->bii == 0 && rbm->offset == 0; 1695 struct buffer_head *bh; 1696 int last_bii; 1697 u32 offset; 1698 u8 *buffer; 1699 bool wrapped = false; 1700 int ret; 1701 struct gfs2_bitmap *bi; 1702 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, }; 1703 1704 /* 1705 * Determine the last bitmap to search. If we're not starting at the 1706 * beginning of a bitmap, we need to search that bitmap twice to scan 1707 * the entire resource group. 1708 */ 1709 last_bii = rbm->bii - (rbm->offset == 0); 1710 1711 while(1) { 1712 bi = rbm_bi(rbm); 1713 if ((ip == NULL || !gfs2_rs_active(&ip->i_res)) && 1714 test_bit(GBF_FULL, &bi->bi_flags) && 1715 (state == GFS2_BLKST_FREE)) 1716 goto next_bitmap; 1717 1718 bh = bi->bi_bh; 1719 buffer = bh->b_data + bi->bi_offset; 1720 WARN_ON(!buffer_uptodate(bh)); 1721 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone) 1722 buffer = bi->bi_clone + bi->bi_offset; 1723 offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state); 1724 if (offset == BFITNOENT) { 1725 if (state == GFS2_BLKST_FREE && rbm->offset == 0) 1726 set_bit(GBF_FULL, &bi->bi_flags); 1727 goto next_bitmap; 1728 } 1729 rbm->offset = offset; 1730 if (ip == NULL) 1731 return 0; 1732 1733 ret = gfs2_reservation_check_and_update(rbm, ip, 1734 minext ? *minext : 0, 1735 &maxext); 1736 if (ret == 0) 1737 return 0; 1738 if (ret > 0) 1739 goto next_iter; 1740 if (ret == -E2BIG) { 1741 rbm->bii = 0; 1742 rbm->offset = 0; 1743 goto res_covered_end_of_rgrp; 1744 } 1745 return ret; 1746 1747 next_bitmap: /* Find next bitmap in the rgrp */ 1748 rbm->offset = 0; 1749 rbm->bii++; 1750 if (rbm->bii == rbm->rgd->rd_length) 1751 rbm->bii = 0; 1752 res_covered_end_of_rgrp: 1753 if (rbm->bii == 0) { 1754 if (wrapped) 1755 break; 1756 wrapped = true; 1757 if (nowrap) 1758 break; 1759 } 1760 next_iter: 1761 /* Have we scanned the entire resource group? */ 1762 if (wrapped && rbm->bii > last_bii) 1763 break; 1764 } 1765 1766 if (minext == NULL || state != GFS2_BLKST_FREE) 1767 return -ENOSPC; 1768 1769 /* If the extent was too small, and it's smaller than the smallest 1770 to have failed before, remember for future reference that it's 1771 useless to search this rgrp again for this amount or more. */ 1772 if (wrapped && (scan_from_start || rbm->bii > last_bii) && 1773 *minext < rbm->rgd->rd_extfail_pt) 1774 rbm->rgd->rd_extfail_pt = *minext; 1775 1776 /* If the maximum extent we found is big enough to fulfill the 1777 minimum requirements, use it anyway. */ 1778 if (maxext.len) { 1779 *rbm = maxext.rbm; 1780 *minext = maxext.len; 1781 return 0; 1782 } 1783 1784 return -ENOSPC; 1785 } 1786 1787 /** 1788 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes 1789 * @rgd: The rgrp 1790 * @last_unlinked: block address of the last dinode we unlinked 1791 * @skip: block address we should explicitly not unlink 1792 * 1793 * Returns: 0 if no error 1794 * The inode, if one has been found, in inode. 1795 */ 1796 1797 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) 1798 { 1799 u64 block; 1800 struct gfs2_sbd *sdp = rgd->rd_sbd; 1801 struct gfs2_glock *gl; 1802 struct gfs2_inode *ip; 1803 int error; 1804 int found = 0; 1805 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 }; 1806 1807 while (1) { 1808 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL, 1809 true); 1810 if (error == -ENOSPC) 1811 break; 1812 if (WARN_ON_ONCE(error)) 1813 break; 1814 1815 block = gfs2_rbm_to_block(&rbm); 1816 if (gfs2_rbm_from_block(&rbm, block + 1)) 1817 break; 1818 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked) 1819 continue; 1820 if (block == skip) 1821 continue; 1822 *last_unlinked = block; 1823 1824 error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl); 1825 if (error) 1826 continue; 1827 1828 /* If the inode is already in cache, we can ignore it here 1829 * because the existing inode disposal code will deal with 1830 * it when all refs have gone away. Accessing gl_object like 1831 * this is not safe in general. Here it is ok because we do 1832 * not dereference the pointer, and we only need an approx 1833 * answer to whether it is NULL or not. 1834 */ 1835 ip = gl->gl_object; 1836 1837 if (ip || !gfs2_queue_delete_work(gl, 0)) 1838 gfs2_glock_put(gl); 1839 else 1840 found++; 1841 1842 /* Limit reclaim to sensible number of tasks */ 1843 if (found > NR_CPUS) 1844 return; 1845 } 1846 1847 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1848 return; 1849 } 1850 1851 /** 1852 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested 1853 * @rgd: The rgrp in question 1854 * @loops: An indication of how picky we can be (0=very, 1=less so) 1855 * 1856 * This function uses the recently added glock statistics in order to 1857 * figure out whether a parciular resource group is suffering from 1858 * contention from multiple nodes. This is done purely on the basis 1859 * of timings, since this is the only data we have to work with and 1860 * our aim here is to reject a resource group which is highly contended 1861 * but (very important) not to do this too often in order to ensure that 1862 * we do not land up introducing fragmentation by changing resource 1863 * groups when not actually required. 1864 * 1865 * The calculation is fairly simple, we want to know whether the SRTTB 1866 * (i.e. smoothed round trip time for blocking operations) to acquire 1867 * the lock for this rgrp's glock is significantly greater than the 1868 * time taken for resource groups on average. We introduce a margin in 1869 * the form of the variable @var which is computed as the sum of the two 1870 * respective variences, and multiplied by a factor depending on @loops 1871 * and whether we have a lot of data to base the decision on. This is 1872 * then tested against the square difference of the means in order to 1873 * decide whether the result is statistically significant or not. 1874 * 1875 * Returns: A boolean verdict on the congestion status 1876 */ 1877 1878 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops) 1879 { 1880 const struct gfs2_glock *gl = rgd->rd_gl; 1881 const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 1882 struct gfs2_lkstats *st; 1883 u64 r_dcount, l_dcount; 1884 u64 l_srttb, a_srttb = 0; 1885 s64 srttb_diff; 1886 u64 sqr_diff; 1887 u64 var; 1888 int cpu, nonzero = 0; 1889 1890 preempt_disable(); 1891 for_each_present_cpu(cpu) { 1892 st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP]; 1893 if (st->stats[GFS2_LKS_SRTTB]) { 1894 a_srttb += st->stats[GFS2_LKS_SRTTB]; 1895 nonzero++; 1896 } 1897 } 1898 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP]; 1899 if (nonzero) 1900 do_div(a_srttb, nonzero); 1901 r_dcount = st->stats[GFS2_LKS_DCOUNT]; 1902 var = st->stats[GFS2_LKS_SRTTVARB] + 1903 gl->gl_stats.stats[GFS2_LKS_SRTTVARB]; 1904 preempt_enable(); 1905 1906 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB]; 1907 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT]; 1908 1909 if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0)) 1910 return false; 1911 1912 srttb_diff = a_srttb - l_srttb; 1913 sqr_diff = srttb_diff * srttb_diff; 1914 1915 var *= 2; 1916 if (l_dcount < 8 || r_dcount < 8) 1917 var *= 2; 1918 if (loops == 1) 1919 var *= 2; 1920 1921 return ((srttb_diff < 0) && (sqr_diff > var)); 1922 } 1923 1924 /** 1925 * gfs2_rgrp_used_recently 1926 * @rs: The block reservation with the rgrp to test 1927 * @msecs: The time limit in milliseconds 1928 * 1929 * Returns: True if the rgrp glock has been used within the time limit 1930 */ 1931 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs, 1932 u64 msecs) 1933 { 1934 u64 tdiff; 1935 1936 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(), 1937 rs->rs_rbm.rgd->rd_gl->gl_dstamp)); 1938 1939 return tdiff > (msecs * 1000 * 1000); 1940 } 1941 1942 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip) 1943 { 1944 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1945 u32 skip; 1946 1947 get_random_bytes(&skip, sizeof(skip)); 1948 return skip % sdp->sd_rgrps; 1949 } 1950 1951 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin) 1952 { 1953 struct gfs2_rgrpd *rgd = *pos; 1954 struct gfs2_sbd *sdp = rgd->rd_sbd; 1955 1956 rgd = gfs2_rgrpd_get_next(rgd); 1957 if (rgd == NULL) 1958 rgd = gfs2_rgrpd_get_first(sdp); 1959 *pos = rgd; 1960 if (rgd != begin) /* If we didn't wrap */ 1961 return true; 1962 return false; 1963 } 1964 1965 /** 1966 * fast_to_acquire - determine if a resource group will be fast to acquire 1967 * 1968 * If this is one of our preferred rgrps, it should be quicker to acquire, 1969 * because we tried to set ourselves up as dlm lock master. 1970 */ 1971 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd) 1972 { 1973 struct gfs2_glock *gl = rgd->rd_gl; 1974 1975 if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) && 1976 !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) && 1977 !test_bit(GLF_DEMOTE, &gl->gl_flags)) 1978 return 1; 1979 if (rgd->rd_flags & GFS2_RDF_PREFERRED) 1980 return 1; 1981 return 0; 1982 } 1983 1984 /** 1985 * gfs2_inplace_reserve - Reserve space in the filesystem 1986 * @ip: the inode to reserve space for 1987 * @ap: the allocation parameters 1988 * 1989 * We try our best to find an rgrp that has at least ap->target blocks 1990 * available. After a couple of passes (loops == 2), the prospects of finding 1991 * such an rgrp diminish. At this stage, we return the first rgrp that has 1992 * at least ap->min_target blocks available. Either way, we set ap->allowed to 1993 * the number of blocks available in the chosen rgrp. 1994 * 1995 * Returns: 0 on success, 1996 * -ENOMEM if a suitable rgrp can't be found 1997 * errno otherwise 1998 */ 1999 2000 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap) 2001 { 2002 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2003 struct gfs2_rgrpd *begin = NULL; 2004 struct gfs2_blkreserv *rs = &ip->i_res; 2005 int error = 0, rg_locked, flags = 0; 2006 u64 last_unlinked = NO_BLOCK; 2007 int loops = 0; 2008 u32 free_blocks, skip = 0; 2009 2010 if (sdp->sd_args.ar_rgrplvb) 2011 flags |= GL_SKIP; 2012 if (gfs2_assert_warn(sdp, ap->target)) 2013 return -EINVAL; 2014 if (gfs2_rs_active(rs)) { 2015 begin = rs->rs_rbm.rgd; 2016 } else if (rs->rs_rbm.rgd && 2017 rgrp_contains_block(rs->rs_rbm.rgd, ip->i_goal)) { 2018 begin = rs->rs_rbm.rgd; 2019 } else { 2020 check_and_update_goal(ip); 2021 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1); 2022 } 2023 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV)) 2024 skip = gfs2_orlov_skip(ip); 2025 if (rs->rs_rbm.rgd == NULL) 2026 return -EBADSLT; 2027 2028 while (loops < 3) { 2029 rg_locked = 1; 2030 2031 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) { 2032 rg_locked = 0; 2033 if (skip && skip--) 2034 goto next_rgrp; 2035 if (!gfs2_rs_active(rs)) { 2036 if (loops == 0 && 2037 !fast_to_acquire(rs->rs_rbm.rgd)) 2038 goto next_rgrp; 2039 if ((loops < 2) && 2040 gfs2_rgrp_used_recently(rs, 1000) && 2041 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 2042 goto next_rgrp; 2043 } 2044 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl, 2045 LM_ST_EXCLUSIVE, flags, 2046 &ip->i_rgd_gh); 2047 if (unlikely(error)) 2048 return error; 2049 if (!gfs2_rs_active(rs) && (loops < 2) && 2050 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 2051 goto skip_rgrp; 2052 if (sdp->sd_args.ar_rgrplvb) { 2053 error = update_rgrp_lvb(rs->rs_rbm.rgd); 2054 if (unlikely(error)) { 2055 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2056 return error; 2057 } 2058 } 2059 } 2060 2061 /* Skip unusable resource groups */ 2062 if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | 2063 GFS2_RDF_ERROR)) || 2064 (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt)) 2065 goto skip_rgrp; 2066 2067 if (sdp->sd_args.ar_rgrplvb) 2068 gfs2_rgrp_bh_get(rs->rs_rbm.rgd); 2069 2070 /* Get a reservation if we don't already have one */ 2071 if (!gfs2_rs_active(rs)) 2072 rg_mblk_search(rs->rs_rbm.rgd, ip, ap); 2073 2074 /* Skip rgrps when we can't get a reservation on first pass */ 2075 if (!gfs2_rs_active(rs) && (loops < 1)) 2076 goto check_rgrp; 2077 2078 /* If rgrp has enough free space, use it */ 2079 free_blocks = rgd_free(rs->rs_rbm.rgd, rs); 2080 if (free_blocks >= ap->target || 2081 (loops == 2 && ap->min_target && 2082 free_blocks >= ap->min_target)) { 2083 ap->allowed = free_blocks; 2084 return 0; 2085 } 2086 check_rgrp: 2087 /* Check for unlinked inodes which can be reclaimed */ 2088 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK) 2089 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked, 2090 ip->i_no_addr); 2091 skip_rgrp: 2092 /* Drop reservation, if we couldn't use reserved rgrp */ 2093 if (gfs2_rs_active(rs)) 2094 gfs2_rs_deltree(rs); 2095 2096 /* Unlock rgrp if required */ 2097 if (!rg_locked) 2098 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2099 next_rgrp: 2100 /* Find the next rgrp, and continue looking */ 2101 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin)) 2102 continue; 2103 if (skip) 2104 continue; 2105 2106 /* If we've scanned all the rgrps, but found no free blocks 2107 * then this checks for some less likely conditions before 2108 * trying again. 2109 */ 2110 loops++; 2111 /* Check that fs hasn't grown if writing to rindex */ 2112 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { 2113 error = gfs2_ri_update(ip); 2114 if (error) 2115 return error; 2116 } 2117 /* Flushing the log may release space */ 2118 if (loops == 2) 2119 gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL | 2120 GFS2_LFC_INPLACE_RESERVE); 2121 } 2122 2123 return -ENOSPC; 2124 } 2125 2126 /** 2127 * gfs2_inplace_release - release an inplace reservation 2128 * @ip: the inode the reservation was taken out on 2129 * 2130 * Release a reservation made by gfs2_inplace_reserve(). 2131 */ 2132 2133 void gfs2_inplace_release(struct gfs2_inode *ip) 2134 { 2135 if (gfs2_holder_initialized(&ip->i_rgd_gh)) 2136 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2137 } 2138 2139 /** 2140 * gfs2_alloc_extent - allocate an extent from a given bitmap 2141 * @rbm: the resource group information 2142 * @dinode: TRUE if the first block we allocate is for a dinode 2143 * @n: The extent length (value/result) 2144 * 2145 * Add the bitmap buffer to the transaction. 2146 * Set the found bits to @new_state to change block's allocation state. 2147 */ 2148 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode, 2149 unsigned int *n) 2150 { 2151 struct gfs2_rbm pos = { .rgd = rbm->rgd, }; 2152 const unsigned int elen = *n; 2153 u64 block; 2154 int ret; 2155 2156 *n = 1; 2157 block = gfs2_rbm_to_block(rbm); 2158 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh); 2159 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2160 block++; 2161 while (*n < elen) { 2162 ret = gfs2_rbm_from_block(&pos, block); 2163 if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE) 2164 break; 2165 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh); 2166 gfs2_setbit(&pos, true, GFS2_BLKST_USED); 2167 (*n)++; 2168 block++; 2169 } 2170 } 2171 2172 /** 2173 * rgblk_free - Change alloc state of given block(s) 2174 * @sdp: the filesystem 2175 * @rgd: the resource group the blocks are in 2176 * @bstart: the start of a run of blocks to free 2177 * @blen: the length of the block run (all must lie within ONE RG!) 2178 * @new_state: GFS2_BLKST_XXX the after-allocation block state 2179 */ 2180 2181 static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd, 2182 u64 bstart, u32 blen, unsigned char new_state) 2183 { 2184 struct gfs2_rbm rbm; 2185 struct gfs2_bitmap *bi, *bi_prev = NULL; 2186 2187 rbm.rgd = rgd; 2188 if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart))) 2189 return; 2190 while (blen--) { 2191 bi = rbm_bi(&rbm); 2192 if (bi != bi_prev) { 2193 if (!bi->bi_clone) { 2194 bi->bi_clone = kmalloc(bi->bi_bh->b_size, 2195 GFP_NOFS | __GFP_NOFAIL); 2196 memcpy(bi->bi_clone + bi->bi_offset, 2197 bi->bi_bh->b_data + bi->bi_offset, 2198 bi->bi_bytes); 2199 } 2200 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh); 2201 bi_prev = bi; 2202 } 2203 gfs2_setbit(&rbm, false, new_state); 2204 gfs2_rbm_incr(&rbm); 2205 } 2206 } 2207 2208 /** 2209 * gfs2_rgrp_dump - print out an rgrp 2210 * @seq: The iterator 2211 * @rgd: The rgrp in question 2212 * @fs_id_buf: pointer to file system id (if requested) 2213 * 2214 */ 2215 2216 void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_rgrpd *rgd, 2217 const char *fs_id_buf) 2218 { 2219 struct gfs2_blkreserv *trs; 2220 const struct rb_node *n; 2221 2222 gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n", 2223 fs_id_buf, 2224 (unsigned long long)rgd->rd_addr, rgd->rd_flags, 2225 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes, 2226 rgd->rd_reserved, rgd->rd_extfail_pt); 2227 if (rgd->rd_sbd->sd_args.ar_rgrplvb) { 2228 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 2229 2230 gfs2_print_dbg(seq, "%s L: f:%02x b:%u i:%u\n", fs_id_buf, 2231 be32_to_cpu(rgl->rl_flags), 2232 be32_to_cpu(rgl->rl_free), 2233 be32_to_cpu(rgl->rl_dinodes)); 2234 } 2235 spin_lock(&rgd->rd_rsspin); 2236 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) { 2237 trs = rb_entry(n, struct gfs2_blkreserv, rs_node); 2238 dump_rs(seq, trs, fs_id_buf); 2239 } 2240 spin_unlock(&rgd->rd_rsspin); 2241 } 2242 2243 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) 2244 { 2245 struct gfs2_sbd *sdp = rgd->rd_sbd; 2246 char fs_id_buf[sizeof(sdp->sd_fsname) + 7]; 2247 2248 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", 2249 (unsigned long long)rgd->rd_addr); 2250 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); 2251 sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname); 2252 gfs2_rgrp_dump(NULL, rgd, fs_id_buf); 2253 rgd->rd_flags |= GFS2_RDF_ERROR; 2254 } 2255 2256 /** 2257 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation 2258 * @ip: The inode we have just allocated blocks for 2259 * @rbm: The start of the allocated blocks 2260 * @len: The extent length 2261 * 2262 * Adjusts a reservation after an allocation has taken place. If the 2263 * reservation does not match the allocation, or if it is now empty 2264 * then it is removed. 2265 */ 2266 2267 static void gfs2_adjust_reservation(struct gfs2_inode *ip, 2268 const struct gfs2_rbm *rbm, unsigned len) 2269 { 2270 struct gfs2_blkreserv *rs = &ip->i_res; 2271 struct gfs2_rgrpd *rgd = rbm->rgd; 2272 unsigned rlen; 2273 u64 block; 2274 int ret; 2275 2276 spin_lock(&rgd->rd_rsspin); 2277 if (gfs2_rs_active(rs)) { 2278 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) { 2279 block = gfs2_rbm_to_block(rbm); 2280 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len); 2281 rlen = min(rs->rs_free, len); 2282 rs->rs_free -= rlen; 2283 rgd->rd_reserved -= rlen; 2284 trace_gfs2_rs(rs, TRACE_RS_CLAIM); 2285 if (rs->rs_free && !ret) 2286 goto out; 2287 /* We used up our block reservation, so we should 2288 reserve more blocks next time. */ 2289 atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint); 2290 } 2291 __rs_deltree(rs); 2292 } 2293 out: 2294 spin_unlock(&rgd->rd_rsspin); 2295 } 2296 2297 /** 2298 * gfs2_set_alloc_start - Set starting point for block allocation 2299 * @rbm: The rbm which will be set to the required location 2300 * @ip: The gfs2 inode 2301 * @dinode: Flag to say if allocation includes a new inode 2302 * 2303 * This sets the starting point from the reservation if one is active 2304 * otherwise it falls back to guessing a start point based on the 2305 * inode's goal block or the last allocation point in the rgrp. 2306 */ 2307 2308 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm, 2309 const struct gfs2_inode *ip, bool dinode) 2310 { 2311 u64 goal; 2312 2313 if (gfs2_rs_active(&ip->i_res)) { 2314 *rbm = ip->i_res.rs_rbm; 2315 return; 2316 } 2317 2318 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal)) 2319 goal = ip->i_goal; 2320 else 2321 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0; 2322 2323 if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) { 2324 rbm->bii = 0; 2325 rbm->offset = 0; 2326 } 2327 } 2328 2329 /** 2330 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode 2331 * @ip: the inode to allocate the block for 2332 * @bn: Used to return the starting block number 2333 * @nblocks: requested number of blocks/extent length (value/result) 2334 * @dinode: 1 if we're allocating a dinode block, else 0 2335 * @generation: the generation number of the inode 2336 * 2337 * Returns: 0 or error 2338 */ 2339 2340 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks, 2341 bool dinode, u64 *generation) 2342 { 2343 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2344 struct buffer_head *dibh; 2345 struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rbm.rgd, }; 2346 unsigned int ndata; 2347 u64 block; /* block, within the file system scope */ 2348 int error; 2349 2350 gfs2_set_alloc_start(&rbm, ip, dinode); 2351 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false); 2352 2353 if (error == -ENOSPC) { 2354 gfs2_set_alloc_start(&rbm, ip, dinode); 2355 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false); 2356 } 2357 2358 /* Since all blocks are reserved in advance, this shouldn't happen */ 2359 if (error) { 2360 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n", 2361 (unsigned long long)ip->i_no_addr, error, *nblocks, 2362 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags), 2363 rbm.rgd->rd_extfail_pt); 2364 goto rgrp_error; 2365 } 2366 2367 gfs2_alloc_extent(&rbm, dinode, nblocks); 2368 block = gfs2_rbm_to_block(&rbm); 2369 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0; 2370 if (gfs2_rs_active(&ip->i_res)) 2371 gfs2_adjust_reservation(ip, &rbm, *nblocks); 2372 ndata = *nblocks; 2373 if (dinode) 2374 ndata--; 2375 2376 if (!dinode) { 2377 ip->i_goal = block + ndata - 1; 2378 error = gfs2_meta_inode_buffer(ip, &dibh); 2379 if (error == 0) { 2380 struct gfs2_dinode *di = 2381 (struct gfs2_dinode *)dibh->b_data; 2382 gfs2_trans_add_meta(ip->i_gl, dibh); 2383 di->di_goal_meta = di->di_goal_data = 2384 cpu_to_be64(ip->i_goal); 2385 brelse(dibh); 2386 } 2387 } 2388 if (rbm.rgd->rd_free < *nblocks) { 2389 fs_warn(sdp, "nblocks=%u\n", *nblocks); 2390 goto rgrp_error; 2391 } 2392 2393 rbm.rgd->rd_free -= *nblocks; 2394 if (dinode) { 2395 rbm.rgd->rd_dinodes++; 2396 *generation = rbm.rgd->rd_igeneration++; 2397 if (*generation == 0) 2398 *generation = rbm.rgd->rd_igeneration++; 2399 } 2400 2401 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh); 2402 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data); 2403 2404 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0); 2405 if (dinode) 2406 gfs2_trans_remove_revoke(sdp, block, *nblocks); 2407 2408 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid); 2409 2410 rbm.rgd->rd_free_clone -= *nblocks; 2411 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks, 2412 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2413 *bn = block; 2414 return 0; 2415 2416 rgrp_error: 2417 gfs2_rgrp_error(rbm.rgd); 2418 return -EIO; 2419 } 2420 2421 /** 2422 * __gfs2_free_blocks - free a contiguous run of block(s) 2423 * @ip: the inode these blocks are being freed from 2424 * @rgd: the resource group the blocks are in 2425 * @bstart: first block of a run of contiguous blocks 2426 * @blen: the length of the block run 2427 * @meta: 1 if the blocks represent metadata 2428 * 2429 */ 2430 2431 void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd, 2432 u64 bstart, u32 blen, int meta) 2433 { 2434 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2435 2436 rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE); 2437 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE); 2438 rgd->rd_free += blen; 2439 rgd->rd_flags &= ~GFS2_RGF_TRIMMED; 2440 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2441 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2442 2443 /* Directories keep their data in the metadata address space */ 2444 if (meta || ip->i_depth || gfs2_is_jdata(ip)) 2445 gfs2_journal_wipe(ip, bstart, blen); 2446 } 2447 2448 /** 2449 * gfs2_free_meta - free a contiguous run of data block(s) 2450 * @ip: the inode these blocks are being freed from 2451 * @rgd: the resource group the blocks are in 2452 * @bstart: first block of a run of contiguous blocks 2453 * @blen: the length of the block run 2454 * 2455 */ 2456 2457 void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd, 2458 u64 bstart, u32 blen) 2459 { 2460 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2461 2462 __gfs2_free_blocks(ip, rgd, bstart, blen, 1); 2463 gfs2_statfs_change(sdp, 0, +blen, 0); 2464 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); 2465 } 2466 2467 void gfs2_unlink_di(struct inode *inode) 2468 { 2469 struct gfs2_inode *ip = GFS2_I(inode); 2470 struct gfs2_sbd *sdp = GFS2_SB(inode); 2471 struct gfs2_rgrpd *rgd; 2472 u64 blkno = ip->i_no_addr; 2473 2474 rgd = gfs2_blk2rgrpd(sdp, blkno, true); 2475 if (!rgd) 2476 return; 2477 rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2478 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2479 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2480 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2481 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1); 2482 } 2483 2484 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) 2485 { 2486 struct gfs2_sbd *sdp = rgd->rd_sbd; 2487 2488 rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2489 if (!rgd->rd_dinodes) 2490 gfs2_consist_rgrpd(rgd); 2491 rgd->rd_dinodes--; 2492 rgd->rd_free++; 2493 2494 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2495 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2496 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1); 2497 2498 gfs2_statfs_change(sdp, 0, +1, -1); 2499 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2500 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); 2501 gfs2_journal_wipe(ip, ip->i_no_addr, 1); 2502 } 2503 2504 /** 2505 * gfs2_check_blk_type - Check the type of a block 2506 * @sdp: The superblock 2507 * @no_addr: The block number to check 2508 * @type: The block type we are looking for 2509 * 2510 * Returns: 0 if the block type matches the expected type 2511 * -ESTALE if it doesn't match 2512 * or -ve errno if something went wrong while checking 2513 */ 2514 2515 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) 2516 { 2517 struct gfs2_rgrpd *rgd; 2518 struct gfs2_holder rgd_gh; 2519 struct gfs2_rbm rbm; 2520 int error = -EINVAL; 2521 2522 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1); 2523 if (!rgd) 2524 goto fail; 2525 2526 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); 2527 if (error) 2528 goto fail; 2529 2530 rbm.rgd = rgd; 2531 error = gfs2_rbm_from_block(&rbm, no_addr); 2532 if (WARN_ON_ONCE(error)) 2533 goto fail; 2534 2535 if (gfs2_testbit(&rbm, false) != type) 2536 error = -ESTALE; 2537 2538 gfs2_glock_dq_uninit(&rgd_gh); 2539 fail: 2540 return error; 2541 } 2542 2543 /** 2544 * gfs2_rlist_add - add a RG to a list of RGs 2545 * @ip: the inode 2546 * @rlist: the list of resource groups 2547 * @block: the block 2548 * 2549 * Figure out what RG a block belongs to and add that RG to the list 2550 * 2551 * FIXME: Don't use NOFAIL 2552 * 2553 */ 2554 2555 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, 2556 u64 block) 2557 { 2558 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2559 struct gfs2_rgrpd *rgd; 2560 struct gfs2_rgrpd **tmp; 2561 unsigned int new_space; 2562 unsigned int x; 2563 2564 if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) 2565 return; 2566 2567 /* 2568 * The resource group last accessed is kept in the last position. 2569 */ 2570 2571 if (rlist->rl_rgrps) { 2572 rgd = rlist->rl_rgd[rlist->rl_rgrps - 1]; 2573 if (rgrp_contains_block(rgd, block)) 2574 return; 2575 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2576 } else { 2577 rgd = ip->i_res.rs_rbm.rgd; 2578 if (!rgd || !rgrp_contains_block(rgd, block)) 2579 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2580 } 2581 2582 if (!rgd) { 2583 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", 2584 (unsigned long long)block); 2585 return; 2586 } 2587 2588 for (x = 0; x < rlist->rl_rgrps; x++) { 2589 if (rlist->rl_rgd[x] == rgd) { 2590 swap(rlist->rl_rgd[x], 2591 rlist->rl_rgd[rlist->rl_rgrps - 1]); 2592 return; 2593 } 2594 } 2595 2596 if (rlist->rl_rgrps == rlist->rl_space) { 2597 new_space = rlist->rl_space + 10; 2598 2599 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), 2600 GFP_NOFS | __GFP_NOFAIL); 2601 2602 if (rlist->rl_rgd) { 2603 memcpy(tmp, rlist->rl_rgd, 2604 rlist->rl_space * sizeof(struct gfs2_rgrpd *)); 2605 kfree(rlist->rl_rgd); 2606 } 2607 2608 rlist->rl_space = new_space; 2609 rlist->rl_rgd = tmp; 2610 } 2611 2612 rlist->rl_rgd[rlist->rl_rgrps++] = rgd; 2613 } 2614 2615 /** 2616 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate 2617 * and initialize an array of glock holders for them 2618 * @rlist: the list of resource groups 2619 * 2620 * FIXME: Don't use NOFAIL 2621 * 2622 */ 2623 2624 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist) 2625 { 2626 unsigned int x; 2627 2628 rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps, 2629 sizeof(struct gfs2_holder), 2630 GFP_NOFS | __GFP_NOFAIL); 2631 for (x = 0; x < rlist->rl_rgrps; x++) 2632 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, 2633 LM_ST_EXCLUSIVE, 0, 2634 &rlist->rl_ghs[x]); 2635 } 2636 2637 /** 2638 * gfs2_rlist_free - free a resource group list 2639 * @rlist: the list of resource groups 2640 * 2641 */ 2642 2643 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) 2644 { 2645 unsigned int x; 2646 2647 kfree(rlist->rl_rgd); 2648 2649 if (rlist->rl_ghs) { 2650 for (x = 0; x < rlist->rl_rgrps; x++) 2651 gfs2_holder_uninit(&rlist->rl_ghs[x]); 2652 kfree(rlist->rl_ghs); 2653 rlist->rl_ghs = NULL; 2654 } 2655 } 2656 2657