1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/slab.h> 10 #include <linux/spinlock.h> 11 #include <linux/completion.h> 12 #include <linux/buffer_head.h> 13 #include <linux/fs.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/prefetch.h> 16 #include <linux/blkdev.h> 17 #include <linux/rbtree.h> 18 #include <linux/random.h> 19 20 #include "gfs2.h" 21 #include "incore.h" 22 #include "glock.h" 23 #include "glops.h" 24 #include "lops.h" 25 #include "meta_io.h" 26 #include "quota.h" 27 #include "rgrp.h" 28 #include "super.h" 29 #include "trans.h" 30 #include "util.h" 31 #include "log.h" 32 #include "inode.h" 33 #include "trace_gfs2.h" 34 #include "dir.h" 35 36 #define BFITNOENT ((u32)~0) 37 #define NO_BLOCK ((u64)~0) 38 39 #if BITS_PER_LONG == 32 40 #define LBITMASK (0x55555555UL) 41 #define LBITSKIP55 (0x55555555UL) 42 #define LBITSKIP00 (0x00000000UL) 43 #else 44 #define LBITMASK (0x5555555555555555UL) 45 #define LBITSKIP55 (0x5555555555555555UL) 46 #define LBITSKIP00 (0x0000000000000000UL) 47 #endif 48 49 /* 50 * These routines are used by the resource group routines (rgrp.c) 51 * to keep track of block allocation. Each block is represented by two 52 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. 53 * 54 * 0 = Free 55 * 1 = Used (not metadata) 56 * 2 = Unlinked (still in use) inode 57 * 3 = Used (metadata) 58 */ 59 60 struct gfs2_extent { 61 struct gfs2_rbm rbm; 62 u32 len; 63 }; 64 65 static const char valid_change[16] = { 66 /* current */ 67 /* n */ 0, 1, 1, 1, 68 /* e */ 1, 0, 0, 0, 69 /* w */ 0, 0, 0, 1, 70 1, 0, 0, 0 71 }; 72 73 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 74 const struct gfs2_inode *ip, bool nowrap); 75 76 77 /** 78 * gfs2_setbit - Set a bit in the bitmaps 79 * @rbm: The position of the bit to set 80 * @do_clone: Also set the clone bitmap, if it exists 81 * @new_state: the new state of the block 82 * 83 */ 84 85 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone, 86 unsigned char new_state) 87 { 88 unsigned char *byte1, *byte2, *end, cur_state; 89 struct gfs2_bitmap *bi = rbm_bi(rbm); 90 unsigned int buflen = bi->bi_bytes; 91 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 92 93 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY); 94 end = bi->bi_bh->b_data + bi->bi_offset + buflen; 95 96 BUG_ON(byte1 >= end); 97 98 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; 99 100 if (unlikely(!valid_change[new_state * 4 + cur_state])) { 101 struct gfs2_sbd *sdp = rbm->rgd->rd_sbd; 102 103 fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n", 104 rbm->offset, cur_state, new_state); 105 fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n", 106 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start, 107 (unsigned long long)bi->bi_bh->b_blocknr); 108 fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n", 109 bi->bi_offset, bi->bi_bytes, 110 (unsigned long long)gfs2_rbm_to_block(rbm)); 111 dump_stack(); 112 gfs2_consist_rgrpd(rbm->rgd); 113 return; 114 } 115 *byte1 ^= (cur_state ^ new_state) << bit; 116 117 if (do_clone && bi->bi_clone) { 118 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY); 119 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; 120 *byte2 ^= (cur_state ^ new_state) << bit; 121 } 122 } 123 124 /** 125 * gfs2_testbit - test a bit in the bitmaps 126 * @rbm: The bit to test 127 * @use_clone: If true, test the clone bitmap, not the official bitmap. 128 * 129 * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps, 130 * not the "real" bitmaps, to avoid allocating recently freed blocks. 131 * 132 * Returns: The two bit block state of the requested bit 133 */ 134 135 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone) 136 { 137 struct gfs2_bitmap *bi = rbm_bi(rbm); 138 const u8 *buffer; 139 const u8 *byte; 140 unsigned int bit; 141 142 if (use_clone && bi->bi_clone) 143 buffer = bi->bi_clone; 144 else 145 buffer = bi->bi_bh->b_data; 146 buffer += bi->bi_offset; 147 byte = buffer + (rbm->offset / GFS2_NBBY); 148 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 149 150 return (*byte >> bit) & GFS2_BIT_MASK; 151 } 152 153 /** 154 * gfs2_bit_search 155 * @ptr: Pointer to bitmap data 156 * @mask: Mask to use (normally 0x55555.... but adjusted for search start) 157 * @state: The state we are searching for 158 * 159 * We xor the bitmap data with a patter which is the bitwise opposite 160 * of what we are looking for, this gives rise to a pattern of ones 161 * wherever there is a match. Since we have two bits per entry, we 162 * take this pattern, shift it down by one place and then and it with 163 * the original. All the even bit positions (0,2,4, etc) then represent 164 * successful matches, so we mask with 0x55555..... to remove the unwanted 165 * odd bit positions. 166 * 167 * This allows searching of a whole u64 at once (32 blocks) with a 168 * single test (on 64 bit arches). 169 */ 170 171 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) 172 { 173 u64 tmp; 174 static const u64 search[] = { 175 [0] = 0xffffffffffffffffULL, 176 [1] = 0xaaaaaaaaaaaaaaaaULL, 177 [2] = 0x5555555555555555ULL, 178 [3] = 0x0000000000000000ULL, 179 }; 180 tmp = le64_to_cpu(*ptr) ^ search[state]; 181 tmp &= (tmp >> 1); 182 tmp &= mask; 183 return tmp; 184 } 185 186 /** 187 * rs_cmp - multi-block reservation range compare 188 * @blk: absolute file system block number of the new reservation 189 * @len: number of blocks in the new reservation 190 * @rs: existing reservation to compare against 191 * 192 * returns: 1 if the block range is beyond the reach of the reservation 193 * -1 if the block range is before the start of the reservation 194 * 0 if the block range overlaps with the reservation 195 */ 196 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs) 197 { 198 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm); 199 200 if (blk >= startblk + rs->rs_free) 201 return 1; 202 if (blk + len - 1 < startblk) 203 return -1; 204 return 0; 205 } 206 207 /** 208 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing 209 * a block in a given allocation state. 210 * @buf: the buffer that holds the bitmaps 211 * @len: the length (in bytes) of the buffer 212 * @goal: start search at this block's bit-pair (within @buffer) 213 * @state: GFS2_BLKST_XXX the state of the block we're looking for. 214 * 215 * Scope of @goal and returned block number is only within this bitmap buffer, 216 * not entire rgrp or filesystem. @buffer will be offset from the actual 217 * beginning of a bitmap block buffer, skipping any header structures, but 218 * headers are always a multiple of 64 bits long so that the buffer is 219 * always aligned to a 64 bit boundary. 220 * 221 * The size of the buffer is in bytes, but is it assumed that it is 222 * always ok to read a complete multiple of 64 bits at the end 223 * of the block in case the end is no aligned to a natural boundary. 224 * 225 * Return: the block number (bitmap buffer scope) that was found 226 */ 227 228 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, 229 u32 goal, u8 state) 230 { 231 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); 232 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); 233 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); 234 u64 tmp; 235 u64 mask = 0x5555555555555555ULL; 236 u32 bit; 237 238 /* Mask off bits we don't care about at the start of the search */ 239 mask <<= spoint; 240 tmp = gfs2_bit_search(ptr, mask, state); 241 ptr++; 242 while(tmp == 0 && ptr < end) { 243 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); 244 ptr++; 245 } 246 /* Mask off any bits which are more than len bytes from the start */ 247 if (ptr == end && (len & (sizeof(u64) - 1))) 248 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); 249 /* Didn't find anything, so return */ 250 if (tmp == 0) 251 return BFITNOENT; 252 ptr--; 253 bit = __ffs64(tmp); 254 bit /= 2; /* two bits per entry in the bitmap */ 255 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; 256 } 257 258 /** 259 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number 260 * @rbm: The rbm with rgd already set correctly 261 * @block: The block number (filesystem relative) 262 * 263 * This sets the bi and offset members of an rbm based on a 264 * resource group and a filesystem relative block number. The 265 * resource group must be set in the rbm on entry, the bi and 266 * offset members will be set by this function. 267 * 268 * Returns: 0 on success, or an error code 269 */ 270 271 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block) 272 { 273 if (!rgrp_contains_block(rbm->rgd, block)) 274 return -E2BIG; 275 rbm->bii = 0; 276 rbm->offset = block - rbm->rgd->rd_data0; 277 /* Check if the block is within the first block */ 278 if (rbm->offset < rbm_bi(rbm)->bi_blocks) 279 return 0; 280 281 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */ 282 rbm->offset += (sizeof(struct gfs2_rgrp) - 283 sizeof(struct gfs2_meta_header)) * GFS2_NBBY; 284 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 285 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 286 return 0; 287 } 288 289 /** 290 * gfs2_rbm_incr - increment an rbm structure 291 * @rbm: The rbm with rgd already set correctly 292 * 293 * This function takes an existing rbm structure and increments it to the next 294 * viable block offset. 295 * 296 * Returns: If incrementing the offset would cause the rbm to go past the 297 * end of the rgrp, true is returned, otherwise false. 298 * 299 */ 300 301 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm) 302 { 303 if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */ 304 rbm->offset++; 305 return false; 306 } 307 if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */ 308 return true; 309 310 rbm->offset = 0; 311 rbm->bii++; 312 return false; 313 } 314 315 /** 316 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned 317 * @rbm: Position to search (value/result) 318 * @n_unaligned: Number of unaligned blocks to check 319 * @len: Decremented for each block found (terminate on zero) 320 * 321 * Returns: true if a non-free block is encountered 322 */ 323 324 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len) 325 { 326 u32 n; 327 u8 res; 328 329 for (n = 0; n < n_unaligned; n++) { 330 res = gfs2_testbit(rbm, true); 331 if (res != GFS2_BLKST_FREE) 332 return true; 333 (*len)--; 334 if (*len == 0) 335 return true; 336 if (gfs2_rbm_incr(rbm)) 337 return true; 338 } 339 340 return false; 341 } 342 343 /** 344 * gfs2_free_extlen - Return extent length of free blocks 345 * @rrbm: Starting position 346 * @len: Max length to check 347 * 348 * Starting at the block specified by the rbm, see how many free blocks 349 * there are, not reading more than len blocks ahead. This can be done 350 * using memchr_inv when the blocks are byte aligned, but has to be done 351 * on a block by block basis in case of unaligned blocks. Also this 352 * function can cope with bitmap boundaries (although it must stop on 353 * a resource group boundary) 354 * 355 * Returns: Number of free blocks in the extent 356 */ 357 358 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len) 359 { 360 struct gfs2_rbm rbm = *rrbm; 361 u32 n_unaligned = rbm.offset & 3; 362 u32 size = len; 363 u32 bytes; 364 u32 chunk_size; 365 u8 *ptr, *start, *end; 366 u64 block; 367 struct gfs2_bitmap *bi; 368 369 if (n_unaligned && 370 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len)) 371 goto out; 372 373 n_unaligned = len & 3; 374 /* Start is now byte aligned */ 375 while (len > 3) { 376 bi = rbm_bi(&rbm); 377 start = bi->bi_bh->b_data; 378 if (bi->bi_clone) 379 start = bi->bi_clone; 380 start += bi->bi_offset; 381 end = start + bi->bi_bytes; 382 BUG_ON(rbm.offset & 3); 383 start += (rbm.offset / GFS2_NBBY); 384 bytes = min_t(u32, len / GFS2_NBBY, (end - start)); 385 ptr = memchr_inv(start, 0, bytes); 386 chunk_size = ((ptr == NULL) ? bytes : (ptr - start)); 387 chunk_size *= GFS2_NBBY; 388 BUG_ON(len < chunk_size); 389 len -= chunk_size; 390 block = gfs2_rbm_to_block(&rbm); 391 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) { 392 n_unaligned = 0; 393 break; 394 } 395 if (ptr) { 396 n_unaligned = 3; 397 break; 398 } 399 n_unaligned = len & 3; 400 } 401 402 /* Deal with any bits left over at the end */ 403 if (n_unaligned) 404 gfs2_unaligned_extlen(&rbm, n_unaligned, &len); 405 out: 406 return size - len; 407 } 408 409 /** 410 * gfs2_bitcount - count the number of bits in a certain state 411 * @rgd: the resource group descriptor 412 * @buffer: the buffer that holds the bitmaps 413 * @buflen: the length (in bytes) of the buffer 414 * @state: the state of the block we're looking for 415 * 416 * Returns: The number of bits 417 */ 418 419 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, 420 unsigned int buflen, u8 state) 421 { 422 const u8 *byte = buffer; 423 const u8 *end = buffer + buflen; 424 const u8 state1 = state << 2; 425 const u8 state2 = state << 4; 426 const u8 state3 = state << 6; 427 u32 count = 0; 428 429 for (; byte < end; byte++) { 430 if (((*byte) & 0x03) == state) 431 count++; 432 if (((*byte) & 0x0C) == state1) 433 count++; 434 if (((*byte) & 0x30) == state2) 435 count++; 436 if (((*byte) & 0xC0) == state3) 437 count++; 438 } 439 440 return count; 441 } 442 443 /** 444 * gfs2_rgrp_verify - Verify that a resource group is consistent 445 * @rgd: the rgrp 446 * 447 */ 448 449 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) 450 { 451 struct gfs2_sbd *sdp = rgd->rd_sbd; 452 struct gfs2_bitmap *bi = NULL; 453 u32 length = rgd->rd_length; 454 u32 count[4], tmp; 455 int buf, x; 456 457 memset(count, 0, 4 * sizeof(u32)); 458 459 /* Count # blocks in each of 4 possible allocation states */ 460 for (buf = 0; buf < length; buf++) { 461 bi = rgd->rd_bits + buf; 462 for (x = 0; x < 4; x++) 463 count[x] += gfs2_bitcount(rgd, 464 bi->bi_bh->b_data + 465 bi->bi_offset, 466 bi->bi_bytes, x); 467 } 468 469 if (count[0] != rgd->rd_free) { 470 if (gfs2_consist_rgrpd(rgd)) 471 fs_err(sdp, "free data mismatch: %u != %u\n", 472 count[0], rgd->rd_free); 473 return; 474 } 475 476 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; 477 if (count[1] != tmp) { 478 if (gfs2_consist_rgrpd(rgd)) 479 fs_err(sdp, "used data mismatch: %u != %u\n", 480 count[1], tmp); 481 return; 482 } 483 484 if (count[2] + count[3] != rgd->rd_dinodes) { 485 if (gfs2_consist_rgrpd(rgd)) 486 fs_err(sdp, "used metadata mismatch: %u != %u\n", 487 count[2] + count[3], rgd->rd_dinodes); 488 return; 489 } 490 } 491 492 /** 493 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number 494 * @sdp: The GFS2 superblock 495 * @blk: The data block number 496 * @exact: True if this needs to be an exact match 497 * 498 * The @exact argument should be set to true by most callers. The exception 499 * is when we need to match blocks which are not represented by the rgrp 500 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are 501 * there for alignment purposes. Another way of looking at it is that @exact 502 * matches only valid data/metadata blocks, but with @exact false, it will 503 * match any block within the extent of the rgrp. 504 * 505 * Returns: The resource group, or NULL if not found 506 */ 507 508 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact) 509 { 510 struct rb_node *n, *next; 511 struct gfs2_rgrpd *cur; 512 513 spin_lock(&sdp->sd_rindex_spin); 514 n = sdp->sd_rindex_tree.rb_node; 515 while (n) { 516 cur = rb_entry(n, struct gfs2_rgrpd, rd_node); 517 next = NULL; 518 if (blk < cur->rd_addr) 519 next = n->rb_left; 520 else if (blk >= cur->rd_data0 + cur->rd_data) 521 next = n->rb_right; 522 if (next == NULL) { 523 spin_unlock(&sdp->sd_rindex_spin); 524 if (exact) { 525 if (blk < cur->rd_addr) 526 return NULL; 527 if (blk >= cur->rd_data0 + cur->rd_data) 528 return NULL; 529 } 530 return cur; 531 } 532 n = next; 533 } 534 spin_unlock(&sdp->sd_rindex_spin); 535 536 return NULL; 537 } 538 539 /** 540 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem 541 * @sdp: The GFS2 superblock 542 * 543 * Returns: The first rgrp in the filesystem 544 */ 545 546 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) 547 { 548 const struct rb_node *n; 549 struct gfs2_rgrpd *rgd; 550 551 spin_lock(&sdp->sd_rindex_spin); 552 n = rb_first(&sdp->sd_rindex_tree); 553 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 554 spin_unlock(&sdp->sd_rindex_spin); 555 556 return rgd; 557 } 558 559 /** 560 * gfs2_rgrpd_get_next - get the next RG 561 * @rgd: the resource group descriptor 562 * 563 * Returns: The next rgrp 564 */ 565 566 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) 567 { 568 struct gfs2_sbd *sdp = rgd->rd_sbd; 569 const struct rb_node *n; 570 571 spin_lock(&sdp->sd_rindex_spin); 572 n = rb_next(&rgd->rd_node); 573 if (n == NULL) 574 n = rb_first(&sdp->sd_rindex_tree); 575 576 if (unlikely(&rgd->rd_node == n)) { 577 spin_unlock(&sdp->sd_rindex_spin); 578 return NULL; 579 } 580 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 581 spin_unlock(&sdp->sd_rindex_spin); 582 return rgd; 583 } 584 585 void check_and_update_goal(struct gfs2_inode *ip) 586 { 587 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 588 if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL) 589 ip->i_goal = ip->i_no_addr; 590 } 591 592 void gfs2_free_clones(struct gfs2_rgrpd *rgd) 593 { 594 int x; 595 596 for (x = 0; x < rgd->rd_length; x++) { 597 struct gfs2_bitmap *bi = rgd->rd_bits + x; 598 kfree(bi->bi_clone); 599 bi->bi_clone = NULL; 600 } 601 } 602 603 /** 604 * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode 605 * plus a quota allocations data structure, if necessary 606 * @ip: the inode for this reservation 607 */ 608 int gfs2_rsqa_alloc(struct gfs2_inode *ip) 609 { 610 return gfs2_qa_alloc(ip); 611 } 612 613 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs, 614 const char *fs_id_buf) 615 { 616 struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res); 617 618 gfs2_print_dbg(seq, "%s B: n:%llu s:%llu b:%u f:%u\n", fs_id_buf, 619 (unsigned long long)ip->i_no_addr, 620 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm), 621 rs->rs_rbm.offset, rs->rs_free); 622 } 623 624 /** 625 * __rs_deltree - remove a multi-block reservation from the rgd tree 626 * @rs: The reservation to remove 627 * 628 */ 629 static void __rs_deltree(struct gfs2_blkreserv *rs) 630 { 631 struct gfs2_rgrpd *rgd; 632 633 if (!gfs2_rs_active(rs)) 634 return; 635 636 rgd = rs->rs_rbm.rgd; 637 trace_gfs2_rs(rs, TRACE_RS_TREEDEL); 638 rb_erase(&rs->rs_node, &rgd->rd_rstree); 639 RB_CLEAR_NODE(&rs->rs_node); 640 641 if (rs->rs_free) { 642 u64 last_block = gfs2_rbm_to_block(&rs->rs_rbm) + 643 rs->rs_free - 1; 644 struct gfs2_rbm last_rbm = { .rgd = rs->rs_rbm.rgd, }; 645 struct gfs2_bitmap *start, *last; 646 647 /* return reserved blocks to the rgrp */ 648 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free); 649 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free; 650 /* The rgrp extent failure point is likely not to increase; 651 it will only do so if the freed blocks are somehow 652 contiguous with a span of free blocks that follows. Still, 653 it will force the number to be recalculated later. */ 654 rgd->rd_extfail_pt += rs->rs_free; 655 rs->rs_free = 0; 656 if (gfs2_rbm_from_block(&last_rbm, last_block)) 657 return; 658 start = rbm_bi(&rs->rs_rbm); 659 last = rbm_bi(&last_rbm); 660 do 661 clear_bit(GBF_FULL, &start->bi_flags); 662 while (start++ != last); 663 } 664 } 665 666 /** 667 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree 668 * @rs: The reservation to remove 669 * 670 */ 671 void gfs2_rs_deltree(struct gfs2_blkreserv *rs) 672 { 673 struct gfs2_rgrpd *rgd; 674 675 rgd = rs->rs_rbm.rgd; 676 if (rgd) { 677 spin_lock(&rgd->rd_rsspin); 678 __rs_deltree(rs); 679 BUG_ON(rs->rs_free); 680 spin_unlock(&rgd->rd_rsspin); 681 } 682 } 683 684 /** 685 * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation 686 * @ip: The inode for this reservation 687 * @wcount: The inode's write count, or NULL 688 * 689 */ 690 void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount) 691 { 692 down_write(&ip->i_rw_mutex); 693 if ((wcount == NULL) || (atomic_read(wcount) <= 1)) 694 gfs2_rs_deltree(&ip->i_res); 695 up_write(&ip->i_rw_mutex); 696 gfs2_qa_delete(ip, wcount); 697 } 698 699 /** 700 * return_all_reservations - return all reserved blocks back to the rgrp. 701 * @rgd: the rgrp that needs its space back 702 * 703 * We previously reserved a bunch of blocks for allocation. Now we need to 704 * give them back. This leave the reservation structures in tact, but removes 705 * all of their corresponding "no-fly zones". 706 */ 707 static void return_all_reservations(struct gfs2_rgrpd *rgd) 708 { 709 struct rb_node *n; 710 struct gfs2_blkreserv *rs; 711 712 spin_lock(&rgd->rd_rsspin); 713 while ((n = rb_first(&rgd->rd_rstree))) { 714 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 715 __rs_deltree(rs); 716 } 717 spin_unlock(&rgd->rd_rsspin); 718 } 719 720 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) 721 { 722 struct rb_node *n; 723 struct gfs2_rgrpd *rgd; 724 struct gfs2_glock *gl; 725 726 while ((n = rb_first(&sdp->sd_rindex_tree))) { 727 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 728 gl = rgd->rd_gl; 729 730 rb_erase(n, &sdp->sd_rindex_tree); 731 732 if (gl) { 733 glock_clear_object(gl, rgd); 734 gfs2_rgrp_brelse(rgd); 735 gfs2_glock_put(gl); 736 } 737 738 gfs2_free_clones(rgd); 739 kfree(rgd->rd_bits); 740 rgd->rd_bits = NULL; 741 return_all_reservations(rgd); 742 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 743 } 744 } 745 746 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd) 747 { 748 struct gfs2_sbd *sdp = rgd->rd_sbd; 749 750 fs_info(sdp, "ri_addr = %llu\n", (unsigned long long)rgd->rd_addr); 751 fs_info(sdp, "ri_length = %u\n", rgd->rd_length); 752 fs_info(sdp, "ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0); 753 fs_info(sdp, "ri_data = %u\n", rgd->rd_data); 754 fs_info(sdp, "ri_bitbytes = %u\n", rgd->rd_bitbytes); 755 } 756 757 /** 758 * gfs2_compute_bitstructs - Compute the bitmap sizes 759 * @rgd: The resource group descriptor 760 * 761 * Calculates bitmap descriptors, one for each block that contains bitmap data 762 * 763 * Returns: errno 764 */ 765 766 static int compute_bitstructs(struct gfs2_rgrpd *rgd) 767 { 768 struct gfs2_sbd *sdp = rgd->rd_sbd; 769 struct gfs2_bitmap *bi; 770 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ 771 u32 bytes_left, bytes; 772 int x; 773 774 if (!length) 775 return -EINVAL; 776 777 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); 778 if (!rgd->rd_bits) 779 return -ENOMEM; 780 781 bytes_left = rgd->rd_bitbytes; 782 783 for (x = 0; x < length; x++) { 784 bi = rgd->rd_bits + x; 785 786 bi->bi_flags = 0; 787 /* small rgrp; bitmap stored completely in header block */ 788 if (length == 1) { 789 bytes = bytes_left; 790 bi->bi_offset = sizeof(struct gfs2_rgrp); 791 bi->bi_start = 0; 792 bi->bi_bytes = bytes; 793 bi->bi_blocks = bytes * GFS2_NBBY; 794 /* header block */ 795 } else if (x == 0) { 796 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); 797 bi->bi_offset = sizeof(struct gfs2_rgrp); 798 bi->bi_start = 0; 799 bi->bi_bytes = bytes; 800 bi->bi_blocks = bytes * GFS2_NBBY; 801 /* last block */ 802 } else if (x + 1 == length) { 803 bytes = bytes_left; 804 bi->bi_offset = sizeof(struct gfs2_meta_header); 805 bi->bi_start = rgd->rd_bitbytes - bytes_left; 806 bi->bi_bytes = bytes; 807 bi->bi_blocks = bytes * GFS2_NBBY; 808 /* other blocks */ 809 } else { 810 bytes = sdp->sd_sb.sb_bsize - 811 sizeof(struct gfs2_meta_header); 812 bi->bi_offset = sizeof(struct gfs2_meta_header); 813 bi->bi_start = rgd->rd_bitbytes - bytes_left; 814 bi->bi_bytes = bytes; 815 bi->bi_blocks = bytes * GFS2_NBBY; 816 } 817 818 bytes_left -= bytes; 819 } 820 821 if (bytes_left) { 822 gfs2_consist_rgrpd(rgd); 823 return -EIO; 824 } 825 bi = rgd->rd_bits + (length - 1); 826 if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) { 827 if (gfs2_consist_rgrpd(rgd)) { 828 gfs2_rindex_print(rgd); 829 fs_err(sdp, "start=%u len=%u offset=%u\n", 830 bi->bi_start, bi->bi_bytes, bi->bi_offset); 831 } 832 return -EIO; 833 } 834 835 return 0; 836 } 837 838 /** 839 * gfs2_ri_total - Total up the file system space, according to the rindex. 840 * @sdp: the filesystem 841 * 842 */ 843 u64 gfs2_ri_total(struct gfs2_sbd *sdp) 844 { 845 u64 total_data = 0; 846 struct inode *inode = sdp->sd_rindex; 847 struct gfs2_inode *ip = GFS2_I(inode); 848 char buf[sizeof(struct gfs2_rindex)]; 849 int error, rgrps; 850 851 for (rgrps = 0;; rgrps++) { 852 loff_t pos = rgrps * sizeof(struct gfs2_rindex); 853 854 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) 855 break; 856 error = gfs2_internal_read(ip, buf, &pos, 857 sizeof(struct gfs2_rindex)); 858 if (error != sizeof(struct gfs2_rindex)) 859 break; 860 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); 861 } 862 return total_data; 863 } 864 865 static int rgd_insert(struct gfs2_rgrpd *rgd) 866 { 867 struct gfs2_sbd *sdp = rgd->rd_sbd; 868 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; 869 870 /* Figure out where to put new node */ 871 while (*newn) { 872 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, 873 rd_node); 874 875 parent = *newn; 876 if (rgd->rd_addr < cur->rd_addr) 877 newn = &((*newn)->rb_left); 878 else if (rgd->rd_addr > cur->rd_addr) 879 newn = &((*newn)->rb_right); 880 else 881 return -EEXIST; 882 } 883 884 rb_link_node(&rgd->rd_node, parent, newn); 885 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); 886 sdp->sd_rgrps++; 887 return 0; 888 } 889 890 /** 891 * read_rindex_entry - Pull in a new resource index entry from the disk 892 * @ip: Pointer to the rindex inode 893 * 894 * Returns: 0 on success, > 0 on EOF, error code otherwise 895 */ 896 897 static int read_rindex_entry(struct gfs2_inode *ip) 898 { 899 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 900 const unsigned bsize = sdp->sd_sb.sb_bsize; 901 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); 902 struct gfs2_rindex buf; 903 int error; 904 struct gfs2_rgrpd *rgd; 905 906 if (pos >= i_size_read(&ip->i_inode)) 907 return 1; 908 909 error = gfs2_internal_read(ip, (char *)&buf, &pos, 910 sizeof(struct gfs2_rindex)); 911 912 if (error != sizeof(struct gfs2_rindex)) 913 return (error == 0) ? 1 : error; 914 915 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); 916 error = -ENOMEM; 917 if (!rgd) 918 return error; 919 920 rgd->rd_sbd = sdp; 921 rgd->rd_addr = be64_to_cpu(buf.ri_addr); 922 rgd->rd_length = be32_to_cpu(buf.ri_length); 923 rgd->rd_data0 = be64_to_cpu(buf.ri_data0); 924 rgd->rd_data = be32_to_cpu(buf.ri_data); 925 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); 926 spin_lock_init(&rgd->rd_rsspin); 927 928 error = compute_bitstructs(rgd); 929 if (error) 930 goto fail; 931 932 error = gfs2_glock_get(sdp, rgd->rd_addr, 933 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); 934 if (error) 935 goto fail; 936 937 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr; 938 rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED); 939 if (rgd->rd_data > sdp->sd_max_rg_data) 940 sdp->sd_max_rg_data = rgd->rd_data; 941 spin_lock(&sdp->sd_rindex_spin); 942 error = rgd_insert(rgd); 943 spin_unlock(&sdp->sd_rindex_spin); 944 if (!error) { 945 glock_set_object(rgd->rd_gl, rgd); 946 rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK; 947 rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr + 948 rgd->rd_length) * bsize) - 1; 949 return 0; 950 } 951 952 error = 0; /* someone else read in the rgrp; free it and ignore it */ 953 gfs2_glock_put(rgd->rd_gl); 954 955 fail: 956 kfree(rgd->rd_bits); 957 rgd->rd_bits = NULL; 958 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 959 return error; 960 } 961 962 /** 963 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use 964 * @sdp: the GFS2 superblock 965 * 966 * The purpose of this function is to select a subset of the resource groups 967 * and mark them as PREFERRED. We do it in such a way that each node prefers 968 * to use a unique set of rgrps to minimize glock contention. 969 */ 970 static void set_rgrp_preferences(struct gfs2_sbd *sdp) 971 { 972 struct gfs2_rgrpd *rgd, *first; 973 int i; 974 975 /* Skip an initial number of rgrps, based on this node's journal ID. 976 That should start each node out on its own set. */ 977 rgd = gfs2_rgrpd_get_first(sdp); 978 for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++) 979 rgd = gfs2_rgrpd_get_next(rgd); 980 first = rgd; 981 982 do { 983 rgd->rd_flags |= GFS2_RDF_PREFERRED; 984 for (i = 0; i < sdp->sd_journals; i++) { 985 rgd = gfs2_rgrpd_get_next(rgd); 986 if (!rgd || rgd == first) 987 break; 988 } 989 } while (rgd && rgd != first); 990 } 991 992 /** 993 * gfs2_ri_update - Pull in a new resource index from the disk 994 * @ip: pointer to the rindex inode 995 * 996 * Returns: 0 on successful update, error code otherwise 997 */ 998 999 static int gfs2_ri_update(struct gfs2_inode *ip) 1000 { 1001 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1002 int error; 1003 1004 do { 1005 error = read_rindex_entry(ip); 1006 } while (error == 0); 1007 1008 if (error < 0) 1009 return error; 1010 1011 set_rgrp_preferences(sdp); 1012 1013 sdp->sd_rindex_uptodate = 1; 1014 return 0; 1015 } 1016 1017 /** 1018 * gfs2_rindex_update - Update the rindex if required 1019 * @sdp: The GFS2 superblock 1020 * 1021 * We grab a lock on the rindex inode to make sure that it doesn't 1022 * change whilst we are performing an operation. We keep this lock 1023 * for quite long periods of time compared to other locks. This 1024 * doesn't matter, since it is shared and it is very, very rarely 1025 * accessed in the exclusive mode (i.e. only when expanding the filesystem). 1026 * 1027 * This makes sure that we're using the latest copy of the resource index 1028 * special file, which might have been updated if someone expanded the 1029 * filesystem (via gfs2_grow utility), which adds new resource groups. 1030 * 1031 * Returns: 0 on succeess, error code otherwise 1032 */ 1033 1034 int gfs2_rindex_update(struct gfs2_sbd *sdp) 1035 { 1036 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); 1037 struct gfs2_glock *gl = ip->i_gl; 1038 struct gfs2_holder ri_gh; 1039 int error = 0; 1040 int unlock_required = 0; 1041 1042 /* Read new copy from disk if we don't have the latest */ 1043 if (!sdp->sd_rindex_uptodate) { 1044 if (!gfs2_glock_is_locked_by_me(gl)) { 1045 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); 1046 if (error) 1047 return error; 1048 unlock_required = 1; 1049 } 1050 if (!sdp->sd_rindex_uptodate) 1051 error = gfs2_ri_update(ip); 1052 if (unlock_required) 1053 gfs2_glock_dq_uninit(&ri_gh); 1054 } 1055 1056 return error; 1057 } 1058 1059 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) 1060 { 1061 const struct gfs2_rgrp *str = buf; 1062 u32 rg_flags; 1063 1064 rg_flags = be32_to_cpu(str->rg_flags); 1065 rg_flags &= ~GFS2_RDF_MASK; 1066 rgd->rd_flags &= GFS2_RDF_MASK; 1067 rgd->rd_flags |= rg_flags; 1068 rgd->rd_free = be32_to_cpu(str->rg_free); 1069 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); 1070 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); 1071 /* rd_data0, rd_data and rd_bitbytes already set from rindex */ 1072 } 1073 1074 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf) 1075 { 1076 const struct gfs2_rgrp *str = buf; 1077 1078 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC); 1079 rgl->rl_flags = str->rg_flags; 1080 rgl->rl_free = str->rg_free; 1081 rgl->rl_dinodes = str->rg_dinodes; 1082 rgl->rl_igeneration = str->rg_igeneration; 1083 rgl->__pad = 0UL; 1084 } 1085 1086 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) 1087 { 1088 struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd); 1089 struct gfs2_rgrp *str = buf; 1090 u32 crc; 1091 1092 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); 1093 str->rg_free = cpu_to_be32(rgd->rd_free); 1094 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); 1095 if (next == NULL) 1096 str->rg_skip = 0; 1097 else if (next->rd_addr > rgd->rd_addr) 1098 str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr); 1099 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); 1100 str->rg_data0 = cpu_to_be64(rgd->rd_data0); 1101 str->rg_data = cpu_to_be32(rgd->rd_data); 1102 str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes); 1103 str->rg_crc = 0; 1104 crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp)); 1105 str->rg_crc = cpu_to_be32(crc); 1106 1107 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); 1108 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf); 1109 } 1110 1111 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd) 1112 { 1113 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1114 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data; 1115 struct gfs2_sbd *sdp = rgd->rd_sbd; 1116 int valid = 1; 1117 1118 if (rgl->rl_flags != str->rg_flags) { 1119 fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u", 1120 (unsigned long long)rgd->rd_addr, 1121 be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags)); 1122 valid = 0; 1123 } 1124 if (rgl->rl_free != str->rg_free) { 1125 fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u", 1126 (unsigned long long)rgd->rd_addr, 1127 be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free)); 1128 valid = 0; 1129 } 1130 if (rgl->rl_dinodes != str->rg_dinodes) { 1131 fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u", 1132 (unsigned long long)rgd->rd_addr, 1133 be32_to_cpu(rgl->rl_dinodes), 1134 be32_to_cpu(str->rg_dinodes)); 1135 valid = 0; 1136 } 1137 if (rgl->rl_igeneration != str->rg_igeneration) { 1138 fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu", 1139 (unsigned long long)rgd->rd_addr, 1140 (unsigned long long)be64_to_cpu(rgl->rl_igeneration), 1141 (unsigned long long)be64_to_cpu(str->rg_igeneration)); 1142 valid = 0; 1143 } 1144 return valid; 1145 } 1146 1147 static u32 count_unlinked(struct gfs2_rgrpd *rgd) 1148 { 1149 struct gfs2_bitmap *bi; 1150 const u32 length = rgd->rd_length; 1151 const u8 *buffer = NULL; 1152 u32 i, goal, count = 0; 1153 1154 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) { 1155 goal = 0; 1156 buffer = bi->bi_bh->b_data + bi->bi_offset; 1157 WARN_ON(!buffer_uptodate(bi->bi_bh)); 1158 while (goal < bi->bi_blocks) { 1159 goal = gfs2_bitfit(buffer, bi->bi_bytes, goal, 1160 GFS2_BLKST_UNLINKED); 1161 if (goal == BFITNOENT) 1162 break; 1163 count++; 1164 goal++; 1165 } 1166 } 1167 1168 return count; 1169 } 1170 1171 1172 /** 1173 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps 1174 * @rgd: the struct gfs2_rgrpd describing the RG to read in 1175 * 1176 * Read in all of a Resource Group's header and bitmap blocks. 1177 * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps. 1178 * 1179 * Returns: errno 1180 */ 1181 1182 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd) 1183 { 1184 struct gfs2_sbd *sdp = rgd->rd_sbd; 1185 struct gfs2_glock *gl = rgd->rd_gl; 1186 unsigned int length = rgd->rd_length; 1187 struct gfs2_bitmap *bi; 1188 unsigned int x, y; 1189 int error; 1190 1191 if (rgd->rd_bits[0].bi_bh != NULL) 1192 return 0; 1193 1194 for (x = 0; x < length; x++) { 1195 bi = rgd->rd_bits + x; 1196 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh); 1197 if (error) 1198 goto fail; 1199 } 1200 1201 for (y = length; y--;) { 1202 bi = rgd->rd_bits + y; 1203 error = gfs2_meta_wait(sdp, bi->bi_bh); 1204 if (error) 1205 goto fail; 1206 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : 1207 GFS2_METATYPE_RG)) { 1208 error = -EIO; 1209 goto fail; 1210 } 1211 } 1212 1213 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) { 1214 for (x = 0; x < length; x++) 1215 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags); 1216 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); 1217 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1218 rgd->rd_free_clone = rgd->rd_free; 1219 /* max out the rgrp allocation failure point */ 1220 rgd->rd_extfail_pt = rgd->rd_free; 1221 } 1222 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) { 1223 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd)); 1224 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, 1225 rgd->rd_bits[0].bi_bh->b_data); 1226 } 1227 else if (sdp->sd_args.ar_rgrplvb) { 1228 if (!gfs2_rgrp_lvb_valid(rgd)){ 1229 gfs2_consist_rgrpd(rgd); 1230 error = -EIO; 1231 goto fail; 1232 } 1233 if (rgd->rd_rgl->rl_unlinked == 0) 1234 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1235 } 1236 return 0; 1237 1238 fail: 1239 while (x--) { 1240 bi = rgd->rd_bits + x; 1241 brelse(bi->bi_bh); 1242 bi->bi_bh = NULL; 1243 gfs2_assert_warn(sdp, !bi->bi_clone); 1244 } 1245 1246 return error; 1247 } 1248 1249 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd) 1250 { 1251 u32 rl_flags; 1252 1253 if (rgd->rd_flags & GFS2_RDF_UPTODATE) 1254 return 0; 1255 1256 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) 1257 return gfs2_rgrp_bh_get(rgd); 1258 1259 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags); 1260 rl_flags &= ~GFS2_RDF_MASK; 1261 rgd->rd_flags &= GFS2_RDF_MASK; 1262 rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK); 1263 if (rgd->rd_rgl->rl_unlinked == 0) 1264 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1265 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free); 1266 rgd->rd_free_clone = rgd->rd_free; 1267 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes); 1268 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration); 1269 return 0; 1270 } 1271 1272 int gfs2_rgrp_go_lock(struct gfs2_holder *gh) 1273 { 1274 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1275 struct gfs2_sbd *sdp = rgd->rd_sbd; 1276 1277 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb) 1278 return 0; 1279 return gfs2_rgrp_bh_get(rgd); 1280 } 1281 1282 /** 1283 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get() 1284 * @rgd: The resource group 1285 * 1286 */ 1287 1288 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd) 1289 { 1290 int x, length = rgd->rd_length; 1291 1292 for (x = 0; x < length; x++) { 1293 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1294 if (bi->bi_bh) { 1295 brelse(bi->bi_bh); 1296 bi->bi_bh = NULL; 1297 } 1298 } 1299 1300 } 1301 1302 /** 1303 * gfs2_rgrp_go_unlock - Unlock a rgrp glock 1304 * @gh: The glock holder for the resource group 1305 * 1306 */ 1307 1308 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh) 1309 { 1310 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1311 int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) | 1312 test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags); 1313 1314 if (rgd && demote_requested) 1315 gfs2_rgrp_brelse(rgd); 1316 } 1317 1318 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, 1319 struct buffer_head *bh, 1320 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed) 1321 { 1322 struct super_block *sb = sdp->sd_vfs; 1323 u64 blk; 1324 sector_t start = 0; 1325 sector_t nr_blks = 0; 1326 int rv; 1327 unsigned int x; 1328 u32 trimmed = 0; 1329 u8 diff; 1330 1331 for (x = 0; x < bi->bi_bytes; x++) { 1332 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data; 1333 clone += bi->bi_offset; 1334 clone += x; 1335 if (bh) { 1336 const u8 *orig = bh->b_data + bi->bi_offset + x; 1337 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); 1338 } else { 1339 diff = ~(*clone | (*clone >> 1)); 1340 } 1341 diff &= 0x55; 1342 if (diff == 0) 1343 continue; 1344 blk = offset + ((bi->bi_start + x) * GFS2_NBBY); 1345 while(diff) { 1346 if (diff & 1) { 1347 if (nr_blks == 0) 1348 goto start_new_extent; 1349 if ((start + nr_blks) != blk) { 1350 if (nr_blks >= minlen) { 1351 rv = sb_issue_discard(sb, 1352 start, nr_blks, 1353 GFP_NOFS, 0); 1354 if (rv) 1355 goto fail; 1356 trimmed += nr_blks; 1357 } 1358 nr_blks = 0; 1359 start_new_extent: 1360 start = blk; 1361 } 1362 nr_blks++; 1363 } 1364 diff >>= 2; 1365 blk++; 1366 } 1367 } 1368 if (nr_blks >= minlen) { 1369 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0); 1370 if (rv) 1371 goto fail; 1372 trimmed += nr_blks; 1373 } 1374 if (ptrimmed) 1375 *ptrimmed = trimmed; 1376 return 0; 1377 1378 fail: 1379 if (sdp->sd_args.ar_discard) 1380 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv); 1381 sdp->sd_args.ar_discard = 0; 1382 return -EIO; 1383 } 1384 1385 /** 1386 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem 1387 * @filp: Any file on the filesystem 1388 * @argp: Pointer to the arguments (also used to pass result) 1389 * 1390 * Returns: 0 on success, otherwise error code 1391 */ 1392 1393 int gfs2_fitrim(struct file *filp, void __user *argp) 1394 { 1395 struct inode *inode = file_inode(filp); 1396 struct gfs2_sbd *sdp = GFS2_SB(inode); 1397 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev); 1398 struct buffer_head *bh; 1399 struct gfs2_rgrpd *rgd; 1400 struct gfs2_rgrpd *rgd_end; 1401 struct gfs2_holder gh; 1402 struct fstrim_range r; 1403 int ret = 0; 1404 u64 amt; 1405 u64 trimmed = 0; 1406 u64 start, end, minlen; 1407 unsigned int x; 1408 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift; 1409 1410 if (!capable(CAP_SYS_ADMIN)) 1411 return -EPERM; 1412 1413 if (!blk_queue_discard(q)) 1414 return -EOPNOTSUPP; 1415 1416 if (copy_from_user(&r, argp, sizeof(r))) 1417 return -EFAULT; 1418 1419 ret = gfs2_rindex_update(sdp); 1420 if (ret) 1421 return ret; 1422 1423 start = r.start >> bs_shift; 1424 end = start + (r.len >> bs_shift); 1425 minlen = max_t(u64, r.minlen, 1426 q->limits.discard_granularity) >> bs_shift; 1427 1428 if (end <= start || minlen > sdp->sd_max_rg_data) 1429 return -EINVAL; 1430 1431 rgd = gfs2_blk2rgrpd(sdp, start, 0); 1432 rgd_end = gfs2_blk2rgrpd(sdp, end, 0); 1433 1434 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end)) 1435 && (start > rgd_end->rd_data0 + rgd_end->rd_data)) 1436 return -EINVAL; /* start is beyond the end of the fs */ 1437 1438 while (1) { 1439 1440 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh); 1441 if (ret) 1442 goto out; 1443 1444 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) { 1445 /* Trim each bitmap in the rgrp */ 1446 for (x = 0; x < rgd->rd_length; x++) { 1447 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1448 ret = gfs2_rgrp_send_discards(sdp, 1449 rgd->rd_data0, NULL, bi, minlen, 1450 &amt); 1451 if (ret) { 1452 gfs2_glock_dq_uninit(&gh); 1453 goto out; 1454 } 1455 trimmed += amt; 1456 } 1457 1458 /* Mark rgrp as having been trimmed */ 1459 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0); 1460 if (ret == 0) { 1461 bh = rgd->rd_bits[0].bi_bh; 1462 rgd->rd_flags |= GFS2_RGF_TRIMMED; 1463 gfs2_trans_add_meta(rgd->rd_gl, bh); 1464 gfs2_rgrp_out(rgd, bh->b_data); 1465 gfs2_trans_end(sdp); 1466 } 1467 } 1468 gfs2_glock_dq_uninit(&gh); 1469 1470 if (rgd == rgd_end) 1471 break; 1472 1473 rgd = gfs2_rgrpd_get_next(rgd); 1474 } 1475 1476 out: 1477 r.len = trimmed << bs_shift; 1478 if (copy_to_user(argp, &r, sizeof(r))) 1479 return -EFAULT; 1480 1481 return ret; 1482 } 1483 1484 /** 1485 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree 1486 * @ip: the inode structure 1487 * 1488 */ 1489 static void rs_insert(struct gfs2_inode *ip) 1490 { 1491 struct rb_node **newn, *parent = NULL; 1492 int rc; 1493 struct gfs2_blkreserv *rs = &ip->i_res; 1494 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd; 1495 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm); 1496 1497 BUG_ON(gfs2_rs_active(rs)); 1498 1499 spin_lock(&rgd->rd_rsspin); 1500 newn = &rgd->rd_rstree.rb_node; 1501 while (*newn) { 1502 struct gfs2_blkreserv *cur = 1503 rb_entry(*newn, struct gfs2_blkreserv, rs_node); 1504 1505 parent = *newn; 1506 rc = rs_cmp(fsblock, rs->rs_free, cur); 1507 if (rc > 0) 1508 newn = &((*newn)->rb_right); 1509 else if (rc < 0) 1510 newn = &((*newn)->rb_left); 1511 else { 1512 spin_unlock(&rgd->rd_rsspin); 1513 WARN_ON(1); 1514 return; 1515 } 1516 } 1517 1518 rb_link_node(&rs->rs_node, parent, newn); 1519 rb_insert_color(&rs->rs_node, &rgd->rd_rstree); 1520 1521 /* Do our rgrp accounting for the reservation */ 1522 rgd->rd_reserved += rs->rs_free; /* blocks reserved */ 1523 spin_unlock(&rgd->rd_rsspin); 1524 trace_gfs2_rs(rs, TRACE_RS_INSERT); 1525 } 1526 1527 /** 1528 * rgd_free - return the number of free blocks we can allocate. 1529 * @rgd: the resource group 1530 * 1531 * This function returns the number of free blocks for an rgrp. 1532 * That's the clone-free blocks (blocks that are free, not including those 1533 * still being used for unlinked files that haven't been deleted.) 1534 * 1535 * It also subtracts any blocks reserved by someone else, but does not 1536 * include free blocks that are still part of our current reservation, 1537 * because obviously we can (and will) allocate them. 1538 */ 1539 static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs) 1540 { 1541 u32 tot_reserved, tot_free; 1542 1543 if (WARN_ON_ONCE(rgd->rd_reserved < rs->rs_free)) 1544 return 0; 1545 tot_reserved = rgd->rd_reserved - rs->rs_free; 1546 1547 if (rgd->rd_free_clone < tot_reserved) 1548 tot_reserved = 0; 1549 1550 tot_free = rgd->rd_free_clone - tot_reserved; 1551 1552 return tot_free; 1553 } 1554 1555 /** 1556 * rg_mblk_search - find a group of multiple free blocks to form a reservation 1557 * @rgd: the resource group descriptor 1558 * @ip: pointer to the inode for which we're reserving blocks 1559 * @ap: the allocation parameters 1560 * 1561 */ 1562 1563 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip, 1564 const struct gfs2_alloc_parms *ap) 1565 { 1566 struct gfs2_rbm rbm = { .rgd = rgd, }; 1567 u64 goal; 1568 struct gfs2_blkreserv *rs = &ip->i_res; 1569 u32 extlen; 1570 u32 free_blocks = rgd_free(rgd, rs); 1571 int ret; 1572 struct inode *inode = &ip->i_inode; 1573 1574 if (S_ISDIR(inode->i_mode)) 1575 extlen = 1; 1576 else { 1577 extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target); 1578 extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks); 1579 } 1580 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen)) 1581 return; 1582 1583 /* Find bitmap block that contains bits for goal block */ 1584 if (rgrp_contains_block(rgd, ip->i_goal)) 1585 goal = ip->i_goal; 1586 else 1587 goal = rgd->rd_last_alloc + rgd->rd_data0; 1588 1589 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal))) 1590 return; 1591 1592 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true); 1593 if (ret == 0) { 1594 rs->rs_rbm = rbm; 1595 rs->rs_free = extlen; 1596 rs_insert(ip); 1597 } else { 1598 if (goal == rgd->rd_last_alloc + rgd->rd_data0) 1599 rgd->rd_last_alloc = 0; 1600 } 1601 } 1602 1603 /** 1604 * gfs2_next_unreserved_block - Return next block that is not reserved 1605 * @rgd: The resource group 1606 * @block: The starting block 1607 * @length: The required length 1608 * @ip: Ignore any reservations for this inode 1609 * 1610 * If the block does not appear in any reservation, then return the 1611 * block number unchanged. If it does appear in the reservation, then 1612 * keep looking through the tree of reservations in order to find the 1613 * first block number which is not reserved. 1614 */ 1615 1616 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block, 1617 u32 length, 1618 const struct gfs2_inode *ip) 1619 { 1620 struct gfs2_blkreserv *rs; 1621 struct rb_node *n; 1622 int rc; 1623 1624 spin_lock(&rgd->rd_rsspin); 1625 n = rgd->rd_rstree.rb_node; 1626 while (n) { 1627 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1628 rc = rs_cmp(block, length, rs); 1629 if (rc < 0) 1630 n = n->rb_left; 1631 else if (rc > 0) 1632 n = n->rb_right; 1633 else 1634 break; 1635 } 1636 1637 if (n) { 1638 while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) { 1639 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free; 1640 n = n->rb_right; 1641 if (n == NULL) 1642 break; 1643 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1644 } 1645 } 1646 1647 spin_unlock(&rgd->rd_rsspin); 1648 return block; 1649 } 1650 1651 /** 1652 * gfs2_reservation_check_and_update - Check for reservations during block alloc 1653 * @rbm: The current position in the resource group 1654 * @ip: The inode for which we are searching for blocks 1655 * @minext: The minimum extent length 1656 * @maxext: A pointer to the maximum extent structure 1657 * 1658 * This checks the current position in the rgrp to see whether there is 1659 * a reservation covering this block. If not then this function is a 1660 * no-op. If there is, then the position is moved to the end of the 1661 * contiguous reservation(s) so that we are pointing at the first 1662 * non-reserved block. 1663 * 1664 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error 1665 */ 1666 1667 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm, 1668 const struct gfs2_inode *ip, 1669 u32 minext, 1670 struct gfs2_extent *maxext) 1671 { 1672 u64 block = gfs2_rbm_to_block(rbm); 1673 u32 extlen = 1; 1674 u64 nblock; 1675 int ret; 1676 1677 /* 1678 * If we have a minimum extent length, then skip over any extent 1679 * which is less than the min extent length in size. 1680 */ 1681 if (minext) { 1682 extlen = gfs2_free_extlen(rbm, minext); 1683 if (extlen <= maxext->len) 1684 goto fail; 1685 } 1686 1687 /* 1688 * Check the extent which has been found against the reservations 1689 * and skip if parts of it are already reserved 1690 */ 1691 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip); 1692 if (nblock == block) { 1693 if (!minext || extlen >= minext) 1694 return 0; 1695 1696 if (extlen > maxext->len) { 1697 maxext->len = extlen; 1698 maxext->rbm = *rbm; 1699 } 1700 fail: 1701 nblock = block + extlen; 1702 } 1703 ret = gfs2_rbm_from_block(rbm, nblock); 1704 if (ret < 0) 1705 return ret; 1706 return 1; 1707 } 1708 1709 /** 1710 * gfs2_rbm_find - Look for blocks of a particular state 1711 * @rbm: Value/result starting position and final position 1712 * @state: The state which we want to find 1713 * @minext: Pointer to the requested extent length (NULL for a single block) 1714 * This is updated to be the actual reservation size. 1715 * @ip: If set, check for reservations 1716 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping 1717 * around until we've reached the starting point. 1718 * 1719 * Side effects: 1720 * - If looking for free blocks, we set GBF_FULL on each bitmap which 1721 * has no free blocks in it. 1722 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which 1723 * has come up short on a free block search. 1724 * 1725 * Returns: 0 on success, -ENOSPC if there is no block of the requested state 1726 */ 1727 1728 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 1729 const struct gfs2_inode *ip, bool nowrap) 1730 { 1731 bool scan_from_start = rbm->bii == 0 && rbm->offset == 0; 1732 struct buffer_head *bh; 1733 int last_bii; 1734 u32 offset; 1735 u8 *buffer; 1736 bool wrapped = false; 1737 int ret; 1738 struct gfs2_bitmap *bi; 1739 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, }; 1740 1741 /* 1742 * Determine the last bitmap to search. If we're not starting at the 1743 * beginning of a bitmap, we need to search that bitmap twice to scan 1744 * the entire resource group. 1745 */ 1746 last_bii = rbm->bii - (rbm->offset == 0); 1747 1748 while(1) { 1749 bi = rbm_bi(rbm); 1750 if ((ip == NULL || !gfs2_rs_active(&ip->i_res)) && 1751 test_bit(GBF_FULL, &bi->bi_flags) && 1752 (state == GFS2_BLKST_FREE)) 1753 goto next_bitmap; 1754 1755 bh = bi->bi_bh; 1756 buffer = bh->b_data + bi->bi_offset; 1757 WARN_ON(!buffer_uptodate(bh)); 1758 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone) 1759 buffer = bi->bi_clone + bi->bi_offset; 1760 offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state); 1761 if (offset == BFITNOENT) { 1762 if (state == GFS2_BLKST_FREE && rbm->offset == 0) 1763 set_bit(GBF_FULL, &bi->bi_flags); 1764 goto next_bitmap; 1765 } 1766 rbm->offset = offset; 1767 if (ip == NULL) 1768 return 0; 1769 1770 ret = gfs2_reservation_check_and_update(rbm, ip, 1771 minext ? *minext : 0, 1772 &maxext); 1773 if (ret == 0) 1774 return 0; 1775 if (ret > 0) 1776 goto next_iter; 1777 if (ret == -E2BIG) { 1778 rbm->bii = 0; 1779 rbm->offset = 0; 1780 goto res_covered_end_of_rgrp; 1781 } 1782 return ret; 1783 1784 next_bitmap: /* Find next bitmap in the rgrp */ 1785 rbm->offset = 0; 1786 rbm->bii++; 1787 if (rbm->bii == rbm->rgd->rd_length) 1788 rbm->bii = 0; 1789 res_covered_end_of_rgrp: 1790 if (rbm->bii == 0) { 1791 if (wrapped) 1792 break; 1793 wrapped = true; 1794 if (nowrap) 1795 break; 1796 } 1797 next_iter: 1798 /* Have we scanned the entire resource group? */ 1799 if (wrapped && rbm->bii > last_bii) 1800 break; 1801 } 1802 1803 if (minext == NULL || state != GFS2_BLKST_FREE) 1804 return -ENOSPC; 1805 1806 /* If the extent was too small, and it's smaller than the smallest 1807 to have failed before, remember for future reference that it's 1808 useless to search this rgrp again for this amount or more. */ 1809 if (wrapped && (scan_from_start || rbm->bii > last_bii) && 1810 *minext < rbm->rgd->rd_extfail_pt) 1811 rbm->rgd->rd_extfail_pt = *minext; 1812 1813 /* If the maximum extent we found is big enough to fulfill the 1814 minimum requirements, use it anyway. */ 1815 if (maxext.len) { 1816 *rbm = maxext.rbm; 1817 *minext = maxext.len; 1818 return 0; 1819 } 1820 1821 return -ENOSPC; 1822 } 1823 1824 /** 1825 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes 1826 * @rgd: The rgrp 1827 * @last_unlinked: block address of the last dinode we unlinked 1828 * @skip: block address we should explicitly not unlink 1829 * 1830 * Returns: 0 if no error 1831 * The inode, if one has been found, in inode. 1832 */ 1833 1834 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) 1835 { 1836 u64 block; 1837 struct gfs2_sbd *sdp = rgd->rd_sbd; 1838 struct gfs2_glock *gl; 1839 struct gfs2_inode *ip; 1840 int error; 1841 int found = 0; 1842 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 }; 1843 1844 while (1) { 1845 down_write(&sdp->sd_log_flush_lock); 1846 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL, 1847 true); 1848 up_write(&sdp->sd_log_flush_lock); 1849 if (error == -ENOSPC) 1850 break; 1851 if (WARN_ON_ONCE(error)) 1852 break; 1853 1854 block = gfs2_rbm_to_block(&rbm); 1855 if (gfs2_rbm_from_block(&rbm, block + 1)) 1856 break; 1857 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked) 1858 continue; 1859 if (block == skip) 1860 continue; 1861 *last_unlinked = block; 1862 1863 error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl); 1864 if (error) 1865 continue; 1866 1867 /* If the inode is already in cache, we can ignore it here 1868 * because the existing inode disposal code will deal with 1869 * it when all refs have gone away. Accessing gl_object like 1870 * this is not safe in general. Here it is ok because we do 1871 * not dereference the pointer, and we only need an approx 1872 * answer to whether it is NULL or not. 1873 */ 1874 ip = gl->gl_object; 1875 1876 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0) 1877 gfs2_glock_put(gl); 1878 else 1879 found++; 1880 1881 /* Limit reclaim to sensible number of tasks */ 1882 if (found > NR_CPUS) 1883 return; 1884 } 1885 1886 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1887 return; 1888 } 1889 1890 /** 1891 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested 1892 * @rgd: The rgrp in question 1893 * @loops: An indication of how picky we can be (0=very, 1=less so) 1894 * 1895 * This function uses the recently added glock statistics in order to 1896 * figure out whether a parciular resource group is suffering from 1897 * contention from multiple nodes. This is done purely on the basis 1898 * of timings, since this is the only data we have to work with and 1899 * our aim here is to reject a resource group which is highly contended 1900 * but (very important) not to do this too often in order to ensure that 1901 * we do not land up introducing fragmentation by changing resource 1902 * groups when not actually required. 1903 * 1904 * The calculation is fairly simple, we want to know whether the SRTTB 1905 * (i.e. smoothed round trip time for blocking operations) to acquire 1906 * the lock for this rgrp's glock is significantly greater than the 1907 * time taken for resource groups on average. We introduce a margin in 1908 * the form of the variable @var which is computed as the sum of the two 1909 * respective variences, and multiplied by a factor depending on @loops 1910 * and whether we have a lot of data to base the decision on. This is 1911 * then tested against the square difference of the means in order to 1912 * decide whether the result is statistically significant or not. 1913 * 1914 * Returns: A boolean verdict on the congestion status 1915 */ 1916 1917 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops) 1918 { 1919 const struct gfs2_glock *gl = rgd->rd_gl; 1920 const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 1921 struct gfs2_lkstats *st; 1922 u64 r_dcount, l_dcount; 1923 u64 l_srttb, a_srttb = 0; 1924 s64 srttb_diff; 1925 u64 sqr_diff; 1926 u64 var; 1927 int cpu, nonzero = 0; 1928 1929 preempt_disable(); 1930 for_each_present_cpu(cpu) { 1931 st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP]; 1932 if (st->stats[GFS2_LKS_SRTTB]) { 1933 a_srttb += st->stats[GFS2_LKS_SRTTB]; 1934 nonzero++; 1935 } 1936 } 1937 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP]; 1938 if (nonzero) 1939 do_div(a_srttb, nonzero); 1940 r_dcount = st->stats[GFS2_LKS_DCOUNT]; 1941 var = st->stats[GFS2_LKS_SRTTVARB] + 1942 gl->gl_stats.stats[GFS2_LKS_SRTTVARB]; 1943 preempt_enable(); 1944 1945 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB]; 1946 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT]; 1947 1948 if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0)) 1949 return false; 1950 1951 srttb_diff = a_srttb - l_srttb; 1952 sqr_diff = srttb_diff * srttb_diff; 1953 1954 var *= 2; 1955 if (l_dcount < 8 || r_dcount < 8) 1956 var *= 2; 1957 if (loops == 1) 1958 var *= 2; 1959 1960 return ((srttb_diff < 0) && (sqr_diff > var)); 1961 } 1962 1963 /** 1964 * gfs2_rgrp_used_recently 1965 * @rs: The block reservation with the rgrp to test 1966 * @msecs: The time limit in milliseconds 1967 * 1968 * Returns: True if the rgrp glock has been used within the time limit 1969 */ 1970 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs, 1971 u64 msecs) 1972 { 1973 u64 tdiff; 1974 1975 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(), 1976 rs->rs_rbm.rgd->rd_gl->gl_dstamp)); 1977 1978 return tdiff > (msecs * 1000 * 1000); 1979 } 1980 1981 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip) 1982 { 1983 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1984 u32 skip; 1985 1986 get_random_bytes(&skip, sizeof(skip)); 1987 return skip % sdp->sd_rgrps; 1988 } 1989 1990 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin) 1991 { 1992 struct gfs2_rgrpd *rgd = *pos; 1993 struct gfs2_sbd *sdp = rgd->rd_sbd; 1994 1995 rgd = gfs2_rgrpd_get_next(rgd); 1996 if (rgd == NULL) 1997 rgd = gfs2_rgrpd_get_first(sdp); 1998 *pos = rgd; 1999 if (rgd != begin) /* If we didn't wrap */ 2000 return true; 2001 return false; 2002 } 2003 2004 /** 2005 * fast_to_acquire - determine if a resource group will be fast to acquire 2006 * 2007 * If this is one of our preferred rgrps, it should be quicker to acquire, 2008 * because we tried to set ourselves up as dlm lock master. 2009 */ 2010 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd) 2011 { 2012 struct gfs2_glock *gl = rgd->rd_gl; 2013 2014 if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) && 2015 !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) && 2016 !test_bit(GLF_DEMOTE, &gl->gl_flags)) 2017 return 1; 2018 if (rgd->rd_flags & GFS2_RDF_PREFERRED) 2019 return 1; 2020 return 0; 2021 } 2022 2023 /** 2024 * gfs2_inplace_reserve - Reserve space in the filesystem 2025 * @ip: the inode to reserve space for 2026 * @ap: the allocation parameters 2027 * 2028 * We try our best to find an rgrp that has at least ap->target blocks 2029 * available. After a couple of passes (loops == 2), the prospects of finding 2030 * such an rgrp diminish. At this stage, we return the first rgrp that has 2031 * at least ap->min_target blocks available. Either way, we set ap->allowed to 2032 * the number of blocks available in the chosen rgrp. 2033 * 2034 * Returns: 0 on success, 2035 * -ENOMEM if a suitable rgrp can't be found 2036 * errno otherwise 2037 */ 2038 2039 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap) 2040 { 2041 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2042 struct gfs2_rgrpd *begin = NULL; 2043 struct gfs2_blkreserv *rs = &ip->i_res; 2044 int error = 0, rg_locked, flags = 0; 2045 u64 last_unlinked = NO_BLOCK; 2046 int loops = 0; 2047 u32 free_blocks, skip = 0; 2048 2049 if (sdp->sd_args.ar_rgrplvb) 2050 flags |= GL_SKIP; 2051 if (gfs2_assert_warn(sdp, ap->target)) 2052 return -EINVAL; 2053 if (gfs2_rs_active(rs)) { 2054 begin = rs->rs_rbm.rgd; 2055 } else if (rs->rs_rbm.rgd && 2056 rgrp_contains_block(rs->rs_rbm.rgd, ip->i_goal)) { 2057 begin = rs->rs_rbm.rgd; 2058 } else { 2059 check_and_update_goal(ip); 2060 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1); 2061 } 2062 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV)) 2063 skip = gfs2_orlov_skip(ip); 2064 if (rs->rs_rbm.rgd == NULL) 2065 return -EBADSLT; 2066 2067 while (loops < 3) { 2068 rg_locked = 1; 2069 2070 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) { 2071 rg_locked = 0; 2072 if (skip && skip--) 2073 goto next_rgrp; 2074 if (!gfs2_rs_active(rs)) { 2075 if (loops == 0 && 2076 !fast_to_acquire(rs->rs_rbm.rgd)) 2077 goto next_rgrp; 2078 if ((loops < 2) && 2079 gfs2_rgrp_used_recently(rs, 1000) && 2080 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 2081 goto next_rgrp; 2082 } 2083 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl, 2084 LM_ST_EXCLUSIVE, flags, 2085 &ip->i_rgd_gh); 2086 if (unlikely(error)) 2087 return error; 2088 if (!gfs2_rs_active(rs) && (loops < 2) && 2089 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 2090 goto skip_rgrp; 2091 if (sdp->sd_args.ar_rgrplvb) { 2092 error = update_rgrp_lvb(rs->rs_rbm.rgd); 2093 if (unlikely(error)) { 2094 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2095 return error; 2096 } 2097 } 2098 } 2099 2100 /* Skip unusable resource groups */ 2101 if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | 2102 GFS2_RDF_ERROR)) || 2103 (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt)) 2104 goto skip_rgrp; 2105 2106 if (sdp->sd_args.ar_rgrplvb) 2107 gfs2_rgrp_bh_get(rs->rs_rbm.rgd); 2108 2109 /* Get a reservation if we don't already have one */ 2110 if (!gfs2_rs_active(rs)) 2111 rg_mblk_search(rs->rs_rbm.rgd, ip, ap); 2112 2113 /* Skip rgrps when we can't get a reservation on first pass */ 2114 if (!gfs2_rs_active(rs) && (loops < 1)) 2115 goto check_rgrp; 2116 2117 /* If rgrp has enough free space, use it */ 2118 free_blocks = rgd_free(rs->rs_rbm.rgd, rs); 2119 if (free_blocks >= ap->target || 2120 (loops == 2 && ap->min_target && 2121 free_blocks >= ap->min_target)) { 2122 ap->allowed = free_blocks; 2123 return 0; 2124 } 2125 check_rgrp: 2126 /* Check for unlinked inodes which can be reclaimed */ 2127 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK) 2128 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked, 2129 ip->i_no_addr); 2130 skip_rgrp: 2131 /* Drop reservation, if we couldn't use reserved rgrp */ 2132 if (gfs2_rs_active(rs)) 2133 gfs2_rs_deltree(rs); 2134 2135 /* Unlock rgrp if required */ 2136 if (!rg_locked) 2137 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2138 next_rgrp: 2139 /* Find the next rgrp, and continue looking */ 2140 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin)) 2141 continue; 2142 if (skip) 2143 continue; 2144 2145 /* If we've scanned all the rgrps, but found no free blocks 2146 * then this checks for some less likely conditions before 2147 * trying again. 2148 */ 2149 loops++; 2150 /* Check that fs hasn't grown if writing to rindex */ 2151 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { 2152 error = gfs2_ri_update(ip); 2153 if (error) 2154 return error; 2155 } 2156 /* Flushing the log may release space */ 2157 if (loops == 2) 2158 gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL | 2159 GFS2_LFC_INPLACE_RESERVE); 2160 } 2161 2162 return -ENOSPC; 2163 } 2164 2165 /** 2166 * gfs2_inplace_release - release an inplace reservation 2167 * @ip: the inode the reservation was taken out on 2168 * 2169 * Release a reservation made by gfs2_inplace_reserve(). 2170 */ 2171 2172 void gfs2_inplace_release(struct gfs2_inode *ip) 2173 { 2174 if (gfs2_holder_initialized(&ip->i_rgd_gh)) 2175 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2176 } 2177 2178 /** 2179 * gfs2_alloc_extent - allocate an extent from a given bitmap 2180 * @rbm: the resource group information 2181 * @dinode: TRUE if the first block we allocate is for a dinode 2182 * @n: The extent length (value/result) 2183 * 2184 * Add the bitmap buffer to the transaction. 2185 * Set the found bits to @new_state to change block's allocation state. 2186 */ 2187 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode, 2188 unsigned int *n) 2189 { 2190 struct gfs2_rbm pos = { .rgd = rbm->rgd, }; 2191 const unsigned int elen = *n; 2192 u64 block; 2193 int ret; 2194 2195 *n = 1; 2196 block = gfs2_rbm_to_block(rbm); 2197 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh); 2198 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2199 block++; 2200 while (*n < elen) { 2201 ret = gfs2_rbm_from_block(&pos, block); 2202 if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE) 2203 break; 2204 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh); 2205 gfs2_setbit(&pos, true, GFS2_BLKST_USED); 2206 (*n)++; 2207 block++; 2208 } 2209 } 2210 2211 /** 2212 * rgblk_free - Change alloc state of given block(s) 2213 * @sdp: the filesystem 2214 * @rgd: the resource group the blocks are in 2215 * @bstart: the start of a run of blocks to free 2216 * @blen: the length of the block run (all must lie within ONE RG!) 2217 * @new_state: GFS2_BLKST_XXX the after-allocation block state 2218 */ 2219 2220 static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd, 2221 u64 bstart, u32 blen, unsigned char new_state) 2222 { 2223 struct gfs2_rbm rbm; 2224 struct gfs2_bitmap *bi, *bi_prev = NULL; 2225 2226 rbm.rgd = rgd; 2227 if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart))) 2228 return; 2229 while (blen--) { 2230 bi = rbm_bi(&rbm); 2231 if (bi != bi_prev) { 2232 if (!bi->bi_clone) { 2233 bi->bi_clone = kmalloc(bi->bi_bh->b_size, 2234 GFP_NOFS | __GFP_NOFAIL); 2235 memcpy(bi->bi_clone + bi->bi_offset, 2236 bi->bi_bh->b_data + bi->bi_offset, 2237 bi->bi_bytes); 2238 } 2239 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh); 2240 bi_prev = bi; 2241 } 2242 gfs2_setbit(&rbm, false, new_state); 2243 gfs2_rbm_incr(&rbm); 2244 } 2245 } 2246 2247 /** 2248 * gfs2_rgrp_dump - print out an rgrp 2249 * @seq: The iterator 2250 * @gl: The glock in question 2251 * @fs_id_buf: pointer to file system id (if requested) 2252 * 2253 */ 2254 2255 void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_glock *gl, 2256 const char *fs_id_buf) 2257 { 2258 struct gfs2_rgrpd *rgd = gl->gl_object; 2259 struct gfs2_blkreserv *trs; 2260 const struct rb_node *n; 2261 2262 if (rgd == NULL) 2263 return; 2264 gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n", 2265 fs_id_buf, 2266 (unsigned long long)rgd->rd_addr, rgd->rd_flags, 2267 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes, 2268 rgd->rd_reserved, rgd->rd_extfail_pt); 2269 if (rgd->rd_sbd->sd_args.ar_rgrplvb) { 2270 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 2271 2272 gfs2_print_dbg(seq, "%s L: f:%02x b:%u i:%u\n", fs_id_buf, 2273 be32_to_cpu(rgl->rl_flags), 2274 be32_to_cpu(rgl->rl_free), 2275 be32_to_cpu(rgl->rl_dinodes)); 2276 } 2277 spin_lock(&rgd->rd_rsspin); 2278 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) { 2279 trs = rb_entry(n, struct gfs2_blkreserv, rs_node); 2280 dump_rs(seq, trs, fs_id_buf); 2281 } 2282 spin_unlock(&rgd->rd_rsspin); 2283 } 2284 2285 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) 2286 { 2287 struct gfs2_sbd *sdp = rgd->rd_sbd; 2288 char fs_id_buf[sizeof(sdp->sd_fsname) + 7]; 2289 2290 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", 2291 (unsigned long long)rgd->rd_addr); 2292 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); 2293 sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname); 2294 gfs2_rgrp_dump(NULL, rgd->rd_gl, fs_id_buf); 2295 rgd->rd_flags |= GFS2_RDF_ERROR; 2296 } 2297 2298 /** 2299 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation 2300 * @ip: The inode we have just allocated blocks for 2301 * @rbm: The start of the allocated blocks 2302 * @len: The extent length 2303 * 2304 * Adjusts a reservation after an allocation has taken place. If the 2305 * reservation does not match the allocation, or if it is now empty 2306 * then it is removed. 2307 */ 2308 2309 static void gfs2_adjust_reservation(struct gfs2_inode *ip, 2310 const struct gfs2_rbm *rbm, unsigned len) 2311 { 2312 struct gfs2_blkreserv *rs = &ip->i_res; 2313 struct gfs2_rgrpd *rgd = rbm->rgd; 2314 unsigned rlen; 2315 u64 block; 2316 int ret; 2317 2318 spin_lock(&rgd->rd_rsspin); 2319 if (gfs2_rs_active(rs)) { 2320 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) { 2321 block = gfs2_rbm_to_block(rbm); 2322 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len); 2323 rlen = min(rs->rs_free, len); 2324 rs->rs_free -= rlen; 2325 rgd->rd_reserved -= rlen; 2326 trace_gfs2_rs(rs, TRACE_RS_CLAIM); 2327 if (rs->rs_free && !ret) 2328 goto out; 2329 /* We used up our block reservation, so we should 2330 reserve more blocks next time. */ 2331 atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint); 2332 } 2333 __rs_deltree(rs); 2334 } 2335 out: 2336 spin_unlock(&rgd->rd_rsspin); 2337 } 2338 2339 /** 2340 * gfs2_set_alloc_start - Set starting point for block allocation 2341 * @rbm: The rbm which will be set to the required location 2342 * @ip: The gfs2 inode 2343 * @dinode: Flag to say if allocation includes a new inode 2344 * 2345 * This sets the starting point from the reservation if one is active 2346 * otherwise it falls back to guessing a start point based on the 2347 * inode's goal block or the last allocation point in the rgrp. 2348 */ 2349 2350 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm, 2351 const struct gfs2_inode *ip, bool dinode) 2352 { 2353 u64 goal; 2354 2355 if (gfs2_rs_active(&ip->i_res)) { 2356 *rbm = ip->i_res.rs_rbm; 2357 return; 2358 } 2359 2360 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal)) 2361 goal = ip->i_goal; 2362 else 2363 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0; 2364 2365 if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) { 2366 rbm->bii = 0; 2367 rbm->offset = 0; 2368 } 2369 } 2370 2371 /** 2372 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode 2373 * @ip: the inode to allocate the block for 2374 * @bn: Used to return the starting block number 2375 * @nblocks: requested number of blocks/extent length (value/result) 2376 * @dinode: 1 if we're allocating a dinode block, else 0 2377 * @generation: the generation number of the inode 2378 * 2379 * Returns: 0 or error 2380 */ 2381 2382 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks, 2383 bool dinode, u64 *generation) 2384 { 2385 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2386 struct buffer_head *dibh; 2387 struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rbm.rgd, }; 2388 unsigned int ndata; 2389 u64 block; /* block, within the file system scope */ 2390 int error; 2391 2392 gfs2_set_alloc_start(&rbm, ip, dinode); 2393 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false); 2394 2395 if (error == -ENOSPC) { 2396 gfs2_set_alloc_start(&rbm, ip, dinode); 2397 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false); 2398 } 2399 2400 /* Since all blocks are reserved in advance, this shouldn't happen */ 2401 if (error) { 2402 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n", 2403 (unsigned long long)ip->i_no_addr, error, *nblocks, 2404 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags), 2405 rbm.rgd->rd_extfail_pt); 2406 goto rgrp_error; 2407 } 2408 2409 gfs2_alloc_extent(&rbm, dinode, nblocks); 2410 block = gfs2_rbm_to_block(&rbm); 2411 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0; 2412 if (gfs2_rs_active(&ip->i_res)) 2413 gfs2_adjust_reservation(ip, &rbm, *nblocks); 2414 ndata = *nblocks; 2415 if (dinode) 2416 ndata--; 2417 2418 if (!dinode) { 2419 ip->i_goal = block + ndata - 1; 2420 error = gfs2_meta_inode_buffer(ip, &dibh); 2421 if (error == 0) { 2422 struct gfs2_dinode *di = 2423 (struct gfs2_dinode *)dibh->b_data; 2424 gfs2_trans_add_meta(ip->i_gl, dibh); 2425 di->di_goal_meta = di->di_goal_data = 2426 cpu_to_be64(ip->i_goal); 2427 brelse(dibh); 2428 } 2429 } 2430 if (rbm.rgd->rd_free < *nblocks) { 2431 fs_warn(sdp, "nblocks=%u\n", *nblocks); 2432 goto rgrp_error; 2433 } 2434 2435 rbm.rgd->rd_free -= *nblocks; 2436 if (dinode) { 2437 rbm.rgd->rd_dinodes++; 2438 *generation = rbm.rgd->rd_igeneration++; 2439 if (*generation == 0) 2440 *generation = rbm.rgd->rd_igeneration++; 2441 } 2442 2443 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh); 2444 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data); 2445 2446 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0); 2447 if (dinode) 2448 gfs2_trans_remove_revoke(sdp, block, *nblocks); 2449 2450 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid); 2451 2452 rbm.rgd->rd_free_clone -= *nblocks; 2453 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks, 2454 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2455 *bn = block; 2456 return 0; 2457 2458 rgrp_error: 2459 gfs2_rgrp_error(rbm.rgd); 2460 return -EIO; 2461 } 2462 2463 /** 2464 * __gfs2_free_blocks - free a contiguous run of block(s) 2465 * @ip: the inode these blocks are being freed from 2466 * @rgd: the resource group the blocks are in 2467 * @bstart: first block of a run of contiguous blocks 2468 * @blen: the length of the block run 2469 * @meta: 1 if the blocks represent metadata 2470 * 2471 */ 2472 2473 void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd, 2474 u64 bstart, u32 blen, int meta) 2475 { 2476 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2477 2478 rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE); 2479 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE); 2480 rgd->rd_free += blen; 2481 rgd->rd_flags &= ~GFS2_RGF_TRIMMED; 2482 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2483 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2484 2485 /* Directories keep their data in the metadata address space */ 2486 if (meta || ip->i_depth) 2487 gfs2_meta_wipe(ip, bstart, blen); 2488 } 2489 2490 /** 2491 * gfs2_free_meta - free a contiguous run of data block(s) 2492 * @ip: the inode these blocks are being freed from 2493 * @rgd: the resource group the blocks are in 2494 * @bstart: first block of a run of contiguous blocks 2495 * @blen: the length of the block run 2496 * 2497 */ 2498 2499 void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd, 2500 u64 bstart, u32 blen) 2501 { 2502 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2503 2504 __gfs2_free_blocks(ip, rgd, bstart, blen, 1); 2505 gfs2_statfs_change(sdp, 0, +blen, 0); 2506 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); 2507 } 2508 2509 void gfs2_unlink_di(struct inode *inode) 2510 { 2511 struct gfs2_inode *ip = GFS2_I(inode); 2512 struct gfs2_sbd *sdp = GFS2_SB(inode); 2513 struct gfs2_rgrpd *rgd; 2514 u64 blkno = ip->i_no_addr; 2515 2516 rgd = gfs2_blk2rgrpd(sdp, blkno, true); 2517 if (!rgd) 2518 return; 2519 rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2520 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2521 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2522 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2523 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1); 2524 } 2525 2526 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) 2527 { 2528 struct gfs2_sbd *sdp = rgd->rd_sbd; 2529 2530 rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2531 if (!rgd->rd_dinodes) 2532 gfs2_consist_rgrpd(rgd); 2533 rgd->rd_dinodes--; 2534 rgd->rd_free++; 2535 2536 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2537 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2538 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1); 2539 2540 gfs2_statfs_change(sdp, 0, +1, -1); 2541 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2542 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); 2543 gfs2_meta_wipe(ip, ip->i_no_addr, 1); 2544 } 2545 2546 /** 2547 * gfs2_check_blk_type - Check the type of a block 2548 * @sdp: The superblock 2549 * @no_addr: The block number to check 2550 * @type: The block type we are looking for 2551 * 2552 * Returns: 0 if the block type matches the expected type 2553 * -ESTALE if it doesn't match 2554 * or -ve errno if something went wrong while checking 2555 */ 2556 2557 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) 2558 { 2559 struct gfs2_rgrpd *rgd; 2560 struct gfs2_holder rgd_gh; 2561 struct gfs2_rbm rbm; 2562 int error = -EINVAL; 2563 2564 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1); 2565 if (!rgd) 2566 goto fail; 2567 2568 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); 2569 if (error) 2570 goto fail; 2571 2572 rbm.rgd = rgd; 2573 error = gfs2_rbm_from_block(&rbm, no_addr); 2574 if (WARN_ON_ONCE(error)) 2575 goto fail; 2576 2577 if (gfs2_testbit(&rbm, false) != type) 2578 error = -ESTALE; 2579 2580 gfs2_glock_dq_uninit(&rgd_gh); 2581 fail: 2582 return error; 2583 } 2584 2585 /** 2586 * gfs2_rlist_add - add a RG to a list of RGs 2587 * @ip: the inode 2588 * @rlist: the list of resource groups 2589 * @block: the block 2590 * 2591 * Figure out what RG a block belongs to and add that RG to the list 2592 * 2593 * FIXME: Don't use NOFAIL 2594 * 2595 */ 2596 2597 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, 2598 u64 block) 2599 { 2600 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2601 struct gfs2_rgrpd *rgd; 2602 struct gfs2_rgrpd **tmp; 2603 unsigned int new_space; 2604 unsigned int x; 2605 2606 if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) 2607 return; 2608 2609 /* 2610 * The resource group last accessed is kept in the last position. 2611 */ 2612 2613 if (rlist->rl_rgrps) { 2614 rgd = rlist->rl_rgd[rlist->rl_rgrps - 1]; 2615 if (rgrp_contains_block(rgd, block)) 2616 return; 2617 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2618 } else { 2619 rgd = ip->i_res.rs_rbm.rgd; 2620 if (!rgd || !rgrp_contains_block(rgd, block)) 2621 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2622 } 2623 2624 if (!rgd) { 2625 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", 2626 (unsigned long long)block); 2627 return; 2628 } 2629 2630 for (x = 0; x < rlist->rl_rgrps; x++) { 2631 if (rlist->rl_rgd[x] == rgd) { 2632 swap(rlist->rl_rgd[x], 2633 rlist->rl_rgd[rlist->rl_rgrps - 1]); 2634 return; 2635 } 2636 } 2637 2638 if (rlist->rl_rgrps == rlist->rl_space) { 2639 new_space = rlist->rl_space + 10; 2640 2641 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), 2642 GFP_NOFS | __GFP_NOFAIL); 2643 2644 if (rlist->rl_rgd) { 2645 memcpy(tmp, rlist->rl_rgd, 2646 rlist->rl_space * sizeof(struct gfs2_rgrpd *)); 2647 kfree(rlist->rl_rgd); 2648 } 2649 2650 rlist->rl_space = new_space; 2651 rlist->rl_rgd = tmp; 2652 } 2653 2654 rlist->rl_rgd[rlist->rl_rgrps++] = rgd; 2655 } 2656 2657 /** 2658 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate 2659 * and initialize an array of glock holders for them 2660 * @rlist: the list of resource groups 2661 * 2662 * FIXME: Don't use NOFAIL 2663 * 2664 */ 2665 2666 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist) 2667 { 2668 unsigned int x; 2669 2670 rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps, 2671 sizeof(struct gfs2_holder), 2672 GFP_NOFS | __GFP_NOFAIL); 2673 for (x = 0; x < rlist->rl_rgrps; x++) 2674 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, 2675 LM_ST_EXCLUSIVE, 0, 2676 &rlist->rl_ghs[x]); 2677 } 2678 2679 /** 2680 * gfs2_rlist_free - free a resource group list 2681 * @rlist: the list of resource groups 2682 * 2683 */ 2684 2685 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) 2686 { 2687 unsigned int x; 2688 2689 kfree(rlist->rl_rgd); 2690 2691 if (rlist->rl_ghs) { 2692 for (x = 0; x < rlist->rl_rgrps; x++) 2693 gfs2_holder_uninit(&rlist->rl_ghs[x]); 2694 kfree(rlist->rl_ghs); 2695 rlist->rl_ghs = NULL; 2696 } 2697 } 2698 2699