xref: /openbmc/linux/fs/gfs2/rgrp.c (revision 110e6f26)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/slab.h>
13 #include <linux/spinlock.h>
14 #include <linux/completion.h>
15 #include <linux/buffer_head.h>
16 #include <linux/fs.h>
17 #include <linux/gfs2_ondisk.h>
18 #include <linux/prefetch.h>
19 #include <linux/blkdev.h>
20 #include <linux/rbtree.h>
21 #include <linux/random.h>
22 
23 #include "gfs2.h"
24 #include "incore.h"
25 #include "glock.h"
26 #include "glops.h"
27 #include "lops.h"
28 #include "meta_io.h"
29 #include "quota.h"
30 #include "rgrp.h"
31 #include "super.h"
32 #include "trans.h"
33 #include "util.h"
34 #include "log.h"
35 #include "inode.h"
36 #include "trace_gfs2.h"
37 
38 #define BFITNOENT ((u32)~0)
39 #define NO_BLOCK ((u64)~0)
40 
41 #if BITS_PER_LONG == 32
42 #define LBITMASK   (0x55555555UL)
43 #define LBITSKIP55 (0x55555555UL)
44 #define LBITSKIP00 (0x00000000UL)
45 #else
46 #define LBITMASK   (0x5555555555555555UL)
47 #define LBITSKIP55 (0x5555555555555555UL)
48 #define LBITSKIP00 (0x0000000000000000UL)
49 #endif
50 
51 /*
52  * These routines are used by the resource group routines (rgrp.c)
53  * to keep track of block allocation.  Each block is represented by two
54  * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
55  *
56  * 0 = Free
57  * 1 = Used (not metadata)
58  * 2 = Unlinked (still in use) inode
59  * 3 = Used (metadata)
60  */
61 
62 struct gfs2_extent {
63 	struct gfs2_rbm rbm;
64 	u32 len;
65 };
66 
67 static const char valid_change[16] = {
68 	        /* current */
69 	/* n */ 0, 1, 1, 1,
70 	/* e */ 1, 0, 0, 0,
71 	/* w */ 0, 0, 0, 1,
72 	        1, 0, 0, 0
73 };
74 
75 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
76 			 const struct gfs2_inode *ip, bool nowrap,
77 			 const struct gfs2_alloc_parms *ap);
78 
79 
80 /**
81  * gfs2_setbit - Set a bit in the bitmaps
82  * @rbm: The position of the bit to set
83  * @do_clone: Also set the clone bitmap, if it exists
84  * @new_state: the new state of the block
85  *
86  */
87 
88 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
89 			       unsigned char new_state)
90 {
91 	unsigned char *byte1, *byte2, *end, cur_state;
92 	struct gfs2_bitmap *bi = rbm_bi(rbm);
93 	unsigned int buflen = bi->bi_len;
94 	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
95 
96 	byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
97 	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
98 
99 	BUG_ON(byte1 >= end);
100 
101 	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
102 
103 	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
104 		pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n",
105 			rbm->offset, cur_state, new_state);
106 		pr_warn("rgrp=0x%llx bi_start=0x%x\n",
107 			(unsigned long long)rbm->rgd->rd_addr, bi->bi_start);
108 		pr_warn("bi_offset=0x%x bi_len=0x%x\n",
109 			bi->bi_offset, bi->bi_len);
110 		dump_stack();
111 		gfs2_consist_rgrpd(rbm->rgd);
112 		return;
113 	}
114 	*byte1 ^= (cur_state ^ new_state) << bit;
115 
116 	if (do_clone && bi->bi_clone) {
117 		byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
118 		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
119 		*byte2 ^= (cur_state ^ new_state) << bit;
120 	}
121 }
122 
123 /**
124  * gfs2_testbit - test a bit in the bitmaps
125  * @rbm: The bit to test
126  *
127  * Returns: The two bit block state of the requested bit
128  */
129 
130 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
131 {
132 	struct gfs2_bitmap *bi = rbm_bi(rbm);
133 	const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset;
134 	const u8 *byte;
135 	unsigned int bit;
136 
137 	byte = buffer + (rbm->offset / GFS2_NBBY);
138 	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
139 
140 	return (*byte >> bit) & GFS2_BIT_MASK;
141 }
142 
143 /**
144  * gfs2_bit_search
145  * @ptr: Pointer to bitmap data
146  * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
147  * @state: The state we are searching for
148  *
149  * We xor the bitmap data with a patter which is the bitwise opposite
150  * of what we are looking for, this gives rise to a pattern of ones
151  * wherever there is a match. Since we have two bits per entry, we
152  * take this pattern, shift it down by one place and then and it with
153  * the original. All the even bit positions (0,2,4, etc) then represent
154  * successful matches, so we mask with 0x55555..... to remove the unwanted
155  * odd bit positions.
156  *
157  * This allows searching of a whole u64 at once (32 blocks) with a
158  * single test (on 64 bit arches).
159  */
160 
161 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
162 {
163 	u64 tmp;
164 	static const u64 search[] = {
165 		[0] = 0xffffffffffffffffULL,
166 		[1] = 0xaaaaaaaaaaaaaaaaULL,
167 		[2] = 0x5555555555555555ULL,
168 		[3] = 0x0000000000000000ULL,
169 	};
170 	tmp = le64_to_cpu(*ptr) ^ search[state];
171 	tmp &= (tmp >> 1);
172 	tmp &= mask;
173 	return tmp;
174 }
175 
176 /**
177  * rs_cmp - multi-block reservation range compare
178  * @blk: absolute file system block number of the new reservation
179  * @len: number of blocks in the new reservation
180  * @rs: existing reservation to compare against
181  *
182  * returns: 1 if the block range is beyond the reach of the reservation
183  *         -1 if the block range is before the start of the reservation
184  *          0 if the block range overlaps with the reservation
185  */
186 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
187 {
188 	u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
189 
190 	if (blk >= startblk + rs->rs_free)
191 		return 1;
192 	if (blk + len - 1 < startblk)
193 		return -1;
194 	return 0;
195 }
196 
197 /**
198  * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
199  *       a block in a given allocation state.
200  * @buf: the buffer that holds the bitmaps
201  * @len: the length (in bytes) of the buffer
202  * @goal: start search at this block's bit-pair (within @buffer)
203  * @state: GFS2_BLKST_XXX the state of the block we're looking for.
204  *
205  * Scope of @goal and returned block number is only within this bitmap buffer,
206  * not entire rgrp or filesystem.  @buffer will be offset from the actual
207  * beginning of a bitmap block buffer, skipping any header structures, but
208  * headers are always a multiple of 64 bits long so that the buffer is
209  * always aligned to a 64 bit boundary.
210  *
211  * The size of the buffer is in bytes, but is it assumed that it is
212  * always ok to read a complete multiple of 64 bits at the end
213  * of the block in case the end is no aligned to a natural boundary.
214  *
215  * Return: the block number (bitmap buffer scope) that was found
216  */
217 
218 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
219 		       u32 goal, u8 state)
220 {
221 	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
222 	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
223 	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
224 	u64 tmp;
225 	u64 mask = 0x5555555555555555ULL;
226 	u32 bit;
227 
228 	/* Mask off bits we don't care about at the start of the search */
229 	mask <<= spoint;
230 	tmp = gfs2_bit_search(ptr, mask, state);
231 	ptr++;
232 	while(tmp == 0 && ptr < end) {
233 		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
234 		ptr++;
235 	}
236 	/* Mask off any bits which are more than len bytes from the start */
237 	if (ptr == end && (len & (sizeof(u64) - 1)))
238 		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
239 	/* Didn't find anything, so return */
240 	if (tmp == 0)
241 		return BFITNOENT;
242 	ptr--;
243 	bit = __ffs64(tmp);
244 	bit /= 2;	/* two bits per entry in the bitmap */
245 	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
246 }
247 
248 /**
249  * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
250  * @rbm: The rbm with rgd already set correctly
251  * @block: The block number (filesystem relative)
252  *
253  * This sets the bi and offset members of an rbm based on a
254  * resource group and a filesystem relative block number. The
255  * resource group must be set in the rbm on entry, the bi and
256  * offset members will be set by this function.
257  *
258  * Returns: 0 on success, or an error code
259  */
260 
261 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
262 {
263 	u64 rblock = block - rbm->rgd->rd_data0;
264 
265 	if (WARN_ON_ONCE(rblock > UINT_MAX))
266 		return -EINVAL;
267 	if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
268 		return -E2BIG;
269 
270 	rbm->bii = 0;
271 	rbm->offset = (u32)(rblock);
272 	/* Check if the block is within the first block */
273 	if (rbm->offset < rbm_bi(rbm)->bi_blocks)
274 		return 0;
275 
276 	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
277 	rbm->offset += (sizeof(struct gfs2_rgrp) -
278 			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
279 	rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
280 	rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
281 	return 0;
282 }
283 
284 /**
285  * gfs2_rbm_incr - increment an rbm structure
286  * @rbm: The rbm with rgd already set correctly
287  *
288  * This function takes an existing rbm structure and increments it to the next
289  * viable block offset.
290  *
291  * Returns: If incrementing the offset would cause the rbm to go past the
292  *          end of the rgrp, true is returned, otherwise false.
293  *
294  */
295 
296 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
297 {
298 	if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
299 		rbm->offset++;
300 		return false;
301 	}
302 	if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
303 		return true;
304 
305 	rbm->offset = 0;
306 	rbm->bii++;
307 	return false;
308 }
309 
310 /**
311  * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
312  * @rbm: Position to search (value/result)
313  * @n_unaligned: Number of unaligned blocks to check
314  * @len: Decremented for each block found (terminate on zero)
315  *
316  * Returns: true if a non-free block is encountered
317  */
318 
319 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
320 {
321 	u32 n;
322 	u8 res;
323 
324 	for (n = 0; n < n_unaligned; n++) {
325 		res = gfs2_testbit(rbm);
326 		if (res != GFS2_BLKST_FREE)
327 			return true;
328 		(*len)--;
329 		if (*len == 0)
330 			return true;
331 		if (gfs2_rbm_incr(rbm))
332 			return true;
333 	}
334 
335 	return false;
336 }
337 
338 /**
339  * gfs2_free_extlen - Return extent length of free blocks
340  * @rrbm: Starting position
341  * @len: Max length to check
342  *
343  * Starting at the block specified by the rbm, see how many free blocks
344  * there are, not reading more than len blocks ahead. This can be done
345  * using memchr_inv when the blocks are byte aligned, but has to be done
346  * on a block by block basis in case of unaligned blocks. Also this
347  * function can cope with bitmap boundaries (although it must stop on
348  * a resource group boundary)
349  *
350  * Returns: Number of free blocks in the extent
351  */
352 
353 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
354 {
355 	struct gfs2_rbm rbm = *rrbm;
356 	u32 n_unaligned = rbm.offset & 3;
357 	u32 size = len;
358 	u32 bytes;
359 	u32 chunk_size;
360 	u8 *ptr, *start, *end;
361 	u64 block;
362 	struct gfs2_bitmap *bi;
363 
364 	if (n_unaligned &&
365 	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
366 		goto out;
367 
368 	n_unaligned = len & 3;
369 	/* Start is now byte aligned */
370 	while (len > 3) {
371 		bi = rbm_bi(&rbm);
372 		start = bi->bi_bh->b_data;
373 		if (bi->bi_clone)
374 			start = bi->bi_clone;
375 		end = start + bi->bi_bh->b_size;
376 		start += bi->bi_offset;
377 		BUG_ON(rbm.offset & 3);
378 		start += (rbm.offset / GFS2_NBBY);
379 		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
380 		ptr = memchr_inv(start, 0, bytes);
381 		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
382 		chunk_size *= GFS2_NBBY;
383 		BUG_ON(len < chunk_size);
384 		len -= chunk_size;
385 		block = gfs2_rbm_to_block(&rbm);
386 		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
387 			n_unaligned = 0;
388 			break;
389 		}
390 		if (ptr) {
391 			n_unaligned = 3;
392 			break;
393 		}
394 		n_unaligned = len & 3;
395 	}
396 
397 	/* Deal with any bits left over at the end */
398 	if (n_unaligned)
399 		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
400 out:
401 	return size - len;
402 }
403 
404 /**
405  * gfs2_bitcount - count the number of bits in a certain state
406  * @rgd: the resource group descriptor
407  * @buffer: the buffer that holds the bitmaps
408  * @buflen: the length (in bytes) of the buffer
409  * @state: the state of the block we're looking for
410  *
411  * Returns: The number of bits
412  */
413 
414 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
415 			 unsigned int buflen, u8 state)
416 {
417 	const u8 *byte = buffer;
418 	const u8 *end = buffer + buflen;
419 	const u8 state1 = state << 2;
420 	const u8 state2 = state << 4;
421 	const u8 state3 = state << 6;
422 	u32 count = 0;
423 
424 	for (; byte < end; byte++) {
425 		if (((*byte) & 0x03) == state)
426 			count++;
427 		if (((*byte) & 0x0C) == state1)
428 			count++;
429 		if (((*byte) & 0x30) == state2)
430 			count++;
431 		if (((*byte) & 0xC0) == state3)
432 			count++;
433 	}
434 
435 	return count;
436 }
437 
438 /**
439  * gfs2_rgrp_verify - Verify that a resource group is consistent
440  * @rgd: the rgrp
441  *
442  */
443 
444 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
445 {
446 	struct gfs2_sbd *sdp = rgd->rd_sbd;
447 	struct gfs2_bitmap *bi = NULL;
448 	u32 length = rgd->rd_length;
449 	u32 count[4], tmp;
450 	int buf, x;
451 
452 	memset(count, 0, 4 * sizeof(u32));
453 
454 	/* Count # blocks in each of 4 possible allocation states */
455 	for (buf = 0; buf < length; buf++) {
456 		bi = rgd->rd_bits + buf;
457 		for (x = 0; x < 4; x++)
458 			count[x] += gfs2_bitcount(rgd,
459 						  bi->bi_bh->b_data +
460 						  bi->bi_offset,
461 						  bi->bi_len, x);
462 	}
463 
464 	if (count[0] != rgd->rd_free) {
465 		if (gfs2_consist_rgrpd(rgd))
466 			fs_err(sdp, "free data mismatch:  %u != %u\n",
467 			       count[0], rgd->rd_free);
468 		return;
469 	}
470 
471 	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
472 	if (count[1] != tmp) {
473 		if (gfs2_consist_rgrpd(rgd))
474 			fs_err(sdp, "used data mismatch:  %u != %u\n",
475 			       count[1], tmp);
476 		return;
477 	}
478 
479 	if (count[2] + count[3] != rgd->rd_dinodes) {
480 		if (gfs2_consist_rgrpd(rgd))
481 			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
482 			       count[2] + count[3], rgd->rd_dinodes);
483 		return;
484 	}
485 }
486 
487 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
488 {
489 	u64 first = rgd->rd_data0;
490 	u64 last = first + rgd->rd_data;
491 	return first <= block && block < last;
492 }
493 
494 /**
495  * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
496  * @sdp: The GFS2 superblock
497  * @blk: The data block number
498  * @exact: True if this needs to be an exact match
499  *
500  * Returns: The resource group, or NULL if not found
501  */
502 
503 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
504 {
505 	struct rb_node *n, *next;
506 	struct gfs2_rgrpd *cur;
507 
508 	spin_lock(&sdp->sd_rindex_spin);
509 	n = sdp->sd_rindex_tree.rb_node;
510 	while (n) {
511 		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
512 		next = NULL;
513 		if (blk < cur->rd_addr)
514 			next = n->rb_left;
515 		else if (blk >= cur->rd_data0 + cur->rd_data)
516 			next = n->rb_right;
517 		if (next == NULL) {
518 			spin_unlock(&sdp->sd_rindex_spin);
519 			if (exact) {
520 				if (blk < cur->rd_addr)
521 					return NULL;
522 				if (blk >= cur->rd_data0 + cur->rd_data)
523 					return NULL;
524 			}
525 			return cur;
526 		}
527 		n = next;
528 	}
529 	spin_unlock(&sdp->sd_rindex_spin);
530 
531 	return NULL;
532 }
533 
534 /**
535  * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
536  * @sdp: The GFS2 superblock
537  *
538  * Returns: The first rgrp in the filesystem
539  */
540 
541 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
542 {
543 	const struct rb_node *n;
544 	struct gfs2_rgrpd *rgd;
545 
546 	spin_lock(&sdp->sd_rindex_spin);
547 	n = rb_first(&sdp->sd_rindex_tree);
548 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
549 	spin_unlock(&sdp->sd_rindex_spin);
550 
551 	return rgd;
552 }
553 
554 /**
555  * gfs2_rgrpd_get_next - get the next RG
556  * @rgd: the resource group descriptor
557  *
558  * Returns: The next rgrp
559  */
560 
561 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
562 {
563 	struct gfs2_sbd *sdp = rgd->rd_sbd;
564 	const struct rb_node *n;
565 
566 	spin_lock(&sdp->sd_rindex_spin);
567 	n = rb_next(&rgd->rd_node);
568 	if (n == NULL)
569 		n = rb_first(&sdp->sd_rindex_tree);
570 
571 	if (unlikely(&rgd->rd_node == n)) {
572 		spin_unlock(&sdp->sd_rindex_spin);
573 		return NULL;
574 	}
575 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
576 	spin_unlock(&sdp->sd_rindex_spin);
577 	return rgd;
578 }
579 
580 void check_and_update_goal(struct gfs2_inode *ip)
581 {
582 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
583 	if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
584 		ip->i_goal = ip->i_no_addr;
585 }
586 
587 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
588 {
589 	int x;
590 
591 	for (x = 0; x < rgd->rd_length; x++) {
592 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
593 		kfree(bi->bi_clone);
594 		bi->bi_clone = NULL;
595 	}
596 }
597 
598 /**
599  * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode
600  *                 plus a quota allocations data structure, if necessary
601  * @ip: the inode for this reservation
602  */
603 int gfs2_rsqa_alloc(struct gfs2_inode *ip)
604 {
605 	return gfs2_qa_alloc(ip);
606 }
607 
608 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
609 {
610 	gfs2_print_dbg(seq, "  B: n:%llu s:%llu b:%u f:%u\n",
611 		       (unsigned long long)rs->rs_inum,
612 		       (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
613 		       rs->rs_rbm.offset, rs->rs_free);
614 }
615 
616 /**
617  * __rs_deltree - remove a multi-block reservation from the rgd tree
618  * @rs: The reservation to remove
619  *
620  */
621 static void __rs_deltree(struct gfs2_blkreserv *rs)
622 {
623 	struct gfs2_rgrpd *rgd;
624 
625 	if (!gfs2_rs_active(rs))
626 		return;
627 
628 	rgd = rs->rs_rbm.rgd;
629 	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
630 	rb_erase(&rs->rs_node, &rgd->rd_rstree);
631 	RB_CLEAR_NODE(&rs->rs_node);
632 
633 	if (rs->rs_free) {
634 		struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm);
635 
636 		/* return reserved blocks to the rgrp */
637 		BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
638 		rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
639 		/* The rgrp extent failure point is likely not to increase;
640 		   it will only do so if the freed blocks are somehow
641 		   contiguous with a span of free blocks that follows. Still,
642 		   it will force the number to be recalculated later. */
643 		rgd->rd_extfail_pt += rs->rs_free;
644 		rs->rs_free = 0;
645 		clear_bit(GBF_FULL, &bi->bi_flags);
646 	}
647 }
648 
649 /**
650  * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
651  * @rs: The reservation to remove
652  *
653  */
654 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
655 {
656 	struct gfs2_rgrpd *rgd;
657 
658 	rgd = rs->rs_rbm.rgd;
659 	if (rgd) {
660 		spin_lock(&rgd->rd_rsspin);
661 		__rs_deltree(rs);
662 		spin_unlock(&rgd->rd_rsspin);
663 	}
664 }
665 
666 /**
667  * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation
668  * @ip: The inode for this reservation
669  * @wcount: The inode's write count, or NULL
670  *
671  */
672 void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount)
673 {
674 	down_write(&ip->i_rw_mutex);
675 	if ((wcount == NULL) || (atomic_read(wcount) <= 1)) {
676 		gfs2_rs_deltree(&ip->i_res);
677 		BUG_ON(ip->i_res.rs_free);
678 	}
679 	up_write(&ip->i_rw_mutex);
680 	gfs2_qa_delete(ip, wcount);
681 }
682 
683 /**
684  * return_all_reservations - return all reserved blocks back to the rgrp.
685  * @rgd: the rgrp that needs its space back
686  *
687  * We previously reserved a bunch of blocks for allocation. Now we need to
688  * give them back. This leave the reservation structures in tact, but removes
689  * all of their corresponding "no-fly zones".
690  */
691 static void return_all_reservations(struct gfs2_rgrpd *rgd)
692 {
693 	struct rb_node *n;
694 	struct gfs2_blkreserv *rs;
695 
696 	spin_lock(&rgd->rd_rsspin);
697 	while ((n = rb_first(&rgd->rd_rstree))) {
698 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
699 		__rs_deltree(rs);
700 	}
701 	spin_unlock(&rgd->rd_rsspin);
702 }
703 
704 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
705 {
706 	struct rb_node *n;
707 	struct gfs2_rgrpd *rgd;
708 	struct gfs2_glock *gl;
709 
710 	while ((n = rb_first(&sdp->sd_rindex_tree))) {
711 		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
712 		gl = rgd->rd_gl;
713 
714 		rb_erase(n, &sdp->sd_rindex_tree);
715 
716 		if (gl) {
717 			spin_lock(&gl->gl_lockref.lock);
718 			gl->gl_object = NULL;
719 			spin_unlock(&gl->gl_lockref.lock);
720 			gfs2_glock_add_to_lru(gl);
721 			gfs2_glock_put(gl);
722 		}
723 
724 		gfs2_free_clones(rgd);
725 		kfree(rgd->rd_bits);
726 		return_all_reservations(rgd);
727 		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
728 	}
729 }
730 
731 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
732 {
733 	pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
734 	pr_info("ri_length = %u\n", rgd->rd_length);
735 	pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
736 	pr_info("ri_data = %u\n", rgd->rd_data);
737 	pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes);
738 }
739 
740 /**
741  * gfs2_compute_bitstructs - Compute the bitmap sizes
742  * @rgd: The resource group descriptor
743  *
744  * Calculates bitmap descriptors, one for each block that contains bitmap data
745  *
746  * Returns: errno
747  */
748 
749 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
750 {
751 	struct gfs2_sbd *sdp = rgd->rd_sbd;
752 	struct gfs2_bitmap *bi;
753 	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
754 	u32 bytes_left, bytes;
755 	int x;
756 
757 	if (!length)
758 		return -EINVAL;
759 
760 	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
761 	if (!rgd->rd_bits)
762 		return -ENOMEM;
763 
764 	bytes_left = rgd->rd_bitbytes;
765 
766 	for (x = 0; x < length; x++) {
767 		bi = rgd->rd_bits + x;
768 
769 		bi->bi_flags = 0;
770 		/* small rgrp; bitmap stored completely in header block */
771 		if (length == 1) {
772 			bytes = bytes_left;
773 			bi->bi_offset = sizeof(struct gfs2_rgrp);
774 			bi->bi_start = 0;
775 			bi->bi_len = bytes;
776 			bi->bi_blocks = bytes * GFS2_NBBY;
777 		/* header block */
778 		} else if (x == 0) {
779 			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
780 			bi->bi_offset = sizeof(struct gfs2_rgrp);
781 			bi->bi_start = 0;
782 			bi->bi_len = bytes;
783 			bi->bi_blocks = bytes * GFS2_NBBY;
784 		/* last block */
785 		} else if (x + 1 == length) {
786 			bytes = bytes_left;
787 			bi->bi_offset = sizeof(struct gfs2_meta_header);
788 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
789 			bi->bi_len = bytes;
790 			bi->bi_blocks = bytes * GFS2_NBBY;
791 		/* other blocks */
792 		} else {
793 			bytes = sdp->sd_sb.sb_bsize -
794 				sizeof(struct gfs2_meta_header);
795 			bi->bi_offset = sizeof(struct gfs2_meta_header);
796 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
797 			bi->bi_len = bytes;
798 			bi->bi_blocks = bytes * GFS2_NBBY;
799 		}
800 
801 		bytes_left -= bytes;
802 	}
803 
804 	if (bytes_left) {
805 		gfs2_consist_rgrpd(rgd);
806 		return -EIO;
807 	}
808 	bi = rgd->rd_bits + (length - 1);
809 	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
810 		if (gfs2_consist_rgrpd(rgd)) {
811 			gfs2_rindex_print(rgd);
812 			fs_err(sdp, "start=%u len=%u offset=%u\n",
813 			       bi->bi_start, bi->bi_len, bi->bi_offset);
814 		}
815 		return -EIO;
816 	}
817 
818 	return 0;
819 }
820 
821 /**
822  * gfs2_ri_total - Total up the file system space, according to the rindex.
823  * @sdp: the filesystem
824  *
825  */
826 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
827 {
828 	u64 total_data = 0;
829 	struct inode *inode = sdp->sd_rindex;
830 	struct gfs2_inode *ip = GFS2_I(inode);
831 	char buf[sizeof(struct gfs2_rindex)];
832 	int error, rgrps;
833 
834 	for (rgrps = 0;; rgrps++) {
835 		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
836 
837 		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
838 			break;
839 		error = gfs2_internal_read(ip, buf, &pos,
840 					   sizeof(struct gfs2_rindex));
841 		if (error != sizeof(struct gfs2_rindex))
842 			break;
843 		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
844 	}
845 	return total_data;
846 }
847 
848 static int rgd_insert(struct gfs2_rgrpd *rgd)
849 {
850 	struct gfs2_sbd *sdp = rgd->rd_sbd;
851 	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
852 
853 	/* Figure out where to put new node */
854 	while (*newn) {
855 		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
856 						  rd_node);
857 
858 		parent = *newn;
859 		if (rgd->rd_addr < cur->rd_addr)
860 			newn = &((*newn)->rb_left);
861 		else if (rgd->rd_addr > cur->rd_addr)
862 			newn = &((*newn)->rb_right);
863 		else
864 			return -EEXIST;
865 	}
866 
867 	rb_link_node(&rgd->rd_node, parent, newn);
868 	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
869 	sdp->sd_rgrps++;
870 	return 0;
871 }
872 
873 /**
874  * read_rindex_entry - Pull in a new resource index entry from the disk
875  * @ip: Pointer to the rindex inode
876  *
877  * Returns: 0 on success, > 0 on EOF, error code otherwise
878  */
879 
880 static int read_rindex_entry(struct gfs2_inode *ip)
881 {
882 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
883 	const unsigned bsize = sdp->sd_sb.sb_bsize;
884 	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
885 	struct gfs2_rindex buf;
886 	int error;
887 	struct gfs2_rgrpd *rgd;
888 
889 	if (pos >= i_size_read(&ip->i_inode))
890 		return 1;
891 
892 	error = gfs2_internal_read(ip, (char *)&buf, &pos,
893 				   sizeof(struct gfs2_rindex));
894 
895 	if (error != sizeof(struct gfs2_rindex))
896 		return (error == 0) ? 1 : error;
897 
898 	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
899 	error = -ENOMEM;
900 	if (!rgd)
901 		return error;
902 
903 	rgd->rd_sbd = sdp;
904 	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
905 	rgd->rd_length = be32_to_cpu(buf.ri_length);
906 	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
907 	rgd->rd_data = be32_to_cpu(buf.ri_data);
908 	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
909 	spin_lock_init(&rgd->rd_rsspin);
910 
911 	error = compute_bitstructs(rgd);
912 	if (error)
913 		goto fail;
914 
915 	error = gfs2_glock_get(sdp, rgd->rd_addr,
916 			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
917 	if (error)
918 		goto fail;
919 
920 	rgd->rd_gl->gl_object = rgd;
921 	rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK;
922 	rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr + rgd->rd_length) * bsize) - 1;
923 	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
924 	rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
925 	if (rgd->rd_data > sdp->sd_max_rg_data)
926 		sdp->sd_max_rg_data = rgd->rd_data;
927 	spin_lock(&sdp->sd_rindex_spin);
928 	error = rgd_insert(rgd);
929 	spin_unlock(&sdp->sd_rindex_spin);
930 	if (!error)
931 		return 0;
932 
933 	error = 0; /* someone else read in the rgrp; free it and ignore it */
934 	gfs2_glock_put(rgd->rd_gl);
935 
936 fail:
937 	kfree(rgd->rd_bits);
938 	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
939 	return error;
940 }
941 
942 /**
943  * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
944  * @sdp: the GFS2 superblock
945  *
946  * The purpose of this function is to select a subset of the resource groups
947  * and mark them as PREFERRED. We do it in such a way that each node prefers
948  * to use a unique set of rgrps to minimize glock contention.
949  */
950 static void set_rgrp_preferences(struct gfs2_sbd *sdp)
951 {
952 	struct gfs2_rgrpd *rgd, *first;
953 	int i;
954 
955 	/* Skip an initial number of rgrps, based on this node's journal ID.
956 	   That should start each node out on its own set. */
957 	rgd = gfs2_rgrpd_get_first(sdp);
958 	for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
959 		rgd = gfs2_rgrpd_get_next(rgd);
960 	first = rgd;
961 
962 	do {
963 		rgd->rd_flags |= GFS2_RDF_PREFERRED;
964 		for (i = 0; i < sdp->sd_journals; i++) {
965 			rgd = gfs2_rgrpd_get_next(rgd);
966 			if (!rgd || rgd == first)
967 				break;
968 		}
969 	} while (rgd && rgd != first);
970 }
971 
972 /**
973  * gfs2_ri_update - Pull in a new resource index from the disk
974  * @ip: pointer to the rindex inode
975  *
976  * Returns: 0 on successful update, error code otherwise
977  */
978 
979 static int gfs2_ri_update(struct gfs2_inode *ip)
980 {
981 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
982 	int error;
983 
984 	do {
985 		error = read_rindex_entry(ip);
986 	} while (error == 0);
987 
988 	if (error < 0)
989 		return error;
990 
991 	set_rgrp_preferences(sdp);
992 
993 	sdp->sd_rindex_uptodate = 1;
994 	return 0;
995 }
996 
997 /**
998  * gfs2_rindex_update - Update the rindex if required
999  * @sdp: The GFS2 superblock
1000  *
1001  * We grab a lock on the rindex inode to make sure that it doesn't
1002  * change whilst we are performing an operation. We keep this lock
1003  * for quite long periods of time compared to other locks. This
1004  * doesn't matter, since it is shared and it is very, very rarely
1005  * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1006  *
1007  * This makes sure that we're using the latest copy of the resource index
1008  * special file, which might have been updated if someone expanded the
1009  * filesystem (via gfs2_grow utility), which adds new resource groups.
1010  *
1011  * Returns: 0 on succeess, error code otherwise
1012  */
1013 
1014 int gfs2_rindex_update(struct gfs2_sbd *sdp)
1015 {
1016 	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1017 	struct gfs2_glock *gl = ip->i_gl;
1018 	struct gfs2_holder ri_gh;
1019 	int error = 0;
1020 	int unlock_required = 0;
1021 
1022 	/* Read new copy from disk if we don't have the latest */
1023 	if (!sdp->sd_rindex_uptodate) {
1024 		if (!gfs2_glock_is_locked_by_me(gl)) {
1025 			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1026 			if (error)
1027 				return error;
1028 			unlock_required = 1;
1029 		}
1030 		if (!sdp->sd_rindex_uptodate)
1031 			error = gfs2_ri_update(ip);
1032 		if (unlock_required)
1033 			gfs2_glock_dq_uninit(&ri_gh);
1034 	}
1035 
1036 	return error;
1037 }
1038 
1039 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1040 {
1041 	const struct gfs2_rgrp *str = buf;
1042 	u32 rg_flags;
1043 
1044 	rg_flags = be32_to_cpu(str->rg_flags);
1045 	rg_flags &= ~GFS2_RDF_MASK;
1046 	rgd->rd_flags &= GFS2_RDF_MASK;
1047 	rgd->rd_flags |= rg_flags;
1048 	rgd->rd_free = be32_to_cpu(str->rg_free);
1049 	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1050 	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1051 }
1052 
1053 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1054 {
1055 	struct gfs2_rgrp *str = buf;
1056 
1057 	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1058 	str->rg_free = cpu_to_be32(rgd->rd_free);
1059 	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1060 	str->__pad = cpu_to_be32(0);
1061 	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1062 	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1063 }
1064 
1065 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1066 {
1067 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1068 	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1069 
1070 	if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1071 	    rgl->rl_dinodes != str->rg_dinodes ||
1072 	    rgl->rl_igeneration != str->rg_igeneration)
1073 		return 0;
1074 	return 1;
1075 }
1076 
1077 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1078 {
1079 	const struct gfs2_rgrp *str = buf;
1080 
1081 	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1082 	rgl->rl_flags = str->rg_flags;
1083 	rgl->rl_free = str->rg_free;
1084 	rgl->rl_dinodes = str->rg_dinodes;
1085 	rgl->rl_igeneration = str->rg_igeneration;
1086 	rgl->__pad = 0UL;
1087 }
1088 
1089 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1090 {
1091 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1092 	u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1093 	rgl->rl_unlinked = cpu_to_be32(unlinked);
1094 }
1095 
1096 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1097 {
1098 	struct gfs2_bitmap *bi;
1099 	const u32 length = rgd->rd_length;
1100 	const u8 *buffer = NULL;
1101 	u32 i, goal, count = 0;
1102 
1103 	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1104 		goal = 0;
1105 		buffer = bi->bi_bh->b_data + bi->bi_offset;
1106 		WARN_ON(!buffer_uptodate(bi->bi_bh));
1107 		while (goal < bi->bi_len * GFS2_NBBY) {
1108 			goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1109 					   GFS2_BLKST_UNLINKED);
1110 			if (goal == BFITNOENT)
1111 				break;
1112 			count++;
1113 			goal++;
1114 		}
1115 	}
1116 
1117 	return count;
1118 }
1119 
1120 
1121 /**
1122  * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1123  * @rgd: the struct gfs2_rgrpd describing the RG to read in
1124  *
1125  * Read in all of a Resource Group's header and bitmap blocks.
1126  * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1127  *
1128  * Returns: errno
1129  */
1130 
1131 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1132 {
1133 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1134 	struct gfs2_glock *gl = rgd->rd_gl;
1135 	unsigned int length = rgd->rd_length;
1136 	struct gfs2_bitmap *bi;
1137 	unsigned int x, y;
1138 	int error;
1139 
1140 	if (rgd->rd_bits[0].bi_bh != NULL)
1141 		return 0;
1142 
1143 	for (x = 0; x < length; x++) {
1144 		bi = rgd->rd_bits + x;
1145 		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1146 		if (error)
1147 			goto fail;
1148 	}
1149 
1150 	for (y = length; y--;) {
1151 		bi = rgd->rd_bits + y;
1152 		error = gfs2_meta_wait(sdp, bi->bi_bh);
1153 		if (error)
1154 			goto fail;
1155 		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1156 					      GFS2_METATYPE_RG)) {
1157 			error = -EIO;
1158 			goto fail;
1159 		}
1160 	}
1161 
1162 	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1163 		for (x = 0; x < length; x++)
1164 			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1165 		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1166 		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1167 		rgd->rd_free_clone = rgd->rd_free;
1168 		/* max out the rgrp allocation failure point */
1169 		rgd->rd_extfail_pt = rgd->rd_free;
1170 	}
1171 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1172 		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1173 		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1174 				     rgd->rd_bits[0].bi_bh->b_data);
1175 	}
1176 	else if (sdp->sd_args.ar_rgrplvb) {
1177 		if (!gfs2_rgrp_lvb_valid(rgd)){
1178 			gfs2_consist_rgrpd(rgd);
1179 			error = -EIO;
1180 			goto fail;
1181 		}
1182 		if (rgd->rd_rgl->rl_unlinked == 0)
1183 			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1184 	}
1185 	return 0;
1186 
1187 fail:
1188 	while (x--) {
1189 		bi = rgd->rd_bits + x;
1190 		brelse(bi->bi_bh);
1191 		bi->bi_bh = NULL;
1192 		gfs2_assert_warn(sdp, !bi->bi_clone);
1193 	}
1194 
1195 	return error;
1196 }
1197 
1198 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1199 {
1200 	u32 rl_flags;
1201 
1202 	if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1203 		return 0;
1204 
1205 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1206 		return gfs2_rgrp_bh_get(rgd);
1207 
1208 	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1209 	rl_flags &= ~GFS2_RDF_MASK;
1210 	rgd->rd_flags &= GFS2_RDF_MASK;
1211 	rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1212 	if (rgd->rd_rgl->rl_unlinked == 0)
1213 		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1214 	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1215 	rgd->rd_free_clone = rgd->rd_free;
1216 	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1217 	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1218 	return 0;
1219 }
1220 
1221 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1222 {
1223 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1224 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1225 
1226 	if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1227 		return 0;
1228 	return gfs2_rgrp_bh_get(rgd);
1229 }
1230 
1231 /**
1232  * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1233  * @rgd: The resource group
1234  *
1235  */
1236 
1237 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1238 {
1239 	int x, length = rgd->rd_length;
1240 
1241 	for (x = 0; x < length; x++) {
1242 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1243 		if (bi->bi_bh) {
1244 			brelse(bi->bi_bh);
1245 			bi->bi_bh = NULL;
1246 		}
1247 	}
1248 
1249 }
1250 
1251 /**
1252  * gfs2_rgrp_go_unlock - Unlock a rgrp glock
1253  * @gh: The glock holder for the resource group
1254  *
1255  */
1256 
1257 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1258 {
1259 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1260 	int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) |
1261 		test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags);
1262 
1263 	if (rgd && demote_requested)
1264 		gfs2_rgrp_brelse(rgd);
1265 }
1266 
1267 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1268 			     struct buffer_head *bh,
1269 			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1270 {
1271 	struct super_block *sb = sdp->sd_vfs;
1272 	u64 blk;
1273 	sector_t start = 0;
1274 	sector_t nr_blks = 0;
1275 	int rv;
1276 	unsigned int x;
1277 	u32 trimmed = 0;
1278 	u8 diff;
1279 
1280 	for (x = 0; x < bi->bi_len; x++) {
1281 		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1282 		clone += bi->bi_offset;
1283 		clone += x;
1284 		if (bh) {
1285 			const u8 *orig = bh->b_data + bi->bi_offset + x;
1286 			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1287 		} else {
1288 			diff = ~(*clone | (*clone >> 1));
1289 		}
1290 		diff &= 0x55;
1291 		if (diff == 0)
1292 			continue;
1293 		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1294 		while(diff) {
1295 			if (diff & 1) {
1296 				if (nr_blks == 0)
1297 					goto start_new_extent;
1298 				if ((start + nr_blks) != blk) {
1299 					if (nr_blks >= minlen) {
1300 						rv = sb_issue_discard(sb,
1301 							start, nr_blks,
1302 							GFP_NOFS, 0);
1303 						if (rv)
1304 							goto fail;
1305 						trimmed += nr_blks;
1306 					}
1307 					nr_blks = 0;
1308 start_new_extent:
1309 					start = blk;
1310 				}
1311 				nr_blks++;
1312 			}
1313 			diff >>= 2;
1314 			blk++;
1315 		}
1316 	}
1317 	if (nr_blks >= minlen) {
1318 		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1319 		if (rv)
1320 			goto fail;
1321 		trimmed += nr_blks;
1322 	}
1323 	if (ptrimmed)
1324 		*ptrimmed = trimmed;
1325 	return 0;
1326 
1327 fail:
1328 	if (sdp->sd_args.ar_discard)
1329 		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1330 	sdp->sd_args.ar_discard = 0;
1331 	return -EIO;
1332 }
1333 
1334 /**
1335  * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1336  * @filp: Any file on the filesystem
1337  * @argp: Pointer to the arguments (also used to pass result)
1338  *
1339  * Returns: 0 on success, otherwise error code
1340  */
1341 
1342 int gfs2_fitrim(struct file *filp, void __user *argp)
1343 {
1344 	struct inode *inode = file_inode(filp);
1345 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1346 	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1347 	struct buffer_head *bh;
1348 	struct gfs2_rgrpd *rgd;
1349 	struct gfs2_rgrpd *rgd_end;
1350 	struct gfs2_holder gh;
1351 	struct fstrim_range r;
1352 	int ret = 0;
1353 	u64 amt;
1354 	u64 trimmed = 0;
1355 	u64 start, end, minlen;
1356 	unsigned int x;
1357 	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1358 
1359 	if (!capable(CAP_SYS_ADMIN))
1360 		return -EPERM;
1361 
1362 	if (!blk_queue_discard(q))
1363 		return -EOPNOTSUPP;
1364 
1365 	if (copy_from_user(&r, argp, sizeof(r)))
1366 		return -EFAULT;
1367 
1368 	ret = gfs2_rindex_update(sdp);
1369 	if (ret)
1370 		return ret;
1371 
1372 	start = r.start >> bs_shift;
1373 	end = start + (r.len >> bs_shift);
1374 	minlen = max_t(u64, r.minlen,
1375 		       q->limits.discard_granularity) >> bs_shift;
1376 
1377 	if (end <= start || minlen > sdp->sd_max_rg_data)
1378 		return -EINVAL;
1379 
1380 	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1381 	rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1382 
1383 	if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1384 	    && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1385 		return -EINVAL; /* start is beyond the end of the fs */
1386 
1387 	while (1) {
1388 
1389 		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1390 		if (ret)
1391 			goto out;
1392 
1393 		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1394 			/* Trim each bitmap in the rgrp */
1395 			for (x = 0; x < rgd->rd_length; x++) {
1396 				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1397 				ret = gfs2_rgrp_send_discards(sdp,
1398 						rgd->rd_data0, NULL, bi, minlen,
1399 						&amt);
1400 				if (ret) {
1401 					gfs2_glock_dq_uninit(&gh);
1402 					goto out;
1403 				}
1404 				trimmed += amt;
1405 			}
1406 
1407 			/* Mark rgrp as having been trimmed */
1408 			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1409 			if (ret == 0) {
1410 				bh = rgd->rd_bits[0].bi_bh;
1411 				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1412 				gfs2_trans_add_meta(rgd->rd_gl, bh);
1413 				gfs2_rgrp_out(rgd, bh->b_data);
1414 				gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1415 				gfs2_trans_end(sdp);
1416 			}
1417 		}
1418 		gfs2_glock_dq_uninit(&gh);
1419 
1420 		if (rgd == rgd_end)
1421 			break;
1422 
1423 		rgd = gfs2_rgrpd_get_next(rgd);
1424 	}
1425 
1426 out:
1427 	r.len = trimmed << bs_shift;
1428 	if (copy_to_user(argp, &r, sizeof(r)))
1429 		return -EFAULT;
1430 
1431 	return ret;
1432 }
1433 
1434 /**
1435  * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1436  * @ip: the inode structure
1437  *
1438  */
1439 static void rs_insert(struct gfs2_inode *ip)
1440 {
1441 	struct rb_node **newn, *parent = NULL;
1442 	int rc;
1443 	struct gfs2_blkreserv *rs = &ip->i_res;
1444 	struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1445 	u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1446 
1447 	BUG_ON(gfs2_rs_active(rs));
1448 
1449 	spin_lock(&rgd->rd_rsspin);
1450 	newn = &rgd->rd_rstree.rb_node;
1451 	while (*newn) {
1452 		struct gfs2_blkreserv *cur =
1453 			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1454 
1455 		parent = *newn;
1456 		rc = rs_cmp(fsblock, rs->rs_free, cur);
1457 		if (rc > 0)
1458 			newn = &((*newn)->rb_right);
1459 		else if (rc < 0)
1460 			newn = &((*newn)->rb_left);
1461 		else {
1462 			spin_unlock(&rgd->rd_rsspin);
1463 			WARN_ON(1);
1464 			return;
1465 		}
1466 	}
1467 
1468 	rb_link_node(&rs->rs_node, parent, newn);
1469 	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1470 
1471 	/* Do our rgrp accounting for the reservation */
1472 	rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1473 	spin_unlock(&rgd->rd_rsspin);
1474 	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1475 }
1476 
1477 /**
1478  * rg_mblk_search - find a group of multiple free blocks to form a reservation
1479  * @rgd: the resource group descriptor
1480  * @ip: pointer to the inode for which we're reserving blocks
1481  * @ap: the allocation parameters
1482  *
1483  */
1484 
1485 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1486 			   const struct gfs2_alloc_parms *ap)
1487 {
1488 	struct gfs2_rbm rbm = { .rgd = rgd, };
1489 	u64 goal;
1490 	struct gfs2_blkreserv *rs = &ip->i_res;
1491 	u32 extlen;
1492 	u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1493 	int ret;
1494 	struct inode *inode = &ip->i_inode;
1495 
1496 	if (S_ISDIR(inode->i_mode))
1497 		extlen = 1;
1498 	else {
1499 		extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target);
1500 		extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1501 	}
1502 	if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1503 		return;
1504 
1505 	/* Find bitmap block that contains bits for goal block */
1506 	if (rgrp_contains_block(rgd, ip->i_goal))
1507 		goal = ip->i_goal;
1508 	else
1509 		goal = rgd->rd_last_alloc + rgd->rd_data0;
1510 
1511 	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1512 		return;
1513 
1514 	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true, ap);
1515 	if (ret == 0) {
1516 		rs->rs_rbm = rbm;
1517 		rs->rs_free = extlen;
1518 		rs->rs_inum = ip->i_no_addr;
1519 		rs_insert(ip);
1520 	} else {
1521 		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1522 			rgd->rd_last_alloc = 0;
1523 	}
1524 }
1525 
1526 /**
1527  * gfs2_next_unreserved_block - Return next block that is not reserved
1528  * @rgd: The resource group
1529  * @block: The starting block
1530  * @length: The required length
1531  * @ip: Ignore any reservations for this inode
1532  *
1533  * If the block does not appear in any reservation, then return the
1534  * block number unchanged. If it does appear in the reservation, then
1535  * keep looking through the tree of reservations in order to find the
1536  * first block number which is not reserved.
1537  */
1538 
1539 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1540 				      u32 length,
1541 				      const struct gfs2_inode *ip)
1542 {
1543 	struct gfs2_blkreserv *rs;
1544 	struct rb_node *n;
1545 	int rc;
1546 
1547 	spin_lock(&rgd->rd_rsspin);
1548 	n = rgd->rd_rstree.rb_node;
1549 	while (n) {
1550 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1551 		rc = rs_cmp(block, length, rs);
1552 		if (rc < 0)
1553 			n = n->rb_left;
1554 		else if (rc > 0)
1555 			n = n->rb_right;
1556 		else
1557 			break;
1558 	}
1559 
1560 	if (n) {
1561 		while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) {
1562 			block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1563 			n = n->rb_right;
1564 			if (n == NULL)
1565 				break;
1566 			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1567 		}
1568 	}
1569 
1570 	spin_unlock(&rgd->rd_rsspin);
1571 	return block;
1572 }
1573 
1574 /**
1575  * gfs2_reservation_check_and_update - Check for reservations during block alloc
1576  * @rbm: The current position in the resource group
1577  * @ip: The inode for which we are searching for blocks
1578  * @minext: The minimum extent length
1579  * @maxext: A pointer to the maximum extent structure
1580  *
1581  * This checks the current position in the rgrp to see whether there is
1582  * a reservation covering this block. If not then this function is a
1583  * no-op. If there is, then the position is moved to the end of the
1584  * contiguous reservation(s) so that we are pointing at the first
1585  * non-reserved block.
1586  *
1587  * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1588  */
1589 
1590 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1591 					     const struct gfs2_inode *ip,
1592 					     u32 minext,
1593 					     struct gfs2_extent *maxext)
1594 {
1595 	u64 block = gfs2_rbm_to_block(rbm);
1596 	u32 extlen = 1;
1597 	u64 nblock;
1598 	int ret;
1599 
1600 	/*
1601 	 * If we have a minimum extent length, then skip over any extent
1602 	 * which is less than the min extent length in size.
1603 	 */
1604 	if (minext) {
1605 		extlen = gfs2_free_extlen(rbm, minext);
1606 		if (extlen <= maxext->len)
1607 			goto fail;
1608 	}
1609 
1610 	/*
1611 	 * Check the extent which has been found against the reservations
1612 	 * and skip if parts of it are already reserved
1613 	 */
1614 	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1615 	if (nblock == block) {
1616 		if (!minext || extlen >= minext)
1617 			return 0;
1618 
1619 		if (extlen > maxext->len) {
1620 			maxext->len = extlen;
1621 			maxext->rbm = *rbm;
1622 		}
1623 fail:
1624 		nblock = block + extlen;
1625 	}
1626 	ret = gfs2_rbm_from_block(rbm, nblock);
1627 	if (ret < 0)
1628 		return ret;
1629 	return 1;
1630 }
1631 
1632 /**
1633  * gfs2_rbm_find - Look for blocks of a particular state
1634  * @rbm: Value/result starting position and final position
1635  * @state: The state which we want to find
1636  * @minext: Pointer to the requested extent length (NULL for a single block)
1637  *          This is updated to be the actual reservation size.
1638  * @ip: If set, check for reservations
1639  * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1640  *          around until we've reached the starting point.
1641  * @ap: the allocation parameters
1642  *
1643  * Side effects:
1644  * - If looking for free blocks, we set GBF_FULL on each bitmap which
1645  *   has no free blocks in it.
1646  * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1647  *   has come up short on a free block search.
1648  *
1649  * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1650  */
1651 
1652 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1653 			 const struct gfs2_inode *ip, bool nowrap,
1654 			 const struct gfs2_alloc_parms *ap)
1655 {
1656 	struct buffer_head *bh;
1657 	int initial_bii;
1658 	u32 initial_offset;
1659 	int first_bii = rbm->bii;
1660 	u32 first_offset = rbm->offset;
1661 	u32 offset;
1662 	u8 *buffer;
1663 	int n = 0;
1664 	int iters = rbm->rgd->rd_length;
1665 	int ret;
1666 	struct gfs2_bitmap *bi;
1667 	struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1668 
1669 	/* If we are not starting at the beginning of a bitmap, then we
1670 	 * need to add one to the bitmap count to ensure that we search
1671 	 * the starting bitmap twice.
1672 	 */
1673 	if (rbm->offset != 0)
1674 		iters++;
1675 
1676 	while(1) {
1677 		bi = rbm_bi(rbm);
1678 		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1679 		    (state == GFS2_BLKST_FREE))
1680 			goto next_bitmap;
1681 
1682 		bh = bi->bi_bh;
1683 		buffer = bh->b_data + bi->bi_offset;
1684 		WARN_ON(!buffer_uptodate(bh));
1685 		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1686 			buffer = bi->bi_clone + bi->bi_offset;
1687 		initial_offset = rbm->offset;
1688 		offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state);
1689 		if (offset == BFITNOENT)
1690 			goto bitmap_full;
1691 		rbm->offset = offset;
1692 		if (ip == NULL)
1693 			return 0;
1694 
1695 		initial_bii = rbm->bii;
1696 		ret = gfs2_reservation_check_and_update(rbm, ip,
1697 							minext ? *minext : 0,
1698 							&maxext);
1699 		if (ret == 0)
1700 			return 0;
1701 		if (ret > 0) {
1702 			n += (rbm->bii - initial_bii);
1703 			goto next_iter;
1704 		}
1705 		if (ret == -E2BIG) {
1706 			rbm->bii = 0;
1707 			rbm->offset = 0;
1708 			n += (rbm->bii - initial_bii);
1709 			goto res_covered_end_of_rgrp;
1710 		}
1711 		return ret;
1712 
1713 bitmap_full:	/* Mark bitmap as full and fall through */
1714 		if ((state == GFS2_BLKST_FREE) && initial_offset == 0)
1715 			set_bit(GBF_FULL, &bi->bi_flags);
1716 
1717 next_bitmap:	/* Find next bitmap in the rgrp */
1718 		rbm->offset = 0;
1719 		rbm->bii++;
1720 		if (rbm->bii == rbm->rgd->rd_length)
1721 			rbm->bii = 0;
1722 res_covered_end_of_rgrp:
1723 		if ((rbm->bii == 0) && nowrap)
1724 			break;
1725 		n++;
1726 next_iter:
1727 		if (n >= iters)
1728 			break;
1729 	}
1730 
1731 	if (minext == NULL || state != GFS2_BLKST_FREE)
1732 		return -ENOSPC;
1733 
1734 	/* If the extent was too small, and it's smaller than the smallest
1735 	   to have failed before, remember for future reference that it's
1736 	   useless to search this rgrp again for this amount or more. */
1737 	if ((first_offset == 0) && (first_bii == 0) &&
1738 	    (*minext < rbm->rgd->rd_extfail_pt))
1739 		rbm->rgd->rd_extfail_pt = *minext;
1740 
1741 	/* If the maximum extent we found is big enough to fulfill the
1742 	   minimum requirements, use it anyway. */
1743 	if (maxext.len) {
1744 		*rbm = maxext.rbm;
1745 		*minext = maxext.len;
1746 		return 0;
1747 	}
1748 
1749 	return -ENOSPC;
1750 }
1751 
1752 /**
1753  * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1754  * @rgd: The rgrp
1755  * @last_unlinked: block address of the last dinode we unlinked
1756  * @skip: block address we should explicitly not unlink
1757  *
1758  * Returns: 0 if no error
1759  *          The inode, if one has been found, in inode.
1760  */
1761 
1762 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1763 {
1764 	u64 block;
1765 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1766 	struct gfs2_glock *gl;
1767 	struct gfs2_inode *ip;
1768 	int error;
1769 	int found = 0;
1770 	struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1771 
1772 	while (1) {
1773 		down_write(&sdp->sd_log_flush_lock);
1774 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1775 				      true, NULL);
1776 		up_write(&sdp->sd_log_flush_lock);
1777 		if (error == -ENOSPC)
1778 			break;
1779 		if (WARN_ON_ONCE(error))
1780 			break;
1781 
1782 		block = gfs2_rbm_to_block(&rbm);
1783 		if (gfs2_rbm_from_block(&rbm, block + 1))
1784 			break;
1785 		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1786 			continue;
1787 		if (block == skip)
1788 			continue;
1789 		*last_unlinked = block;
1790 
1791 		error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1792 		if (error)
1793 			continue;
1794 
1795 		/* If the inode is already in cache, we can ignore it here
1796 		 * because the existing inode disposal code will deal with
1797 		 * it when all refs have gone away. Accessing gl_object like
1798 		 * this is not safe in general. Here it is ok because we do
1799 		 * not dereference the pointer, and we only need an approx
1800 		 * answer to whether it is NULL or not.
1801 		 */
1802 		ip = gl->gl_object;
1803 
1804 		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1805 			gfs2_glock_put(gl);
1806 		else
1807 			found++;
1808 
1809 		/* Limit reclaim to sensible number of tasks */
1810 		if (found > NR_CPUS)
1811 			return;
1812 	}
1813 
1814 	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1815 	return;
1816 }
1817 
1818 /**
1819  * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1820  * @rgd: The rgrp in question
1821  * @loops: An indication of how picky we can be (0=very, 1=less so)
1822  *
1823  * This function uses the recently added glock statistics in order to
1824  * figure out whether a parciular resource group is suffering from
1825  * contention from multiple nodes. This is done purely on the basis
1826  * of timings, since this is the only data we have to work with and
1827  * our aim here is to reject a resource group which is highly contended
1828  * but (very important) not to do this too often in order to ensure that
1829  * we do not land up introducing fragmentation by changing resource
1830  * groups when not actually required.
1831  *
1832  * The calculation is fairly simple, we want to know whether the SRTTB
1833  * (i.e. smoothed round trip time for blocking operations) to acquire
1834  * the lock for this rgrp's glock is significantly greater than the
1835  * time taken for resource groups on average. We introduce a margin in
1836  * the form of the variable @var which is computed as the sum of the two
1837  * respective variences, and multiplied by a factor depending on @loops
1838  * and whether we have a lot of data to base the decision on. This is
1839  * then tested against the square difference of the means in order to
1840  * decide whether the result is statistically significant or not.
1841  *
1842  * Returns: A boolean verdict on the congestion status
1843  */
1844 
1845 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1846 {
1847 	const struct gfs2_glock *gl = rgd->rd_gl;
1848 	const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1849 	struct gfs2_lkstats *st;
1850 	u64 r_dcount, l_dcount;
1851 	u64 l_srttb, a_srttb = 0;
1852 	s64 srttb_diff;
1853 	u64 sqr_diff;
1854 	u64 var;
1855 	int cpu, nonzero = 0;
1856 
1857 	preempt_disable();
1858 	for_each_present_cpu(cpu) {
1859 		st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1860 		if (st->stats[GFS2_LKS_SRTTB]) {
1861 			a_srttb += st->stats[GFS2_LKS_SRTTB];
1862 			nonzero++;
1863 		}
1864 	}
1865 	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1866 	if (nonzero)
1867 		do_div(a_srttb, nonzero);
1868 	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1869 	var = st->stats[GFS2_LKS_SRTTVARB] +
1870 	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1871 	preempt_enable();
1872 
1873 	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1874 	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1875 
1876 	if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1877 		return false;
1878 
1879 	srttb_diff = a_srttb - l_srttb;
1880 	sqr_diff = srttb_diff * srttb_diff;
1881 
1882 	var *= 2;
1883 	if (l_dcount < 8 || r_dcount < 8)
1884 		var *= 2;
1885 	if (loops == 1)
1886 		var *= 2;
1887 
1888 	return ((srttb_diff < 0) && (sqr_diff > var));
1889 }
1890 
1891 /**
1892  * gfs2_rgrp_used_recently
1893  * @rs: The block reservation with the rgrp to test
1894  * @msecs: The time limit in milliseconds
1895  *
1896  * Returns: True if the rgrp glock has been used within the time limit
1897  */
1898 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1899 				    u64 msecs)
1900 {
1901 	u64 tdiff;
1902 
1903 	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1904                             rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1905 
1906 	return tdiff > (msecs * 1000 * 1000);
1907 }
1908 
1909 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1910 {
1911 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1912 	u32 skip;
1913 
1914 	get_random_bytes(&skip, sizeof(skip));
1915 	return skip % sdp->sd_rgrps;
1916 }
1917 
1918 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1919 {
1920 	struct gfs2_rgrpd *rgd = *pos;
1921 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1922 
1923 	rgd = gfs2_rgrpd_get_next(rgd);
1924 	if (rgd == NULL)
1925 		rgd = gfs2_rgrpd_get_first(sdp);
1926 	*pos = rgd;
1927 	if (rgd != begin) /* If we didn't wrap */
1928 		return true;
1929 	return false;
1930 }
1931 
1932 /**
1933  * fast_to_acquire - determine if a resource group will be fast to acquire
1934  *
1935  * If this is one of our preferred rgrps, it should be quicker to acquire,
1936  * because we tried to set ourselves up as dlm lock master.
1937  */
1938 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
1939 {
1940 	struct gfs2_glock *gl = rgd->rd_gl;
1941 
1942 	if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
1943 	    !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
1944 	    !test_bit(GLF_DEMOTE, &gl->gl_flags))
1945 		return 1;
1946 	if (rgd->rd_flags & GFS2_RDF_PREFERRED)
1947 		return 1;
1948 	return 0;
1949 }
1950 
1951 /**
1952  * gfs2_inplace_reserve - Reserve space in the filesystem
1953  * @ip: the inode to reserve space for
1954  * @ap: the allocation parameters
1955  *
1956  * We try our best to find an rgrp that has at least ap->target blocks
1957  * available. After a couple of passes (loops == 2), the prospects of finding
1958  * such an rgrp diminish. At this stage, we return the first rgrp that has
1959  * atleast ap->min_target blocks available. Either way, we set ap->allowed to
1960  * the number of blocks available in the chosen rgrp.
1961  *
1962  * Returns: 0 on success,
1963  *          -ENOMEM if a suitable rgrp can't be found
1964  *          errno otherwise
1965  */
1966 
1967 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
1968 {
1969 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1970 	struct gfs2_rgrpd *begin = NULL;
1971 	struct gfs2_blkreserv *rs = &ip->i_res;
1972 	int error = 0, rg_locked, flags = 0;
1973 	u64 last_unlinked = NO_BLOCK;
1974 	int loops = 0;
1975 	u32 skip = 0;
1976 
1977 	if (sdp->sd_args.ar_rgrplvb)
1978 		flags |= GL_SKIP;
1979 	if (gfs2_assert_warn(sdp, ap->target))
1980 		return -EINVAL;
1981 	if (gfs2_rs_active(rs)) {
1982 		begin = rs->rs_rbm.rgd;
1983 	} else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1984 		rs->rs_rbm.rgd = begin = ip->i_rgd;
1985 	} else {
1986 		check_and_update_goal(ip);
1987 		rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1988 	}
1989 	if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
1990 		skip = gfs2_orlov_skip(ip);
1991 	if (rs->rs_rbm.rgd == NULL)
1992 		return -EBADSLT;
1993 
1994 	while (loops < 3) {
1995 		rg_locked = 1;
1996 
1997 		if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
1998 			rg_locked = 0;
1999 			if (skip && skip--)
2000 				goto next_rgrp;
2001 			if (!gfs2_rs_active(rs)) {
2002 				if (loops == 0 &&
2003 				    !fast_to_acquire(rs->rs_rbm.rgd))
2004 					goto next_rgrp;
2005 				if ((loops < 2) &&
2006 				    gfs2_rgrp_used_recently(rs, 1000) &&
2007 				    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2008 					goto next_rgrp;
2009 			}
2010 			error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
2011 						   LM_ST_EXCLUSIVE, flags,
2012 						   &rs->rs_rgd_gh);
2013 			if (unlikely(error))
2014 				return error;
2015 			if (!gfs2_rs_active(rs) && (loops < 2) &&
2016 			    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2017 				goto skip_rgrp;
2018 			if (sdp->sd_args.ar_rgrplvb) {
2019 				error = update_rgrp_lvb(rs->rs_rbm.rgd);
2020 				if (unlikely(error)) {
2021 					gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2022 					return error;
2023 				}
2024 			}
2025 		}
2026 
2027 		/* Skip unuseable resource groups */
2028 		if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
2029 						 GFS2_RDF_ERROR)) ||
2030 		    (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
2031 			goto skip_rgrp;
2032 
2033 		if (sdp->sd_args.ar_rgrplvb)
2034 			gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
2035 
2036 		/* Get a reservation if we don't already have one */
2037 		if (!gfs2_rs_active(rs))
2038 			rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
2039 
2040 		/* Skip rgrps when we can't get a reservation on first pass */
2041 		if (!gfs2_rs_active(rs) && (loops < 1))
2042 			goto check_rgrp;
2043 
2044 		/* If rgrp has enough free space, use it */
2045 		if (rs->rs_rbm.rgd->rd_free_clone >= ap->target ||
2046 		    (loops == 2 && ap->min_target &&
2047 		     rs->rs_rbm.rgd->rd_free_clone >= ap->min_target)) {
2048 			ip->i_rgd = rs->rs_rbm.rgd;
2049 			ap->allowed = ip->i_rgd->rd_free_clone;
2050 			return 0;
2051 		}
2052 check_rgrp:
2053 		/* Check for unlinked inodes which can be reclaimed */
2054 		if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
2055 			try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
2056 					ip->i_no_addr);
2057 skip_rgrp:
2058 		/* Drop reservation, if we couldn't use reserved rgrp */
2059 		if (gfs2_rs_active(rs))
2060 			gfs2_rs_deltree(rs);
2061 
2062 		/* Unlock rgrp if required */
2063 		if (!rg_locked)
2064 			gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2065 next_rgrp:
2066 		/* Find the next rgrp, and continue looking */
2067 		if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
2068 			continue;
2069 		if (skip)
2070 			continue;
2071 
2072 		/* If we've scanned all the rgrps, but found no free blocks
2073 		 * then this checks for some less likely conditions before
2074 		 * trying again.
2075 		 */
2076 		loops++;
2077 		/* Check that fs hasn't grown if writing to rindex */
2078 		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2079 			error = gfs2_ri_update(ip);
2080 			if (error)
2081 				return error;
2082 		}
2083 		/* Flushing the log may release space */
2084 		if (loops == 2)
2085 			gfs2_log_flush(sdp, NULL, NORMAL_FLUSH);
2086 	}
2087 
2088 	return -ENOSPC;
2089 }
2090 
2091 /**
2092  * gfs2_inplace_release - release an inplace reservation
2093  * @ip: the inode the reservation was taken out on
2094  *
2095  * Release a reservation made by gfs2_inplace_reserve().
2096  */
2097 
2098 void gfs2_inplace_release(struct gfs2_inode *ip)
2099 {
2100 	struct gfs2_blkreserv *rs = &ip->i_res;
2101 
2102 	if (rs->rs_rgd_gh.gh_gl)
2103 		gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2104 }
2105 
2106 /**
2107  * gfs2_get_block_type - Check a block in a RG is of given type
2108  * @rgd: the resource group holding the block
2109  * @block: the block number
2110  *
2111  * Returns: The block type (GFS2_BLKST_*)
2112  */
2113 
2114 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
2115 {
2116 	struct gfs2_rbm rbm = { .rgd = rgd, };
2117 	int ret;
2118 
2119 	ret = gfs2_rbm_from_block(&rbm, block);
2120 	WARN_ON_ONCE(ret != 0);
2121 
2122 	return gfs2_testbit(&rbm);
2123 }
2124 
2125 
2126 /**
2127  * gfs2_alloc_extent - allocate an extent from a given bitmap
2128  * @rbm: the resource group information
2129  * @dinode: TRUE if the first block we allocate is for a dinode
2130  * @n: The extent length (value/result)
2131  *
2132  * Add the bitmap buffer to the transaction.
2133  * Set the found bits to @new_state to change block's allocation state.
2134  */
2135 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2136 			     unsigned int *n)
2137 {
2138 	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2139 	const unsigned int elen = *n;
2140 	u64 block;
2141 	int ret;
2142 
2143 	*n = 1;
2144 	block = gfs2_rbm_to_block(rbm);
2145 	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2146 	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2147 	block++;
2148 	while (*n < elen) {
2149 		ret = gfs2_rbm_from_block(&pos, block);
2150 		if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
2151 			break;
2152 		gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2153 		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2154 		(*n)++;
2155 		block++;
2156 	}
2157 }
2158 
2159 /**
2160  * rgblk_free - Change alloc state of given block(s)
2161  * @sdp: the filesystem
2162  * @bstart: the start of a run of blocks to free
2163  * @blen: the length of the block run (all must lie within ONE RG!)
2164  * @new_state: GFS2_BLKST_XXX the after-allocation block state
2165  *
2166  * Returns:  Resource group containing the block(s)
2167  */
2168 
2169 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
2170 				     u32 blen, unsigned char new_state)
2171 {
2172 	struct gfs2_rbm rbm;
2173 	struct gfs2_bitmap *bi, *bi_prev = NULL;
2174 
2175 	rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2176 	if (!rbm.rgd) {
2177 		if (gfs2_consist(sdp))
2178 			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2179 		return NULL;
2180 	}
2181 
2182 	gfs2_rbm_from_block(&rbm, bstart);
2183 	while (blen--) {
2184 		bi = rbm_bi(&rbm);
2185 		if (bi != bi_prev) {
2186 			if (!bi->bi_clone) {
2187 				bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2188 						      GFP_NOFS | __GFP_NOFAIL);
2189 				memcpy(bi->bi_clone + bi->bi_offset,
2190 				       bi->bi_bh->b_data + bi->bi_offset,
2191 				       bi->bi_len);
2192 			}
2193 			gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2194 			bi_prev = bi;
2195 		}
2196 		gfs2_setbit(&rbm, false, new_state);
2197 		gfs2_rbm_incr(&rbm);
2198 	}
2199 
2200 	return rbm.rgd;
2201 }
2202 
2203 /**
2204  * gfs2_rgrp_dump - print out an rgrp
2205  * @seq: The iterator
2206  * @gl: The glock in question
2207  *
2208  */
2209 
2210 void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2211 {
2212 	struct gfs2_rgrpd *rgd = gl->gl_object;
2213 	struct gfs2_blkreserv *trs;
2214 	const struct rb_node *n;
2215 
2216 	if (rgd == NULL)
2217 		return;
2218 	gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2219 		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2220 		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2221 		       rgd->rd_reserved, rgd->rd_extfail_pt);
2222 	spin_lock(&rgd->rd_rsspin);
2223 	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2224 		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2225 		dump_rs(seq, trs);
2226 	}
2227 	spin_unlock(&rgd->rd_rsspin);
2228 }
2229 
2230 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2231 {
2232 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2233 	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2234 		(unsigned long long)rgd->rd_addr);
2235 	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2236 	gfs2_rgrp_dump(NULL, rgd->rd_gl);
2237 	rgd->rd_flags |= GFS2_RDF_ERROR;
2238 }
2239 
2240 /**
2241  * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2242  * @ip: The inode we have just allocated blocks for
2243  * @rbm: The start of the allocated blocks
2244  * @len: The extent length
2245  *
2246  * Adjusts a reservation after an allocation has taken place. If the
2247  * reservation does not match the allocation, or if it is now empty
2248  * then it is removed.
2249  */
2250 
2251 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2252 				    const struct gfs2_rbm *rbm, unsigned len)
2253 {
2254 	struct gfs2_blkreserv *rs = &ip->i_res;
2255 	struct gfs2_rgrpd *rgd = rbm->rgd;
2256 	unsigned rlen;
2257 	u64 block;
2258 	int ret;
2259 
2260 	spin_lock(&rgd->rd_rsspin);
2261 	if (gfs2_rs_active(rs)) {
2262 		if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2263 			block = gfs2_rbm_to_block(rbm);
2264 			ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2265 			rlen = min(rs->rs_free, len);
2266 			rs->rs_free -= rlen;
2267 			rgd->rd_reserved -= rlen;
2268 			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2269 			if (rs->rs_free && !ret)
2270 				goto out;
2271 			/* We used up our block reservation, so we should
2272 			   reserve more blocks next time. */
2273 			atomic_add(RGRP_RSRV_ADDBLKS, &rs->rs_sizehint);
2274 		}
2275 		__rs_deltree(rs);
2276 	}
2277 out:
2278 	spin_unlock(&rgd->rd_rsspin);
2279 }
2280 
2281 /**
2282  * gfs2_set_alloc_start - Set starting point for block allocation
2283  * @rbm: The rbm which will be set to the required location
2284  * @ip: The gfs2 inode
2285  * @dinode: Flag to say if allocation includes a new inode
2286  *
2287  * This sets the starting point from the reservation if one is active
2288  * otherwise it falls back to guessing a start point based on the
2289  * inode's goal block or the last allocation point in the rgrp.
2290  */
2291 
2292 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2293 				 const struct gfs2_inode *ip, bool dinode)
2294 {
2295 	u64 goal;
2296 
2297 	if (gfs2_rs_active(&ip->i_res)) {
2298 		*rbm = ip->i_res.rs_rbm;
2299 		return;
2300 	}
2301 
2302 	if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2303 		goal = ip->i_goal;
2304 	else
2305 		goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2306 
2307 	gfs2_rbm_from_block(rbm, goal);
2308 }
2309 
2310 /**
2311  * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2312  * @ip: the inode to allocate the block for
2313  * @bn: Used to return the starting block number
2314  * @nblocks: requested number of blocks/extent length (value/result)
2315  * @dinode: 1 if we're allocating a dinode block, else 0
2316  * @generation: the generation number of the inode
2317  *
2318  * Returns: 0 or error
2319  */
2320 
2321 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2322 		      bool dinode, u64 *generation)
2323 {
2324 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2325 	struct buffer_head *dibh;
2326 	struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2327 	unsigned int ndata;
2328 	u64 block; /* block, within the file system scope */
2329 	int error;
2330 
2331 	gfs2_set_alloc_start(&rbm, ip, dinode);
2332 	error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false, NULL);
2333 
2334 	if (error == -ENOSPC) {
2335 		gfs2_set_alloc_start(&rbm, ip, dinode);
2336 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false,
2337 				      NULL);
2338 	}
2339 
2340 	/* Since all blocks are reserved in advance, this shouldn't happen */
2341 	if (error) {
2342 		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2343 			(unsigned long long)ip->i_no_addr, error, *nblocks,
2344 			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2345 			rbm.rgd->rd_extfail_pt);
2346 		goto rgrp_error;
2347 	}
2348 
2349 	gfs2_alloc_extent(&rbm, dinode, nblocks);
2350 	block = gfs2_rbm_to_block(&rbm);
2351 	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2352 	if (gfs2_rs_active(&ip->i_res))
2353 		gfs2_adjust_reservation(ip, &rbm, *nblocks);
2354 	ndata = *nblocks;
2355 	if (dinode)
2356 		ndata--;
2357 
2358 	if (!dinode) {
2359 		ip->i_goal = block + ndata - 1;
2360 		error = gfs2_meta_inode_buffer(ip, &dibh);
2361 		if (error == 0) {
2362 			struct gfs2_dinode *di =
2363 				(struct gfs2_dinode *)dibh->b_data;
2364 			gfs2_trans_add_meta(ip->i_gl, dibh);
2365 			di->di_goal_meta = di->di_goal_data =
2366 				cpu_to_be64(ip->i_goal);
2367 			brelse(dibh);
2368 		}
2369 	}
2370 	if (rbm.rgd->rd_free < *nblocks) {
2371 		pr_warn("nblocks=%u\n", *nblocks);
2372 		goto rgrp_error;
2373 	}
2374 
2375 	rbm.rgd->rd_free -= *nblocks;
2376 	if (dinode) {
2377 		rbm.rgd->rd_dinodes++;
2378 		*generation = rbm.rgd->rd_igeneration++;
2379 		if (*generation == 0)
2380 			*generation = rbm.rgd->rd_igeneration++;
2381 	}
2382 
2383 	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2384 	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2385 	gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2386 
2387 	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2388 	if (dinode)
2389 		gfs2_trans_add_unrevoke(sdp, block, *nblocks);
2390 
2391 	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2392 
2393 	rbm.rgd->rd_free_clone -= *nblocks;
2394 	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2395 			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2396 	*bn = block;
2397 	return 0;
2398 
2399 rgrp_error:
2400 	gfs2_rgrp_error(rbm.rgd);
2401 	return -EIO;
2402 }
2403 
2404 /**
2405  * __gfs2_free_blocks - free a contiguous run of block(s)
2406  * @ip: the inode these blocks are being freed from
2407  * @bstart: first block of a run of contiguous blocks
2408  * @blen: the length of the block run
2409  * @meta: 1 if the blocks represent metadata
2410  *
2411  */
2412 
2413 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2414 {
2415 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2416 	struct gfs2_rgrpd *rgd;
2417 
2418 	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2419 	if (!rgd)
2420 		return;
2421 	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2422 	rgd->rd_free += blen;
2423 	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2424 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2425 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2426 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2427 
2428 	/* Directories keep their data in the metadata address space */
2429 	if (meta || ip->i_depth)
2430 		gfs2_meta_wipe(ip, bstart, blen);
2431 }
2432 
2433 /**
2434  * gfs2_free_meta - free a contiguous run of data block(s)
2435  * @ip: the inode these blocks are being freed from
2436  * @bstart: first block of a run of contiguous blocks
2437  * @blen: the length of the block run
2438  *
2439  */
2440 
2441 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2442 {
2443 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2444 
2445 	__gfs2_free_blocks(ip, bstart, blen, 1);
2446 	gfs2_statfs_change(sdp, 0, +blen, 0);
2447 	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2448 }
2449 
2450 void gfs2_unlink_di(struct inode *inode)
2451 {
2452 	struct gfs2_inode *ip = GFS2_I(inode);
2453 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2454 	struct gfs2_rgrpd *rgd;
2455 	u64 blkno = ip->i_no_addr;
2456 
2457 	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2458 	if (!rgd)
2459 		return;
2460 	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2461 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2462 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2463 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2464 	update_rgrp_lvb_unlinked(rgd, 1);
2465 }
2466 
2467 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2468 {
2469 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2470 	struct gfs2_rgrpd *tmp_rgd;
2471 
2472 	tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2473 	if (!tmp_rgd)
2474 		return;
2475 	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2476 
2477 	if (!rgd->rd_dinodes)
2478 		gfs2_consist_rgrpd(rgd);
2479 	rgd->rd_dinodes--;
2480 	rgd->rd_free++;
2481 
2482 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2483 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2484 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2485 	update_rgrp_lvb_unlinked(rgd, -1);
2486 
2487 	gfs2_statfs_change(sdp, 0, +1, -1);
2488 }
2489 
2490 
2491 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2492 {
2493 	gfs2_free_uninit_di(rgd, ip->i_no_addr);
2494 	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2495 	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2496 	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2497 }
2498 
2499 /**
2500  * gfs2_check_blk_type - Check the type of a block
2501  * @sdp: The superblock
2502  * @no_addr: The block number to check
2503  * @type: The block type we are looking for
2504  *
2505  * Returns: 0 if the block type matches the expected type
2506  *          -ESTALE if it doesn't match
2507  *          or -ve errno if something went wrong while checking
2508  */
2509 
2510 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2511 {
2512 	struct gfs2_rgrpd *rgd;
2513 	struct gfs2_holder rgd_gh;
2514 	int error = -EINVAL;
2515 
2516 	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2517 	if (!rgd)
2518 		goto fail;
2519 
2520 	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2521 	if (error)
2522 		goto fail;
2523 
2524 	if (gfs2_get_block_type(rgd, no_addr) != type)
2525 		error = -ESTALE;
2526 
2527 	gfs2_glock_dq_uninit(&rgd_gh);
2528 fail:
2529 	return error;
2530 }
2531 
2532 /**
2533  * gfs2_rlist_add - add a RG to a list of RGs
2534  * @ip: the inode
2535  * @rlist: the list of resource groups
2536  * @block: the block
2537  *
2538  * Figure out what RG a block belongs to and add that RG to the list
2539  *
2540  * FIXME: Don't use NOFAIL
2541  *
2542  */
2543 
2544 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2545 		    u64 block)
2546 {
2547 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2548 	struct gfs2_rgrpd *rgd;
2549 	struct gfs2_rgrpd **tmp;
2550 	unsigned int new_space;
2551 	unsigned int x;
2552 
2553 	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2554 		return;
2555 
2556 	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2557 		rgd = ip->i_rgd;
2558 	else
2559 		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2560 	if (!rgd) {
2561 		fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2562 		return;
2563 	}
2564 	ip->i_rgd = rgd;
2565 
2566 	for (x = 0; x < rlist->rl_rgrps; x++)
2567 		if (rlist->rl_rgd[x] == rgd)
2568 			return;
2569 
2570 	if (rlist->rl_rgrps == rlist->rl_space) {
2571 		new_space = rlist->rl_space + 10;
2572 
2573 		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2574 			      GFP_NOFS | __GFP_NOFAIL);
2575 
2576 		if (rlist->rl_rgd) {
2577 			memcpy(tmp, rlist->rl_rgd,
2578 			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2579 			kfree(rlist->rl_rgd);
2580 		}
2581 
2582 		rlist->rl_space = new_space;
2583 		rlist->rl_rgd = tmp;
2584 	}
2585 
2586 	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2587 }
2588 
2589 /**
2590  * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2591  *      and initialize an array of glock holders for them
2592  * @rlist: the list of resource groups
2593  * @state: the lock state to acquire the RG lock in
2594  *
2595  * FIXME: Don't use NOFAIL
2596  *
2597  */
2598 
2599 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2600 {
2601 	unsigned int x;
2602 
2603 	rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
2604 				GFP_NOFS | __GFP_NOFAIL);
2605 	for (x = 0; x < rlist->rl_rgrps; x++)
2606 		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2607 				state, 0,
2608 				&rlist->rl_ghs[x]);
2609 }
2610 
2611 /**
2612  * gfs2_rlist_free - free a resource group list
2613  * @rlist: the list of resource groups
2614  *
2615  */
2616 
2617 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2618 {
2619 	unsigned int x;
2620 
2621 	kfree(rlist->rl_rgd);
2622 
2623 	if (rlist->rl_ghs) {
2624 		for (x = 0; x < rlist->rl_rgrps; x++)
2625 			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2626 		kfree(rlist->rl_ghs);
2627 		rlist->rl_ghs = NULL;
2628 	}
2629 }
2630 
2631