1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright 2004-2011 Red Hat, Inc. 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/fs.h> 10 #include <linux/dlm.h> 11 #include <linux/slab.h> 12 #include <linux/types.h> 13 #include <linux/delay.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/sched/signal.h> 16 17 #include "incore.h" 18 #include "glock.h" 19 #include "glops.h" 20 #include "recovery.h" 21 #include "util.h" 22 #include "sys.h" 23 #include "trace_gfs2.h" 24 25 /** 26 * gfs2_update_stats - Update time based stats 27 * @mv: Pointer to mean/variance structure to update 28 * @sample: New data to include 29 * 30 * @delta is the difference between the current rtt sample and the 31 * running average srtt. We add 1/8 of that to the srtt in order to 32 * update the current srtt estimate. The variance estimate is a bit 33 * more complicated. We subtract the current variance estimate from 34 * the abs value of the @delta and add 1/4 of that to the running 35 * total. That's equivalent to 3/4 of the current variance 36 * estimate plus 1/4 of the abs of @delta. 37 * 38 * Note that the index points at the array entry containing the smoothed 39 * mean value, and the variance is always in the following entry 40 * 41 * Reference: TCP/IP Illustrated, vol 2, p. 831,832 42 * All times are in units of integer nanoseconds. Unlike the TCP/IP case, 43 * they are not scaled fixed point. 44 */ 45 46 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index, 47 s64 sample) 48 { 49 s64 delta = sample - s->stats[index]; 50 s->stats[index] += (delta >> 3); 51 index++; 52 s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2; 53 } 54 55 /** 56 * gfs2_update_reply_times - Update locking statistics 57 * @gl: The glock to update 58 * 59 * This assumes that gl->gl_dstamp has been set earlier. 60 * 61 * The rtt (lock round trip time) is an estimate of the time 62 * taken to perform a dlm lock request. We update it on each 63 * reply from the dlm. 64 * 65 * The blocking flag is set on the glock for all dlm requests 66 * which may potentially block due to lock requests from other nodes. 67 * DLM requests where the current lock state is exclusive, the 68 * requested state is null (or unlocked) or where the TRY or 69 * TRY_1CB flags are set are classified as non-blocking. All 70 * other DLM requests are counted as (potentially) blocking. 71 */ 72 static inline void gfs2_update_reply_times(struct gfs2_glock *gl) 73 { 74 struct gfs2_pcpu_lkstats *lks; 75 const unsigned gltype = gl->gl_name.ln_type; 76 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ? 77 GFS2_LKS_SRTTB : GFS2_LKS_SRTT; 78 s64 rtt; 79 80 preempt_disable(); 81 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp)); 82 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 83 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */ 84 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */ 85 preempt_enable(); 86 87 trace_gfs2_glock_lock_time(gl, rtt); 88 } 89 90 /** 91 * gfs2_update_request_times - Update locking statistics 92 * @gl: The glock to update 93 * 94 * The irt (lock inter-request times) measures the average time 95 * between requests to the dlm. It is updated immediately before 96 * each dlm call. 97 */ 98 99 static inline void gfs2_update_request_times(struct gfs2_glock *gl) 100 { 101 struct gfs2_pcpu_lkstats *lks; 102 const unsigned gltype = gl->gl_name.ln_type; 103 ktime_t dstamp; 104 s64 irt; 105 106 preempt_disable(); 107 dstamp = gl->gl_dstamp; 108 gl->gl_dstamp = ktime_get_real(); 109 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp)); 110 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 111 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */ 112 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */ 113 preempt_enable(); 114 } 115 116 static void gdlm_ast(void *arg) 117 { 118 struct gfs2_glock *gl = arg; 119 unsigned ret = gl->gl_state; 120 121 gfs2_update_reply_times(gl); 122 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED); 123 124 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr) 125 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE); 126 127 switch (gl->gl_lksb.sb_status) { 128 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */ 129 if (gl->gl_ops->go_free) 130 gl->gl_ops->go_free(gl); 131 gfs2_glock_free(gl); 132 return; 133 case -DLM_ECANCEL: /* Cancel while getting lock */ 134 ret |= LM_OUT_CANCELED; 135 goto out; 136 case -EAGAIN: /* Try lock fails */ 137 case -EDEADLK: /* Deadlock detected */ 138 goto out; 139 case -ETIMEDOUT: /* Canceled due to timeout */ 140 ret |= LM_OUT_ERROR; 141 goto out; 142 case 0: /* Success */ 143 break; 144 default: /* Something unexpected */ 145 BUG(); 146 } 147 148 ret = gl->gl_req; 149 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) { 150 if (gl->gl_req == LM_ST_SHARED) 151 ret = LM_ST_DEFERRED; 152 else if (gl->gl_req == LM_ST_DEFERRED) 153 ret = LM_ST_SHARED; 154 else 155 BUG(); 156 } 157 158 set_bit(GLF_INITIAL, &gl->gl_flags); 159 gfs2_glock_complete(gl, ret); 160 return; 161 out: 162 if (!test_bit(GLF_INITIAL, &gl->gl_flags)) 163 gl->gl_lksb.sb_lkid = 0; 164 gfs2_glock_complete(gl, ret); 165 } 166 167 static void gdlm_bast(void *arg, int mode) 168 { 169 struct gfs2_glock *gl = arg; 170 171 switch (mode) { 172 case DLM_LOCK_EX: 173 gfs2_glock_cb(gl, LM_ST_UNLOCKED); 174 break; 175 case DLM_LOCK_CW: 176 gfs2_glock_cb(gl, LM_ST_DEFERRED); 177 break; 178 case DLM_LOCK_PR: 179 gfs2_glock_cb(gl, LM_ST_SHARED); 180 break; 181 default: 182 fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode); 183 BUG(); 184 } 185 } 186 187 /* convert gfs lock-state to dlm lock-mode */ 188 189 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate) 190 { 191 switch (lmstate) { 192 case LM_ST_UNLOCKED: 193 return DLM_LOCK_NL; 194 case LM_ST_EXCLUSIVE: 195 return DLM_LOCK_EX; 196 case LM_ST_DEFERRED: 197 return DLM_LOCK_CW; 198 case LM_ST_SHARED: 199 return DLM_LOCK_PR; 200 } 201 fs_err(sdp, "unknown LM state %d\n", lmstate); 202 BUG(); 203 return -1; 204 } 205 206 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags, 207 const int req) 208 { 209 u32 lkf = 0; 210 211 if (gl->gl_lksb.sb_lvbptr) 212 lkf |= DLM_LKF_VALBLK; 213 214 if (gfs_flags & LM_FLAG_TRY) 215 lkf |= DLM_LKF_NOQUEUE; 216 217 if (gfs_flags & LM_FLAG_TRY_1CB) { 218 lkf |= DLM_LKF_NOQUEUE; 219 lkf |= DLM_LKF_NOQUEUEBAST; 220 } 221 222 if (gfs_flags & LM_FLAG_PRIORITY) { 223 lkf |= DLM_LKF_NOORDER; 224 lkf |= DLM_LKF_HEADQUE; 225 } 226 227 if (gfs_flags & LM_FLAG_ANY) { 228 if (req == DLM_LOCK_PR) 229 lkf |= DLM_LKF_ALTCW; 230 else if (req == DLM_LOCK_CW) 231 lkf |= DLM_LKF_ALTPR; 232 else 233 BUG(); 234 } 235 236 if (gl->gl_lksb.sb_lkid != 0) { 237 lkf |= DLM_LKF_CONVERT; 238 if (test_bit(GLF_BLOCKING, &gl->gl_flags)) 239 lkf |= DLM_LKF_QUECVT; 240 } 241 242 return lkf; 243 } 244 245 static void gfs2_reverse_hex(char *c, u64 value) 246 { 247 *c = '0'; 248 while (value) { 249 *c-- = hex_asc[value & 0x0f]; 250 value >>= 4; 251 } 252 } 253 254 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state, 255 unsigned int flags) 256 { 257 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 258 int req; 259 u32 lkf; 260 char strname[GDLM_STRNAME_BYTES] = ""; 261 262 req = make_mode(gl->gl_name.ln_sbd, req_state); 263 lkf = make_flags(gl, flags, req); 264 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 265 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 266 if (gl->gl_lksb.sb_lkid) { 267 gfs2_update_request_times(gl); 268 } else { 269 memset(strname, ' ', GDLM_STRNAME_BYTES - 1); 270 strname[GDLM_STRNAME_BYTES - 1] = '\0'; 271 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type); 272 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number); 273 gl->gl_dstamp = ktime_get_real(); 274 } 275 /* 276 * Submit the actual lock request. 277 */ 278 279 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname, 280 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast); 281 } 282 283 static void gdlm_put_lock(struct gfs2_glock *gl) 284 { 285 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 286 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 287 int lvb_needs_unlock = 0; 288 int error; 289 290 if (gl->gl_lksb.sb_lkid == 0) { 291 gfs2_glock_free(gl); 292 return; 293 } 294 295 clear_bit(GLF_BLOCKING, &gl->gl_flags); 296 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 297 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 298 gfs2_update_request_times(gl); 299 300 /* don't want to skip dlm_unlock writing the lvb when lock is ex */ 301 302 if (gl->gl_lksb.sb_lvbptr && (gl->gl_state == LM_ST_EXCLUSIVE)) 303 lvb_needs_unlock = 1; 304 305 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) && 306 !lvb_needs_unlock) { 307 gfs2_glock_free(gl); 308 return; 309 } 310 311 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK, 312 NULL, gl); 313 if (error) { 314 fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n", 315 gl->gl_name.ln_type, 316 (unsigned long long)gl->gl_name.ln_number, error); 317 return; 318 } 319 } 320 321 static void gdlm_cancel(struct gfs2_glock *gl) 322 { 323 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 324 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl); 325 } 326 327 /* 328 * dlm/gfs2 recovery coordination using dlm_recover callbacks 329 * 330 * 0. gfs2 checks for another cluster node withdraw, needing journal replay 331 * 1. dlm_controld sees lockspace members change 332 * 2. dlm_controld blocks dlm-kernel locking activity 333 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep) 334 * 4. dlm_controld starts and finishes its own user level recovery 335 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery 336 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot) 337 * 7. dlm_recoverd does its own lock recovery 338 * 8. dlm_recoverd unblocks dlm-kernel locking activity 339 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation) 340 * 10. gfs2_control updates control_lock lvb with new generation and jid bits 341 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none) 342 * 12. gfs2_recover dequeues and recovers journals of failed nodes 343 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result) 344 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals 345 * 15. gfs2_control unblocks normal locking when all journals are recovered 346 * 347 * - failures during recovery 348 * 349 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control 350 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still 351 * recovering for a prior failure. gfs2_control needs a way to detect 352 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using 353 * the recover_block and recover_start values. 354 * 355 * recover_done() provides a new lockspace generation number each time it 356 * is called (step 9). This generation number is saved as recover_start. 357 * When recover_prep() is called, it sets BLOCK_LOCKS and sets 358 * recover_block = recover_start. So, while recover_block is equal to 359 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must 360 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.) 361 * 362 * - more specific gfs2 steps in sequence above 363 * 364 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start 365 * 6. recover_slot records any failed jids (maybe none) 366 * 9. recover_done sets recover_start = new generation number 367 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids 368 * 12. gfs2_recover does journal recoveries for failed jids identified above 369 * 14. gfs2_control clears control_lock lvb bits for recovered jids 370 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured 371 * again) then do nothing, otherwise if recover_start > recover_block 372 * then clear BLOCK_LOCKS. 373 * 374 * - parallel recovery steps across all nodes 375 * 376 * All nodes attempt to update the control_lock lvb with the new generation 377 * number and jid bits, but only the first to get the control_lock EX will 378 * do so; others will see that it's already done (lvb already contains new 379 * generation number.) 380 * 381 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks 382 * . All nodes attempt to set control_lock lvb gen + bits for the new gen 383 * . One node gets control_lock first and writes the lvb, others see it's done 384 * . All nodes attempt to recover jids for which they see control_lock bits set 385 * . One node succeeds for a jid, and that one clears the jid bit in the lvb 386 * . All nodes will eventually see all lvb bits clear and unblock locks 387 * 388 * - is there a problem with clearing an lvb bit that should be set 389 * and missing a journal recovery? 390 * 391 * 1. jid fails 392 * 2. lvb bit set for step 1 393 * 3. jid recovered for step 1 394 * 4. jid taken again (new mount) 395 * 5. jid fails (for step 4) 396 * 6. lvb bit set for step 5 (will already be set) 397 * 7. lvb bit cleared for step 3 398 * 399 * This is not a problem because the failure in step 5 does not 400 * require recovery, because the mount in step 4 could not have 401 * progressed far enough to unblock locks and access the fs. The 402 * control_mount() function waits for all recoveries to be complete 403 * for the latest lockspace generation before ever unblocking locks 404 * and returning. The mount in step 4 waits until the recovery in 405 * step 1 is done. 406 * 407 * - special case of first mounter: first node to mount the fs 408 * 409 * The first node to mount a gfs2 fs needs to check all the journals 410 * and recover any that need recovery before other nodes are allowed 411 * to mount the fs. (Others may begin mounting, but they must wait 412 * for the first mounter to be done before taking locks on the fs 413 * or accessing the fs.) This has two parts: 414 * 415 * 1. The mounted_lock tells a node it's the first to mount the fs. 416 * Each node holds the mounted_lock in PR while it's mounted. 417 * Each node tries to acquire the mounted_lock in EX when it mounts. 418 * If a node is granted the mounted_lock EX it means there are no 419 * other mounted nodes (no PR locks exist), and it is the first mounter. 420 * The mounted_lock is demoted to PR when first recovery is done, so 421 * others will fail to get an EX lock, but will get a PR lock. 422 * 423 * 2. The control_lock blocks others in control_mount() while the first 424 * mounter is doing first mount recovery of all journals. 425 * A mounting node needs to acquire control_lock in EX mode before 426 * it can proceed. The first mounter holds control_lock in EX while doing 427 * the first mount recovery, blocking mounts from other nodes, then demotes 428 * control_lock to NL when it's done (others_may_mount/first_done), 429 * allowing other nodes to continue mounting. 430 * 431 * first mounter: 432 * control_lock EX/NOQUEUE success 433 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters) 434 * set first=1 435 * do first mounter recovery 436 * mounted_lock EX->PR 437 * control_lock EX->NL, write lvb generation 438 * 439 * other mounter: 440 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry) 441 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR) 442 * mounted_lock PR/NOQUEUE success 443 * read lvb generation 444 * control_lock EX->NL 445 * set first=0 446 * 447 * - mount during recovery 448 * 449 * If a node mounts while others are doing recovery (not first mounter), 450 * the mounting node will get its initial recover_done() callback without 451 * having seen any previous failures/callbacks. 452 * 453 * It must wait for all recoveries preceding its mount to be finished 454 * before it unblocks locks. It does this by repeating the "other mounter" 455 * steps above until the lvb generation number is >= its mount generation 456 * number (from initial recover_done) and all lvb bits are clear. 457 * 458 * - control_lock lvb format 459 * 460 * 4 bytes generation number: the latest dlm lockspace generation number 461 * from recover_done callback. Indicates the jid bitmap has been updated 462 * to reflect all slot failures through that generation. 463 * 4 bytes unused. 464 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates 465 * that jid N needs recovery. 466 */ 467 468 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */ 469 470 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen, 471 char *lvb_bits) 472 { 473 __le32 gen; 474 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE); 475 memcpy(&gen, lvb_bits, sizeof(__le32)); 476 *lvb_gen = le32_to_cpu(gen); 477 } 478 479 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen, 480 char *lvb_bits) 481 { 482 __le32 gen; 483 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE); 484 gen = cpu_to_le32(lvb_gen); 485 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32)); 486 } 487 488 static int all_jid_bits_clear(char *lvb) 489 { 490 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0, 491 GDLM_LVB_SIZE - JID_BITMAP_OFFSET); 492 } 493 494 static void sync_wait_cb(void *arg) 495 { 496 struct lm_lockstruct *ls = arg; 497 complete(&ls->ls_sync_wait); 498 } 499 500 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name) 501 { 502 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 503 int error; 504 505 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls); 506 if (error) { 507 fs_err(sdp, "%s lkid %x error %d\n", 508 name, lksb->sb_lkid, error); 509 return error; 510 } 511 512 wait_for_completion(&ls->ls_sync_wait); 513 514 if (lksb->sb_status != -DLM_EUNLOCK) { 515 fs_err(sdp, "%s lkid %x status %d\n", 516 name, lksb->sb_lkid, lksb->sb_status); 517 return -1; 518 } 519 return 0; 520 } 521 522 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags, 523 unsigned int num, struct dlm_lksb *lksb, char *name) 524 { 525 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 526 char strname[GDLM_STRNAME_BYTES]; 527 int error, status; 528 529 memset(strname, 0, GDLM_STRNAME_BYTES); 530 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num); 531 532 error = dlm_lock(ls->ls_dlm, mode, lksb, flags, 533 strname, GDLM_STRNAME_BYTES - 1, 534 0, sync_wait_cb, ls, NULL); 535 if (error) { 536 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n", 537 name, lksb->sb_lkid, flags, mode, error); 538 return error; 539 } 540 541 wait_for_completion(&ls->ls_sync_wait); 542 543 status = lksb->sb_status; 544 545 if (status && status != -EAGAIN) { 546 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n", 547 name, lksb->sb_lkid, flags, mode, status); 548 } 549 550 return status; 551 } 552 553 static int mounted_unlock(struct gfs2_sbd *sdp) 554 { 555 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 556 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock"); 557 } 558 559 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 560 { 561 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 562 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK, 563 &ls->ls_mounted_lksb, "mounted_lock"); 564 } 565 566 static int control_unlock(struct gfs2_sbd *sdp) 567 { 568 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 569 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock"); 570 } 571 572 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 573 { 574 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 575 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK, 576 &ls->ls_control_lksb, "control_lock"); 577 } 578 579 /** 580 * remote_withdraw - react to a node withdrawing from the file system 581 * @sdp: The superblock 582 */ 583 static void remote_withdraw(struct gfs2_sbd *sdp) 584 { 585 struct gfs2_jdesc *jd; 586 int ret = 0, count = 0; 587 588 list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) { 589 if (jd->jd_jid == sdp->sd_lockstruct.ls_jid) 590 continue; 591 ret = gfs2_recover_journal(jd, true); 592 if (ret) 593 break; 594 count++; 595 } 596 597 /* Now drop the additional reference we acquired */ 598 fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret); 599 } 600 601 static void gfs2_control_func(struct work_struct *work) 602 { 603 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work); 604 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 605 uint32_t block_gen, start_gen, lvb_gen, flags; 606 int recover_set = 0; 607 int write_lvb = 0; 608 int recover_size; 609 int i, error; 610 611 /* First check for other nodes that may have done a withdraw. */ 612 if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) { 613 remote_withdraw(sdp); 614 clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags); 615 return; 616 } 617 618 spin_lock(&ls->ls_recover_spin); 619 /* 620 * No MOUNT_DONE means we're still mounting; control_mount() 621 * will set this flag, after which this thread will take over 622 * all further clearing of BLOCK_LOCKS. 623 * 624 * FIRST_MOUNT means this node is doing first mounter recovery, 625 * for which recovery control is handled by 626 * control_mount()/control_first_done(), not this thread. 627 */ 628 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 629 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 630 spin_unlock(&ls->ls_recover_spin); 631 return; 632 } 633 block_gen = ls->ls_recover_block; 634 start_gen = ls->ls_recover_start; 635 spin_unlock(&ls->ls_recover_spin); 636 637 /* 638 * Equal block_gen and start_gen implies we are between 639 * recover_prep and recover_done callbacks, which means 640 * dlm recovery is in progress and dlm locking is blocked. 641 * There's no point trying to do any work until recover_done. 642 */ 643 644 if (block_gen == start_gen) 645 return; 646 647 /* 648 * Propagate recover_submit[] and recover_result[] to lvb: 649 * dlm_recoverd adds to recover_submit[] jids needing recovery 650 * gfs2_recover adds to recover_result[] journal recovery results 651 * 652 * set lvb bit for jids in recover_submit[] if the lvb has not 653 * yet been updated for the generation of the failure 654 * 655 * clear lvb bit for jids in recover_result[] if the result of 656 * the journal recovery is SUCCESS 657 */ 658 659 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 660 if (error) { 661 fs_err(sdp, "control lock EX error %d\n", error); 662 return; 663 } 664 665 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 666 667 spin_lock(&ls->ls_recover_spin); 668 if (block_gen != ls->ls_recover_block || 669 start_gen != ls->ls_recover_start) { 670 fs_info(sdp, "recover generation %u block1 %u %u\n", 671 start_gen, block_gen, ls->ls_recover_block); 672 spin_unlock(&ls->ls_recover_spin); 673 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 674 return; 675 } 676 677 recover_size = ls->ls_recover_size; 678 679 if (lvb_gen <= start_gen) { 680 /* 681 * Clear lvb bits for jids we've successfully recovered. 682 * Because all nodes attempt to recover failed journals, 683 * a journal can be recovered multiple times successfully 684 * in succession. Only the first will really do recovery, 685 * the others find it clean, but still report a successful 686 * recovery. So, another node may have already recovered 687 * the jid and cleared the lvb bit for it. 688 */ 689 for (i = 0; i < recover_size; i++) { 690 if (ls->ls_recover_result[i] != LM_RD_SUCCESS) 691 continue; 692 693 ls->ls_recover_result[i] = 0; 694 695 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) 696 continue; 697 698 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 699 write_lvb = 1; 700 } 701 } 702 703 if (lvb_gen == start_gen) { 704 /* 705 * Failed slots before start_gen are already set in lvb. 706 */ 707 for (i = 0; i < recover_size; i++) { 708 if (!ls->ls_recover_submit[i]) 709 continue; 710 if (ls->ls_recover_submit[i] < lvb_gen) 711 ls->ls_recover_submit[i] = 0; 712 } 713 } else if (lvb_gen < start_gen) { 714 /* 715 * Failed slots before start_gen are not yet set in lvb. 716 */ 717 for (i = 0; i < recover_size; i++) { 718 if (!ls->ls_recover_submit[i]) 719 continue; 720 if (ls->ls_recover_submit[i] < start_gen) { 721 ls->ls_recover_submit[i] = 0; 722 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 723 } 724 } 725 /* even if there are no bits to set, we need to write the 726 latest generation to the lvb */ 727 write_lvb = 1; 728 } else { 729 /* 730 * we should be getting a recover_done() for lvb_gen soon 731 */ 732 } 733 spin_unlock(&ls->ls_recover_spin); 734 735 if (write_lvb) { 736 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 737 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK; 738 } else { 739 flags = DLM_LKF_CONVERT; 740 } 741 742 error = control_lock(sdp, DLM_LOCK_NL, flags); 743 if (error) { 744 fs_err(sdp, "control lock NL error %d\n", error); 745 return; 746 } 747 748 /* 749 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(), 750 * and clear a jid bit in the lvb if the recovery is a success. 751 * Eventually all journals will be recovered, all jid bits will 752 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS. 753 */ 754 755 for (i = 0; i < recover_size; i++) { 756 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) { 757 fs_info(sdp, "recover generation %u jid %d\n", 758 start_gen, i); 759 gfs2_recover_set(sdp, i); 760 recover_set++; 761 } 762 } 763 if (recover_set) 764 return; 765 766 /* 767 * No more jid bits set in lvb, all recovery is done, unblock locks 768 * (unless a new recover_prep callback has occured blocking locks 769 * again while working above) 770 */ 771 772 spin_lock(&ls->ls_recover_spin); 773 if (ls->ls_recover_block == block_gen && 774 ls->ls_recover_start == start_gen) { 775 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 776 spin_unlock(&ls->ls_recover_spin); 777 fs_info(sdp, "recover generation %u done\n", start_gen); 778 gfs2_glock_thaw(sdp); 779 } else { 780 fs_info(sdp, "recover generation %u block2 %u %u\n", 781 start_gen, block_gen, ls->ls_recover_block); 782 spin_unlock(&ls->ls_recover_spin); 783 } 784 } 785 786 static int control_mount(struct gfs2_sbd *sdp) 787 { 788 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 789 uint32_t start_gen, block_gen, mount_gen, lvb_gen; 790 int mounted_mode; 791 int retries = 0; 792 int error; 793 794 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb)); 795 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb)); 796 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE); 797 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb; 798 init_completion(&ls->ls_sync_wait); 799 800 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 801 802 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK); 803 if (error) { 804 fs_err(sdp, "control_mount control_lock NL error %d\n", error); 805 return error; 806 } 807 808 error = mounted_lock(sdp, DLM_LOCK_NL, 0); 809 if (error) { 810 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error); 811 control_unlock(sdp); 812 return error; 813 } 814 mounted_mode = DLM_LOCK_NL; 815 816 restart: 817 if (retries++ && signal_pending(current)) { 818 error = -EINTR; 819 goto fail; 820 } 821 822 /* 823 * We always start with both locks in NL. control_lock is 824 * demoted to NL below so we don't need to do it here. 825 */ 826 827 if (mounted_mode != DLM_LOCK_NL) { 828 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 829 if (error) 830 goto fail; 831 mounted_mode = DLM_LOCK_NL; 832 } 833 834 /* 835 * Other nodes need to do some work in dlm recovery and gfs2_control 836 * before the recover_done and control_lock will be ready for us below. 837 * A delay here is not required but often avoids having to retry. 838 */ 839 840 msleep_interruptible(500); 841 842 /* 843 * Acquire control_lock in EX and mounted_lock in either EX or PR. 844 * control_lock lvb keeps track of any pending journal recoveries. 845 * mounted_lock indicates if any other nodes have the fs mounted. 846 */ 847 848 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK); 849 if (error == -EAGAIN) { 850 goto restart; 851 } else if (error) { 852 fs_err(sdp, "control_mount control_lock EX error %d\n", error); 853 goto fail; 854 } 855 856 /** 857 * If we're a spectator, we don't want to take the lock in EX because 858 * we cannot do the first-mount responsibility it implies: recovery. 859 */ 860 if (sdp->sd_args.ar_spectator) 861 goto locks_done; 862 863 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 864 if (!error) { 865 mounted_mode = DLM_LOCK_EX; 866 goto locks_done; 867 } else if (error != -EAGAIN) { 868 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error); 869 goto fail; 870 } 871 872 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 873 if (!error) { 874 mounted_mode = DLM_LOCK_PR; 875 goto locks_done; 876 } else { 877 /* not even -EAGAIN should happen here */ 878 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error); 879 goto fail; 880 } 881 882 locks_done: 883 /* 884 * If we got both locks above in EX, then we're the first mounter. 885 * If not, then we need to wait for the control_lock lvb to be 886 * updated by other mounted nodes to reflect our mount generation. 887 * 888 * In simple first mounter cases, first mounter will see zero lvb_gen, 889 * but in cases where all existing nodes leave/fail before mounting 890 * nodes finish control_mount, then all nodes will be mounting and 891 * lvb_gen will be non-zero. 892 */ 893 894 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 895 896 if (lvb_gen == 0xFFFFFFFF) { 897 /* special value to force mount attempts to fail */ 898 fs_err(sdp, "control_mount control_lock disabled\n"); 899 error = -EINVAL; 900 goto fail; 901 } 902 903 if (mounted_mode == DLM_LOCK_EX) { 904 /* first mounter, keep both EX while doing first recovery */ 905 spin_lock(&ls->ls_recover_spin); 906 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 907 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 908 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 909 spin_unlock(&ls->ls_recover_spin); 910 fs_info(sdp, "first mounter control generation %u\n", lvb_gen); 911 return 0; 912 } 913 914 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 915 if (error) 916 goto fail; 917 918 /* 919 * We are not first mounter, now we need to wait for the control_lock 920 * lvb generation to be >= the generation from our first recover_done 921 * and all lvb bits to be clear (no pending journal recoveries.) 922 */ 923 924 if (!all_jid_bits_clear(ls->ls_lvb_bits)) { 925 /* journals need recovery, wait until all are clear */ 926 fs_info(sdp, "control_mount wait for journal recovery\n"); 927 goto restart; 928 } 929 930 spin_lock(&ls->ls_recover_spin); 931 block_gen = ls->ls_recover_block; 932 start_gen = ls->ls_recover_start; 933 mount_gen = ls->ls_recover_mount; 934 935 if (lvb_gen < mount_gen) { 936 /* wait for mounted nodes to update control_lock lvb to our 937 generation, which might include new recovery bits set */ 938 if (sdp->sd_args.ar_spectator) { 939 fs_info(sdp, "Recovery is required. Waiting for a " 940 "non-spectator to mount.\n"); 941 msleep_interruptible(1000); 942 } else { 943 fs_info(sdp, "control_mount wait1 block %u start %u " 944 "mount %u lvb %u flags %lx\n", block_gen, 945 start_gen, mount_gen, lvb_gen, 946 ls->ls_recover_flags); 947 } 948 spin_unlock(&ls->ls_recover_spin); 949 goto restart; 950 } 951 952 if (lvb_gen != start_gen) { 953 /* wait for mounted nodes to update control_lock lvb to the 954 latest recovery generation */ 955 fs_info(sdp, "control_mount wait2 block %u start %u mount %u " 956 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 957 lvb_gen, ls->ls_recover_flags); 958 spin_unlock(&ls->ls_recover_spin); 959 goto restart; 960 } 961 962 if (block_gen == start_gen) { 963 /* dlm recovery in progress, wait for it to finish */ 964 fs_info(sdp, "control_mount wait3 block %u start %u mount %u " 965 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 966 lvb_gen, ls->ls_recover_flags); 967 spin_unlock(&ls->ls_recover_spin); 968 goto restart; 969 } 970 971 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 972 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 973 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 974 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 975 spin_unlock(&ls->ls_recover_spin); 976 return 0; 977 978 fail: 979 mounted_unlock(sdp); 980 control_unlock(sdp); 981 return error; 982 } 983 984 static int control_first_done(struct gfs2_sbd *sdp) 985 { 986 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 987 uint32_t start_gen, block_gen; 988 int error; 989 990 restart: 991 spin_lock(&ls->ls_recover_spin); 992 start_gen = ls->ls_recover_start; 993 block_gen = ls->ls_recover_block; 994 995 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) || 996 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 997 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 998 /* sanity check, should not happen */ 999 fs_err(sdp, "control_first_done start %u block %u flags %lx\n", 1000 start_gen, block_gen, ls->ls_recover_flags); 1001 spin_unlock(&ls->ls_recover_spin); 1002 control_unlock(sdp); 1003 return -1; 1004 } 1005 1006 if (start_gen == block_gen) { 1007 /* 1008 * Wait for the end of a dlm recovery cycle to switch from 1009 * first mounter recovery. We can ignore any recover_slot 1010 * callbacks between the recover_prep and next recover_done 1011 * because we are still the first mounter and any failed nodes 1012 * have not fully mounted, so they don't need recovery. 1013 */ 1014 spin_unlock(&ls->ls_recover_spin); 1015 fs_info(sdp, "control_first_done wait gen %u\n", start_gen); 1016 1017 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY, 1018 TASK_UNINTERRUPTIBLE); 1019 goto restart; 1020 } 1021 1022 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1023 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags); 1024 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 1025 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 1026 spin_unlock(&ls->ls_recover_spin); 1027 1028 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE); 1029 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 1030 1031 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT); 1032 if (error) 1033 fs_err(sdp, "control_first_done mounted PR error %d\n", error); 1034 1035 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 1036 if (error) 1037 fs_err(sdp, "control_first_done control NL error %d\n", error); 1038 1039 return error; 1040 } 1041 1042 /* 1043 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC) 1044 * to accomodate the largest slot number. (NB dlm slot numbers start at 1, 1045 * gfs2 jids start at 0, so jid = slot - 1) 1046 */ 1047 1048 #define RECOVER_SIZE_INC 16 1049 1050 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots, 1051 int num_slots) 1052 { 1053 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1054 uint32_t *submit = NULL; 1055 uint32_t *result = NULL; 1056 uint32_t old_size, new_size; 1057 int i, max_jid; 1058 1059 if (!ls->ls_lvb_bits) { 1060 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS); 1061 if (!ls->ls_lvb_bits) 1062 return -ENOMEM; 1063 } 1064 1065 max_jid = 0; 1066 for (i = 0; i < num_slots; i++) { 1067 if (max_jid < slots[i].slot - 1) 1068 max_jid = slots[i].slot - 1; 1069 } 1070 1071 old_size = ls->ls_recover_size; 1072 new_size = old_size; 1073 while (new_size < max_jid + 1) 1074 new_size += RECOVER_SIZE_INC; 1075 if (new_size == old_size) 1076 return 0; 1077 1078 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1079 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1080 if (!submit || !result) { 1081 kfree(submit); 1082 kfree(result); 1083 return -ENOMEM; 1084 } 1085 1086 spin_lock(&ls->ls_recover_spin); 1087 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t)); 1088 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t)); 1089 kfree(ls->ls_recover_submit); 1090 kfree(ls->ls_recover_result); 1091 ls->ls_recover_submit = submit; 1092 ls->ls_recover_result = result; 1093 ls->ls_recover_size = new_size; 1094 spin_unlock(&ls->ls_recover_spin); 1095 return 0; 1096 } 1097 1098 static void free_recover_size(struct lm_lockstruct *ls) 1099 { 1100 kfree(ls->ls_lvb_bits); 1101 kfree(ls->ls_recover_submit); 1102 kfree(ls->ls_recover_result); 1103 ls->ls_recover_submit = NULL; 1104 ls->ls_recover_result = NULL; 1105 ls->ls_recover_size = 0; 1106 ls->ls_lvb_bits = NULL; 1107 } 1108 1109 /* dlm calls before it does lock recovery */ 1110 1111 static void gdlm_recover_prep(void *arg) 1112 { 1113 struct gfs2_sbd *sdp = arg; 1114 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1115 1116 if (gfs2_withdrawn(sdp)) { 1117 fs_err(sdp, "recover_prep ignored due to withdraw.\n"); 1118 return; 1119 } 1120 spin_lock(&ls->ls_recover_spin); 1121 ls->ls_recover_block = ls->ls_recover_start; 1122 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1123 1124 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 1125 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1126 spin_unlock(&ls->ls_recover_spin); 1127 return; 1128 } 1129 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 1130 spin_unlock(&ls->ls_recover_spin); 1131 } 1132 1133 /* dlm calls after recover_prep has been completed on all lockspace members; 1134 identifies slot/jid of failed member */ 1135 1136 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot) 1137 { 1138 struct gfs2_sbd *sdp = arg; 1139 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1140 int jid = slot->slot - 1; 1141 1142 if (gfs2_withdrawn(sdp)) { 1143 fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n", 1144 jid); 1145 return; 1146 } 1147 spin_lock(&ls->ls_recover_spin); 1148 if (ls->ls_recover_size < jid + 1) { 1149 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n", 1150 jid, ls->ls_recover_block, ls->ls_recover_size); 1151 spin_unlock(&ls->ls_recover_spin); 1152 return; 1153 } 1154 1155 if (ls->ls_recover_submit[jid]) { 1156 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n", 1157 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]); 1158 } 1159 ls->ls_recover_submit[jid] = ls->ls_recover_block; 1160 spin_unlock(&ls->ls_recover_spin); 1161 } 1162 1163 /* dlm calls after recover_slot and after it completes lock recovery */ 1164 1165 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots, 1166 int our_slot, uint32_t generation) 1167 { 1168 struct gfs2_sbd *sdp = arg; 1169 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1170 1171 if (gfs2_withdrawn(sdp)) { 1172 fs_err(sdp, "recover_done ignored due to withdraw.\n"); 1173 return; 1174 } 1175 /* ensure the ls jid arrays are large enough */ 1176 set_recover_size(sdp, slots, num_slots); 1177 1178 spin_lock(&ls->ls_recover_spin); 1179 ls->ls_recover_start = generation; 1180 1181 if (!ls->ls_recover_mount) { 1182 ls->ls_recover_mount = generation; 1183 ls->ls_jid = our_slot - 1; 1184 } 1185 1186 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1187 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0); 1188 1189 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1190 smp_mb__after_atomic(); 1191 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY); 1192 spin_unlock(&ls->ls_recover_spin); 1193 } 1194 1195 /* gfs2_recover thread has a journal recovery result */ 1196 1197 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid, 1198 unsigned int result) 1199 { 1200 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1201 1202 if (gfs2_withdrawn(sdp)) { 1203 fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n", 1204 jid); 1205 return; 1206 } 1207 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1208 return; 1209 1210 /* don't care about the recovery of own journal during mount */ 1211 if (jid == ls->ls_jid) 1212 return; 1213 1214 spin_lock(&ls->ls_recover_spin); 1215 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1216 spin_unlock(&ls->ls_recover_spin); 1217 return; 1218 } 1219 if (ls->ls_recover_size < jid + 1) { 1220 fs_err(sdp, "recovery_result jid %d short size %d\n", 1221 jid, ls->ls_recover_size); 1222 spin_unlock(&ls->ls_recover_spin); 1223 return; 1224 } 1225 1226 fs_info(sdp, "recover jid %d result %s\n", jid, 1227 result == LM_RD_GAVEUP ? "busy" : "success"); 1228 1229 ls->ls_recover_result[jid] = result; 1230 1231 /* GAVEUP means another node is recovering the journal; delay our 1232 next attempt to recover it, to give the other node a chance to 1233 finish before trying again */ 1234 1235 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1236 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 1237 result == LM_RD_GAVEUP ? HZ : 0); 1238 spin_unlock(&ls->ls_recover_spin); 1239 } 1240 1241 static const struct dlm_lockspace_ops gdlm_lockspace_ops = { 1242 .recover_prep = gdlm_recover_prep, 1243 .recover_slot = gdlm_recover_slot, 1244 .recover_done = gdlm_recover_done, 1245 }; 1246 1247 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table) 1248 { 1249 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1250 char cluster[GFS2_LOCKNAME_LEN]; 1251 const char *fsname; 1252 uint32_t flags; 1253 int error, ops_result; 1254 1255 /* 1256 * initialize everything 1257 */ 1258 1259 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func); 1260 spin_lock_init(&ls->ls_recover_spin); 1261 ls->ls_recover_flags = 0; 1262 ls->ls_recover_mount = 0; 1263 ls->ls_recover_start = 0; 1264 ls->ls_recover_block = 0; 1265 ls->ls_recover_size = 0; 1266 ls->ls_recover_submit = NULL; 1267 ls->ls_recover_result = NULL; 1268 ls->ls_lvb_bits = NULL; 1269 1270 error = set_recover_size(sdp, NULL, 0); 1271 if (error) 1272 goto fail; 1273 1274 /* 1275 * prepare dlm_new_lockspace args 1276 */ 1277 1278 fsname = strchr(table, ':'); 1279 if (!fsname) { 1280 fs_info(sdp, "no fsname found\n"); 1281 error = -EINVAL; 1282 goto fail_free; 1283 } 1284 memset(cluster, 0, sizeof(cluster)); 1285 memcpy(cluster, table, strlen(table) - strlen(fsname)); 1286 fsname++; 1287 1288 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL; 1289 1290 /* 1291 * create/join lockspace 1292 */ 1293 1294 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE, 1295 &gdlm_lockspace_ops, sdp, &ops_result, 1296 &ls->ls_dlm); 1297 if (error) { 1298 fs_err(sdp, "dlm_new_lockspace error %d\n", error); 1299 goto fail_free; 1300 } 1301 1302 if (ops_result < 0) { 1303 /* 1304 * dlm does not support ops callbacks, 1305 * old dlm_controld/gfs_controld are used, try without ops. 1306 */ 1307 fs_info(sdp, "dlm lockspace ops not used\n"); 1308 free_recover_size(ls); 1309 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags); 1310 return 0; 1311 } 1312 1313 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) { 1314 fs_err(sdp, "dlm lockspace ops disallow jid preset\n"); 1315 error = -EINVAL; 1316 goto fail_release; 1317 } 1318 1319 /* 1320 * control_mount() uses control_lock to determine first mounter, 1321 * and for later mounts, waits for any recoveries to be cleared. 1322 */ 1323 1324 error = control_mount(sdp); 1325 if (error) { 1326 fs_err(sdp, "mount control error %d\n", error); 1327 goto fail_release; 1328 } 1329 1330 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1331 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags); 1332 smp_mb__after_atomic(); 1333 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID); 1334 return 0; 1335 1336 fail_release: 1337 dlm_release_lockspace(ls->ls_dlm, 2); 1338 fail_free: 1339 free_recover_size(ls); 1340 fail: 1341 return error; 1342 } 1343 1344 static void gdlm_first_done(struct gfs2_sbd *sdp) 1345 { 1346 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1347 int error; 1348 1349 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1350 return; 1351 1352 error = control_first_done(sdp); 1353 if (error) 1354 fs_err(sdp, "mount first_done error %d\n", error); 1355 } 1356 1357 static void gdlm_unmount(struct gfs2_sbd *sdp) 1358 { 1359 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1360 1361 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1362 goto release; 1363 1364 /* wait for gfs2_control_wq to be done with this mount */ 1365 1366 spin_lock(&ls->ls_recover_spin); 1367 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags); 1368 spin_unlock(&ls->ls_recover_spin); 1369 flush_delayed_work(&sdp->sd_control_work); 1370 1371 /* mounted_lock and control_lock will be purged in dlm recovery */ 1372 release: 1373 if (ls->ls_dlm) { 1374 dlm_release_lockspace(ls->ls_dlm, 2); 1375 ls->ls_dlm = NULL; 1376 } 1377 1378 free_recover_size(ls); 1379 } 1380 1381 static const match_table_t dlm_tokens = { 1382 { Opt_jid, "jid=%d"}, 1383 { Opt_id, "id=%d"}, 1384 { Opt_first, "first=%d"}, 1385 { Opt_nodir, "nodir=%d"}, 1386 { Opt_err, NULL }, 1387 }; 1388 1389 const struct lm_lockops gfs2_dlm_ops = { 1390 .lm_proto_name = "lock_dlm", 1391 .lm_mount = gdlm_mount, 1392 .lm_first_done = gdlm_first_done, 1393 .lm_recovery_result = gdlm_recovery_result, 1394 .lm_unmount = gdlm_unmount, 1395 .lm_put_lock = gdlm_put_lock, 1396 .lm_lock = gdlm_lock, 1397 .lm_cancel = gdlm_cancel, 1398 .lm_tokens = &dlm_tokens, 1399 }; 1400 1401