xref: /openbmc/linux/fs/gfs2/lock_dlm.c (revision d5f0942b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright 2004-2011 Red Hat, Inc.
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/fs.h>
10 #include <linux/dlm.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/sched/signal.h>
16 
17 #include "incore.h"
18 #include "glock.h"
19 #include "glops.h"
20 #include "recovery.h"
21 #include "util.h"
22 #include "sys.h"
23 #include "trace_gfs2.h"
24 
25 /**
26  * gfs2_update_stats - Update time based stats
27  * @s: The stats to update (local or global)
28  * @index: The index inside @s
29  * @sample: New data to include
30  */
31 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
32 				     s64 sample)
33 {
34 	/*
35 	 * @delta is the difference between the current rtt sample and the
36 	 * running average srtt. We add 1/8 of that to the srtt in order to
37 	 * update the current srtt estimate. The variance estimate is a bit
38 	 * more complicated. We subtract the current variance estimate from
39 	 * the abs value of the @delta and add 1/4 of that to the running
40 	 * total.  That's equivalent to 3/4 of the current variance
41 	 * estimate plus 1/4 of the abs of @delta.
42 	 *
43 	 * Note that the index points at the array entry containing the
44 	 * smoothed mean value, and the variance is always in the following
45 	 * entry
46 	 *
47 	 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
48 	 * All times are in units of integer nanoseconds. Unlike the TCP/IP
49 	 * case, they are not scaled fixed point.
50 	 */
51 
52 	s64 delta = sample - s->stats[index];
53 	s->stats[index] += (delta >> 3);
54 	index++;
55 	s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
56 }
57 
58 /**
59  * gfs2_update_reply_times - Update locking statistics
60  * @gl: The glock to update
61  *
62  * This assumes that gl->gl_dstamp has been set earlier.
63  *
64  * The rtt (lock round trip time) is an estimate of the time
65  * taken to perform a dlm lock request. We update it on each
66  * reply from the dlm.
67  *
68  * The blocking flag is set on the glock for all dlm requests
69  * which may potentially block due to lock requests from other nodes.
70  * DLM requests where the current lock state is exclusive, the
71  * requested state is null (or unlocked) or where the TRY or
72  * TRY_1CB flags are set are classified as non-blocking. All
73  * other DLM requests are counted as (potentially) blocking.
74  */
75 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
76 {
77 	struct gfs2_pcpu_lkstats *lks;
78 	const unsigned gltype = gl->gl_name.ln_type;
79 	unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
80 			 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
81 	s64 rtt;
82 
83 	preempt_disable();
84 	rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
85 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
86 	gfs2_update_stats(&gl->gl_stats, index, rtt);		/* Local */
87 	gfs2_update_stats(&lks->lkstats[gltype], index, rtt);	/* Global */
88 	preempt_enable();
89 
90 	trace_gfs2_glock_lock_time(gl, rtt);
91 }
92 
93 /**
94  * gfs2_update_request_times - Update locking statistics
95  * @gl: The glock to update
96  *
97  * The irt (lock inter-request times) measures the average time
98  * between requests to the dlm. It is updated immediately before
99  * each dlm call.
100  */
101 
102 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
103 {
104 	struct gfs2_pcpu_lkstats *lks;
105 	const unsigned gltype = gl->gl_name.ln_type;
106 	ktime_t dstamp;
107 	s64 irt;
108 
109 	preempt_disable();
110 	dstamp = gl->gl_dstamp;
111 	gl->gl_dstamp = ktime_get_real();
112 	irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
113 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
114 	gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);		/* Local */
115 	gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);	/* Global */
116 	preempt_enable();
117 }
118 
119 static void gdlm_ast(void *arg)
120 {
121 	struct gfs2_glock *gl = arg;
122 	unsigned ret = gl->gl_state;
123 
124 	gfs2_update_reply_times(gl);
125 	BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
126 
127 	if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
128 		memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
129 
130 	switch (gl->gl_lksb.sb_status) {
131 	case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
132 		if (gl->gl_ops->go_free)
133 			gl->gl_ops->go_free(gl);
134 		gfs2_glock_free(gl);
135 		return;
136 	case -DLM_ECANCEL: /* Cancel while getting lock */
137 		ret |= LM_OUT_CANCELED;
138 		goto out;
139 	case -EAGAIN: /* Try lock fails */
140 	case -EDEADLK: /* Deadlock detected */
141 		goto out;
142 	case -ETIMEDOUT: /* Canceled due to timeout */
143 		ret |= LM_OUT_ERROR;
144 		goto out;
145 	case 0: /* Success */
146 		break;
147 	default: /* Something unexpected */
148 		BUG();
149 	}
150 
151 	ret = gl->gl_req;
152 	if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
153 		if (gl->gl_req == LM_ST_SHARED)
154 			ret = LM_ST_DEFERRED;
155 		else if (gl->gl_req == LM_ST_DEFERRED)
156 			ret = LM_ST_SHARED;
157 		else
158 			BUG();
159 	}
160 
161 	set_bit(GLF_INITIAL, &gl->gl_flags);
162 	gfs2_glock_complete(gl, ret);
163 	return;
164 out:
165 	if (!test_bit(GLF_INITIAL, &gl->gl_flags))
166 		gl->gl_lksb.sb_lkid = 0;
167 	gfs2_glock_complete(gl, ret);
168 }
169 
170 static void gdlm_bast(void *arg, int mode)
171 {
172 	struct gfs2_glock *gl = arg;
173 
174 	switch (mode) {
175 	case DLM_LOCK_EX:
176 		gfs2_glock_cb(gl, LM_ST_UNLOCKED);
177 		break;
178 	case DLM_LOCK_CW:
179 		gfs2_glock_cb(gl, LM_ST_DEFERRED);
180 		break;
181 	case DLM_LOCK_PR:
182 		gfs2_glock_cb(gl, LM_ST_SHARED);
183 		break;
184 	default:
185 		fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
186 		BUG();
187 	}
188 }
189 
190 /* convert gfs lock-state to dlm lock-mode */
191 
192 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
193 {
194 	switch (lmstate) {
195 	case LM_ST_UNLOCKED:
196 		return DLM_LOCK_NL;
197 	case LM_ST_EXCLUSIVE:
198 		return DLM_LOCK_EX;
199 	case LM_ST_DEFERRED:
200 		return DLM_LOCK_CW;
201 	case LM_ST_SHARED:
202 		return DLM_LOCK_PR;
203 	}
204 	fs_err(sdp, "unknown LM state %d\n", lmstate);
205 	BUG();
206 	return -1;
207 }
208 
209 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
210 		      const int req)
211 {
212 	u32 lkf = 0;
213 
214 	if (gl->gl_lksb.sb_lvbptr)
215 		lkf |= DLM_LKF_VALBLK;
216 
217 	if (gfs_flags & LM_FLAG_TRY)
218 		lkf |= DLM_LKF_NOQUEUE;
219 
220 	if (gfs_flags & LM_FLAG_TRY_1CB) {
221 		lkf |= DLM_LKF_NOQUEUE;
222 		lkf |= DLM_LKF_NOQUEUEBAST;
223 	}
224 
225 	if (gfs_flags & LM_FLAG_PRIORITY) {
226 		lkf |= DLM_LKF_NOORDER;
227 		lkf |= DLM_LKF_HEADQUE;
228 	}
229 
230 	if (gfs_flags & LM_FLAG_ANY) {
231 		if (req == DLM_LOCK_PR)
232 			lkf |= DLM_LKF_ALTCW;
233 		else if (req == DLM_LOCK_CW)
234 			lkf |= DLM_LKF_ALTPR;
235 		else
236 			BUG();
237 	}
238 
239 	if (gl->gl_lksb.sb_lkid != 0) {
240 		lkf |= DLM_LKF_CONVERT;
241 		if (test_bit(GLF_BLOCKING, &gl->gl_flags))
242 			lkf |= DLM_LKF_QUECVT;
243 	}
244 
245 	return lkf;
246 }
247 
248 static void gfs2_reverse_hex(char *c, u64 value)
249 {
250 	*c = '0';
251 	while (value) {
252 		*c-- = hex_asc[value & 0x0f];
253 		value >>= 4;
254 	}
255 }
256 
257 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
258 		     unsigned int flags)
259 {
260 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
261 	int req;
262 	u32 lkf;
263 	char strname[GDLM_STRNAME_BYTES] = "";
264 	int error;
265 
266 	req = make_mode(gl->gl_name.ln_sbd, req_state);
267 	lkf = make_flags(gl, flags, req);
268 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
269 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
270 	if (gl->gl_lksb.sb_lkid) {
271 		gfs2_update_request_times(gl);
272 	} else {
273 		memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
274 		strname[GDLM_STRNAME_BYTES - 1] = '\0';
275 		gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
276 		gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
277 		gl->gl_dstamp = ktime_get_real();
278 	}
279 	/*
280 	 * Submit the actual lock request.
281 	 */
282 
283 again:
284 	error = dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
285 			GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
286 	if (error == -EBUSY) {
287 		msleep(20);
288 		goto again;
289 	}
290 	return error;
291 }
292 
293 static void gdlm_put_lock(struct gfs2_glock *gl)
294 {
295 	struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
296 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
297 	int error;
298 
299 	if (gl->gl_lksb.sb_lkid == 0)
300 		goto out_free;
301 
302 	clear_bit(GLF_BLOCKING, &gl->gl_flags);
303 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
304 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
305 	gfs2_update_request_times(gl);
306 
307 	/* don't want to call dlm if we've unmounted the lock protocol */
308 	if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
309 		goto out_free;
310 	/* don't want to skip dlm_unlock writing the lvb when lock has one */
311 
312 	if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
313 	    !gl->gl_lksb.sb_lvbptr)
314 		goto out_free;
315 
316 again:
317 	error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
318 			   NULL, gl);
319 	if (error == -EBUSY) {
320 		msleep(20);
321 		goto again;
322 	}
323 
324 	if (error) {
325 		fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
326 		       gl->gl_name.ln_type,
327 		       (unsigned long long)gl->gl_name.ln_number, error);
328 	}
329 	return;
330 
331 out_free:
332 	gfs2_glock_free(gl);
333 }
334 
335 static void gdlm_cancel(struct gfs2_glock *gl)
336 {
337 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
338 	dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
339 }
340 
341 /*
342  * dlm/gfs2 recovery coordination using dlm_recover callbacks
343  *
344  *  0. gfs2 checks for another cluster node withdraw, needing journal replay
345  *  1. dlm_controld sees lockspace members change
346  *  2. dlm_controld blocks dlm-kernel locking activity
347  *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
348  *  4. dlm_controld starts and finishes its own user level recovery
349  *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
350  *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
351  *  7. dlm_recoverd does its own lock recovery
352  *  8. dlm_recoverd unblocks dlm-kernel locking activity
353  *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
354  * 10. gfs2_control updates control_lock lvb with new generation and jid bits
355  * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
356  * 12. gfs2_recover dequeues and recovers journals of failed nodes
357  * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
358  * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
359  * 15. gfs2_control unblocks normal locking when all journals are recovered
360  *
361  * - failures during recovery
362  *
363  * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
364  * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
365  * recovering for a prior failure.  gfs2_control needs a way to detect
366  * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
367  * the recover_block and recover_start values.
368  *
369  * recover_done() provides a new lockspace generation number each time it
370  * is called (step 9).  This generation number is saved as recover_start.
371  * When recover_prep() is called, it sets BLOCK_LOCKS and sets
372  * recover_block = recover_start.  So, while recover_block is equal to
373  * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
374  * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
375  *
376  * - more specific gfs2 steps in sequence above
377  *
378  *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
379  *  6. recover_slot records any failed jids (maybe none)
380  *  9. recover_done sets recover_start = new generation number
381  * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
382  * 12. gfs2_recover does journal recoveries for failed jids identified above
383  * 14. gfs2_control clears control_lock lvb bits for recovered jids
384  * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
385  *     again) then do nothing, otherwise if recover_start > recover_block
386  *     then clear BLOCK_LOCKS.
387  *
388  * - parallel recovery steps across all nodes
389  *
390  * All nodes attempt to update the control_lock lvb with the new generation
391  * number and jid bits, but only the first to get the control_lock EX will
392  * do so; others will see that it's already done (lvb already contains new
393  * generation number.)
394  *
395  * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
396  * . All nodes attempt to set control_lock lvb gen + bits for the new gen
397  * . One node gets control_lock first and writes the lvb, others see it's done
398  * . All nodes attempt to recover jids for which they see control_lock bits set
399  * . One node succeeds for a jid, and that one clears the jid bit in the lvb
400  * . All nodes will eventually see all lvb bits clear and unblock locks
401  *
402  * - is there a problem with clearing an lvb bit that should be set
403  *   and missing a journal recovery?
404  *
405  * 1. jid fails
406  * 2. lvb bit set for step 1
407  * 3. jid recovered for step 1
408  * 4. jid taken again (new mount)
409  * 5. jid fails (for step 4)
410  * 6. lvb bit set for step 5 (will already be set)
411  * 7. lvb bit cleared for step 3
412  *
413  * This is not a problem because the failure in step 5 does not
414  * require recovery, because the mount in step 4 could not have
415  * progressed far enough to unblock locks and access the fs.  The
416  * control_mount() function waits for all recoveries to be complete
417  * for the latest lockspace generation before ever unblocking locks
418  * and returning.  The mount in step 4 waits until the recovery in
419  * step 1 is done.
420  *
421  * - special case of first mounter: first node to mount the fs
422  *
423  * The first node to mount a gfs2 fs needs to check all the journals
424  * and recover any that need recovery before other nodes are allowed
425  * to mount the fs.  (Others may begin mounting, but they must wait
426  * for the first mounter to be done before taking locks on the fs
427  * or accessing the fs.)  This has two parts:
428  *
429  * 1. The mounted_lock tells a node it's the first to mount the fs.
430  * Each node holds the mounted_lock in PR while it's mounted.
431  * Each node tries to acquire the mounted_lock in EX when it mounts.
432  * If a node is granted the mounted_lock EX it means there are no
433  * other mounted nodes (no PR locks exist), and it is the first mounter.
434  * The mounted_lock is demoted to PR when first recovery is done, so
435  * others will fail to get an EX lock, but will get a PR lock.
436  *
437  * 2. The control_lock blocks others in control_mount() while the first
438  * mounter is doing first mount recovery of all journals.
439  * A mounting node needs to acquire control_lock in EX mode before
440  * it can proceed.  The first mounter holds control_lock in EX while doing
441  * the first mount recovery, blocking mounts from other nodes, then demotes
442  * control_lock to NL when it's done (others_may_mount/first_done),
443  * allowing other nodes to continue mounting.
444  *
445  * first mounter:
446  * control_lock EX/NOQUEUE success
447  * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
448  * set first=1
449  * do first mounter recovery
450  * mounted_lock EX->PR
451  * control_lock EX->NL, write lvb generation
452  *
453  * other mounter:
454  * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
455  * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
456  * mounted_lock PR/NOQUEUE success
457  * read lvb generation
458  * control_lock EX->NL
459  * set first=0
460  *
461  * - mount during recovery
462  *
463  * If a node mounts while others are doing recovery (not first mounter),
464  * the mounting node will get its initial recover_done() callback without
465  * having seen any previous failures/callbacks.
466  *
467  * It must wait for all recoveries preceding its mount to be finished
468  * before it unblocks locks.  It does this by repeating the "other mounter"
469  * steps above until the lvb generation number is >= its mount generation
470  * number (from initial recover_done) and all lvb bits are clear.
471  *
472  * - control_lock lvb format
473  *
474  * 4 bytes generation number: the latest dlm lockspace generation number
475  * from recover_done callback.  Indicates the jid bitmap has been updated
476  * to reflect all slot failures through that generation.
477  * 4 bytes unused.
478  * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
479  * that jid N needs recovery.
480  */
481 
482 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
483 
484 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
485 			     char *lvb_bits)
486 {
487 	__le32 gen;
488 	memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
489 	memcpy(&gen, lvb_bits, sizeof(__le32));
490 	*lvb_gen = le32_to_cpu(gen);
491 }
492 
493 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
494 			      char *lvb_bits)
495 {
496 	__le32 gen;
497 	memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
498 	gen = cpu_to_le32(lvb_gen);
499 	memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
500 }
501 
502 static int all_jid_bits_clear(char *lvb)
503 {
504 	return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
505 			GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
506 }
507 
508 static void sync_wait_cb(void *arg)
509 {
510 	struct lm_lockstruct *ls = arg;
511 	complete(&ls->ls_sync_wait);
512 }
513 
514 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
515 {
516 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
517 	int error;
518 
519 	error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
520 	if (error) {
521 		fs_err(sdp, "%s lkid %x error %d\n",
522 		       name, lksb->sb_lkid, error);
523 		return error;
524 	}
525 
526 	wait_for_completion(&ls->ls_sync_wait);
527 
528 	if (lksb->sb_status != -DLM_EUNLOCK) {
529 		fs_err(sdp, "%s lkid %x status %d\n",
530 		       name, lksb->sb_lkid, lksb->sb_status);
531 		return -1;
532 	}
533 	return 0;
534 }
535 
536 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
537 		     unsigned int num, struct dlm_lksb *lksb, char *name)
538 {
539 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
540 	char strname[GDLM_STRNAME_BYTES];
541 	int error, status;
542 
543 	memset(strname, 0, GDLM_STRNAME_BYTES);
544 	snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
545 
546 	error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
547 			 strname, GDLM_STRNAME_BYTES - 1,
548 			 0, sync_wait_cb, ls, NULL);
549 	if (error) {
550 		fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
551 		       name, lksb->sb_lkid, flags, mode, error);
552 		return error;
553 	}
554 
555 	wait_for_completion(&ls->ls_sync_wait);
556 
557 	status = lksb->sb_status;
558 
559 	if (status && status != -EAGAIN) {
560 		fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
561 		       name, lksb->sb_lkid, flags, mode, status);
562 	}
563 
564 	return status;
565 }
566 
567 static int mounted_unlock(struct gfs2_sbd *sdp)
568 {
569 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
570 	return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
571 }
572 
573 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
574 {
575 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
576 	return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
577 			 &ls->ls_mounted_lksb, "mounted_lock");
578 }
579 
580 static int control_unlock(struct gfs2_sbd *sdp)
581 {
582 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
583 	return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
584 }
585 
586 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
587 {
588 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
589 	return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
590 			 &ls->ls_control_lksb, "control_lock");
591 }
592 
593 /**
594  * remote_withdraw - react to a node withdrawing from the file system
595  * @sdp: The superblock
596  */
597 static void remote_withdraw(struct gfs2_sbd *sdp)
598 {
599 	struct gfs2_jdesc *jd;
600 	int ret = 0, count = 0;
601 
602 	list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) {
603 		if (jd->jd_jid == sdp->sd_lockstruct.ls_jid)
604 			continue;
605 		ret = gfs2_recover_journal(jd, true);
606 		if (ret)
607 			break;
608 		count++;
609 	}
610 
611 	/* Now drop the additional reference we acquired */
612 	fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret);
613 }
614 
615 static void gfs2_control_func(struct work_struct *work)
616 {
617 	struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
618 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
619 	uint32_t block_gen, start_gen, lvb_gen, flags;
620 	int recover_set = 0;
621 	int write_lvb = 0;
622 	int recover_size;
623 	int i, error;
624 
625 	/* First check for other nodes that may have done a withdraw. */
626 	if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) {
627 		remote_withdraw(sdp);
628 		clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags);
629 		return;
630 	}
631 
632 	spin_lock(&ls->ls_recover_spin);
633 	/*
634 	 * No MOUNT_DONE means we're still mounting; control_mount()
635 	 * will set this flag, after which this thread will take over
636 	 * all further clearing of BLOCK_LOCKS.
637 	 *
638 	 * FIRST_MOUNT means this node is doing first mounter recovery,
639 	 * for which recovery control is handled by
640 	 * control_mount()/control_first_done(), not this thread.
641 	 */
642 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
643 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
644 		spin_unlock(&ls->ls_recover_spin);
645 		return;
646 	}
647 	block_gen = ls->ls_recover_block;
648 	start_gen = ls->ls_recover_start;
649 	spin_unlock(&ls->ls_recover_spin);
650 
651 	/*
652 	 * Equal block_gen and start_gen implies we are between
653 	 * recover_prep and recover_done callbacks, which means
654 	 * dlm recovery is in progress and dlm locking is blocked.
655 	 * There's no point trying to do any work until recover_done.
656 	 */
657 
658 	if (block_gen == start_gen)
659 		return;
660 
661 	/*
662 	 * Propagate recover_submit[] and recover_result[] to lvb:
663 	 * dlm_recoverd adds to recover_submit[] jids needing recovery
664 	 * gfs2_recover adds to recover_result[] journal recovery results
665 	 *
666 	 * set lvb bit for jids in recover_submit[] if the lvb has not
667 	 * yet been updated for the generation of the failure
668 	 *
669 	 * clear lvb bit for jids in recover_result[] if the result of
670 	 * the journal recovery is SUCCESS
671 	 */
672 
673 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
674 	if (error) {
675 		fs_err(sdp, "control lock EX error %d\n", error);
676 		return;
677 	}
678 
679 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
680 
681 	spin_lock(&ls->ls_recover_spin);
682 	if (block_gen != ls->ls_recover_block ||
683 	    start_gen != ls->ls_recover_start) {
684 		fs_info(sdp, "recover generation %u block1 %u %u\n",
685 			start_gen, block_gen, ls->ls_recover_block);
686 		spin_unlock(&ls->ls_recover_spin);
687 		control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
688 		return;
689 	}
690 
691 	recover_size = ls->ls_recover_size;
692 
693 	if (lvb_gen <= start_gen) {
694 		/*
695 		 * Clear lvb bits for jids we've successfully recovered.
696 		 * Because all nodes attempt to recover failed journals,
697 		 * a journal can be recovered multiple times successfully
698 		 * in succession.  Only the first will really do recovery,
699 		 * the others find it clean, but still report a successful
700 		 * recovery.  So, another node may have already recovered
701 		 * the jid and cleared the lvb bit for it.
702 		 */
703 		for (i = 0; i < recover_size; i++) {
704 			if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
705 				continue;
706 
707 			ls->ls_recover_result[i] = 0;
708 
709 			if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
710 				continue;
711 
712 			__clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
713 			write_lvb = 1;
714 		}
715 	}
716 
717 	if (lvb_gen == start_gen) {
718 		/*
719 		 * Failed slots before start_gen are already set in lvb.
720 		 */
721 		for (i = 0; i < recover_size; i++) {
722 			if (!ls->ls_recover_submit[i])
723 				continue;
724 			if (ls->ls_recover_submit[i] < lvb_gen)
725 				ls->ls_recover_submit[i] = 0;
726 		}
727 	} else if (lvb_gen < start_gen) {
728 		/*
729 		 * Failed slots before start_gen are not yet set in lvb.
730 		 */
731 		for (i = 0; i < recover_size; i++) {
732 			if (!ls->ls_recover_submit[i])
733 				continue;
734 			if (ls->ls_recover_submit[i] < start_gen) {
735 				ls->ls_recover_submit[i] = 0;
736 				__set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
737 			}
738 		}
739 		/* even if there are no bits to set, we need to write the
740 		   latest generation to the lvb */
741 		write_lvb = 1;
742 	} else {
743 		/*
744 		 * we should be getting a recover_done() for lvb_gen soon
745 		 */
746 	}
747 	spin_unlock(&ls->ls_recover_spin);
748 
749 	if (write_lvb) {
750 		control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
751 		flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
752 	} else {
753 		flags = DLM_LKF_CONVERT;
754 	}
755 
756 	error = control_lock(sdp, DLM_LOCK_NL, flags);
757 	if (error) {
758 		fs_err(sdp, "control lock NL error %d\n", error);
759 		return;
760 	}
761 
762 	/*
763 	 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
764 	 * and clear a jid bit in the lvb if the recovery is a success.
765 	 * Eventually all journals will be recovered, all jid bits will
766 	 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
767 	 */
768 
769 	for (i = 0; i < recover_size; i++) {
770 		if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
771 			fs_info(sdp, "recover generation %u jid %d\n",
772 				start_gen, i);
773 			gfs2_recover_set(sdp, i);
774 			recover_set++;
775 		}
776 	}
777 	if (recover_set)
778 		return;
779 
780 	/*
781 	 * No more jid bits set in lvb, all recovery is done, unblock locks
782 	 * (unless a new recover_prep callback has occured blocking locks
783 	 * again while working above)
784 	 */
785 
786 	spin_lock(&ls->ls_recover_spin);
787 	if (ls->ls_recover_block == block_gen &&
788 	    ls->ls_recover_start == start_gen) {
789 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
790 		spin_unlock(&ls->ls_recover_spin);
791 		fs_info(sdp, "recover generation %u done\n", start_gen);
792 		gfs2_glock_thaw(sdp);
793 	} else {
794 		fs_info(sdp, "recover generation %u block2 %u %u\n",
795 			start_gen, block_gen, ls->ls_recover_block);
796 		spin_unlock(&ls->ls_recover_spin);
797 	}
798 }
799 
800 static int control_mount(struct gfs2_sbd *sdp)
801 {
802 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
803 	uint32_t start_gen, block_gen, mount_gen, lvb_gen;
804 	int mounted_mode;
805 	int retries = 0;
806 	int error;
807 
808 	memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
809 	memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
810 	memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
811 	ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
812 	init_completion(&ls->ls_sync_wait);
813 
814 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
815 
816 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
817 	if (error) {
818 		fs_err(sdp, "control_mount control_lock NL error %d\n", error);
819 		return error;
820 	}
821 
822 	error = mounted_lock(sdp, DLM_LOCK_NL, 0);
823 	if (error) {
824 		fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
825 		control_unlock(sdp);
826 		return error;
827 	}
828 	mounted_mode = DLM_LOCK_NL;
829 
830 restart:
831 	if (retries++ && signal_pending(current)) {
832 		error = -EINTR;
833 		goto fail;
834 	}
835 
836 	/*
837 	 * We always start with both locks in NL. control_lock is
838 	 * demoted to NL below so we don't need to do it here.
839 	 */
840 
841 	if (mounted_mode != DLM_LOCK_NL) {
842 		error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
843 		if (error)
844 			goto fail;
845 		mounted_mode = DLM_LOCK_NL;
846 	}
847 
848 	/*
849 	 * Other nodes need to do some work in dlm recovery and gfs2_control
850 	 * before the recover_done and control_lock will be ready for us below.
851 	 * A delay here is not required but often avoids having to retry.
852 	 */
853 
854 	msleep_interruptible(500);
855 
856 	/*
857 	 * Acquire control_lock in EX and mounted_lock in either EX or PR.
858 	 * control_lock lvb keeps track of any pending journal recoveries.
859 	 * mounted_lock indicates if any other nodes have the fs mounted.
860 	 */
861 
862 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
863 	if (error == -EAGAIN) {
864 		goto restart;
865 	} else if (error) {
866 		fs_err(sdp, "control_mount control_lock EX error %d\n", error);
867 		goto fail;
868 	}
869 
870 	/**
871 	 * If we're a spectator, we don't want to take the lock in EX because
872 	 * we cannot do the first-mount responsibility it implies: recovery.
873 	 */
874 	if (sdp->sd_args.ar_spectator)
875 		goto locks_done;
876 
877 	error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
878 	if (!error) {
879 		mounted_mode = DLM_LOCK_EX;
880 		goto locks_done;
881 	} else if (error != -EAGAIN) {
882 		fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
883 		goto fail;
884 	}
885 
886 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
887 	if (!error) {
888 		mounted_mode = DLM_LOCK_PR;
889 		goto locks_done;
890 	} else {
891 		/* not even -EAGAIN should happen here */
892 		fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
893 		goto fail;
894 	}
895 
896 locks_done:
897 	/*
898 	 * If we got both locks above in EX, then we're the first mounter.
899 	 * If not, then we need to wait for the control_lock lvb to be
900 	 * updated by other mounted nodes to reflect our mount generation.
901 	 *
902 	 * In simple first mounter cases, first mounter will see zero lvb_gen,
903 	 * but in cases where all existing nodes leave/fail before mounting
904 	 * nodes finish control_mount, then all nodes will be mounting and
905 	 * lvb_gen will be non-zero.
906 	 */
907 
908 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
909 
910 	if (lvb_gen == 0xFFFFFFFF) {
911 		/* special value to force mount attempts to fail */
912 		fs_err(sdp, "control_mount control_lock disabled\n");
913 		error = -EINVAL;
914 		goto fail;
915 	}
916 
917 	if (mounted_mode == DLM_LOCK_EX) {
918 		/* first mounter, keep both EX while doing first recovery */
919 		spin_lock(&ls->ls_recover_spin);
920 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
921 		set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
922 		set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
923 		spin_unlock(&ls->ls_recover_spin);
924 		fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
925 		return 0;
926 	}
927 
928 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
929 	if (error)
930 		goto fail;
931 
932 	/*
933 	 * We are not first mounter, now we need to wait for the control_lock
934 	 * lvb generation to be >= the generation from our first recover_done
935 	 * and all lvb bits to be clear (no pending journal recoveries.)
936 	 */
937 
938 	if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
939 		/* journals need recovery, wait until all are clear */
940 		fs_info(sdp, "control_mount wait for journal recovery\n");
941 		goto restart;
942 	}
943 
944 	spin_lock(&ls->ls_recover_spin);
945 	block_gen = ls->ls_recover_block;
946 	start_gen = ls->ls_recover_start;
947 	mount_gen = ls->ls_recover_mount;
948 
949 	if (lvb_gen < mount_gen) {
950 		/* wait for mounted nodes to update control_lock lvb to our
951 		   generation, which might include new recovery bits set */
952 		if (sdp->sd_args.ar_spectator) {
953 			fs_info(sdp, "Recovery is required. Waiting for a "
954 				"non-spectator to mount.\n");
955 			msleep_interruptible(1000);
956 		} else {
957 			fs_info(sdp, "control_mount wait1 block %u start %u "
958 				"mount %u lvb %u flags %lx\n", block_gen,
959 				start_gen, mount_gen, lvb_gen,
960 				ls->ls_recover_flags);
961 		}
962 		spin_unlock(&ls->ls_recover_spin);
963 		goto restart;
964 	}
965 
966 	if (lvb_gen != start_gen) {
967 		/* wait for mounted nodes to update control_lock lvb to the
968 		   latest recovery generation */
969 		fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
970 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
971 			lvb_gen, ls->ls_recover_flags);
972 		spin_unlock(&ls->ls_recover_spin);
973 		goto restart;
974 	}
975 
976 	if (block_gen == start_gen) {
977 		/* dlm recovery in progress, wait for it to finish */
978 		fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
979 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
980 			lvb_gen, ls->ls_recover_flags);
981 		spin_unlock(&ls->ls_recover_spin);
982 		goto restart;
983 	}
984 
985 	clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
986 	set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
987 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
988 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
989 	spin_unlock(&ls->ls_recover_spin);
990 	return 0;
991 
992 fail:
993 	mounted_unlock(sdp);
994 	control_unlock(sdp);
995 	return error;
996 }
997 
998 static int control_first_done(struct gfs2_sbd *sdp)
999 {
1000 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1001 	uint32_t start_gen, block_gen;
1002 	int error;
1003 
1004 restart:
1005 	spin_lock(&ls->ls_recover_spin);
1006 	start_gen = ls->ls_recover_start;
1007 	block_gen = ls->ls_recover_block;
1008 
1009 	if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
1010 	    !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1011 	    !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1012 		/* sanity check, should not happen */
1013 		fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
1014 		       start_gen, block_gen, ls->ls_recover_flags);
1015 		spin_unlock(&ls->ls_recover_spin);
1016 		control_unlock(sdp);
1017 		return -1;
1018 	}
1019 
1020 	if (start_gen == block_gen) {
1021 		/*
1022 		 * Wait for the end of a dlm recovery cycle to switch from
1023 		 * first mounter recovery.  We can ignore any recover_slot
1024 		 * callbacks between the recover_prep and next recover_done
1025 		 * because we are still the first mounter and any failed nodes
1026 		 * have not fully mounted, so they don't need recovery.
1027 		 */
1028 		spin_unlock(&ls->ls_recover_spin);
1029 		fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
1030 
1031 		wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
1032 			    TASK_UNINTERRUPTIBLE);
1033 		goto restart;
1034 	}
1035 
1036 	clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1037 	set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
1038 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1039 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1040 	spin_unlock(&ls->ls_recover_spin);
1041 
1042 	memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
1043 	control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
1044 
1045 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1046 	if (error)
1047 		fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1048 
1049 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1050 	if (error)
1051 		fs_err(sdp, "control_first_done control NL error %d\n", error);
1052 
1053 	return error;
1054 }
1055 
1056 /*
1057  * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1058  * to accommodate the largest slot number.  (NB dlm slot numbers start at 1,
1059  * gfs2 jids start at 0, so jid = slot - 1)
1060  */
1061 
1062 #define RECOVER_SIZE_INC 16
1063 
1064 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1065 			    int num_slots)
1066 {
1067 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1068 	uint32_t *submit = NULL;
1069 	uint32_t *result = NULL;
1070 	uint32_t old_size, new_size;
1071 	int i, max_jid;
1072 
1073 	if (!ls->ls_lvb_bits) {
1074 		ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1075 		if (!ls->ls_lvb_bits)
1076 			return -ENOMEM;
1077 	}
1078 
1079 	max_jid = 0;
1080 	for (i = 0; i < num_slots; i++) {
1081 		if (max_jid < slots[i].slot - 1)
1082 			max_jid = slots[i].slot - 1;
1083 	}
1084 
1085 	old_size = ls->ls_recover_size;
1086 	new_size = old_size;
1087 	while (new_size < max_jid + 1)
1088 		new_size += RECOVER_SIZE_INC;
1089 	if (new_size == old_size)
1090 		return 0;
1091 
1092 	submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1093 	result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1094 	if (!submit || !result) {
1095 		kfree(submit);
1096 		kfree(result);
1097 		return -ENOMEM;
1098 	}
1099 
1100 	spin_lock(&ls->ls_recover_spin);
1101 	memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1102 	memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1103 	kfree(ls->ls_recover_submit);
1104 	kfree(ls->ls_recover_result);
1105 	ls->ls_recover_submit = submit;
1106 	ls->ls_recover_result = result;
1107 	ls->ls_recover_size = new_size;
1108 	spin_unlock(&ls->ls_recover_spin);
1109 	return 0;
1110 }
1111 
1112 static void free_recover_size(struct lm_lockstruct *ls)
1113 {
1114 	kfree(ls->ls_lvb_bits);
1115 	kfree(ls->ls_recover_submit);
1116 	kfree(ls->ls_recover_result);
1117 	ls->ls_recover_submit = NULL;
1118 	ls->ls_recover_result = NULL;
1119 	ls->ls_recover_size = 0;
1120 	ls->ls_lvb_bits = NULL;
1121 }
1122 
1123 /* dlm calls before it does lock recovery */
1124 
1125 static void gdlm_recover_prep(void *arg)
1126 {
1127 	struct gfs2_sbd *sdp = arg;
1128 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1129 
1130 	if (gfs2_withdrawn(sdp)) {
1131 		fs_err(sdp, "recover_prep ignored due to withdraw.\n");
1132 		return;
1133 	}
1134 	spin_lock(&ls->ls_recover_spin);
1135 	ls->ls_recover_block = ls->ls_recover_start;
1136 	set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1137 
1138 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1139 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1140 		spin_unlock(&ls->ls_recover_spin);
1141 		return;
1142 	}
1143 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1144 	spin_unlock(&ls->ls_recover_spin);
1145 }
1146 
1147 /* dlm calls after recover_prep has been completed on all lockspace members;
1148    identifies slot/jid of failed member */
1149 
1150 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1151 {
1152 	struct gfs2_sbd *sdp = arg;
1153 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1154 	int jid = slot->slot - 1;
1155 
1156 	if (gfs2_withdrawn(sdp)) {
1157 		fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n",
1158 		       jid);
1159 		return;
1160 	}
1161 	spin_lock(&ls->ls_recover_spin);
1162 	if (ls->ls_recover_size < jid + 1) {
1163 		fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1164 		       jid, ls->ls_recover_block, ls->ls_recover_size);
1165 		spin_unlock(&ls->ls_recover_spin);
1166 		return;
1167 	}
1168 
1169 	if (ls->ls_recover_submit[jid]) {
1170 		fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1171 			jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1172 	}
1173 	ls->ls_recover_submit[jid] = ls->ls_recover_block;
1174 	spin_unlock(&ls->ls_recover_spin);
1175 }
1176 
1177 /* dlm calls after recover_slot and after it completes lock recovery */
1178 
1179 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1180 			      int our_slot, uint32_t generation)
1181 {
1182 	struct gfs2_sbd *sdp = arg;
1183 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1184 
1185 	if (gfs2_withdrawn(sdp)) {
1186 		fs_err(sdp, "recover_done ignored due to withdraw.\n");
1187 		return;
1188 	}
1189 	/* ensure the ls jid arrays are large enough */
1190 	set_recover_size(sdp, slots, num_slots);
1191 
1192 	spin_lock(&ls->ls_recover_spin);
1193 	ls->ls_recover_start = generation;
1194 
1195 	if (!ls->ls_recover_mount) {
1196 		ls->ls_recover_mount = generation;
1197 		ls->ls_jid = our_slot - 1;
1198 	}
1199 
1200 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1201 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1202 
1203 	clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1204 	smp_mb__after_atomic();
1205 	wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1206 	spin_unlock(&ls->ls_recover_spin);
1207 }
1208 
1209 /* gfs2_recover thread has a journal recovery result */
1210 
1211 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1212 				 unsigned int result)
1213 {
1214 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1215 
1216 	if (gfs2_withdrawn(sdp)) {
1217 		fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n",
1218 		       jid);
1219 		return;
1220 	}
1221 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1222 		return;
1223 
1224 	/* don't care about the recovery of own journal during mount */
1225 	if (jid == ls->ls_jid)
1226 		return;
1227 
1228 	spin_lock(&ls->ls_recover_spin);
1229 	if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1230 		spin_unlock(&ls->ls_recover_spin);
1231 		return;
1232 	}
1233 	if (ls->ls_recover_size < jid + 1) {
1234 		fs_err(sdp, "recovery_result jid %d short size %d\n",
1235 		       jid, ls->ls_recover_size);
1236 		spin_unlock(&ls->ls_recover_spin);
1237 		return;
1238 	}
1239 
1240 	fs_info(sdp, "recover jid %d result %s\n", jid,
1241 		result == LM_RD_GAVEUP ? "busy" : "success");
1242 
1243 	ls->ls_recover_result[jid] = result;
1244 
1245 	/* GAVEUP means another node is recovering the journal; delay our
1246 	   next attempt to recover it, to give the other node a chance to
1247 	   finish before trying again */
1248 
1249 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1250 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1251 				   result == LM_RD_GAVEUP ? HZ : 0);
1252 	spin_unlock(&ls->ls_recover_spin);
1253 }
1254 
1255 static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1256 	.recover_prep = gdlm_recover_prep,
1257 	.recover_slot = gdlm_recover_slot,
1258 	.recover_done = gdlm_recover_done,
1259 };
1260 
1261 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1262 {
1263 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1264 	char cluster[GFS2_LOCKNAME_LEN];
1265 	const char *fsname;
1266 	uint32_t flags;
1267 	int error, ops_result;
1268 
1269 	/*
1270 	 * initialize everything
1271 	 */
1272 
1273 	INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1274 	spin_lock_init(&ls->ls_recover_spin);
1275 	ls->ls_recover_flags = 0;
1276 	ls->ls_recover_mount = 0;
1277 	ls->ls_recover_start = 0;
1278 	ls->ls_recover_block = 0;
1279 	ls->ls_recover_size = 0;
1280 	ls->ls_recover_submit = NULL;
1281 	ls->ls_recover_result = NULL;
1282 	ls->ls_lvb_bits = NULL;
1283 
1284 	error = set_recover_size(sdp, NULL, 0);
1285 	if (error)
1286 		goto fail;
1287 
1288 	/*
1289 	 * prepare dlm_new_lockspace args
1290 	 */
1291 
1292 	fsname = strchr(table, ':');
1293 	if (!fsname) {
1294 		fs_info(sdp, "no fsname found\n");
1295 		error = -EINVAL;
1296 		goto fail_free;
1297 	}
1298 	memset(cluster, 0, sizeof(cluster));
1299 	memcpy(cluster, table, strlen(table) - strlen(fsname));
1300 	fsname++;
1301 
1302 	flags = DLM_LSFL_NEWEXCL;
1303 
1304 	/*
1305 	 * create/join lockspace
1306 	 */
1307 
1308 	error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1309 				  &gdlm_lockspace_ops, sdp, &ops_result,
1310 				  &ls->ls_dlm);
1311 	if (error) {
1312 		fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1313 		goto fail_free;
1314 	}
1315 
1316 	if (ops_result < 0) {
1317 		/*
1318 		 * dlm does not support ops callbacks,
1319 		 * old dlm_controld/gfs_controld are used, try without ops.
1320 		 */
1321 		fs_info(sdp, "dlm lockspace ops not used\n");
1322 		free_recover_size(ls);
1323 		set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1324 		return 0;
1325 	}
1326 
1327 	if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1328 		fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1329 		error = -EINVAL;
1330 		goto fail_release;
1331 	}
1332 
1333 	/*
1334 	 * control_mount() uses control_lock to determine first mounter,
1335 	 * and for later mounts, waits for any recoveries to be cleared.
1336 	 */
1337 
1338 	error = control_mount(sdp);
1339 	if (error) {
1340 		fs_err(sdp, "mount control error %d\n", error);
1341 		goto fail_release;
1342 	}
1343 
1344 	ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1345 	clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1346 	smp_mb__after_atomic();
1347 	wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1348 	return 0;
1349 
1350 fail_release:
1351 	dlm_release_lockspace(ls->ls_dlm, 2);
1352 fail_free:
1353 	free_recover_size(ls);
1354 fail:
1355 	return error;
1356 }
1357 
1358 static void gdlm_first_done(struct gfs2_sbd *sdp)
1359 {
1360 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1361 	int error;
1362 
1363 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1364 		return;
1365 
1366 	error = control_first_done(sdp);
1367 	if (error)
1368 		fs_err(sdp, "mount first_done error %d\n", error);
1369 }
1370 
1371 static void gdlm_unmount(struct gfs2_sbd *sdp)
1372 {
1373 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1374 
1375 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1376 		goto release;
1377 
1378 	/* wait for gfs2_control_wq to be done with this mount */
1379 
1380 	spin_lock(&ls->ls_recover_spin);
1381 	set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1382 	spin_unlock(&ls->ls_recover_spin);
1383 	flush_delayed_work(&sdp->sd_control_work);
1384 
1385 	/* mounted_lock and control_lock will be purged in dlm recovery */
1386 release:
1387 	if (ls->ls_dlm) {
1388 		dlm_release_lockspace(ls->ls_dlm, 2);
1389 		ls->ls_dlm = NULL;
1390 	}
1391 
1392 	free_recover_size(ls);
1393 }
1394 
1395 static const match_table_t dlm_tokens = {
1396 	{ Opt_jid, "jid=%d"},
1397 	{ Opt_id, "id=%d"},
1398 	{ Opt_first, "first=%d"},
1399 	{ Opt_nodir, "nodir=%d"},
1400 	{ Opt_err, NULL },
1401 };
1402 
1403 const struct lm_lockops gfs2_dlm_ops = {
1404 	.lm_proto_name = "lock_dlm",
1405 	.lm_mount = gdlm_mount,
1406 	.lm_first_done = gdlm_first_done,
1407 	.lm_recovery_result = gdlm_recovery_result,
1408 	.lm_unmount = gdlm_unmount,
1409 	.lm_put_lock = gdlm_put_lock,
1410 	.lm_lock = gdlm_lock,
1411 	.lm_cancel = gdlm_cancel,
1412 	.lm_tokens = &dlm_tokens,
1413 };
1414 
1415