1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright 2004-2011 Red Hat, Inc. 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/fs.h> 10 #include <linux/dlm.h> 11 #include <linux/slab.h> 12 #include <linux/types.h> 13 #include <linux/delay.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/sched/signal.h> 16 17 #include "incore.h" 18 #include "glock.h" 19 #include "glops.h" 20 #include "recovery.h" 21 #include "util.h" 22 #include "sys.h" 23 #include "trace_gfs2.h" 24 25 /** 26 * gfs2_update_stats - Update time based stats 27 * @s: The stats to update (local or global) 28 * @index: The index inside @s 29 * @sample: New data to include 30 */ 31 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index, 32 s64 sample) 33 { 34 /* 35 * @delta is the difference between the current rtt sample and the 36 * running average srtt. We add 1/8 of that to the srtt in order to 37 * update the current srtt estimate. The variance estimate is a bit 38 * more complicated. We subtract the current variance estimate from 39 * the abs value of the @delta and add 1/4 of that to the running 40 * total. That's equivalent to 3/4 of the current variance 41 * estimate plus 1/4 of the abs of @delta. 42 * 43 * Note that the index points at the array entry containing the 44 * smoothed mean value, and the variance is always in the following 45 * entry 46 * 47 * Reference: TCP/IP Illustrated, vol 2, p. 831,832 48 * All times are in units of integer nanoseconds. Unlike the TCP/IP 49 * case, they are not scaled fixed point. 50 */ 51 52 s64 delta = sample - s->stats[index]; 53 s->stats[index] += (delta >> 3); 54 index++; 55 s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2; 56 } 57 58 /** 59 * gfs2_update_reply_times - Update locking statistics 60 * @gl: The glock to update 61 * 62 * This assumes that gl->gl_dstamp has been set earlier. 63 * 64 * The rtt (lock round trip time) is an estimate of the time 65 * taken to perform a dlm lock request. We update it on each 66 * reply from the dlm. 67 * 68 * The blocking flag is set on the glock for all dlm requests 69 * which may potentially block due to lock requests from other nodes. 70 * DLM requests where the current lock state is exclusive, the 71 * requested state is null (or unlocked) or where the TRY or 72 * TRY_1CB flags are set are classified as non-blocking. All 73 * other DLM requests are counted as (potentially) blocking. 74 */ 75 static inline void gfs2_update_reply_times(struct gfs2_glock *gl) 76 { 77 struct gfs2_pcpu_lkstats *lks; 78 const unsigned gltype = gl->gl_name.ln_type; 79 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ? 80 GFS2_LKS_SRTTB : GFS2_LKS_SRTT; 81 s64 rtt; 82 83 preempt_disable(); 84 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp)); 85 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 86 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */ 87 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */ 88 preempt_enable(); 89 90 trace_gfs2_glock_lock_time(gl, rtt); 91 } 92 93 /** 94 * gfs2_update_request_times - Update locking statistics 95 * @gl: The glock to update 96 * 97 * The irt (lock inter-request times) measures the average time 98 * between requests to the dlm. It is updated immediately before 99 * each dlm call. 100 */ 101 102 static inline void gfs2_update_request_times(struct gfs2_glock *gl) 103 { 104 struct gfs2_pcpu_lkstats *lks; 105 const unsigned gltype = gl->gl_name.ln_type; 106 ktime_t dstamp; 107 s64 irt; 108 109 preempt_disable(); 110 dstamp = gl->gl_dstamp; 111 gl->gl_dstamp = ktime_get_real(); 112 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp)); 113 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 114 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */ 115 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */ 116 preempt_enable(); 117 } 118 119 static void gdlm_ast(void *arg) 120 { 121 struct gfs2_glock *gl = arg; 122 unsigned ret = gl->gl_state; 123 124 gfs2_update_reply_times(gl); 125 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED); 126 127 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr) 128 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE); 129 130 switch (gl->gl_lksb.sb_status) { 131 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */ 132 if (gl->gl_ops->go_free) 133 gl->gl_ops->go_free(gl); 134 gfs2_glock_free(gl); 135 return; 136 case -DLM_ECANCEL: /* Cancel while getting lock */ 137 ret |= LM_OUT_CANCELED; 138 goto out; 139 case -EAGAIN: /* Try lock fails */ 140 case -EDEADLK: /* Deadlock detected */ 141 goto out; 142 case -ETIMEDOUT: /* Canceled due to timeout */ 143 ret |= LM_OUT_ERROR; 144 goto out; 145 case 0: /* Success */ 146 break; 147 default: /* Something unexpected */ 148 BUG(); 149 } 150 151 ret = gl->gl_req; 152 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) { 153 if (gl->gl_req == LM_ST_SHARED) 154 ret = LM_ST_DEFERRED; 155 else if (gl->gl_req == LM_ST_DEFERRED) 156 ret = LM_ST_SHARED; 157 else 158 BUG(); 159 } 160 161 set_bit(GLF_INITIAL, &gl->gl_flags); 162 gfs2_glock_complete(gl, ret); 163 return; 164 out: 165 if (!test_bit(GLF_INITIAL, &gl->gl_flags)) 166 gl->gl_lksb.sb_lkid = 0; 167 gfs2_glock_complete(gl, ret); 168 } 169 170 static void gdlm_bast(void *arg, int mode) 171 { 172 struct gfs2_glock *gl = arg; 173 174 switch (mode) { 175 case DLM_LOCK_EX: 176 gfs2_glock_cb(gl, LM_ST_UNLOCKED); 177 break; 178 case DLM_LOCK_CW: 179 gfs2_glock_cb(gl, LM_ST_DEFERRED); 180 break; 181 case DLM_LOCK_PR: 182 gfs2_glock_cb(gl, LM_ST_SHARED); 183 break; 184 default: 185 fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode); 186 BUG(); 187 } 188 } 189 190 /* convert gfs lock-state to dlm lock-mode */ 191 192 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate) 193 { 194 switch (lmstate) { 195 case LM_ST_UNLOCKED: 196 return DLM_LOCK_NL; 197 case LM_ST_EXCLUSIVE: 198 return DLM_LOCK_EX; 199 case LM_ST_DEFERRED: 200 return DLM_LOCK_CW; 201 case LM_ST_SHARED: 202 return DLM_LOCK_PR; 203 } 204 fs_err(sdp, "unknown LM state %d\n", lmstate); 205 BUG(); 206 return -1; 207 } 208 209 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags, 210 const int req) 211 { 212 u32 lkf = 0; 213 214 if (gl->gl_lksb.sb_lvbptr) 215 lkf |= DLM_LKF_VALBLK; 216 217 if (gfs_flags & LM_FLAG_TRY) 218 lkf |= DLM_LKF_NOQUEUE; 219 220 if (gfs_flags & LM_FLAG_TRY_1CB) { 221 lkf |= DLM_LKF_NOQUEUE; 222 lkf |= DLM_LKF_NOQUEUEBAST; 223 } 224 225 if (gfs_flags & LM_FLAG_PRIORITY) { 226 lkf |= DLM_LKF_NOORDER; 227 lkf |= DLM_LKF_HEADQUE; 228 } 229 230 if (gfs_flags & LM_FLAG_ANY) { 231 if (req == DLM_LOCK_PR) 232 lkf |= DLM_LKF_ALTCW; 233 else if (req == DLM_LOCK_CW) 234 lkf |= DLM_LKF_ALTPR; 235 else 236 BUG(); 237 } 238 239 if (gl->gl_lksb.sb_lkid != 0) { 240 lkf |= DLM_LKF_CONVERT; 241 if (test_bit(GLF_BLOCKING, &gl->gl_flags)) 242 lkf |= DLM_LKF_QUECVT; 243 } 244 245 return lkf; 246 } 247 248 static void gfs2_reverse_hex(char *c, u64 value) 249 { 250 *c = '0'; 251 while (value) { 252 *c-- = hex_asc[value & 0x0f]; 253 value >>= 4; 254 } 255 } 256 257 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state, 258 unsigned int flags) 259 { 260 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 261 int req; 262 u32 lkf; 263 char strname[GDLM_STRNAME_BYTES] = ""; 264 int error; 265 266 req = make_mode(gl->gl_name.ln_sbd, req_state); 267 lkf = make_flags(gl, flags, req); 268 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 269 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 270 if (gl->gl_lksb.sb_lkid) { 271 gfs2_update_request_times(gl); 272 } else { 273 memset(strname, ' ', GDLM_STRNAME_BYTES - 1); 274 strname[GDLM_STRNAME_BYTES - 1] = '\0'; 275 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type); 276 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number); 277 gl->gl_dstamp = ktime_get_real(); 278 } 279 /* 280 * Submit the actual lock request. 281 */ 282 283 again: 284 error = dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname, 285 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast); 286 if (error == -EBUSY) { 287 msleep(20); 288 goto again; 289 } 290 return error; 291 } 292 293 static void gdlm_put_lock(struct gfs2_glock *gl) 294 { 295 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 296 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 297 int error; 298 299 if (gl->gl_lksb.sb_lkid == 0) { 300 gfs2_glock_free(gl); 301 return; 302 } 303 304 clear_bit(GLF_BLOCKING, &gl->gl_flags); 305 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 306 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 307 gfs2_update_request_times(gl); 308 309 /* don't want to call dlm if we've unmounted the lock protocol */ 310 if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) { 311 gfs2_glock_free(gl); 312 return; 313 } 314 /* don't want to skip dlm_unlock writing the lvb when lock has one */ 315 316 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) && 317 !gl->gl_lksb.sb_lvbptr) { 318 gfs2_glock_free(gl); 319 return; 320 } 321 322 again: 323 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK, 324 NULL, gl); 325 if (error == -EBUSY) { 326 msleep(20); 327 goto again; 328 } 329 330 if (error) { 331 fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n", 332 gl->gl_name.ln_type, 333 (unsigned long long)gl->gl_name.ln_number, error); 334 return; 335 } 336 } 337 338 static void gdlm_cancel(struct gfs2_glock *gl) 339 { 340 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 341 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl); 342 } 343 344 /* 345 * dlm/gfs2 recovery coordination using dlm_recover callbacks 346 * 347 * 0. gfs2 checks for another cluster node withdraw, needing journal replay 348 * 1. dlm_controld sees lockspace members change 349 * 2. dlm_controld blocks dlm-kernel locking activity 350 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep) 351 * 4. dlm_controld starts and finishes its own user level recovery 352 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery 353 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot) 354 * 7. dlm_recoverd does its own lock recovery 355 * 8. dlm_recoverd unblocks dlm-kernel locking activity 356 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation) 357 * 10. gfs2_control updates control_lock lvb with new generation and jid bits 358 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none) 359 * 12. gfs2_recover dequeues and recovers journals of failed nodes 360 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result) 361 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals 362 * 15. gfs2_control unblocks normal locking when all journals are recovered 363 * 364 * - failures during recovery 365 * 366 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control 367 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still 368 * recovering for a prior failure. gfs2_control needs a way to detect 369 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using 370 * the recover_block and recover_start values. 371 * 372 * recover_done() provides a new lockspace generation number each time it 373 * is called (step 9). This generation number is saved as recover_start. 374 * When recover_prep() is called, it sets BLOCK_LOCKS and sets 375 * recover_block = recover_start. So, while recover_block is equal to 376 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must 377 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.) 378 * 379 * - more specific gfs2 steps in sequence above 380 * 381 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start 382 * 6. recover_slot records any failed jids (maybe none) 383 * 9. recover_done sets recover_start = new generation number 384 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids 385 * 12. gfs2_recover does journal recoveries for failed jids identified above 386 * 14. gfs2_control clears control_lock lvb bits for recovered jids 387 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured 388 * again) then do nothing, otherwise if recover_start > recover_block 389 * then clear BLOCK_LOCKS. 390 * 391 * - parallel recovery steps across all nodes 392 * 393 * All nodes attempt to update the control_lock lvb with the new generation 394 * number and jid bits, but only the first to get the control_lock EX will 395 * do so; others will see that it's already done (lvb already contains new 396 * generation number.) 397 * 398 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks 399 * . All nodes attempt to set control_lock lvb gen + bits for the new gen 400 * . One node gets control_lock first and writes the lvb, others see it's done 401 * . All nodes attempt to recover jids for which they see control_lock bits set 402 * . One node succeeds for a jid, and that one clears the jid bit in the lvb 403 * . All nodes will eventually see all lvb bits clear and unblock locks 404 * 405 * - is there a problem with clearing an lvb bit that should be set 406 * and missing a journal recovery? 407 * 408 * 1. jid fails 409 * 2. lvb bit set for step 1 410 * 3. jid recovered for step 1 411 * 4. jid taken again (new mount) 412 * 5. jid fails (for step 4) 413 * 6. lvb bit set for step 5 (will already be set) 414 * 7. lvb bit cleared for step 3 415 * 416 * This is not a problem because the failure in step 5 does not 417 * require recovery, because the mount in step 4 could not have 418 * progressed far enough to unblock locks and access the fs. The 419 * control_mount() function waits for all recoveries to be complete 420 * for the latest lockspace generation before ever unblocking locks 421 * and returning. The mount in step 4 waits until the recovery in 422 * step 1 is done. 423 * 424 * - special case of first mounter: first node to mount the fs 425 * 426 * The first node to mount a gfs2 fs needs to check all the journals 427 * and recover any that need recovery before other nodes are allowed 428 * to mount the fs. (Others may begin mounting, but they must wait 429 * for the first mounter to be done before taking locks on the fs 430 * or accessing the fs.) This has two parts: 431 * 432 * 1. The mounted_lock tells a node it's the first to mount the fs. 433 * Each node holds the mounted_lock in PR while it's mounted. 434 * Each node tries to acquire the mounted_lock in EX when it mounts. 435 * If a node is granted the mounted_lock EX it means there are no 436 * other mounted nodes (no PR locks exist), and it is the first mounter. 437 * The mounted_lock is demoted to PR when first recovery is done, so 438 * others will fail to get an EX lock, but will get a PR lock. 439 * 440 * 2. The control_lock blocks others in control_mount() while the first 441 * mounter is doing first mount recovery of all journals. 442 * A mounting node needs to acquire control_lock in EX mode before 443 * it can proceed. The first mounter holds control_lock in EX while doing 444 * the first mount recovery, blocking mounts from other nodes, then demotes 445 * control_lock to NL when it's done (others_may_mount/first_done), 446 * allowing other nodes to continue mounting. 447 * 448 * first mounter: 449 * control_lock EX/NOQUEUE success 450 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters) 451 * set first=1 452 * do first mounter recovery 453 * mounted_lock EX->PR 454 * control_lock EX->NL, write lvb generation 455 * 456 * other mounter: 457 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry) 458 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR) 459 * mounted_lock PR/NOQUEUE success 460 * read lvb generation 461 * control_lock EX->NL 462 * set first=0 463 * 464 * - mount during recovery 465 * 466 * If a node mounts while others are doing recovery (not first mounter), 467 * the mounting node will get its initial recover_done() callback without 468 * having seen any previous failures/callbacks. 469 * 470 * It must wait for all recoveries preceding its mount to be finished 471 * before it unblocks locks. It does this by repeating the "other mounter" 472 * steps above until the lvb generation number is >= its mount generation 473 * number (from initial recover_done) and all lvb bits are clear. 474 * 475 * - control_lock lvb format 476 * 477 * 4 bytes generation number: the latest dlm lockspace generation number 478 * from recover_done callback. Indicates the jid bitmap has been updated 479 * to reflect all slot failures through that generation. 480 * 4 bytes unused. 481 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates 482 * that jid N needs recovery. 483 */ 484 485 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */ 486 487 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen, 488 char *lvb_bits) 489 { 490 __le32 gen; 491 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE); 492 memcpy(&gen, lvb_bits, sizeof(__le32)); 493 *lvb_gen = le32_to_cpu(gen); 494 } 495 496 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen, 497 char *lvb_bits) 498 { 499 __le32 gen; 500 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE); 501 gen = cpu_to_le32(lvb_gen); 502 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32)); 503 } 504 505 static int all_jid_bits_clear(char *lvb) 506 { 507 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0, 508 GDLM_LVB_SIZE - JID_BITMAP_OFFSET); 509 } 510 511 static void sync_wait_cb(void *arg) 512 { 513 struct lm_lockstruct *ls = arg; 514 complete(&ls->ls_sync_wait); 515 } 516 517 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name) 518 { 519 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 520 int error; 521 522 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls); 523 if (error) { 524 fs_err(sdp, "%s lkid %x error %d\n", 525 name, lksb->sb_lkid, error); 526 return error; 527 } 528 529 wait_for_completion(&ls->ls_sync_wait); 530 531 if (lksb->sb_status != -DLM_EUNLOCK) { 532 fs_err(sdp, "%s lkid %x status %d\n", 533 name, lksb->sb_lkid, lksb->sb_status); 534 return -1; 535 } 536 return 0; 537 } 538 539 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags, 540 unsigned int num, struct dlm_lksb *lksb, char *name) 541 { 542 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 543 char strname[GDLM_STRNAME_BYTES]; 544 int error, status; 545 546 memset(strname, 0, GDLM_STRNAME_BYTES); 547 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num); 548 549 error = dlm_lock(ls->ls_dlm, mode, lksb, flags, 550 strname, GDLM_STRNAME_BYTES - 1, 551 0, sync_wait_cb, ls, NULL); 552 if (error) { 553 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n", 554 name, lksb->sb_lkid, flags, mode, error); 555 return error; 556 } 557 558 wait_for_completion(&ls->ls_sync_wait); 559 560 status = lksb->sb_status; 561 562 if (status && status != -EAGAIN) { 563 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n", 564 name, lksb->sb_lkid, flags, mode, status); 565 } 566 567 return status; 568 } 569 570 static int mounted_unlock(struct gfs2_sbd *sdp) 571 { 572 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 573 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock"); 574 } 575 576 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 577 { 578 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 579 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK, 580 &ls->ls_mounted_lksb, "mounted_lock"); 581 } 582 583 static int control_unlock(struct gfs2_sbd *sdp) 584 { 585 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 586 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock"); 587 } 588 589 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 590 { 591 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 592 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK, 593 &ls->ls_control_lksb, "control_lock"); 594 } 595 596 /** 597 * remote_withdraw - react to a node withdrawing from the file system 598 * @sdp: The superblock 599 */ 600 static void remote_withdraw(struct gfs2_sbd *sdp) 601 { 602 struct gfs2_jdesc *jd; 603 int ret = 0, count = 0; 604 605 list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) { 606 if (jd->jd_jid == sdp->sd_lockstruct.ls_jid) 607 continue; 608 ret = gfs2_recover_journal(jd, true); 609 if (ret) 610 break; 611 count++; 612 } 613 614 /* Now drop the additional reference we acquired */ 615 fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret); 616 } 617 618 static void gfs2_control_func(struct work_struct *work) 619 { 620 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work); 621 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 622 uint32_t block_gen, start_gen, lvb_gen, flags; 623 int recover_set = 0; 624 int write_lvb = 0; 625 int recover_size; 626 int i, error; 627 628 /* First check for other nodes that may have done a withdraw. */ 629 if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) { 630 remote_withdraw(sdp); 631 clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags); 632 return; 633 } 634 635 spin_lock(&ls->ls_recover_spin); 636 /* 637 * No MOUNT_DONE means we're still mounting; control_mount() 638 * will set this flag, after which this thread will take over 639 * all further clearing of BLOCK_LOCKS. 640 * 641 * FIRST_MOUNT means this node is doing first mounter recovery, 642 * for which recovery control is handled by 643 * control_mount()/control_first_done(), not this thread. 644 */ 645 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 646 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 647 spin_unlock(&ls->ls_recover_spin); 648 return; 649 } 650 block_gen = ls->ls_recover_block; 651 start_gen = ls->ls_recover_start; 652 spin_unlock(&ls->ls_recover_spin); 653 654 /* 655 * Equal block_gen and start_gen implies we are between 656 * recover_prep and recover_done callbacks, which means 657 * dlm recovery is in progress and dlm locking is blocked. 658 * There's no point trying to do any work until recover_done. 659 */ 660 661 if (block_gen == start_gen) 662 return; 663 664 /* 665 * Propagate recover_submit[] and recover_result[] to lvb: 666 * dlm_recoverd adds to recover_submit[] jids needing recovery 667 * gfs2_recover adds to recover_result[] journal recovery results 668 * 669 * set lvb bit for jids in recover_submit[] if the lvb has not 670 * yet been updated for the generation of the failure 671 * 672 * clear lvb bit for jids in recover_result[] if the result of 673 * the journal recovery is SUCCESS 674 */ 675 676 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 677 if (error) { 678 fs_err(sdp, "control lock EX error %d\n", error); 679 return; 680 } 681 682 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 683 684 spin_lock(&ls->ls_recover_spin); 685 if (block_gen != ls->ls_recover_block || 686 start_gen != ls->ls_recover_start) { 687 fs_info(sdp, "recover generation %u block1 %u %u\n", 688 start_gen, block_gen, ls->ls_recover_block); 689 spin_unlock(&ls->ls_recover_spin); 690 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 691 return; 692 } 693 694 recover_size = ls->ls_recover_size; 695 696 if (lvb_gen <= start_gen) { 697 /* 698 * Clear lvb bits for jids we've successfully recovered. 699 * Because all nodes attempt to recover failed journals, 700 * a journal can be recovered multiple times successfully 701 * in succession. Only the first will really do recovery, 702 * the others find it clean, but still report a successful 703 * recovery. So, another node may have already recovered 704 * the jid and cleared the lvb bit for it. 705 */ 706 for (i = 0; i < recover_size; i++) { 707 if (ls->ls_recover_result[i] != LM_RD_SUCCESS) 708 continue; 709 710 ls->ls_recover_result[i] = 0; 711 712 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) 713 continue; 714 715 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 716 write_lvb = 1; 717 } 718 } 719 720 if (lvb_gen == start_gen) { 721 /* 722 * Failed slots before start_gen are already set in lvb. 723 */ 724 for (i = 0; i < recover_size; i++) { 725 if (!ls->ls_recover_submit[i]) 726 continue; 727 if (ls->ls_recover_submit[i] < lvb_gen) 728 ls->ls_recover_submit[i] = 0; 729 } 730 } else if (lvb_gen < start_gen) { 731 /* 732 * Failed slots before start_gen are not yet set in lvb. 733 */ 734 for (i = 0; i < recover_size; i++) { 735 if (!ls->ls_recover_submit[i]) 736 continue; 737 if (ls->ls_recover_submit[i] < start_gen) { 738 ls->ls_recover_submit[i] = 0; 739 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 740 } 741 } 742 /* even if there are no bits to set, we need to write the 743 latest generation to the lvb */ 744 write_lvb = 1; 745 } else { 746 /* 747 * we should be getting a recover_done() for lvb_gen soon 748 */ 749 } 750 spin_unlock(&ls->ls_recover_spin); 751 752 if (write_lvb) { 753 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 754 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK; 755 } else { 756 flags = DLM_LKF_CONVERT; 757 } 758 759 error = control_lock(sdp, DLM_LOCK_NL, flags); 760 if (error) { 761 fs_err(sdp, "control lock NL error %d\n", error); 762 return; 763 } 764 765 /* 766 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(), 767 * and clear a jid bit in the lvb if the recovery is a success. 768 * Eventually all journals will be recovered, all jid bits will 769 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS. 770 */ 771 772 for (i = 0; i < recover_size; i++) { 773 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) { 774 fs_info(sdp, "recover generation %u jid %d\n", 775 start_gen, i); 776 gfs2_recover_set(sdp, i); 777 recover_set++; 778 } 779 } 780 if (recover_set) 781 return; 782 783 /* 784 * No more jid bits set in lvb, all recovery is done, unblock locks 785 * (unless a new recover_prep callback has occured blocking locks 786 * again while working above) 787 */ 788 789 spin_lock(&ls->ls_recover_spin); 790 if (ls->ls_recover_block == block_gen && 791 ls->ls_recover_start == start_gen) { 792 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 793 spin_unlock(&ls->ls_recover_spin); 794 fs_info(sdp, "recover generation %u done\n", start_gen); 795 gfs2_glock_thaw(sdp); 796 } else { 797 fs_info(sdp, "recover generation %u block2 %u %u\n", 798 start_gen, block_gen, ls->ls_recover_block); 799 spin_unlock(&ls->ls_recover_spin); 800 } 801 } 802 803 static int control_mount(struct gfs2_sbd *sdp) 804 { 805 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 806 uint32_t start_gen, block_gen, mount_gen, lvb_gen; 807 int mounted_mode; 808 int retries = 0; 809 int error; 810 811 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb)); 812 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb)); 813 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE); 814 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb; 815 init_completion(&ls->ls_sync_wait); 816 817 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 818 819 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK); 820 if (error) { 821 fs_err(sdp, "control_mount control_lock NL error %d\n", error); 822 return error; 823 } 824 825 error = mounted_lock(sdp, DLM_LOCK_NL, 0); 826 if (error) { 827 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error); 828 control_unlock(sdp); 829 return error; 830 } 831 mounted_mode = DLM_LOCK_NL; 832 833 restart: 834 if (retries++ && signal_pending(current)) { 835 error = -EINTR; 836 goto fail; 837 } 838 839 /* 840 * We always start with both locks in NL. control_lock is 841 * demoted to NL below so we don't need to do it here. 842 */ 843 844 if (mounted_mode != DLM_LOCK_NL) { 845 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 846 if (error) 847 goto fail; 848 mounted_mode = DLM_LOCK_NL; 849 } 850 851 /* 852 * Other nodes need to do some work in dlm recovery and gfs2_control 853 * before the recover_done and control_lock will be ready for us below. 854 * A delay here is not required but often avoids having to retry. 855 */ 856 857 msleep_interruptible(500); 858 859 /* 860 * Acquire control_lock in EX and mounted_lock in either EX or PR. 861 * control_lock lvb keeps track of any pending journal recoveries. 862 * mounted_lock indicates if any other nodes have the fs mounted. 863 */ 864 865 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK); 866 if (error == -EAGAIN) { 867 goto restart; 868 } else if (error) { 869 fs_err(sdp, "control_mount control_lock EX error %d\n", error); 870 goto fail; 871 } 872 873 /** 874 * If we're a spectator, we don't want to take the lock in EX because 875 * we cannot do the first-mount responsibility it implies: recovery. 876 */ 877 if (sdp->sd_args.ar_spectator) 878 goto locks_done; 879 880 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 881 if (!error) { 882 mounted_mode = DLM_LOCK_EX; 883 goto locks_done; 884 } else if (error != -EAGAIN) { 885 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error); 886 goto fail; 887 } 888 889 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 890 if (!error) { 891 mounted_mode = DLM_LOCK_PR; 892 goto locks_done; 893 } else { 894 /* not even -EAGAIN should happen here */ 895 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error); 896 goto fail; 897 } 898 899 locks_done: 900 /* 901 * If we got both locks above in EX, then we're the first mounter. 902 * If not, then we need to wait for the control_lock lvb to be 903 * updated by other mounted nodes to reflect our mount generation. 904 * 905 * In simple first mounter cases, first mounter will see zero lvb_gen, 906 * but in cases where all existing nodes leave/fail before mounting 907 * nodes finish control_mount, then all nodes will be mounting and 908 * lvb_gen will be non-zero. 909 */ 910 911 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 912 913 if (lvb_gen == 0xFFFFFFFF) { 914 /* special value to force mount attempts to fail */ 915 fs_err(sdp, "control_mount control_lock disabled\n"); 916 error = -EINVAL; 917 goto fail; 918 } 919 920 if (mounted_mode == DLM_LOCK_EX) { 921 /* first mounter, keep both EX while doing first recovery */ 922 spin_lock(&ls->ls_recover_spin); 923 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 924 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 925 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 926 spin_unlock(&ls->ls_recover_spin); 927 fs_info(sdp, "first mounter control generation %u\n", lvb_gen); 928 return 0; 929 } 930 931 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 932 if (error) 933 goto fail; 934 935 /* 936 * We are not first mounter, now we need to wait for the control_lock 937 * lvb generation to be >= the generation from our first recover_done 938 * and all lvb bits to be clear (no pending journal recoveries.) 939 */ 940 941 if (!all_jid_bits_clear(ls->ls_lvb_bits)) { 942 /* journals need recovery, wait until all are clear */ 943 fs_info(sdp, "control_mount wait for journal recovery\n"); 944 goto restart; 945 } 946 947 spin_lock(&ls->ls_recover_spin); 948 block_gen = ls->ls_recover_block; 949 start_gen = ls->ls_recover_start; 950 mount_gen = ls->ls_recover_mount; 951 952 if (lvb_gen < mount_gen) { 953 /* wait for mounted nodes to update control_lock lvb to our 954 generation, which might include new recovery bits set */ 955 if (sdp->sd_args.ar_spectator) { 956 fs_info(sdp, "Recovery is required. Waiting for a " 957 "non-spectator to mount.\n"); 958 msleep_interruptible(1000); 959 } else { 960 fs_info(sdp, "control_mount wait1 block %u start %u " 961 "mount %u lvb %u flags %lx\n", block_gen, 962 start_gen, mount_gen, lvb_gen, 963 ls->ls_recover_flags); 964 } 965 spin_unlock(&ls->ls_recover_spin); 966 goto restart; 967 } 968 969 if (lvb_gen != start_gen) { 970 /* wait for mounted nodes to update control_lock lvb to the 971 latest recovery generation */ 972 fs_info(sdp, "control_mount wait2 block %u start %u mount %u " 973 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 974 lvb_gen, ls->ls_recover_flags); 975 spin_unlock(&ls->ls_recover_spin); 976 goto restart; 977 } 978 979 if (block_gen == start_gen) { 980 /* dlm recovery in progress, wait for it to finish */ 981 fs_info(sdp, "control_mount wait3 block %u start %u mount %u " 982 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 983 lvb_gen, ls->ls_recover_flags); 984 spin_unlock(&ls->ls_recover_spin); 985 goto restart; 986 } 987 988 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 989 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 990 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 991 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 992 spin_unlock(&ls->ls_recover_spin); 993 return 0; 994 995 fail: 996 mounted_unlock(sdp); 997 control_unlock(sdp); 998 return error; 999 } 1000 1001 static int control_first_done(struct gfs2_sbd *sdp) 1002 { 1003 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1004 uint32_t start_gen, block_gen; 1005 int error; 1006 1007 restart: 1008 spin_lock(&ls->ls_recover_spin); 1009 start_gen = ls->ls_recover_start; 1010 block_gen = ls->ls_recover_block; 1011 1012 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) || 1013 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 1014 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1015 /* sanity check, should not happen */ 1016 fs_err(sdp, "control_first_done start %u block %u flags %lx\n", 1017 start_gen, block_gen, ls->ls_recover_flags); 1018 spin_unlock(&ls->ls_recover_spin); 1019 control_unlock(sdp); 1020 return -1; 1021 } 1022 1023 if (start_gen == block_gen) { 1024 /* 1025 * Wait for the end of a dlm recovery cycle to switch from 1026 * first mounter recovery. We can ignore any recover_slot 1027 * callbacks between the recover_prep and next recover_done 1028 * because we are still the first mounter and any failed nodes 1029 * have not fully mounted, so they don't need recovery. 1030 */ 1031 spin_unlock(&ls->ls_recover_spin); 1032 fs_info(sdp, "control_first_done wait gen %u\n", start_gen); 1033 1034 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY, 1035 TASK_UNINTERRUPTIBLE); 1036 goto restart; 1037 } 1038 1039 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1040 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags); 1041 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 1042 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 1043 spin_unlock(&ls->ls_recover_spin); 1044 1045 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE); 1046 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 1047 1048 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT); 1049 if (error) 1050 fs_err(sdp, "control_first_done mounted PR error %d\n", error); 1051 1052 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 1053 if (error) 1054 fs_err(sdp, "control_first_done control NL error %d\n", error); 1055 1056 return error; 1057 } 1058 1059 /* 1060 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC) 1061 * to accomodate the largest slot number. (NB dlm slot numbers start at 1, 1062 * gfs2 jids start at 0, so jid = slot - 1) 1063 */ 1064 1065 #define RECOVER_SIZE_INC 16 1066 1067 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots, 1068 int num_slots) 1069 { 1070 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1071 uint32_t *submit = NULL; 1072 uint32_t *result = NULL; 1073 uint32_t old_size, new_size; 1074 int i, max_jid; 1075 1076 if (!ls->ls_lvb_bits) { 1077 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS); 1078 if (!ls->ls_lvb_bits) 1079 return -ENOMEM; 1080 } 1081 1082 max_jid = 0; 1083 for (i = 0; i < num_slots; i++) { 1084 if (max_jid < slots[i].slot - 1) 1085 max_jid = slots[i].slot - 1; 1086 } 1087 1088 old_size = ls->ls_recover_size; 1089 new_size = old_size; 1090 while (new_size < max_jid + 1) 1091 new_size += RECOVER_SIZE_INC; 1092 if (new_size == old_size) 1093 return 0; 1094 1095 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1096 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1097 if (!submit || !result) { 1098 kfree(submit); 1099 kfree(result); 1100 return -ENOMEM; 1101 } 1102 1103 spin_lock(&ls->ls_recover_spin); 1104 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t)); 1105 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t)); 1106 kfree(ls->ls_recover_submit); 1107 kfree(ls->ls_recover_result); 1108 ls->ls_recover_submit = submit; 1109 ls->ls_recover_result = result; 1110 ls->ls_recover_size = new_size; 1111 spin_unlock(&ls->ls_recover_spin); 1112 return 0; 1113 } 1114 1115 static void free_recover_size(struct lm_lockstruct *ls) 1116 { 1117 kfree(ls->ls_lvb_bits); 1118 kfree(ls->ls_recover_submit); 1119 kfree(ls->ls_recover_result); 1120 ls->ls_recover_submit = NULL; 1121 ls->ls_recover_result = NULL; 1122 ls->ls_recover_size = 0; 1123 ls->ls_lvb_bits = NULL; 1124 } 1125 1126 /* dlm calls before it does lock recovery */ 1127 1128 static void gdlm_recover_prep(void *arg) 1129 { 1130 struct gfs2_sbd *sdp = arg; 1131 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1132 1133 if (gfs2_withdrawn(sdp)) { 1134 fs_err(sdp, "recover_prep ignored due to withdraw.\n"); 1135 return; 1136 } 1137 spin_lock(&ls->ls_recover_spin); 1138 ls->ls_recover_block = ls->ls_recover_start; 1139 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1140 1141 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 1142 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1143 spin_unlock(&ls->ls_recover_spin); 1144 return; 1145 } 1146 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 1147 spin_unlock(&ls->ls_recover_spin); 1148 } 1149 1150 /* dlm calls after recover_prep has been completed on all lockspace members; 1151 identifies slot/jid of failed member */ 1152 1153 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot) 1154 { 1155 struct gfs2_sbd *sdp = arg; 1156 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1157 int jid = slot->slot - 1; 1158 1159 if (gfs2_withdrawn(sdp)) { 1160 fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n", 1161 jid); 1162 return; 1163 } 1164 spin_lock(&ls->ls_recover_spin); 1165 if (ls->ls_recover_size < jid + 1) { 1166 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n", 1167 jid, ls->ls_recover_block, ls->ls_recover_size); 1168 spin_unlock(&ls->ls_recover_spin); 1169 return; 1170 } 1171 1172 if (ls->ls_recover_submit[jid]) { 1173 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n", 1174 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]); 1175 } 1176 ls->ls_recover_submit[jid] = ls->ls_recover_block; 1177 spin_unlock(&ls->ls_recover_spin); 1178 } 1179 1180 /* dlm calls after recover_slot and after it completes lock recovery */ 1181 1182 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots, 1183 int our_slot, uint32_t generation) 1184 { 1185 struct gfs2_sbd *sdp = arg; 1186 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1187 1188 if (gfs2_withdrawn(sdp)) { 1189 fs_err(sdp, "recover_done ignored due to withdraw.\n"); 1190 return; 1191 } 1192 /* ensure the ls jid arrays are large enough */ 1193 set_recover_size(sdp, slots, num_slots); 1194 1195 spin_lock(&ls->ls_recover_spin); 1196 ls->ls_recover_start = generation; 1197 1198 if (!ls->ls_recover_mount) { 1199 ls->ls_recover_mount = generation; 1200 ls->ls_jid = our_slot - 1; 1201 } 1202 1203 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1204 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0); 1205 1206 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1207 smp_mb__after_atomic(); 1208 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY); 1209 spin_unlock(&ls->ls_recover_spin); 1210 } 1211 1212 /* gfs2_recover thread has a journal recovery result */ 1213 1214 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid, 1215 unsigned int result) 1216 { 1217 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1218 1219 if (gfs2_withdrawn(sdp)) { 1220 fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n", 1221 jid); 1222 return; 1223 } 1224 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1225 return; 1226 1227 /* don't care about the recovery of own journal during mount */ 1228 if (jid == ls->ls_jid) 1229 return; 1230 1231 spin_lock(&ls->ls_recover_spin); 1232 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1233 spin_unlock(&ls->ls_recover_spin); 1234 return; 1235 } 1236 if (ls->ls_recover_size < jid + 1) { 1237 fs_err(sdp, "recovery_result jid %d short size %d\n", 1238 jid, ls->ls_recover_size); 1239 spin_unlock(&ls->ls_recover_spin); 1240 return; 1241 } 1242 1243 fs_info(sdp, "recover jid %d result %s\n", jid, 1244 result == LM_RD_GAVEUP ? "busy" : "success"); 1245 1246 ls->ls_recover_result[jid] = result; 1247 1248 /* GAVEUP means another node is recovering the journal; delay our 1249 next attempt to recover it, to give the other node a chance to 1250 finish before trying again */ 1251 1252 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1253 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 1254 result == LM_RD_GAVEUP ? HZ : 0); 1255 spin_unlock(&ls->ls_recover_spin); 1256 } 1257 1258 static const struct dlm_lockspace_ops gdlm_lockspace_ops = { 1259 .recover_prep = gdlm_recover_prep, 1260 .recover_slot = gdlm_recover_slot, 1261 .recover_done = gdlm_recover_done, 1262 }; 1263 1264 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table) 1265 { 1266 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1267 char cluster[GFS2_LOCKNAME_LEN]; 1268 const char *fsname; 1269 uint32_t flags; 1270 int error, ops_result; 1271 1272 /* 1273 * initialize everything 1274 */ 1275 1276 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func); 1277 spin_lock_init(&ls->ls_recover_spin); 1278 ls->ls_recover_flags = 0; 1279 ls->ls_recover_mount = 0; 1280 ls->ls_recover_start = 0; 1281 ls->ls_recover_block = 0; 1282 ls->ls_recover_size = 0; 1283 ls->ls_recover_submit = NULL; 1284 ls->ls_recover_result = NULL; 1285 ls->ls_lvb_bits = NULL; 1286 1287 error = set_recover_size(sdp, NULL, 0); 1288 if (error) 1289 goto fail; 1290 1291 /* 1292 * prepare dlm_new_lockspace args 1293 */ 1294 1295 fsname = strchr(table, ':'); 1296 if (!fsname) { 1297 fs_info(sdp, "no fsname found\n"); 1298 error = -EINVAL; 1299 goto fail_free; 1300 } 1301 memset(cluster, 0, sizeof(cluster)); 1302 memcpy(cluster, table, strlen(table) - strlen(fsname)); 1303 fsname++; 1304 1305 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL; 1306 1307 /* 1308 * create/join lockspace 1309 */ 1310 1311 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE, 1312 &gdlm_lockspace_ops, sdp, &ops_result, 1313 &ls->ls_dlm); 1314 if (error) { 1315 fs_err(sdp, "dlm_new_lockspace error %d\n", error); 1316 goto fail_free; 1317 } 1318 1319 if (ops_result < 0) { 1320 /* 1321 * dlm does not support ops callbacks, 1322 * old dlm_controld/gfs_controld are used, try without ops. 1323 */ 1324 fs_info(sdp, "dlm lockspace ops not used\n"); 1325 free_recover_size(ls); 1326 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags); 1327 return 0; 1328 } 1329 1330 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) { 1331 fs_err(sdp, "dlm lockspace ops disallow jid preset\n"); 1332 error = -EINVAL; 1333 goto fail_release; 1334 } 1335 1336 /* 1337 * control_mount() uses control_lock to determine first mounter, 1338 * and for later mounts, waits for any recoveries to be cleared. 1339 */ 1340 1341 error = control_mount(sdp); 1342 if (error) { 1343 fs_err(sdp, "mount control error %d\n", error); 1344 goto fail_release; 1345 } 1346 1347 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1348 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags); 1349 smp_mb__after_atomic(); 1350 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID); 1351 return 0; 1352 1353 fail_release: 1354 dlm_release_lockspace(ls->ls_dlm, 2); 1355 fail_free: 1356 free_recover_size(ls); 1357 fail: 1358 return error; 1359 } 1360 1361 static void gdlm_first_done(struct gfs2_sbd *sdp) 1362 { 1363 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1364 int error; 1365 1366 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1367 return; 1368 1369 error = control_first_done(sdp); 1370 if (error) 1371 fs_err(sdp, "mount first_done error %d\n", error); 1372 } 1373 1374 static void gdlm_unmount(struct gfs2_sbd *sdp) 1375 { 1376 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1377 1378 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1379 goto release; 1380 1381 /* wait for gfs2_control_wq to be done with this mount */ 1382 1383 spin_lock(&ls->ls_recover_spin); 1384 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags); 1385 spin_unlock(&ls->ls_recover_spin); 1386 flush_delayed_work(&sdp->sd_control_work); 1387 1388 /* mounted_lock and control_lock will be purged in dlm recovery */ 1389 release: 1390 if (ls->ls_dlm) { 1391 dlm_release_lockspace(ls->ls_dlm, 2); 1392 ls->ls_dlm = NULL; 1393 } 1394 1395 free_recover_size(ls); 1396 } 1397 1398 static const match_table_t dlm_tokens = { 1399 { Opt_jid, "jid=%d"}, 1400 { Opt_id, "id=%d"}, 1401 { Opt_first, "first=%d"}, 1402 { Opt_nodir, "nodir=%d"}, 1403 { Opt_err, NULL }, 1404 }; 1405 1406 const struct lm_lockops gfs2_dlm_ops = { 1407 .lm_proto_name = "lock_dlm", 1408 .lm_mount = gdlm_mount, 1409 .lm_first_done = gdlm_first_done, 1410 .lm_recovery_result = gdlm_recovery_result, 1411 .lm_unmount = gdlm_unmount, 1412 .lm_put_lock = gdlm_put_lock, 1413 .lm_lock = gdlm_lock, 1414 .lm_cancel = gdlm_cancel, 1415 .lm_tokens = &dlm_tokens, 1416 }; 1417 1418