1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright 2004-2011 Red Hat, Inc. 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/fs.h> 10 #include <linux/dlm.h> 11 #include <linux/slab.h> 12 #include <linux/types.h> 13 #include <linux/delay.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/sched/signal.h> 16 17 #include "incore.h" 18 #include "glock.h" 19 #include "glops.h" 20 #include "recovery.h" 21 #include "util.h" 22 #include "sys.h" 23 #include "trace_gfs2.h" 24 25 /** 26 * gfs2_update_stats - Update time based stats 27 * @s: The stats to update (local or global) 28 * @index: The index inside @s 29 * @sample: New data to include 30 */ 31 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index, 32 s64 sample) 33 { 34 /* 35 * @delta is the difference between the current rtt sample and the 36 * running average srtt. We add 1/8 of that to the srtt in order to 37 * update the current srtt estimate. The variance estimate is a bit 38 * more complicated. We subtract the current variance estimate from 39 * the abs value of the @delta and add 1/4 of that to the running 40 * total. That's equivalent to 3/4 of the current variance 41 * estimate plus 1/4 of the abs of @delta. 42 * 43 * Note that the index points at the array entry containing the 44 * smoothed mean value, and the variance is always in the following 45 * entry 46 * 47 * Reference: TCP/IP Illustrated, vol 2, p. 831,832 48 * All times are in units of integer nanoseconds. Unlike the TCP/IP 49 * case, they are not scaled fixed point. 50 */ 51 52 s64 delta = sample - s->stats[index]; 53 s->stats[index] += (delta >> 3); 54 index++; 55 s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2; 56 } 57 58 /** 59 * gfs2_update_reply_times - Update locking statistics 60 * @gl: The glock to update 61 * 62 * This assumes that gl->gl_dstamp has been set earlier. 63 * 64 * The rtt (lock round trip time) is an estimate of the time 65 * taken to perform a dlm lock request. We update it on each 66 * reply from the dlm. 67 * 68 * The blocking flag is set on the glock for all dlm requests 69 * which may potentially block due to lock requests from other nodes. 70 * DLM requests where the current lock state is exclusive, the 71 * requested state is null (or unlocked) or where the TRY or 72 * TRY_1CB flags are set are classified as non-blocking. All 73 * other DLM requests are counted as (potentially) blocking. 74 */ 75 static inline void gfs2_update_reply_times(struct gfs2_glock *gl) 76 { 77 struct gfs2_pcpu_lkstats *lks; 78 const unsigned gltype = gl->gl_name.ln_type; 79 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ? 80 GFS2_LKS_SRTTB : GFS2_LKS_SRTT; 81 s64 rtt; 82 83 preempt_disable(); 84 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp)); 85 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 86 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */ 87 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */ 88 preempt_enable(); 89 90 trace_gfs2_glock_lock_time(gl, rtt); 91 } 92 93 /** 94 * gfs2_update_request_times - Update locking statistics 95 * @gl: The glock to update 96 * 97 * The irt (lock inter-request times) measures the average time 98 * between requests to the dlm. It is updated immediately before 99 * each dlm call. 100 */ 101 102 static inline void gfs2_update_request_times(struct gfs2_glock *gl) 103 { 104 struct gfs2_pcpu_lkstats *lks; 105 const unsigned gltype = gl->gl_name.ln_type; 106 ktime_t dstamp; 107 s64 irt; 108 109 preempt_disable(); 110 dstamp = gl->gl_dstamp; 111 gl->gl_dstamp = ktime_get_real(); 112 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp)); 113 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 114 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */ 115 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */ 116 preempt_enable(); 117 } 118 119 static void gdlm_ast(void *arg) 120 { 121 struct gfs2_glock *gl = arg; 122 unsigned ret = gl->gl_state; 123 124 /* If the glock is dead, we only react to a dlm_unlock() reply. */ 125 if (__lockref_is_dead(&gl->gl_lockref) && 126 gl->gl_lksb.sb_status != -DLM_EUNLOCK) 127 return; 128 129 gfs2_update_reply_times(gl); 130 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED); 131 132 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr) 133 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE); 134 135 switch (gl->gl_lksb.sb_status) { 136 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */ 137 if (gl->gl_ops->go_free) 138 gl->gl_ops->go_free(gl); 139 gfs2_glock_free(gl); 140 return; 141 case -DLM_ECANCEL: /* Cancel while getting lock */ 142 ret |= LM_OUT_CANCELED; 143 goto out; 144 case -EAGAIN: /* Try lock fails */ 145 case -EDEADLK: /* Deadlock detected */ 146 goto out; 147 case -ETIMEDOUT: /* Canceled due to timeout */ 148 ret |= LM_OUT_ERROR; 149 goto out; 150 case 0: /* Success */ 151 break; 152 default: /* Something unexpected */ 153 BUG(); 154 } 155 156 ret = gl->gl_req; 157 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) { 158 if (gl->gl_req == LM_ST_SHARED) 159 ret = LM_ST_DEFERRED; 160 else if (gl->gl_req == LM_ST_DEFERRED) 161 ret = LM_ST_SHARED; 162 else 163 BUG(); 164 } 165 166 set_bit(GLF_INITIAL, &gl->gl_flags); 167 gfs2_glock_complete(gl, ret); 168 return; 169 out: 170 if (!test_bit(GLF_INITIAL, &gl->gl_flags)) 171 gl->gl_lksb.sb_lkid = 0; 172 gfs2_glock_complete(gl, ret); 173 } 174 175 static void gdlm_bast(void *arg, int mode) 176 { 177 struct gfs2_glock *gl = arg; 178 179 if (__lockref_is_dead(&gl->gl_lockref)) 180 return; 181 182 switch (mode) { 183 case DLM_LOCK_EX: 184 gfs2_glock_cb(gl, LM_ST_UNLOCKED); 185 break; 186 case DLM_LOCK_CW: 187 gfs2_glock_cb(gl, LM_ST_DEFERRED); 188 break; 189 case DLM_LOCK_PR: 190 gfs2_glock_cb(gl, LM_ST_SHARED); 191 break; 192 default: 193 fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode); 194 BUG(); 195 } 196 } 197 198 /* convert gfs lock-state to dlm lock-mode */ 199 200 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate) 201 { 202 switch (lmstate) { 203 case LM_ST_UNLOCKED: 204 return DLM_LOCK_NL; 205 case LM_ST_EXCLUSIVE: 206 return DLM_LOCK_EX; 207 case LM_ST_DEFERRED: 208 return DLM_LOCK_CW; 209 case LM_ST_SHARED: 210 return DLM_LOCK_PR; 211 } 212 fs_err(sdp, "unknown LM state %d\n", lmstate); 213 BUG(); 214 return -1; 215 } 216 217 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags, 218 const int req) 219 { 220 u32 lkf = 0; 221 222 if (gl->gl_lksb.sb_lvbptr) 223 lkf |= DLM_LKF_VALBLK; 224 225 if (gfs_flags & LM_FLAG_TRY) 226 lkf |= DLM_LKF_NOQUEUE; 227 228 if (gfs_flags & LM_FLAG_TRY_1CB) { 229 lkf |= DLM_LKF_NOQUEUE; 230 lkf |= DLM_LKF_NOQUEUEBAST; 231 } 232 233 if (gfs_flags & LM_FLAG_ANY) { 234 if (req == DLM_LOCK_PR) 235 lkf |= DLM_LKF_ALTCW; 236 else if (req == DLM_LOCK_CW) 237 lkf |= DLM_LKF_ALTPR; 238 else 239 BUG(); 240 } 241 242 if (gl->gl_lksb.sb_lkid != 0) { 243 lkf |= DLM_LKF_CONVERT; 244 if (test_bit(GLF_BLOCKING, &gl->gl_flags)) 245 lkf |= DLM_LKF_QUECVT; 246 } 247 248 return lkf; 249 } 250 251 static void gfs2_reverse_hex(char *c, u64 value) 252 { 253 *c = '0'; 254 while (value) { 255 *c-- = hex_asc[value & 0x0f]; 256 value >>= 4; 257 } 258 } 259 260 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state, 261 unsigned int flags) 262 { 263 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 264 int req; 265 u32 lkf; 266 char strname[GDLM_STRNAME_BYTES] = ""; 267 int error; 268 269 req = make_mode(gl->gl_name.ln_sbd, req_state); 270 lkf = make_flags(gl, flags, req); 271 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 272 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 273 if (gl->gl_lksb.sb_lkid) { 274 gfs2_update_request_times(gl); 275 } else { 276 memset(strname, ' ', GDLM_STRNAME_BYTES - 1); 277 strname[GDLM_STRNAME_BYTES - 1] = '\0'; 278 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type); 279 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number); 280 gl->gl_dstamp = ktime_get_real(); 281 } 282 /* 283 * Submit the actual lock request. 284 */ 285 286 again: 287 error = dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname, 288 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast); 289 if (error == -EBUSY) { 290 msleep(20); 291 goto again; 292 } 293 return error; 294 } 295 296 static void gdlm_put_lock(struct gfs2_glock *gl) 297 { 298 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 299 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 300 int error; 301 302 BUG_ON(!__lockref_is_dead(&gl->gl_lockref)); 303 304 if (gl->gl_lksb.sb_lkid == 0) { 305 gfs2_glock_free(gl); 306 return; 307 } 308 309 clear_bit(GLF_BLOCKING, &gl->gl_flags); 310 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 311 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 312 gfs2_update_request_times(gl); 313 314 /* don't want to call dlm if we've unmounted the lock protocol */ 315 if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) { 316 gfs2_glock_free(gl); 317 return; 318 } 319 /* don't want to skip dlm_unlock writing the lvb when lock has one */ 320 321 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) && 322 !gl->gl_lksb.sb_lvbptr) { 323 gfs2_glock_free_later(gl); 324 return; 325 } 326 327 again: 328 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK, 329 NULL, gl); 330 if (error == -EBUSY) { 331 msleep(20); 332 goto again; 333 } 334 335 if (error) { 336 fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n", 337 gl->gl_name.ln_type, 338 (unsigned long long)gl->gl_name.ln_number, error); 339 } 340 } 341 342 static void gdlm_cancel(struct gfs2_glock *gl) 343 { 344 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 345 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl); 346 } 347 348 /* 349 * dlm/gfs2 recovery coordination using dlm_recover callbacks 350 * 351 * 0. gfs2 checks for another cluster node withdraw, needing journal replay 352 * 1. dlm_controld sees lockspace members change 353 * 2. dlm_controld blocks dlm-kernel locking activity 354 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep) 355 * 4. dlm_controld starts and finishes its own user level recovery 356 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery 357 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot) 358 * 7. dlm_recoverd does its own lock recovery 359 * 8. dlm_recoverd unblocks dlm-kernel locking activity 360 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation) 361 * 10. gfs2_control updates control_lock lvb with new generation and jid bits 362 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none) 363 * 12. gfs2_recover dequeues and recovers journals of failed nodes 364 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result) 365 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals 366 * 15. gfs2_control unblocks normal locking when all journals are recovered 367 * 368 * - failures during recovery 369 * 370 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control 371 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still 372 * recovering for a prior failure. gfs2_control needs a way to detect 373 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using 374 * the recover_block and recover_start values. 375 * 376 * recover_done() provides a new lockspace generation number each time it 377 * is called (step 9). This generation number is saved as recover_start. 378 * When recover_prep() is called, it sets BLOCK_LOCKS and sets 379 * recover_block = recover_start. So, while recover_block is equal to 380 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must 381 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.) 382 * 383 * - more specific gfs2 steps in sequence above 384 * 385 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start 386 * 6. recover_slot records any failed jids (maybe none) 387 * 9. recover_done sets recover_start = new generation number 388 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids 389 * 12. gfs2_recover does journal recoveries for failed jids identified above 390 * 14. gfs2_control clears control_lock lvb bits for recovered jids 391 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured 392 * again) then do nothing, otherwise if recover_start > recover_block 393 * then clear BLOCK_LOCKS. 394 * 395 * - parallel recovery steps across all nodes 396 * 397 * All nodes attempt to update the control_lock lvb with the new generation 398 * number and jid bits, but only the first to get the control_lock EX will 399 * do so; others will see that it's already done (lvb already contains new 400 * generation number.) 401 * 402 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks 403 * . All nodes attempt to set control_lock lvb gen + bits for the new gen 404 * . One node gets control_lock first and writes the lvb, others see it's done 405 * . All nodes attempt to recover jids for which they see control_lock bits set 406 * . One node succeeds for a jid, and that one clears the jid bit in the lvb 407 * . All nodes will eventually see all lvb bits clear and unblock locks 408 * 409 * - is there a problem with clearing an lvb bit that should be set 410 * and missing a journal recovery? 411 * 412 * 1. jid fails 413 * 2. lvb bit set for step 1 414 * 3. jid recovered for step 1 415 * 4. jid taken again (new mount) 416 * 5. jid fails (for step 4) 417 * 6. lvb bit set for step 5 (will already be set) 418 * 7. lvb bit cleared for step 3 419 * 420 * This is not a problem because the failure in step 5 does not 421 * require recovery, because the mount in step 4 could not have 422 * progressed far enough to unblock locks and access the fs. The 423 * control_mount() function waits for all recoveries to be complete 424 * for the latest lockspace generation before ever unblocking locks 425 * and returning. The mount in step 4 waits until the recovery in 426 * step 1 is done. 427 * 428 * - special case of first mounter: first node to mount the fs 429 * 430 * The first node to mount a gfs2 fs needs to check all the journals 431 * and recover any that need recovery before other nodes are allowed 432 * to mount the fs. (Others may begin mounting, but they must wait 433 * for the first mounter to be done before taking locks on the fs 434 * or accessing the fs.) This has two parts: 435 * 436 * 1. The mounted_lock tells a node it's the first to mount the fs. 437 * Each node holds the mounted_lock in PR while it's mounted. 438 * Each node tries to acquire the mounted_lock in EX when it mounts. 439 * If a node is granted the mounted_lock EX it means there are no 440 * other mounted nodes (no PR locks exist), and it is the first mounter. 441 * The mounted_lock is demoted to PR when first recovery is done, so 442 * others will fail to get an EX lock, but will get a PR lock. 443 * 444 * 2. The control_lock blocks others in control_mount() while the first 445 * mounter is doing first mount recovery of all journals. 446 * A mounting node needs to acquire control_lock in EX mode before 447 * it can proceed. The first mounter holds control_lock in EX while doing 448 * the first mount recovery, blocking mounts from other nodes, then demotes 449 * control_lock to NL when it's done (others_may_mount/first_done), 450 * allowing other nodes to continue mounting. 451 * 452 * first mounter: 453 * control_lock EX/NOQUEUE success 454 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters) 455 * set first=1 456 * do first mounter recovery 457 * mounted_lock EX->PR 458 * control_lock EX->NL, write lvb generation 459 * 460 * other mounter: 461 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry) 462 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR) 463 * mounted_lock PR/NOQUEUE success 464 * read lvb generation 465 * control_lock EX->NL 466 * set first=0 467 * 468 * - mount during recovery 469 * 470 * If a node mounts while others are doing recovery (not first mounter), 471 * the mounting node will get its initial recover_done() callback without 472 * having seen any previous failures/callbacks. 473 * 474 * It must wait for all recoveries preceding its mount to be finished 475 * before it unblocks locks. It does this by repeating the "other mounter" 476 * steps above until the lvb generation number is >= its mount generation 477 * number (from initial recover_done) and all lvb bits are clear. 478 * 479 * - control_lock lvb format 480 * 481 * 4 bytes generation number: the latest dlm lockspace generation number 482 * from recover_done callback. Indicates the jid bitmap has been updated 483 * to reflect all slot failures through that generation. 484 * 4 bytes unused. 485 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates 486 * that jid N needs recovery. 487 */ 488 489 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */ 490 491 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen, 492 char *lvb_bits) 493 { 494 __le32 gen; 495 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE); 496 memcpy(&gen, lvb_bits, sizeof(__le32)); 497 *lvb_gen = le32_to_cpu(gen); 498 } 499 500 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen, 501 char *lvb_bits) 502 { 503 __le32 gen; 504 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE); 505 gen = cpu_to_le32(lvb_gen); 506 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32)); 507 } 508 509 static int all_jid_bits_clear(char *lvb) 510 { 511 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0, 512 GDLM_LVB_SIZE - JID_BITMAP_OFFSET); 513 } 514 515 static void sync_wait_cb(void *arg) 516 { 517 struct lm_lockstruct *ls = arg; 518 complete(&ls->ls_sync_wait); 519 } 520 521 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name) 522 { 523 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 524 int error; 525 526 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls); 527 if (error) { 528 fs_err(sdp, "%s lkid %x error %d\n", 529 name, lksb->sb_lkid, error); 530 return error; 531 } 532 533 wait_for_completion(&ls->ls_sync_wait); 534 535 if (lksb->sb_status != -DLM_EUNLOCK) { 536 fs_err(sdp, "%s lkid %x status %d\n", 537 name, lksb->sb_lkid, lksb->sb_status); 538 return -1; 539 } 540 return 0; 541 } 542 543 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags, 544 unsigned int num, struct dlm_lksb *lksb, char *name) 545 { 546 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 547 char strname[GDLM_STRNAME_BYTES]; 548 int error, status; 549 550 memset(strname, 0, GDLM_STRNAME_BYTES); 551 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num); 552 553 error = dlm_lock(ls->ls_dlm, mode, lksb, flags, 554 strname, GDLM_STRNAME_BYTES - 1, 555 0, sync_wait_cb, ls, NULL); 556 if (error) { 557 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n", 558 name, lksb->sb_lkid, flags, mode, error); 559 return error; 560 } 561 562 wait_for_completion(&ls->ls_sync_wait); 563 564 status = lksb->sb_status; 565 566 if (status && status != -EAGAIN) { 567 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n", 568 name, lksb->sb_lkid, flags, mode, status); 569 } 570 571 return status; 572 } 573 574 static int mounted_unlock(struct gfs2_sbd *sdp) 575 { 576 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 577 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock"); 578 } 579 580 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 581 { 582 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 583 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK, 584 &ls->ls_mounted_lksb, "mounted_lock"); 585 } 586 587 static int control_unlock(struct gfs2_sbd *sdp) 588 { 589 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 590 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock"); 591 } 592 593 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 594 { 595 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 596 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK, 597 &ls->ls_control_lksb, "control_lock"); 598 } 599 600 /** 601 * remote_withdraw - react to a node withdrawing from the file system 602 * @sdp: The superblock 603 */ 604 static void remote_withdraw(struct gfs2_sbd *sdp) 605 { 606 struct gfs2_jdesc *jd; 607 int ret = 0, count = 0; 608 609 list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) { 610 if (jd->jd_jid == sdp->sd_lockstruct.ls_jid) 611 continue; 612 ret = gfs2_recover_journal(jd, true); 613 if (ret) 614 break; 615 count++; 616 } 617 618 /* Now drop the additional reference we acquired */ 619 fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret); 620 } 621 622 static void gfs2_control_func(struct work_struct *work) 623 { 624 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work); 625 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 626 uint32_t block_gen, start_gen, lvb_gen, flags; 627 int recover_set = 0; 628 int write_lvb = 0; 629 int recover_size; 630 int i, error; 631 632 /* First check for other nodes that may have done a withdraw. */ 633 if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) { 634 remote_withdraw(sdp); 635 clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags); 636 return; 637 } 638 639 spin_lock(&ls->ls_recover_spin); 640 /* 641 * No MOUNT_DONE means we're still mounting; control_mount() 642 * will set this flag, after which this thread will take over 643 * all further clearing of BLOCK_LOCKS. 644 * 645 * FIRST_MOUNT means this node is doing first mounter recovery, 646 * for which recovery control is handled by 647 * control_mount()/control_first_done(), not this thread. 648 */ 649 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 650 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 651 spin_unlock(&ls->ls_recover_spin); 652 return; 653 } 654 block_gen = ls->ls_recover_block; 655 start_gen = ls->ls_recover_start; 656 spin_unlock(&ls->ls_recover_spin); 657 658 /* 659 * Equal block_gen and start_gen implies we are between 660 * recover_prep and recover_done callbacks, which means 661 * dlm recovery is in progress and dlm locking is blocked. 662 * There's no point trying to do any work until recover_done. 663 */ 664 665 if (block_gen == start_gen) 666 return; 667 668 /* 669 * Propagate recover_submit[] and recover_result[] to lvb: 670 * dlm_recoverd adds to recover_submit[] jids needing recovery 671 * gfs2_recover adds to recover_result[] journal recovery results 672 * 673 * set lvb bit for jids in recover_submit[] if the lvb has not 674 * yet been updated for the generation of the failure 675 * 676 * clear lvb bit for jids in recover_result[] if the result of 677 * the journal recovery is SUCCESS 678 */ 679 680 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 681 if (error) { 682 fs_err(sdp, "control lock EX error %d\n", error); 683 return; 684 } 685 686 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 687 688 spin_lock(&ls->ls_recover_spin); 689 if (block_gen != ls->ls_recover_block || 690 start_gen != ls->ls_recover_start) { 691 fs_info(sdp, "recover generation %u block1 %u %u\n", 692 start_gen, block_gen, ls->ls_recover_block); 693 spin_unlock(&ls->ls_recover_spin); 694 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 695 return; 696 } 697 698 recover_size = ls->ls_recover_size; 699 700 if (lvb_gen <= start_gen) { 701 /* 702 * Clear lvb bits for jids we've successfully recovered. 703 * Because all nodes attempt to recover failed journals, 704 * a journal can be recovered multiple times successfully 705 * in succession. Only the first will really do recovery, 706 * the others find it clean, but still report a successful 707 * recovery. So, another node may have already recovered 708 * the jid and cleared the lvb bit for it. 709 */ 710 for (i = 0; i < recover_size; i++) { 711 if (ls->ls_recover_result[i] != LM_RD_SUCCESS) 712 continue; 713 714 ls->ls_recover_result[i] = 0; 715 716 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) 717 continue; 718 719 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 720 write_lvb = 1; 721 } 722 } 723 724 if (lvb_gen == start_gen) { 725 /* 726 * Failed slots before start_gen are already set in lvb. 727 */ 728 for (i = 0; i < recover_size; i++) { 729 if (!ls->ls_recover_submit[i]) 730 continue; 731 if (ls->ls_recover_submit[i] < lvb_gen) 732 ls->ls_recover_submit[i] = 0; 733 } 734 } else if (lvb_gen < start_gen) { 735 /* 736 * Failed slots before start_gen are not yet set in lvb. 737 */ 738 for (i = 0; i < recover_size; i++) { 739 if (!ls->ls_recover_submit[i]) 740 continue; 741 if (ls->ls_recover_submit[i] < start_gen) { 742 ls->ls_recover_submit[i] = 0; 743 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 744 } 745 } 746 /* even if there are no bits to set, we need to write the 747 latest generation to the lvb */ 748 write_lvb = 1; 749 } else { 750 /* 751 * we should be getting a recover_done() for lvb_gen soon 752 */ 753 } 754 spin_unlock(&ls->ls_recover_spin); 755 756 if (write_lvb) { 757 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 758 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK; 759 } else { 760 flags = DLM_LKF_CONVERT; 761 } 762 763 error = control_lock(sdp, DLM_LOCK_NL, flags); 764 if (error) { 765 fs_err(sdp, "control lock NL error %d\n", error); 766 return; 767 } 768 769 /* 770 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(), 771 * and clear a jid bit in the lvb if the recovery is a success. 772 * Eventually all journals will be recovered, all jid bits will 773 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS. 774 */ 775 776 for (i = 0; i < recover_size; i++) { 777 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) { 778 fs_info(sdp, "recover generation %u jid %d\n", 779 start_gen, i); 780 gfs2_recover_set(sdp, i); 781 recover_set++; 782 } 783 } 784 if (recover_set) 785 return; 786 787 /* 788 * No more jid bits set in lvb, all recovery is done, unblock locks 789 * (unless a new recover_prep callback has occured blocking locks 790 * again while working above) 791 */ 792 793 spin_lock(&ls->ls_recover_spin); 794 if (ls->ls_recover_block == block_gen && 795 ls->ls_recover_start == start_gen) { 796 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 797 spin_unlock(&ls->ls_recover_spin); 798 fs_info(sdp, "recover generation %u done\n", start_gen); 799 gfs2_glock_thaw(sdp); 800 } else { 801 fs_info(sdp, "recover generation %u block2 %u %u\n", 802 start_gen, block_gen, ls->ls_recover_block); 803 spin_unlock(&ls->ls_recover_spin); 804 } 805 } 806 807 static int control_mount(struct gfs2_sbd *sdp) 808 { 809 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 810 uint32_t start_gen, block_gen, mount_gen, lvb_gen; 811 int mounted_mode; 812 int retries = 0; 813 int error; 814 815 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb)); 816 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb)); 817 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE); 818 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb; 819 init_completion(&ls->ls_sync_wait); 820 821 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 822 823 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK); 824 if (error) { 825 fs_err(sdp, "control_mount control_lock NL error %d\n", error); 826 return error; 827 } 828 829 error = mounted_lock(sdp, DLM_LOCK_NL, 0); 830 if (error) { 831 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error); 832 control_unlock(sdp); 833 return error; 834 } 835 mounted_mode = DLM_LOCK_NL; 836 837 restart: 838 if (retries++ && signal_pending(current)) { 839 error = -EINTR; 840 goto fail; 841 } 842 843 /* 844 * We always start with both locks in NL. control_lock is 845 * demoted to NL below so we don't need to do it here. 846 */ 847 848 if (mounted_mode != DLM_LOCK_NL) { 849 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 850 if (error) 851 goto fail; 852 mounted_mode = DLM_LOCK_NL; 853 } 854 855 /* 856 * Other nodes need to do some work in dlm recovery and gfs2_control 857 * before the recover_done and control_lock will be ready for us below. 858 * A delay here is not required but often avoids having to retry. 859 */ 860 861 msleep_interruptible(500); 862 863 /* 864 * Acquire control_lock in EX and mounted_lock in either EX or PR. 865 * control_lock lvb keeps track of any pending journal recoveries. 866 * mounted_lock indicates if any other nodes have the fs mounted. 867 */ 868 869 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK); 870 if (error == -EAGAIN) { 871 goto restart; 872 } else if (error) { 873 fs_err(sdp, "control_mount control_lock EX error %d\n", error); 874 goto fail; 875 } 876 877 /** 878 * If we're a spectator, we don't want to take the lock in EX because 879 * we cannot do the first-mount responsibility it implies: recovery. 880 */ 881 if (sdp->sd_args.ar_spectator) 882 goto locks_done; 883 884 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 885 if (!error) { 886 mounted_mode = DLM_LOCK_EX; 887 goto locks_done; 888 } else if (error != -EAGAIN) { 889 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error); 890 goto fail; 891 } 892 893 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 894 if (!error) { 895 mounted_mode = DLM_LOCK_PR; 896 goto locks_done; 897 } else { 898 /* not even -EAGAIN should happen here */ 899 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error); 900 goto fail; 901 } 902 903 locks_done: 904 /* 905 * If we got both locks above in EX, then we're the first mounter. 906 * If not, then we need to wait for the control_lock lvb to be 907 * updated by other mounted nodes to reflect our mount generation. 908 * 909 * In simple first mounter cases, first mounter will see zero lvb_gen, 910 * but in cases where all existing nodes leave/fail before mounting 911 * nodes finish control_mount, then all nodes will be mounting and 912 * lvb_gen will be non-zero. 913 */ 914 915 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 916 917 if (lvb_gen == 0xFFFFFFFF) { 918 /* special value to force mount attempts to fail */ 919 fs_err(sdp, "control_mount control_lock disabled\n"); 920 error = -EINVAL; 921 goto fail; 922 } 923 924 if (mounted_mode == DLM_LOCK_EX) { 925 /* first mounter, keep both EX while doing first recovery */ 926 spin_lock(&ls->ls_recover_spin); 927 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 928 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 929 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 930 spin_unlock(&ls->ls_recover_spin); 931 fs_info(sdp, "first mounter control generation %u\n", lvb_gen); 932 return 0; 933 } 934 935 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 936 if (error) 937 goto fail; 938 939 /* 940 * We are not first mounter, now we need to wait for the control_lock 941 * lvb generation to be >= the generation from our first recover_done 942 * and all lvb bits to be clear (no pending journal recoveries.) 943 */ 944 945 if (!all_jid_bits_clear(ls->ls_lvb_bits)) { 946 /* journals need recovery, wait until all are clear */ 947 fs_info(sdp, "control_mount wait for journal recovery\n"); 948 goto restart; 949 } 950 951 spin_lock(&ls->ls_recover_spin); 952 block_gen = ls->ls_recover_block; 953 start_gen = ls->ls_recover_start; 954 mount_gen = ls->ls_recover_mount; 955 956 if (lvb_gen < mount_gen) { 957 /* wait for mounted nodes to update control_lock lvb to our 958 generation, which might include new recovery bits set */ 959 if (sdp->sd_args.ar_spectator) { 960 fs_info(sdp, "Recovery is required. Waiting for a " 961 "non-spectator to mount.\n"); 962 msleep_interruptible(1000); 963 } else { 964 fs_info(sdp, "control_mount wait1 block %u start %u " 965 "mount %u lvb %u flags %lx\n", block_gen, 966 start_gen, mount_gen, lvb_gen, 967 ls->ls_recover_flags); 968 } 969 spin_unlock(&ls->ls_recover_spin); 970 goto restart; 971 } 972 973 if (lvb_gen != start_gen) { 974 /* wait for mounted nodes to update control_lock lvb to the 975 latest recovery generation */ 976 fs_info(sdp, "control_mount wait2 block %u start %u mount %u " 977 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 978 lvb_gen, ls->ls_recover_flags); 979 spin_unlock(&ls->ls_recover_spin); 980 goto restart; 981 } 982 983 if (block_gen == start_gen) { 984 /* dlm recovery in progress, wait for it to finish */ 985 fs_info(sdp, "control_mount wait3 block %u start %u mount %u " 986 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 987 lvb_gen, ls->ls_recover_flags); 988 spin_unlock(&ls->ls_recover_spin); 989 goto restart; 990 } 991 992 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 993 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 994 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 995 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 996 spin_unlock(&ls->ls_recover_spin); 997 return 0; 998 999 fail: 1000 mounted_unlock(sdp); 1001 control_unlock(sdp); 1002 return error; 1003 } 1004 1005 static int control_first_done(struct gfs2_sbd *sdp) 1006 { 1007 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1008 uint32_t start_gen, block_gen; 1009 int error; 1010 1011 restart: 1012 spin_lock(&ls->ls_recover_spin); 1013 start_gen = ls->ls_recover_start; 1014 block_gen = ls->ls_recover_block; 1015 1016 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) || 1017 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 1018 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1019 /* sanity check, should not happen */ 1020 fs_err(sdp, "control_first_done start %u block %u flags %lx\n", 1021 start_gen, block_gen, ls->ls_recover_flags); 1022 spin_unlock(&ls->ls_recover_spin); 1023 control_unlock(sdp); 1024 return -1; 1025 } 1026 1027 if (start_gen == block_gen) { 1028 /* 1029 * Wait for the end of a dlm recovery cycle to switch from 1030 * first mounter recovery. We can ignore any recover_slot 1031 * callbacks between the recover_prep and next recover_done 1032 * because we are still the first mounter and any failed nodes 1033 * have not fully mounted, so they don't need recovery. 1034 */ 1035 spin_unlock(&ls->ls_recover_spin); 1036 fs_info(sdp, "control_first_done wait gen %u\n", start_gen); 1037 1038 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY, 1039 TASK_UNINTERRUPTIBLE); 1040 goto restart; 1041 } 1042 1043 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1044 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags); 1045 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 1046 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 1047 spin_unlock(&ls->ls_recover_spin); 1048 1049 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE); 1050 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 1051 1052 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT); 1053 if (error) 1054 fs_err(sdp, "control_first_done mounted PR error %d\n", error); 1055 1056 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 1057 if (error) 1058 fs_err(sdp, "control_first_done control NL error %d\n", error); 1059 1060 return error; 1061 } 1062 1063 /* 1064 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC) 1065 * to accommodate the largest slot number. (NB dlm slot numbers start at 1, 1066 * gfs2 jids start at 0, so jid = slot - 1) 1067 */ 1068 1069 #define RECOVER_SIZE_INC 16 1070 1071 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots, 1072 int num_slots) 1073 { 1074 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1075 uint32_t *submit = NULL; 1076 uint32_t *result = NULL; 1077 uint32_t old_size, new_size; 1078 int i, max_jid; 1079 1080 if (!ls->ls_lvb_bits) { 1081 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS); 1082 if (!ls->ls_lvb_bits) 1083 return -ENOMEM; 1084 } 1085 1086 max_jid = 0; 1087 for (i = 0; i < num_slots; i++) { 1088 if (max_jid < slots[i].slot - 1) 1089 max_jid = slots[i].slot - 1; 1090 } 1091 1092 old_size = ls->ls_recover_size; 1093 new_size = old_size; 1094 while (new_size < max_jid + 1) 1095 new_size += RECOVER_SIZE_INC; 1096 if (new_size == old_size) 1097 return 0; 1098 1099 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1100 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1101 if (!submit || !result) { 1102 kfree(submit); 1103 kfree(result); 1104 return -ENOMEM; 1105 } 1106 1107 spin_lock(&ls->ls_recover_spin); 1108 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t)); 1109 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t)); 1110 kfree(ls->ls_recover_submit); 1111 kfree(ls->ls_recover_result); 1112 ls->ls_recover_submit = submit; 1113 ls->ls_recover_result = result; 1114 ls->ls_recover_size = new_size; 1115 spin_unlock(&ls->ls_recover_spin); 1116 return 0; 1117 } 1118 1119 static void free_recover_size(struct lm_lockstruct *ls) 1120 { 1121 kfree(ls->ls_lvb_bits); 1122 kfree(ls->ls_recover_submit); 1123 kfree(ls->ls_recover_result); 1124 ls->ls_recover_submit = NULL; 1125 ls->ls_recover_result = NULL; 1126 ls->ls_recover_size = 0; 1127 ls->ls_lvb_bits = NULL; 1128 } 1129 1130 /* dlm calls before it does lock recovery */ 1131 1132 static void gdlm_recover_prep(void *arg) 1133 { 1134 struct gfs2_sbd *sdp = arg; 1135 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1136 1137 if (gfs2_withdrawing_or_withdrawn(sdp)) { 1138 fs_err(sdp, "recover_prep ignored due to withdraw.\n"); 1139 return; 1140 } 1141 spin_lock(&ls->ls_recover_spin); 1142 ls->ls_recover_block = ls->ls_recover_start; 1143 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1144 1145 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 1146 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1147 spin_unlock(&ls->ls_recover_spin); 1148 return; 1149 } 1150 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 1151 spin_unlock(&ls->ls_recover_spin); 1152 } 1153 1154 /* dlm calls after recover_prep has been completed on all lockspace members; 1155 identifies slot/jid of failed member */ 1156 1157 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot) 1158 { 1159 struct gfs2_sbd *sdp = arg; 1160 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1161 int jid = slot->slot - 1; 1162 1163 if (gfs2_withdrawing_or_withdrawn(sdp)) { 1164 fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n", 1165 jid); 1166 return; 1167 } 1168 spin_lock(&ls->ls_recover_spin); 1169 if (ls->ls_recover_size < jid + 1) { 1170 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n", 1171 jid, ls->ls_recover_block, ls->ls_recover_size); 1172 spin_unlock(&ls->ls_recover_spin); 1173 return; 1174 } 1175 1176 if (ls->ls_recover_submit[jid]) { 1177 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n", 1178 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]); 1179 } 1180 ls->ls_recover_submit[jid] = ls->ls_recover_block; 1181 spin_unlock(&ls->ls_recover_spin); 1182 } 1183 1184 /* dlm calls after recover_slot and after it completes lock recovery */ 1185 1186 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots, 1187 int our_slot, uint32_t generation) 1188 { 1189 struct gfs2_sbd *sdp = arg; 1190 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1191 1192 if (gfs2_withdrawing_or_withdrawn(sdp)) { 1193 fs_err(sdp, "recover_done ignored due to withdraw.\n"); 1194 return; 1195 } 1196 /* ensure the ls jid arrays are large enough */ 1197 set_recover_size(sdp, slots, num_slots); 1198 1199 spin_lock(&ls->ls_recover_spin); 1200 ls->ls_recover_start = generation; 1201 1202 if (!ls->ls_recover_mount) { 1203 ls->ls_recover_mount = generation; 1204 ls->ls_jid = our_slot - 1; 1205 } 1206 1207 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1208 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0); 1209 1210 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1211 smp_mb__after_atomic(); 1212 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY); 1213 spin_unlock(&ls->ls_recover_spin); 1214 } 1215 1216 /* gfs2_recover thread has a journal recovery result */ 1217 1218 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid, 1219 unsigned int result) 1220 { 1221 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1222 1223 if (gfs2_withdrawing_or_withdrawn(sdp)) { 1224 fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n", 1225 jid); 1226 return; 1227 } 1228 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1229 return; 1230 1231 /* don't care about the recovery of own journal during mount */ 1232 if (jid == ls->ls_jid) 1233 return; 1234 1235 spin_lock(&ls->ls_recover_spin); 1236 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1237 spin_unlock(&ls->ls_recover_spin); 1238 return; 1239 } 1240 if (ls->ls_recover_size < jid + 1) { 1241 fs_err(sdp, "recovery_result jid %d short size %d\n", 1242 jid, ls->ls_recover_size); 1243 spin_unlock(&ls->ls_recover_spin); 1244 return; 1245 } 1246 1247 fs_info(sdp, "recover jid %d result %s\n", jid, 1248 result == LM_RD_GAVEUP ? "busy" : "success"); 1249 1250 ls->ls_recover_result[jid] = result; 1251 1252 /* GAVEUP means another node is recovering the journal; delay our 1253 next attempt to recover it, to give the other node a chance to 1254 finish before trying again */ 1255 1256 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1257 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 1258 result == LM_RD_GAVEUP ? HZ : 0); 1259 spin_unlock(&ls->ls_recover_spin); 1260 } 1261 1262 static const struct dlm_lockspace_ops gdlm_lockspace_ops = { 1263 .recover_prep = gdlm_recover_prep, 1264 .recover_slot = gdlm_recover_slot, 1265 .recover_done = gdlm_recover_done, 1266 }; 1267 1268 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table) 1269 { 1270 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1271 char cluster[GFS2_LOCKNAME_LEN]; 1272 const char *fsname; 1273 uint32_t flags; 1274 int error, ops_result; 1275 1276 /* 1277 * initialize everything 1278 */ 1279 1280 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func); 1281 spin_lock_init(&ls->ls_recover_spin); 1282 ls->ls_recover_flags = 0; 1283 ls->ls_recover_mount = 0; 1284 ls->ls_recover_start = 0; 1285 ls->ls_recover_block = 0; 1286 ls->ls_recover_size = 0; 1287 ls->ls_recover_submit = NULL; 1288 ls->ls_recover_result = NULL; 1289 ls->ls_lvb_bits = NULL; 1290 1291 error = set_recover_size(sdp, NULL, 0); 1292 if (error) 1293 goto fail; 1294 1295 /* 1296 * prepare dlm_new_lockspace args 1297 */ 1298 1299 fsname = strchr(table, ':'); 1300 if (!fsname) { 1301 fs_info(sdp, "no fsname found\n"); 1302 error = -EINVAL; 1303 goto fail_free; 1304 } 1305 memset(cluster, 0, sizeof(cluster)); 1306 memcpy(cluster, table, strlen(table) - strlen(fsname)); 1307 fsname++; 1308 1309 flags = DLM_LSFL_NEWEXCL; 1310 1311 /* 1312 * create/join lockspace 1313 */ 1314 1315 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE, 1316 &gdlm_lockspace_ops, sdp, &ops_result, 1317 &ls->ls_dlm); 1318 if (error) { 1319 fs_err(sdp, "dlm_new_lockspace error %d\n", error); 1320 goto fail_free; 1321 } 1322 1323 if (ops_result < 0) { 1324 /* 1325 * dlm does not support ops callbacks, 1326 * old dlm_controld/gfs_controld are used, try without ops. 1327 */ 1328 fs_info(sdp, "dlm lockspace ops not used\n"); 1329 free_recover_size(ls); 1330 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags); 1331 return 0; 1332 } 1333 1334 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) { 1335 fs_err(sdp, "dlm lockspace ops disallow jid preset\n"); 1336 error = -EINVAL; 1337 goto fail_release; 1338 } 1339 1340 /* 1341 * control_mount() uses control_lock to determine first mounter, 1342 * and for later mounts, waits for any recoveries to be cleared. 1343 */ 1344 1345 error = control_mount(sdp); 1346 if (error) { 1347 fs_err(sdp, "mount control error %d\n", error); 1348 goto fail_release; 1349 } 1350 1351 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1352 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags); 1353 smp_mb__after_atomic(); 1354 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID); 1355 return 0; 1356 1357 fail_release: 1358 dlm_release_lockspace(ls->ls_dlm, 2); 1359 fail_free: 1360 free_recover_size(ls); 1361 fail: 1362 return error; 1363 } 1364 1365 static void gdlm_first_done(struct gfs2_sbd *sdp) 1366 { 1367 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1368 int error; 1369 1370 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1371 return; 1372 1373 error = control_first_done(sdp); 1374 if (error) 1375 fs_err(sdp, "mount first_done error %d\n", error); 1376 } 1377 1378 static void gdlm_unmount(struct gfs2_sbd *sdp) 1379 { 1380 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1381 1382 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1383 goto release; 1384 1385 /* wait for gfs2_control_wq to be done with this mount */ 1386 1387 spin_lock(&ls->ls_recover_spin); 1388 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags); 1389 spin_unlock(&ls->ls_recover_spin); 1390 flush_delayed_work(&sdp->sd_control_work); 1391 1392 /* mounted_lock and control_lock will be purged in dlm recovery */ 1393 release: 1394 if (ls->ls_dlm) { 1395 dlm_release_lockspace(ls->ls_dlm, 2); 1396 ls->ls_dlm = NULL; 1397 } 1398 1399 free_recover_size(ls); 1400 } 1401 1402 static const match_table_t dlm_tokens = { 1403 { Opt_jid, "jid=%d"}, 1404 { Opt_id, "id=%d"}, 1405 { Opt_first, "first=%d"}, 1406 { Opt_nodir, "nodir=%d"}, 1407 { Opt_err, NULL }, 1408 }; 1409 1410 const struct lm_lockops gfs2_dlm_ops = { 1411 .lm_proto_name = "lock_dlm", 1412 .lm_mount = gdlm_mount, 1413 .lm_first_done = gdlm_first_done, 1414 .lm_recovery_result = gdlm_recovery_result, 1415 .lm_unmount = gdlm_unmount, 1416 .lm_put_lock = gdlm_put_lock, 1417 .lm_lock = gdlm_lock, 1418 .lm_cancel = gdlm_cancel, 1419 .lm_tokens = &dlm_tokens, 1420 }; 1421 1422