1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright 2004-2011 Red Hat, Inc. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/dlm.h> 12 #include <linux/slab.h> 13 #include <linux/types.h> 14 #include <linux/delay.h> 15 #include <linux/gfs2_ondisk.h> 16 17 #include "incore.h" 18 #include "glock.h" 19 #include "util.h" 20 #include "sys.h" 21 #include "trace_gfs2.h" 22 23 extern struct workqueue_struct *gfs2_control_wq; 24 25 /** 26 * gfs2_update_stats - Update time based stats 27 * @mv: Pointer to mean/variance structure to update 28 * @sample: New data to include 29 * 30 * @delta is the difference between the current rtt sample and the 31 * running average srtt. We add 1/8 of that to the srtt in order to 32 * update the current srtt estimate. The varience estimate is a bit 33 * more complicated. We subtract the abs value of the @delta from 34 * the current variance estimate and add 1/4 of that to the running 35 * total. 36 * 37 * Note that the index points at the array entry containing the smoothed 38 * mean value, and the variance is always in the following entry 39 * 40 * Reference: TCP/IP Illustrated, vol 2, p. 831,832 41 * All times are in units of integer nanoseconds. Unlike the TCP/IP case, 42 * they are not scaled fixed point. 43 */ 44 45 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index, 46 s64 sample) 47 { 48 s64 delta = sample - s->stats[index]; 49 s->stats[index] += (delta >> 3); 50 index++; 51 s->stats[index] += ((abs64(delta) - s->stats[index]) >> 2); 52 } 53 54 /** 55 * gfs2_update_reply_times - Update locking statistics 56 * @gl: The glock to update 57 * 58 * This assumes that gl->gl_dstamp has been set earlier. 59 * 60 * The rtt (lock round trip time) is an estimate of the time 61 * taken to perform a dlm lock request. We update it on each 62 * reply from the dlm. 63 * 64 * The blocking flag is set on the glock for all dlm requests 65 * which may potentially block due to lock requests from other nodes. 66 * DLM requests where the current lock state is exclusive, the 67 * requested state is null (or unlocked) or where the TRY or 68 * TRY_1CB flags are set are classified as non-blocking. All 69 * other DLM requests are counted as (potentially) blocking. 70 */ 71 static inline void gfs2_update_reply_times(struct gfs2_glock *gl) 72 { 73 struct gfs2_pcpu_lkstats *lks; 74 const unsigned gltype = gl->gl_name.ln_type; 75 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ? 76 GFS2_LKS_SRTTB : GFS2_LKS_SRTT; 77 s64 rtt; 78 79 preempt_disable(); 80 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp)); 81 lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats); 82 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */ 83 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */ 84 preempt_enable(); 85 86 trace_gfs2_glock_lock_time(gl, rtt); 87 } 88 89 /** 90 * gfs2_update_request_times - Update locking statistics 91 * @gl: The glock to update 92 * 93 * The irt (lock inter-request times) measures the average time 94 * between requests to the dlm. It is updated immediately before 95 * each dlm call. 96 */ 97 98 static inline void gfs2_update_request_times(struct gfs2_glock *gl) 99 { 100 struct gfs2_pcpu_lkstats *lks; 101 const unsigned gltype = gl->gl_name.ln_type; 102 ktime_t dstamp; 103 s64 irt; 104 105 preempt_disable(); 106 dstamp = gl->gl_dstamp; 107 gl->gl_dstamp = ktime_get_real(); 108 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp)); 109 lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats); 110 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */ 111 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */ 112 preempt_enable(); 113 } 114 115 static void gdlm_ast(void *arg) 116 { 117 struct gfs2_glock *gl = arg; 118 unsigned ret = gl->gl_state; 119 120 gfs2_update_reply_times(gl); 121 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED); 122 123 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr) 124 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE); 125 126 switch (gl->gl_lksb.sb_status) { 127 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */ 128 gfs2_glock_free(gl); 129 return; 130 case -DLM_ECANCEL: /* Cancel while getting lock */ 131 ret |= LM_OUT_CANCELED; 132 goto out; 133 case -EAGAIN: /* Try lock fails */ 134 case -EDEADLK: /* Deadlock detected */ 135 goto out; 136 case -ETIMEDOUT: /* Canceled due to timeout */ 137 ret |= LM_OUT_ERROR; 138 goto out; 139 case 0: /* Success */ 140 break; 141 default: /* Something unexpected */ 142 BUG(); 143 } 144 145 ret = gl->gl_req; 146 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) { 147 if (gl->gl_req == LM_ST_SHARED) 148 ret = LM_ST_DEFERRED; 149 else if (gl->gl_req == LM_ST_DEFERRED) 150 ret = LM_ST_SHARED; 151 else 152 BUG(); 153 } 154 155 set_bit(GLF_INITIAL, &gl->gl_flags); 156 gfs2_glock_complete(gl, ret); 157 return; 158 out: 159 if (!test_bit(GLF_INITIAL, &gl->gl_flags)) 160 gl->gl_lksb.sb_lkid = 0; 161 gfs2_glock_complete(gl, ret); 162 } 163 164 static void gdlm_bast(void *arg, int mode) 165 { 166 struct gfs2_glock *gl = arg; 167 168 switch (mode) { 169 case DLM_LOCK_EX: 170 gfs2_glock_cb(gl, LM_ST_UNLOCKED); 171 break; 172 case DLM_LOCK_CW: 173 gfs2_glock_cb(gl, LM_ST_DEFERRED); 174 break; 175 case DLM_LOCK_PR: 176 gfs2_glock_cb(gl, LM_ST_SHARED); 177 break; 178 default: 179 printk(KERN_ERR "unknown bast mode %d", mode); 180 BUG(); 181 } 182 } 183 184 /* convert gfs lock-state to dlm lock-mode */ 185 186 static int make_mode(const unsigned int lmstate) 187 { 188 switch (lmstate) { 189 case LM_ST_UNLOCKED: 190 return DLM_LOCK_NL; 191 case LM_ST_EXCLUSIVE: 192 return DLM_LOCK_EX; 193 case LM_ST_DEFERRED: 194 return DLM_LOCK_CW; 195 case LM_ST_SHARED: 196 return DLM_LOCK_PR; 197 } 198 printk(KERN_ERR "unknown LM state %d", lmstate); 199 BUG(); 200 return -1; 201 } 202 203 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags, 204 const int req) 205 { 206 u32 lkf = 0; 207 208 if (gl->gl_lksb.sb_lvbptr) 209 lkf |= DLM_LKF_VALBLK; 210 211 if (gfs_flags & LM_FLAG_TRY) 212 lkf |= DLM_LKF_NOQUEUE; 213 214 if (gfs_flags & LM_FLAG_TRY_1CB) { 215 lkf |= DLM_LKF_NOQUEUE; 216 lkf |= DLM_LKF_NOQUEUEBAST; 217 } 218 219 if (gfs_flags & LM_FLAG_PRIORITY) { 220 lkf |= DLM_LKF_NOORDER; 221 lkf |= DLM_LKF_HEADQUE; 222 } 223 224 if (gfs_flags & LM_FLAG_ANY) { 225 if (req == DLM_LOCK_PR) 226 lkf |= DLM_LKF_ALTCW; 227 else if (req == DLM_LOCK_CW) 228 lkf |= DLM_LKF_ALTPR; 229 else 230 BUG(); 231 } 232 233 if (gl->gl_lksb.sb_lkid != 0) { 234 lkf |= DLM_LKF_CONVERT; 235 if (test_bit(GLF_BLOCKING, &gl->gl_flags)) 236 lkf |= DLM_LKF_QUECVT; 237 } 238 239 return lkf; 240 } 241 242 static void gfs2_reverse_hex(char *c, u64 value) 243 { 244 *c = '0'; 245 while (value) { 246 *c-- = hex_asc[value & 0x0f]; 247 value >>= 4; 248 } 249 } 250 251 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state, 252 unsigned int flags) 253 { 254 struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct; 255 int req; 256 u32 lkf; 257 char strname[GDLM_STRNAME_BYTES] = ""; 258 259 req = make_mode(req_state); 260 lkf = make_flags(gl, flags, req); 261 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 262 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 263 if (gl->gl_lksb.sb_lkid) { 264 gfs2_update_request_times(gl); 265 } else { 266 memset(strname, ' ', GDLM_STRNAME_BYTES - 1); 267 strname[GDLM_STRNAME_BYTES - 1] = '\0'; 268 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type); 269 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number); 270 gl->gl_dstamp = ktime_get_real(); 271 } 272 /* 273 * Submit the actual lock request. 274 */ 275 276 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname, 277 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast); 278 } 279 280 static void gdlm_put_lock(struct gfs2_glock *gl) 281 { 282 struct gfs2_sbd *sdp = gl->gl_sbd; 283 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 284 int lvb_needs_unlock = 0; 285 int error; 286 287 if (gl->gl_lksb.sb_lkid == 0) { 288 gfs2_glock_free(gl); 289 return; 290 } 291 292 clear_bit(GLF_BLOCKING, &gl->gl_flags); 293 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 294 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 295 gfs2_update_request_times(gl); 296 297 /* don't want to skip dlm_unlock writing the lvb when lock is ex */ 298 299 if (gl->gl_lksb.sb_lvbptr && (gl->gl_state == LM_ST_EXCLUSIVE)) 300 lvb_needs_unlock = 1; 301 302 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) && 303 !lvb_needs_unlock) { 304 gfs2_glock_free(gl); 305 return; 306 } 307 308 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK, 309 NULL, gl); 310 if (error) { 311 printk(KERN_ERR "gdlm_unlock %x,%llx err=%d\n", 312 gl->gl_name.ln_type, 313 (unsigned long long)gl->gl_name.ln_number, error); 314 return; 315 } 316 } 317 318 static void gdlm_cancel(struct gfs2_glock *gl) 319 { 320 struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct; 321 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl); 322 } 323 324 /* 325 * dlm/gfs2 recovery coordination using dlm_recover callbacks 326 * 327 * 1. dlm_controld sees lockspace members change 328 * 2. dlm_controld blocks dlm-kernel locking activity 329 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep) 330 * 4. dlm_controld starts and finishes its own user level recovery 331 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery 332 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot) 333 * 7. dlm_recoverd does its own lock recovery 334 * 8. dlm_recoverd unblocks dlm-kernel locking activity 335 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation) 336 * 10. gfs2_control updates control_lock lvb with new generation and jid bits 337 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none) 338 * 12. gfs2_recover dequeues and recovers journals of failed nodes 339 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result) 340 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals 341 * 15. gfs2_control unblocks normal locking when all journals are recovered 342 * 343 * - failures during recovery 344 * 345 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control 346 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still 347 * recovering for a prior failure. gfs2_control needs a way to detect 348 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using 349 * the recover_block and recover_start values. 350 * 351 * recover_done() provides a new lockspace generation number each time it 352 * is called (step 9). This generation number is saved as recover_start. 353 * When recover_prep() is called, it sets BLOCK_LOCKS and sets 354 * recover_block = recover_start. So, while recover_block is equal to 355 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must 356 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.) 357 * 358 * - more specific gfs2 steps in sequence above 359 * 360 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start 361 * 6. recover_slot records any failed jids (maybe none) 362 * 9. recover_done sets recover_start = new generation number 363 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids 364 * 12. gfs2_recover does journal recoveries for failed jids identified above 365 * 14. gfs2_control clears control_lock lvb bits for recovered jids 366 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured 367 * again) then do nothing, otherwise if recover_start > recover_block 368 * then clear BLOCK_LOCKS. 369 * 370 * - parallel recovery steps across all nodes 371 * 372 * All nodes attempt to update the control_lock lvb with the new generation 373 * number and jid bits, but only the first to get the control_lock EX will 374 * do so; others will see that it's already done (lvb already contains new 375 * generation number.) 376 * 377 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks 378 * . All nodes attempt to set control_lock lvb gen + bits for the new gen 379 * . One node gets control_lock first and writes the lvb, others see it's done 380 * . All nodes attempt to recover jids for which they see control_lock bits set 381 * . One node succeeds for a jid, and that one clears the jid bit in the lvb 382 * . All nodes will eventually see all lvb bits clear and unblock locks 383 * 384 * - is there a problem with clearing an lvb bit that should be set 385 * and missing a journal recovery? 386 * 387 * 1. jid fails 388 * 2. lvb bit set for step 1 389 * 3. jid recovered for step 1 390 * 4. jid taken again (new mount) 391 * 5. jid fails (for step 4) 392 * 6. lvb bit set for step 5 (will already be set) 393 * 7. lvb bit cleared for step 3 394 * 395 * This is not a problem because the failure in step 5 does not 396 * require recovery, because the mount in step 4 could not have 397 * progressed far enough to unblock locks and access the fs. The 398 * control_mount() function waits for all recoveries to be complete 399 * for the latest lockspace generation before ever unblocking locks 400 * and returning. The mount in step 4 waits until the recovery in 401 * step 1 is done. 402 * 403 * - special case of first mounter: first node to mount the fs 404 * 405 * The first node to mount a gfs2 fs needs to check all the journals 406 * and recover any that need recovery before other nodes are allowed 407 * to mount the fs. (Others may begin mounting, but they must wait 408 * for the first mounter to be done before taking locks on the fs 409 * or accessing the fs.) This has two parts: 410 * 411 * 1. The mounted_lock tells a node it's the first to mount the fs. 412 * Each node holds the mounted_lock in PR while it's mounted. 413 * Each node tries to acquire the mounted_lock in EX when it mounts. 414 * If a node is granted the mounted_lock EX it means there are no 415 * other mounted nodes (no PR locks exist), and it is the first mounter. 416 * The mounted_lock is demoted to PR when first recovery is done, so 417 * others will fail to get an EX lock, but will get a PR lock. 418 * 419 * 2. The control_lock blocks others in control_mount() while the first 420 * mounter is doing first mount recovery of all journals. 421 * A mounting node needs to acquire control_lock in EX mode before 422 * it can proceed. The first mounter holds control_lock in EX while doing 423 * the first mount recovery, blocking mounts from other nodes, then demotes 424 * control_lock to NL when it's done (others_may_mount/first_done), 425 * allowing other nodes to continue mounting. 426 * 427 * first mounter: 428 * control_lock EX/NOQUEUE success 429 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters) 430 * set first=1 431 * do first mounter recovery 432 * mounted_lock EX->PR 433 * control_lock EX->NL, write lvb generation 434 * 435 * other mounter: 436 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry) 437 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR) 438 * mounted_lock PR/NOQUEUE success 439 * read lvb generation 440 * control_lock EX->NL 441 * set first=0 442 * 443 * - mount during recovery 444 * 445 * If a node mounts while others are doing recovery (not first mounter), 446 * the mounting node will get its initial recover_done() callback without 447 * having seen any previous failures/callbacks. 448 * 449 * It must wait for all recoveries preceding its mount to be finished 450 * before it unblocks locks. It does this by repeating the "other mounter" 451 * steps above until the lvb generation number is >= its mount generation 452 * number (from initial recover_done) and all lvb bits are clear. 453 * 454 * - control_lock lvb format 455 * 456 * 4 bytes generation number: the latest dlm lockspace generation number 457 * from recover_done callback. Indicates the jid bitmap has been updated 458 * to reflect all slot failures through that generation. 459 * 4 bytes unused. 460 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates 461 * that jid N needs recovery. 462 */ 463 464 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */ 465 466 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen, 467 char *lvb_bits) 468 { 469 uint32_t gen; 470 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE); 471 memcpy(&gen, lvb_bits, sizeof(uint32_t)); 472 *lvb_gen = le32_to_cpu(gen); 473 } 474 475 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen, 476 char *lvb_bits) 477 { 478 uint32_t gen; 479 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE); 480 gen = cpu_to_le32(lvb_gen); 481 memcpy(ls->ls_control_lvb, &gen, sizeof(uint32_t)); 482 } 483 484 static int all_jid_bits_clear(char *lvb) 485 { 486 int i; 487 for (i = JID_BITMAP_OFFSET; i < GDLM_LVB_SIZE; i++) { 488 if (lvb[i]) 489 return 0; 490 } 491 return 1; 492 } 493 494 static void sync_wait_cb(void *arg) 495 { 496 struct lm_lockstruct *ls = arg; 497 complete(&ls->ls_sync_wait); 498 } 499 500 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name) 501 { 502 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 503 int error; 504 505 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls); 506 if (error) { 507 fs_err(sdp, "%s lkid %x error %d\n", 508 name, lksb->sb_lkid, error); 509 return error; 510 } 511 512 wait_for_completion(&ls->ls_sync_wait); 513 514 if (lksb->sb_status != -DLM_EUNLOCK) { 515 fs_err(sdp, "%s lkid %x status %d\n", 516 name, lksb->sb_lkid, lksb->sb_status); 517 return -1; 518 } 519 return 0; 520 } 521 522 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags, 523 unsigned int num, struct dlm_lksb *lksb, char *name) 524 { 525 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 526 char strname[GDLM_STRNAME_BYTES]; 527 int error, status; 528 529 memset(strname, 0, GDLM_STRNAME_BYTES); 530 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num); 531 532 error = dlm_lock(ls->ls_dlm, mode, lksb, flags, 533 strname, GDLM_STRNAME_BYTES - 1, 534 0, sync_wait_cb, ls, NULL); 535 if (error) { 536 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n", 537 name, lksb->sb_lkid, flags, mode, error); 538 return error; 539 } 540 541 wait_for_completion(&ls->ls_sync_wait); 542 543 status = lksb->sb_status; 544 545 if (status && status != -EAGAIN) { 546 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n", 547 name, lksb->sb_lkid, flags, mode, status); 548 } 549 550 return status; 551 } 552 553 static int mounted_unlock(struct gfs2_sbd *sdp) 554 { 555 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 556 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock"); 557 } 558 559 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 560 { 561 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 562 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK, 563 &ls->ls_mounted_lksb, "mounted_lock"); 564 } 565 566 static int control_unlock(struct gfs2_sbd *sdp) 567 { 568 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 569 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock"); 570 } 571 572 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 573 { 574 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 575 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK, 576 &ls->ls_control_lksb, "control_lock"); 577 } 578 579 static void gfs2_control_func(struct work_struct *work) 580 { 581 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work); 582 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 583 char lvb_bits[GDLM_LVB_SIZE]; 584 uint32_t block_gen, start_gen, lvb_gen, flags; 585 int recover_set = 0; 586 int write_lvb = 0; 587 int recover_size; 588 int i, error; 589 590 spin_lock(&ls->ls_recover_spin); 591 /* 592 * No MOUNT_DONE means we're still mounting; control_mount() 593 * will set this flag, after which this thread will take over 594 * all further clearing of BLOCK_LOCKS. 595 * 596 * FIRST_MOUNT means this node is doing first mounter recovery, 597 * for which recovery control is handled by 598 * control_mount()/control_first_done(), not this thread. 599 */ 600 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 601 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 602 spin_unlock(&ls->ls_recover_spin); 603 return; 604 } 605 block_gen = ls->ls_recover_block; 606 start_gen = ls->ls_recover_start; 607 spin_unlock(&ls->ls_recover_spin); 608 609 /* 610 * Equal block_gen and start_gen implies we are between 611 * recover_prep and recover_done callbacks, which means 612 * dlm recovery is in progress and dlm locking is blocked. 613 * There's no point trying to do any work until recover_done. 614 */ 615 616 if (block_gen == start_gen) 617 return; 618 619 /* 620 * Propagate recover_submit[] and recover_result[] to lvb: 621 * dlm_recoverd adds to recover_submit[] jids needing recovery 622 * gfs2_recover adds to recover_result[] journal recovery results 623 * 624 * set lvb bit for jids in recover_submit[] if the lvb has not 625 * yet been updated for the generation of the failure 626 * 627 * clear lvb bit for jids in recover_result[] if the result of 628 * the journal recovery is SUCCESS 629 */ 630 631 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 632 if (error) { 633 fs_err(sdp, "control lock EX error %d\n", error); 634 return; 635 } 636 637 control_lvb_read(ls, &lvb_gen, lvb_bits); 638 639 spin_lock(&ls->ls_recover_spin); 640 if (block_gen != ls->ls_recover_block || 641 start_gen != ls->ls_recover_start) { 642 fs_info(sdp, "recover generation %u block1 %u %u\n", 643 start_gen, block_gen, ls->ls_recover_block); 644 spin_unlock(&ls->ls_recover_spin); 645 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 646 return; 647 } 648 649 recover_size = ls->ls_recover_size; 650 651 if (lvb_gen <= start_gen) { 652 /* 653 * Clear lvb bits for jids we've successfully recovered. 654 * Because all nodes attempt to recover failed journals, 655 * a journal can be recovered multiple times successfully 656 * in succession. Only the first will really do recovery, 657 * the others find it clean, but still report a successful 658 * recovery. So, another node may have already recovered 659 * the jid and cleared the lvb bit for it. 660 */ 661 for (i = 0; i < recover_size; i++) { 662 if (ls->ls_recover_result[i] != LM_RD_SUCCESS) 663 continue; 664 665 ls->ls_recover_result[i] = 0; 666 667 if (!test_bit_le(i, lvb_bits + JID_BITMAP_OFFSET)) 668 continue; 669 670 __clear_bit_le(i, lvb_bits + JID_BITMAP_OFFSET); 671 write_lvb = 1; 672 } 673 } 674 675 if (lvb_gen == start_gen) { 676 /* 677 * Failed slots before start_gen are already set in lvb. 678 */ 679 for (i = 0; i < recover_size; i++) { 680 if (!ls->ls_recover_submit[i]) 681 continue; 682 if (ls->ls_recover_submit[i] < lvb_gen) 683 ls->ls_recover_submit[i] = 0; 684 } 685 } else if (lvb_gen < start_gen) { 686 /* 687 * Failed slots before start_gen are not yet set in lvb. 688 */ 689 for (i = 0; i < recover_size; i++) { 690 if (!ls->ls_recover_submit[i]) 691 continue; 692 if (ls->ls_recover_submit[i] < start_gen) { 693 ls->ls_recover_submit[i] = 0; 694 __set_bit_le(i, lvb_bits + JID_BITMAP_OFFSET); 695 } 696 } 697 /* even if there are no bits to set, we need to write the 698 latest generation to the lvb */ 699 write_lvb = 1; 700 } else { 701 /* 702 * we should be getting a recover_done() for lvb_gen soon 703 */ 704 } 705 spin_unlock(&ls->ls_recover_spin); 706 707 if (write_lvb) { 708 control_lvb_write(ls, start_gen, lvb_bits); 709 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK; 710 } else { 711 flags = DLM_LKF_CONVERT; 712 } 713 714 error = control_lock(sdp, DLM_LOCK_NL, flags); 715 if (error) { 716 fs_err(sdp, "control lock NL error %d\n", error); 717 return; 718 } 719 720 /* 721 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(), 722 * and clear a jid bit in the lvb if the recovery is a success. 723 * Eventually all journals will be recovered, all jid bits will 724 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS. 725 */ 726 727 for (i = 0; i < recover_size; i++) { 728 if (test_bit_le(i, lvb_bits + JID_BITMAP_OFFSET)) { 729 fs_info(sdp, "recover generation %u jid %d\n", 730 start_gen, i); 731 gfs2_recover_set(sdp, i); 732 recover_set++; 733 } 734 } 735 if (recover_set) 736 return; 737 738 /* 739 * No more jid bits set in lvb, all recovery is done, unblock locks 740 * (unless a new recover_prep callback has occured blocking locks 741 * again while working above) 742 */ 743 744 spin_lock(&ls->ls_recover_spin); 745 if (ls->ls_recover_block == block_gen && 746 ls->ls_recover_start == start_gen) { 747 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 748 spin_unlock(&ls->ls_recover_spin); 749 fs_info(sdp, "recover generation %u done\n", start_gen); 750 gfs2_glock_thaw(sdp); 751 } else { 752 fs_info(sdp, "recover generation %u block2 %u %u\n", 753 start_gen, block_gen, ls->ls_recover_block); 754 spin_unlock(&ls->ls_recover_spin); 755 } 756 } 757 758 static int control_mount(struct gfs2_sbd *sdp) 759 { 760 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 761 char lvb_bits[GDLM_LVB_SIZE]; 762 uint32_t start_gen, block_gen, mount_gen, lvb_gen; 763 int mounted_mode; 764 int retries = 0; 765 int error; 766 767 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb)); 768 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb)); 769 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE); 770 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb; 771 init_completion(&ls->ls_sync_wait); 772 773 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 774 775 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK); 776 if (error) { 777 fs_err(sdp, "control_mount control_lock NL error %d\n", error); 778 return error; 779 } 780 781 error = mounted_lock(sdp, DLM_LOCK_NL, 0); 782 if (error) { 783 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error); 784 control_unlock(sdp); 785 return error; 786 } 787 mounted_mode = DLM_LOCK_NL; 788 789 restart: 790 if (retries++ && signal_pending(current)) { 791 error = -EINTR; 792 goto fail; 793 } 794 795 /* 796 * We always start with both locks in NL. control_lock is 797 * demoted to NL below so we don't need to do it here. 798 */ 799 800 if (mounted_mode != DLM_LOCK_NL) { 801 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 802 if (error) 803 goto fail; 804 mounted_mode = DLM_LOCK_NL; 805 } 806 807 /* 808 * Other nodes need to do some work in dlm recovery and gfs2_control 809 * before the recover_done and control_lock will be ready for us below. 810 * A delay here is not required but often avoids having to retry. 811 */ 812 813 msleep_interruptible(500); 814 815 /* 816 * Acquire control_lock in EX and mounted_lock in either EX or PR. 817 * control_lock lvb keeps track of any pending journal recoveries. 818 * mounted_lock indicates if any other nodes have the fs mounted. 819 */ 820 821 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK); 822 if (error == -EAGAIN) { 823 goto restart; 824 } else if (error) { 825 fs_err(sdp, "control_mount control_lock EX error %d\n", error); 826 goto fail; 827 } 828 829 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 830 if (!error) { 831 mounted_mode = DLM_LOCK_EX; 832 goto locks_done; 833 } else if (error != -EAGAIN) { 834 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error); 835 goto fail; 836 } 837 838 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 839 if (!error) { 840 mounted_mode = DLM_LOCK_PR; 841 goto locks_done; 842 } else { 843 /* not even -EAGAIN should happen here */ 844 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error); 845 goto fail; 846 } 847 848 locks_done: 849 /* 850 * If we got both locks above in EX, then we're the first mounter. 851 * If not, then we need to wait for the control_lock lvb to be 852 * updated by other mounted nodes to reflect our mount generation. 853 * 854 * In simple first mounter cases, first mounter will see zero lvb_gen, 855 * but in cases where all existing nodes leave/fail before mounting 856 * nodes finish control_mount, then all nodes will be mounting and 857 * lvb_gen will be non-zero. 858 */ 859 860 control_lvb_read(ls, &lvb_gen, lvb_bits); 861 862 if (lvb_gen == 0xFFFFFFFF) { 863 /* special value to force mount attempts to fail */ 864 fs_err(sdp, "control_mount control_lock disabled\n"); 865 error = -EINVAL; 866 goto fail; 867 } 868 869 if (mounted_mode == DLM_LOCK_EX) { 870 /* first mounter, keep both EX while doing first recovery */ 871 spin_lock(&ls->ls_recover_spin); 872 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 873 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 874 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 875 spin_unlock(&ls->ls_recover_spin); 876 fs_info(sdp, "first mounter control generation %u\n", lvb_gen); 877 return 0; 878 } 879 880 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 881 if (error) 882 goto fail; 883 884 /* 885 * We are not first mounter, now we need to wait for the control_lock 886 * lvb generation to be >= the generation from our first recover_done 887 * and all lvb bits to be clear (no pending journal recoveries.) 888 */ 889 890 if (!all_jid_bits_clear(lvb_bits)) { 891 /* journals need recovery, wait until all are clear */ 892 fs_info(sdp, "control_mount wait for journal recovery\n"); 893 goto restart; 894 } 895 896 spin_lock(&ls->ls_recover_spin); 897 block_gen = ls->ls_recover_block; 898 start_gen = ls->ls_recover_start; 899 mount_gen = ls->ls_recover_mount; 900 901 if (lvb_gen < mount_gen) { 902 /* wait for mounted nodes to update control_lock lvb to our 903 generation, which might include new recovery bits set */ 904 fs_info(sdp, "control_mount wait1 block %u start %u mount %u " 905 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 906 lvb_gen, ls->ls_recover_flags); 907 spin_unlock(&ls->ls_recover_spin); 908 goto restart; 909 } 910 911 if (lvb_gen != start_gen) { 912 /* wait for mounted nodes to update control_lock lvb to the 913 latest recovery generation */ 914 fs_info(sdp, "control_mount wait2 block %u start %u mount %u " 915 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 916 lvb_gen, ls->ls_recover_flags); 917 spin_unlock(&ls->ls_recover_spin); 918 goto restart; 919 } 920 921 if (block_gen == start_gen) { 922 /* dlm recovery in progress, wait for it to finish */ 923 fs_info(sdp, "control_mount wait3 block %u start %u mount %u " 924 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 925 lvb_gen, ls->ls_recover_flags); 926 spin_unlock(&ls->ls_recover_spin); 927 goto restart; 928 } 929 930 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 931 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 932 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 933 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 934 spin_unlock(&ls->ls_recover_spin); 935 return 0; 936 937 fail: 938 mounted_unlock(sdp); 939 control_unlock(sdp); 940 return error; 941 } 942 943 static int dlm_recovery_wait(void *word) 944 { 945 schedule(); 946 return 0; 947 } 948 949 static int control_first_done(struct gfs2_sbd *sdp) 950 { 951 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 952 char lvb_bits[GDLM_LVB_SIZE]; 953 uint32_t start_gen, block_gen; 954 int error; 955 956 restart: 957 spin_lock(&ls->ls_recover_spin); 958 start_gen = ls->ls_recover_start; 959 block_gen = ls->ls_recover_block; 960 961 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) || 962 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 963 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 964 /* sanity check, should not happen */ 965 fs_err(sdp, "control_first_done start %u block %u flags %lx\n", 966 start_gen, block_gen, ls->ls_recover_flags); 967 spin_unlock(&ls->ls_recover_spin); 968 control_unlock(sdp); 969 return -1; 970 } 971 972 if (start_gen == block_gen) { 973 /* 974 * Wait for the end of a dlm recovery cycle to switch from 975 * first mounter recovery. We can ignore any recover_slot 976 * callbacks between the recover_prep and next recover_done 977 * because we are still the first mounter and any failed nodes 978 * have not fully mounted, so they don't need recovery. 979 */ 980 spin_unlock(&ls->ls_recover_spin); 981 fs_info(sdp, "control_first_done wait gen %u\n", start_gen); 982 983 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY, 984 dlm_recovery_wait, TASK_UNINTERRUPTIBLE); 985 goto restart; 986 } 987 988 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 989 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags); 990 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 991 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 992 spin_unlock(&ls->ls_recover_spin); 993 994 memset(lvb_bits, 0, sizeof(lvb_bits)); 995 control_lvb_write(ls, start_gen, lvb_bits); 996 997 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT); 998 if (error) 999 fs_err(sdp, "control_first_done mounted PR error %d\n", error); 1000 1001 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 1002 if (error) 1003 fs_err(sdp, "control_first_done control NL error %d\n", error); 1004 1005 return error; 1006 } 1007 1008 /* 1009 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC) 1010 * to accomodate the largest slot number. (NB dlm slot numbers start at 1, 1011 * gfs2 jids start at 0, so jid = slot - 1) 1012 */ 1013 1014 #define RECOVER_SIZE_INC 16 1015 1016 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots, 1017 int num_slots) 1018 { 1019 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1020 uint32_t *submit = NULL; 1021 uint32_t *result = NULL; 1022 uint32_t old_size, new_size; 1023 int i, max_jid; 1024 1025 max_jid = 0; 1026 for (i = 0; i < num_slots; i++) { 1027 if (max_jid < slots[i].slot - 1) 1028 max_jid = slots[i].slot - 1; 1029 } 1030 1031 old_size = ls->ls_recover_size; 1032 1033 if (old_size >= max_jid + 1) 1034 return 0; 1035 1036 new_size = old_size + RECOVER_SIZE_INC; 1037 1038 submit = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS); 1039 result = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS); 1040 if (!submit || !result) { 1041 kfree(submit); 1042 kfree(result); 1043 return -ENOMEM; 1044 } 1045 1046 spin_lock(&ls->ls_recover_spin); 1047 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t)); 1048 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t)); 1049 kfree(ls->ls_recover_submit); 1050 kfree(ls->ls_recover_result); 1051 ls->ls_recover_submit = submit; 1052 ls->ls_recover_result = result; 1053 ls->ls_recover_size = new_size; 1054 spin_unlock(&ls->ls_recover_spin); 1055 return 0; 1056 } 1057 1058 static void free_recover_size(struct lm_lockstruct *ls) 1059 { 1060 kfree(ls->ls_recover_submit); 1061 kfree(ls->ls_recover_result); 1062 ls->ls_recover_submit = NULL; 1063 ls->ls_recover_result = NULL; 1064 ls->ls_recover_size = 0; 1065 } 1066 1067 /* dlm calls before it does lock recovery */ 1068 1069 static void gdlm_recover_prep(void *arg) 1070 { 1071 struct gfs2_sbd *sdp = arg; 1072 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1073 1074 spin_lock(&ls->ls_recover_spin); 1075 ls->ls_recover_block = ls->ls_recover_start; 1076 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1077 1078 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 1079 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1080 spin_unlock(&ls->ls_recover_spin); 1081 return; 1082 } 1083 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 1084 spin_unlock(&ls->ls_recover_spin); 1085 } 1086 1087 /* dlm calls after recover_prep has been completed on all lockspace members; 1088 identifies slot/jid of failed member */ 1089 1090 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot) 1091 { 1092 struct gfs2_sbd *sdp = arg; 1093 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1094 int jid = slot->slot - 1; 1095 1096 spin_lock(&ls->ls_recover_spin); 1097 if (ls->ls_recover_size < jid + 1) { 1098 fs_err(sdp, "recover_slot jid %d gen %u short size %d", 1099 jid, ls->ls_recover_block, ls->ls_recover_size); 1100 spin_unlock(&ls->ls_recover_spin); 1101 return; 1102 } 1103 1104 if (ls->ls_recover_submit[jid]) { 1105 fs_info(sdp, "recover_slot jid %d gen %u prev %u", 1106 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]); 1107 } 1108 ls->ls_recover_submit[jid] = ls->ls_recover_block; 1109 spin_unlock(&ls->ls_recover_spin); 1110 } 1111 1112 /* dlm calls after recover_slot and after it completes lock recovery */ 1113 1114 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots, 1115 int our_slot, uint32_t generation) 1116 { 1117 struct gfs2_sbd *sdp = arg; 1118 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1119 1120 /* ensure the ls jid arrays are large enough */ 1121 set_recover_size(sdp, slots, num_slots); 1122 1123 spin_lock(&ls->ls_recover_spin); 1124 ls->ls_recover_start = generation; 1125 1126 if (!ls->ls_recover_mount) { 1127 ls->ls_recover_mount = generation; 1128 ls->ls_jid = our_slot - 1; 1129 } 1130 1131 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1132 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0); 1133 1134 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1135 smp_mb__after_clear_bit(); 1136 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY); 1137 spin_unlock(&ls->ls_recover_spin); 1138 } 1139 1140 /* gfs2_recover thread has a journal recovery result */ 1141 1142 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid, 1143 unsigned int result) 1144 { 1145 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1146 1147 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1148 return; 1149 1150 /* don't care about the recovery of own journal during mount */ 1151 if (jid == ls->ls_jid) 1152 return; 1153 1154 spin_lock(&ls->ls_recover_spin); 1155 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1156 spin_unlock(&ls->ls_recover_spin); 1157 return; 1158 } 1159 if (ls->ls_recover_size < jid + 1) { 1160 fs_err(sdp, "recovery_result jid %d short size %d", 1161 jid, ls->ls_recover_size); 1162 spin_unlock(&ls->ls_recover_spin); 1163 return; 1164 } 1165 1166 fs_info(sdp, "recover jid %d result %s\n", jid, 1167 result == LM_RD_GAVEUP ? "busy" : "success"); 1168 1169 ls->ls_recover_result[jid] = result; 1170 1171 /* GAVEUP means another node is recovering the journal; delay our 1172 next attempt to recover it, to give the other node a chance to 1173 finish before trying again */ 1174 1175 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1176 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 1177 result == LM_RD_GAVEUP ? HZ : 0); 1178 spin_unlock(&ls->ls_recover_spin); 1179 } 1180 1181 const struct dlm_lockspace_ops gdlm_lockspace_ops = { 1182 .recover_prep = gdlm_recover_prep, 1183 .recover_slot = gdlm_recover_slot, 1184 .recover_done = gdlm_recover_done, 1185 }; 1186 1187 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table) 1188 { 1189 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1190 char cluster[GFS2_LOCKNAME_LEN]; 1191 const char *fsname; 1192 uint32_t flags; 1193 int error, ops_result; 1194 1195 /* 1196 * initialize everything 1197 */ 1198 1199 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func); 1200 spin_lock_init(&ls->ls_recover_spin); 1201 ls->ls_recover_flags = 0; 1202 ls->ls_recover_mount = 0; 1203 ls->ls_recover_start = 0; 1204 ls->ls_recover_block = 0; 1205 ls->ls_recover_size = 0; 1206 ls->ls_recover_submit = NULL; 1207 ls->ls_recover_result = NULL; 1208 1209 error = set_recover_size(sdp, NULL, 0); 1210 if (error) 1211 goto fail; 1212 1213 /* 1214 * prepare dlm_new_lockspace args 1215 */ 1216 1217 fsname = strchr(table, ':'); 1218 if (!fsname) { 1219 fs_info(sdp, "no fsname found\n"); 1220 error = -EINVAL; 1221 goto fail_free; 1222 } 1223 memset(cluster, 0, sizeof(cluster)); 1224 memcpy(cluster, table, strlen(table) - strlen(fsname)); 1225 fsname++; 1226 1227 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL; 1228 1229 /* 1230 * create/join lockspace 1231 */ 1232 1233 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE, 1234 &gdlm_lockspace_ops, sdp, &ops_result, 1235 &ls->ls_dlm); 1236 if (error) { 1237 fs_err(sdp, "dlm_new_lockspace error %d\n", error); 1238 goto fail_free; 1239 } 1240 1241 if (ops_result < 0) { 1242 /* 1243 * dlm does not support ops callbacks, 1244 * old dlm_controld/gfs_controld are used, try without ops. 1245 */ 1246 fs_info(sdp, "dlm lockspace ops not used\n"); 1247 free_recover_size(ls); 1248 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags); 1249 return 0; 1250 } 1251 1252 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) { 1253 fs_err(sdp, "dlm lockspace ops disallow jid preset\n"); 1254 error = -EINVAL; 1255 goto fail_release; 1256 } 1257 1258 /* 1259 * control_mount() uses control_lock to determine first mounter, 1260 * and for later mounts, waits for any recoveries to be cleared. 1261 */ 1262 1263 error = control_mount(sdp); 1264 if (error) { 1265 fs_err(sdp, "mount control error %d\n", error); 1266 goto fail_release; 1267 } 1268 1269 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1270 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags); 1271 smp_mb__after_clear_bit(); 1272 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID); 1273 return 0; 1274 1275 fail_release: 1276 dlm_release_lockspace(ls->ls_dlm, 2); 1277 fail_free: 1278 free_recover_size(ls); 1279 fail: 1280 return error; 1281 } 1282 1283 static void gdlm_first_done(struct gfs2_sbd *sdp) 1284 { 1285 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1286 int error; 1287 1288 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1289 return; 1290 1291 error = control_first_done(sdp); 1292 if (error) 1293 fs_err(sdp, "mount first_done error %d\n", error); 1294 } 1295 1296 static void gdlm_unmount(struct gfs2_sbd *sdp) 1297 { 1298 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1299 1300 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1301 goto release; 1302 1303 /* wait for gfs2_control_wq to be done with this mount */ 1304 1305 spin_lock(&ls->ls_recover_spin); 1306 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags); 1307 spin_unlock(&ls->ls_recover_spin); 1308 flush_delayed_work(&sdp->sd_control_work); 1309 1310 /* mounted_lock and control_lock will be purged in dlm recovery */ 1311 release: 1312 if (ls->ls_dlm) { 1313 dlm_release_lockspace(ls->ls_dlm, 2); 1314 ls->ls_dlm = NULL; 1315 } 1316 1317 free_recover_size(ls); 1318 } 1319 1320 static const match_table_t dlm_tokens = { 1321 { Opt_jid, "jid=%d"}, 1322 { Opt_id, "id=%d"}, 1323 { Opt_first, "first=%d"}, 1324 { Opt_nodir, "nodir=%d"}, 1325 { Opt_err, NULL }, 1326 }; 1327 1328 const struct lm_lockops gfs2_dlm_ops = { 1329 .lm_proto_name = "lock_dlm", 1330 .lm_mount = gdlm_mount, 1331 .lm_first_done = gdlm_first_done, 1332 .lm_recovery_result = gdlm_recovery_result, 1333 .lm_unmount = gdlm_unmount, 1334 .lm_put_lock = gdlm_put_lock, 1335 .lm_lock = gdlm_lock, 1336 .lm_cancel = gdlm_cancel, 1337 .lm_tokens = &dlm_tokens, 1338 }; 1339 1340