1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright 2004-2011 Red Hat, Inc. 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/fs.h> 10 #include <linux/dlm.h> 11 #include <linux/slab.h> 12 #include <linux/types.h> 13 #include <linux/delay.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/sched/signal.h> 16 17 #include "incore.h" 18 #include "glock.h" 19 #include "glops.h" 20 #include "recovery.h" 21 #include "util.h" 22 #include "sys.h" 23 #include "trace_gfs2.h" 24 25 /** 26 * gfs2_update_stats - Update time based stats 27 * @s: The stats to update (local or global) 28 * @index: The index inside @s 29 * @sample: New data to include 30 */ 31 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index, 32 s64 sample) 33 { 34 /* 35 * @delta is the difference between the current rtt sample and the 36 * running average srtt. We add 1/8 of that to the srtt in order to 37 * update the current srtt estimate. The variance estimate is a bit 38 * more complicated. We subtract the current variance estimate from 39 * the abs value of the @delta and add 1/4 of that to the running 40 * total. That's equivalent to 3/4 of the current variance 41 * estimate plus 1/4 of the abs of @delta. 42 * 43 * Note that the index points at the array entry containing the 44 * smoothed mean value, and the variance is always in the following 45 * entry 46 * 47 * Reference: TCP/IP Illustrated, vol 2, p. 831,832 48 * All times are in units of integer nanoseconds. Unlike the TCP/IP 49 * case, they are not scaled fixed point. 50 */ 51 52 s64 delta = sample - s->stats[index]; 53 s->stats[index] += (delta >> 3); 54 index++; 55 s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2; 56 } 57 58 /** 59 * gfs2_update_reply_times - Update locking statistics 60 * @gl: The glock to update 61 * 62 * This assumes that gl->gl_dstamp has been set earlier. 63 * 64 * The rtt (lock round trip time) is an estimate of the time 65 * taken to perform a dlm lock request. We update it on each 66 * reply from the dlm. 67 * 68 * The blocking flag is set on the glock for all dlm requests 69 * which may potentially block due to lock requests from other nodes. 70 * DLM requests where the current lock state is exclusive, the 71 * requested state is null (or unlocked) or where the TRY or 72 * TRY_1CB flags are set are classified as non-blocking. All 73 * other DLM requests are counted as (potentially) blocking. 74 */ 75 static inline void gfs2_update_reply_times(struct gfs2_glock *gl) 76 { 77 struct gfs2_pcpu_lkstats *lks; 78 const unsigned gltype = gl->gl_name.ln_type; 79 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ? 80 GFS2_LKS_SRTTB : GFS2_LKS_SRTT; 81 s64 rtt; 82 83 preempt_disable(); 84 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp)); 85 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 86 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */ 87 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */ 88 preempt_enable(); 89 90 trace_gfs2_glock_lock_time(gl, rtt); 91 } 92 93 /** 94 * gfs2_update_request_times - Update locking statistics 95 * @gl: The glock to update 96 * 97 * The irt (lock inter-request times) measures the average time 98 * between requests to the dlm. It is updated immediately before 99 * each dlm call. 100 */ 101 102 static inline void gfs2_update_request_times(struct gfs2_glock *gl) 103 { 104 struct gfs2_pcpu_lkstats *lks; 105 const unsigned gltype = gl->gl_name.ln_type; 106 ktime_t dstamp; 107 s64 irt; 108 109 preempt_disable(); 110 dstamp = gl->gl_dstamp; 111 gl->gl_dstamp = ktime_get_real(); 112 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp)); 113 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 114 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */ 115 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */ 116 preempt_enable(); 117 } 118 119 static void gdlm_ast(void *arg) 120 { 121 struct gfs2_glock *gl = arg; 122 unsigned ret = gl->gl_state; 123 124 gfs2_update_reply_times(gl); 125 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED); 126 127 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr) 128 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE); 129 130 switch (gl->gl_lksb.sb_status) { 131 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */ 132 if (gl->gl_ops->go_free) 133 gl->gl_ops->go_free(gl); 134 gfs2_glock_free(gl); 135 return; 136 case -DLM_ECANCEL: /* Cancel while getting lock */ 137 ret |= LM_OUT_CANCELED; 138 goto out; 139 case -EAGAIN: /* Try lock fails */ 140 case -EDEADLK: /* Deadlock detected */ 141 goto out; 142 case -ETIMEDOUT: /* Canceled due to timeout */ 143 ret |= LM_OUT_ERROR; 144 goto out; 145 case 0: /* Success */ 146 break; 147 default: /* Something unexpected */ 148 BUG(); 149 } 150 151 ret = gl->gl_req; 152 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) { 153 if (gl->gl_req == LM_ST_SHARED) 154 ret = LM_ST_DEFERRED; 155 else if (gl->gl_req == LM_ST_DEFERRED) 156 ret = LM_ST_SHARED; 157 else 158 BUG(); 159 } 160 161 set_bit(GLF_INITIAL, &gl->gl_flags); 162 gfs2_glock_complete(gl, ret); 163 return; 164 out: 165 if (!test_bit(GLF_INITIAL, &gl->gl_flags)) 166 gl->gl_lksb.sb_lkid = 0; 167 gfs2_glock_complete(gl, ret); 168 } 169 170 static void gdlm_bast(void *arg, int mode) 171 { 172 struct gfs2_glock *gl = arg; 173 174 switch (mode) { 175 case DLM_LOCK_EX: 176 gfs2_glock_cb(gl, LM_ST_UNLOCKED); 177 break; 178 case DLM_LOCK_CW: 179 gfs2_glock_cb(gl, LM_ST_DEFERRED); 180 break; 181 case DLM_LOCK_PR: 182 gfs2_glock_cb(gl, LM_ST_SHARED); 183 break; 184 default: 185 fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode); 186 BUG(); 187 } 188 } 189 190 /* convert gfs lock-state to dlm lock-mode */ 191 192 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate) 193 { 194 switch (lmstate) { 195 case LM_ST_UNLOCKED: 196 return DLM_LOCK_NL; 197 case LM_ST_EXCLUSIVE: 198 return DLM_LOCK_EX; 199 case LM_ST_DEFERRED: 200 return DLM_LOCK_CW; 201 case LM_ST_SHARED: 202 return DLM_LOCK_PR; 203 } 204 fs_err(sdp, "unknown LM state %d\n", lmstate); 205 BUG(); 206 return -1; 207 } 208 209 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags, 210 const int req) 211 { 212 u32 lkf = 0; 213 214 if (gl->gl_lksb.sb_lvbptr) 215 lkf |= DLM_LKF_VALBLK; 216 217 if (gfs_flags & LM_FLAG_TRY) 218 lkf |= DLM_LKF_NOQUEUE; 219 220 if (gfs_flags & LM_FLAG_TRY_1CB) { 221 lkf |= DLM_LKF_NOQUEUE; 222 lkf |= DLM_LKF_NOQUEUEBAST; 223 } 224 225 if (gfs_flags & LM_FLAG_ANY) { 226 if (req == DLM_LOCK_PR) 227 lkf |= DLM_LKF_ALTCW; 228 else if (req == DLM_LOCK_CW) 229 lkf |= DLM_LKF_ALTPR; 230 else 231 BUG(); 232 } 233 234 if (gl->gl_lksb.sb_lkid != 0) { 235 lkf |= DLM_LKF_CONVERT; 236 if (test_bit(GLF_BLOCKING, &gl->gl_flags)) 237 lkf |= DLM_LKF_QUECVT; 238 } 239 240 return lkf; 241 } 242 243 static void gfs2_reverse_hex(char *c, u64 value) 244 { 245 *c = '0'; 246 while (value) { 247 *c-- = hex_asc[value & 0x0f]; 248 value >>= 4; 249 } 250 } 251 252 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state, 253 unsigned int flags) 254 { 255 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 256 int req; 257 u32 lkf; 258 char strname[GDLM_STRNAME_BYTES] = ""; 259 int error; 260 261 req = make_mode(gl->gl_name.ln_sbd, req_state); 262 lkf = make_flags(gl, flags, req); 263 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 264 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 265 if (gl->gl_lksb.sb_lkid) { 266 gfs2_update_request_times(gl); 267 } else { 268 memset(strname, ' ', GDLM_STRNAME_BYTES - 1); 269 strname[GDLM_STRNAME_BYTES - 1] = '\0'; 270 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type); 271 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number); 272 gl->gl_dstamp = ktime_get_real(); 273 } 274 /* 275 * Submit the actual lock request. 276 */ 277 278 again: 279 error = dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname, 280 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast); 281 if (error == -EBUSY) { 282 msleep(20); 283 goto again; 284 } 285 return error; 286 } 287 288 static void gdlm_put_lock(struct gfs2_glock *gl) 289 { 290 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 291 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 292 int error; 293 294 if (gl->gl_lksb.sb_lkid == 0) 295 goto out_free; 296 297 clear_bit(GLF_BLOCKING, &gl->gl_flags); 298 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 299 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 300 gfs2_update_request_times(gl); 301 302 /* don't want to call dlm if we've unmounted the lock protocol */ 303 if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 304 goto out_free; 305 /* don't want to skip dlm_unlock writing the lvb when lock has one */ 306 307 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) && 308 !gl->gl_lksb.sb_lvbptr) 309 goto out_free; 310 311 again: 312 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK, 313 NULL, gl); 314 if (error == -EBUSY) { 315 msleep(20); 316 goto again; 317 } 318 319 if (error) { 320 fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n", 321 gl->gl_name.ln_type, 322 (unsigned long long)gl->gl_name.ln_number, error); 323 } 324 return; 325 326 out_free: 327 gfs2_glock_free(gl); 328 } 329 330 static void gdlm_cancel(struct gfs2_glock *gl) 331 { 332 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 333 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl); 334 } 335 336 /* 337 * dlm/gfs2 recovery coordination using dlm_recover callbacks 338 * 339 * 0. gfs2 checks for another cluster node withdraw, needing journal replay 340 * 1. dlm_controld sees lockspace members change 341 * 2. dlm_controld blocks dlm-kernel locking activity 342 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep) 343 * 4. dlm_controld starts and finishes its own user level recovery 344 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery 345 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot) 346 * 7. dlm_recoverd does its own lock recovery 347 * 8. dlm_recoverd unblocks dlm-kernel locking activity 348 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation) 349 * 10. gfs2_control updates control_lock lvb with new generation and jid bits 350 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none) 351 * 12. gfs2_recover dequeues and recovers journals of failed nodes 352 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result) 353 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals 354 * 15. gfs2_control unblocks normal locking when all journals are recovered 355 * 356 * - failures during recovery 357 * 358 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control 359 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still 360 * recovering for a prior failure. gfs2_control needs a way to detect 361 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using 362 * the recover_block and recover_start values. 363 * 364 * recover_done() provides a new lockspace generation number each time it 365 * is called (step 9). This generation number is saved as recover_start. 366 * When recover_prep() is called, it sets BLOCK_LOCKS and sets 367 * recover_block = recover_start. So, while recover_block is equal to 368 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must 369 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.) 370 * 371 * - more specific gfs2 steps in sequence above 372 * 373 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start 374 * 6. recover_slot records any failed jids (maybe none) 375 * 9. recover_done sets recover_start = new generation number 376 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids 377 * 12. gfs2_recover does journal recoveries for failed jids identified above 378 * 14. gfs2_control clears control_lock lvb bits for recovered jids 379 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured 380 * again) then do nothing, otherwise if recover_start > recover_block 381 * then clear BLOCK_LOCKS. 382 * 383 * - parallel recovery steps across all nodes 384 * 385 * All nodes attempt to update the control_lock lvb with the new generation 386 * number and jid bits, but only the first to get the control_lock EX will 387 * do so; others will see that it's already done (lvb already contains new 388 * generation number.) 389 * 390 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks 391 * . All nodes attempt to set control_lock lvb gen + bits for the new gen 392 * . One node gets control_lock first and writes the lvb, others see it's done 393 * . All nodes attempt to recover jids for which they see control_lock bits set 394 * . One node succeeds for a jid, and that one clears the jid bit in the lvb 395 * . All nodes will eventually see all lvb bits clear and unblock locks 396 * 397 * - is there a problem with clearing an lvb bit that should be set 398 * and missing a journal recovery? 399 * 400 * 1. jid fails 401 * 2. lvb bit set for step 1 402 * 3. jid recovered for step 1 403 * 4. jid taken again (new mount) 404 * 5. jid fails (for step 4) 405 * 6. lvb bit set for step 5 (will already be set) 406 * 7. lvb bit cleared for step 3 407 * 408 * This is not a problem because the failure in step 5 does not 409 * require recovery, because the mount in step 4 could not have 410 * progressed far enough to unblock locks and access the fs. The 411 * control_mount() function waits for all recoveries to be complete 412 * for the latest lockspace generation before ever unblocking locks 413 * and returning. The mount in step 4 waits until the recovery in 414 * step 1 is done. 415 * 416 * - special case of first mounter: first node to mount the fs 417 * 418 * The first node to mount a gfs2 fs needs to check all the journals 419 * and recover any that need recovery before other nodes are allowed 420 * to mount the fs. (Others may begin mounting, but they must wait 421 * for the first mounter to be done before taking locks on the fs 422 * or accessing the fs.) This has two parts: 423 * 424 * 1. The mounted_lock tells a node it's the first to mount the fs. 425 * Each node holds the mounted_lock in PR while it's mounted. 426 * Each node tries to acquire the mounted_lock in EX when it mounts. 427 * If a node is granted the mounted_lock EX it means there are no 428 * other mounted nodes (no PR locks exist), and it is the first mounter. 429 * The mounted_lock is demoted to PR when first recovery is done, so 430 * others will fail to get an EX lock, but will get a PR lock. 431 * 432 * 2. The control_lock blocks others in control_mount() while the first 433 * mounter is doing first mount recovery of all journals. 434 * A mounting node needs to acquire control_lock in EX mode before 435 * it can proceed. The first mounter holds control_lock in EX while doing 436 * the first mount recovery, blocking mounts from other nodes, then demotes 437 * control_lock to NL when it's done (others_may_mount/first_done), 438 * allowing other nodes to continue mounting. 439 * 440 * first mounter: 441 * control_lock EX/NOQUEUE success 442 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters) 443 * set first=1 444 * do first mounter recovery 445 * mounted_lock EX->PR 446 * control_lock EX->NL, write lvb generation 447 * 448 * other mounter: 449 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry) 450 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR) 451 * mounted_lock PR/NOQUEUE success 452 * read lvb generation 453 * control_lock EX->NL 454 * set first=0 455 * 456 * - mount during recovery 457 * 458 * If a node mounts while others are doing recovery (not first mounter), 459 * the mounting node will get its initial recover_done() callback without 460 * having seen any previous failures/callbacks. 461 * 462 * It must wait for all recoveries preceding its mount to be finished 463 * before it unblocks locks. It does this by repeating the "other mounter" 464 * steps above until the lvb generation number is >= its mount generation 465 * number (from initial recover_done) and all lvb bits are clear. 466 * 467 * - control_lock lvb format 468 * 469 * 4 bytes generation number: the latest dlm lockspace generation number 470 * from recover_done callback. Indicates the jid bitmap has been updated 471 * to reflect all slot failures through that generation. 472 * 4 bytes unused. 473 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates 474 * that jid N needs recovery. 475 */ 476 477 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */ 478 479 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen, 480 char *lvb_bits) 481 { 482 __le32 gen; 483 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE); 484 memcpy(&gen, lvb_bits, sizeof(__le32)); 485 *lvb_gen = le32_to_cpu(gen); 486 } 487 488 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen, 489 char *lvb_bits) 490 { 491 __le32 gen; 492 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE); 493 gen = cpu_to_le32(lvb_gen); 494 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32)); 495 } 496 497 static int all_jid_bits_clear(char *lvb) 498 { 499 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0, 500 GDLM_LVB_SIZE - JID_BITMAP_OFFSET); 501 } 502 503 static void sync_wait_cb(void *arg) 504 { 505 struct lm_lockstruct *ls = arg; 506 complete(&ls->ls_sync_wait); 507 } 508 509 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name) 510 { 511 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 512 int error; 513 514 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls); 515 if (error) { 516 fs_err(sdp, "%s lkid %x error %d\n", 517 name, lksb->sb_lkid, error); 518 return error; 519 } 520 521 wait_for_completion(&ls->ls_sync_wait); 522 523 if (lksb->sb_status != -DLM_EUNLOCK) { 524 fs_err(sdp, "%s lkid %x status %d\n", 525 name, lksb->sb_lkid, lksb->sb_status); 526 return -1; 527 } 528 return 0; 529 } 530 531 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags, 532 unsigned int num, struct dlm_lksb *lksb, char *name) 533 { 534 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 535 char strname[GDLM_STRNAME_BYTES]; 536 int error, status; 537 538 memset(strname, 0, GDLM_STRNAME_BYTES); 539 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num); 540 541 error = dlm_lock(ls->ls_dlm, mode, lksb, flags, 542 strname, GDLM_STRNAME_BYTES - 1, 543 0, sync_wait_cb, ls, NULL); 544 if (error) { 545 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n", 546 name, lksb->sb_lkid, flags, mode, error); 547 return error; 548 } 549 550 wait_for_completion(&ls->ls_sync_wait); 551 552 status = lksb->sb_status; 553 554 if (status && status != -EAGAIN) { 555 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n", 556 name, lksb->sb_lkid, flags, mode, status); 557 } 558 559 return status; 560 } 561 562 static int mounted_unlock(struct gfs2_sbd *sdp) 563 { 564 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 565 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock"); 566 } 567 568 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 569 { 570 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 571 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK, 572 &ls->ls_mounted_lksb, "mounted_lock"); 573 } 574 575 static int control_unlock(struct gfs2_sbd *sdp) 576 { 577 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 578 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock"); 579 } 580 581 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 582 { 583 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 584 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK, 585 &ls->ls_control_lksb, "control_lock"); 586 } 587 588 /** 589 * remote_withdraw - react to a node withdrawing from the file system 590 * @sdp: The superblock 591 */ 592 static void remote_withdraw(struct gfs2_sbd *sdp) 593 { 594 struct gfs2_jdesc *jd; 595 int ret = 0, count = 0; 596 597 list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) { 598 if (jd->jd_jid == sdp->sd_lockstruct.ls_jid) 599 continue; 600 ret = gfs2_recover_journal(jd, true); 601 if (ret) 602 break; 603 count++; 604 } 605 606 /* Now drop the additional reference we acquired */ 607 fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret); 608 } 609 610 static void gfs2_control_func(struct work_struct *work) 611 { 612 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work); 613 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 614 uint32_t block_gen, start_gen, lvb_gen, flags; 615 int recover_set = 0; 616 int write_lvb = 0; 617 int recover_size; 618 int i, error; 619 620 /* First check for other nodes that may have done a withdraw. */ 621 if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) { 622 remote_withdraw(sdp); 623 clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags); 624 return; 625 } 626 627 spin_lock(&ls->ls_recover_spin); 628 /* 629 * No MOUNT_DONE means we're still mounting; control_mount() 630 * will set this flag, after which this thread will take over 631 * all further clearing of BLOCK_LOCKS. 632 * 633 * FIRST_MOUNT means this node is doing first mounter recovery, 634 * for which recovery control is handled by 635 * control_mount()/control_first_done(), not this thread. 636 */ 637 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 638 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 639 spin_unlock(&ls->ls_recover_spin); 640 return; 641 } 642 block_gen = ls->ls_recover_block; 643 start_gen = ls->ls_recover_start; 644 spin_unlock(&ls->ls_recover_spin); 645 646 /* 647 * Equal block_gen and start_gen implies we are between 648 * recover_prep and recover_done callbacks, which means 649 * dlm recovery is in progress and dlm locking is blocked. 650 * There's no point trying to do any work until recover_done. 651 */ 652 653 if (block_gen == start_gen) 654 return; 655 656 /* 657 * Propagate recover_submit[] and recover_result[] to lvb: 658 * dlm_recoverd adds to recover_submit[] jids needing recovery 659 * gfs2_recover adds to recover_result[] journal recovery results 660 * 661 * set lvb bit for jids in recover_submit[] if the lvb has not 662 * yet been updated for the generation of the failure 663 * 664 * clear lvb bit for jids in recover_result[] if the result of 665 * the journal recovery is SUCCESS 666 */ 667 668 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 669 if (error) { 670 fs_err(sdp, "control lock EX error %d\n", error); 671 return; 672 } 673 674 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 675 676 spin_lock(&ls->ls_recover_spin); 677 if (block_gen != ls->ls_recover_block || 678 start_gen != ls->ls_recover_start) { 679 fs_info(sdp, "recover generation %u block1 %u %u\n", 680 start_gen, block_gen, ls->ls_recover_block); 681 spin_unlock(&ls->ls_recover_spin); 682 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 683 return; 684 } 685 686 recover_size = ls->ls_recover_size; 687 688 if (lvb_gen <= start_gen) { 689 /* 690 * Clear lvb bits for jids we've successfully recovered. 691 * Because all nodes attempt to recover failed journals, 692 * a journal can be recovered multiple times successfully 693 * in succession. Only the first will really do recovery, 694 * the others find it clean, but still report a successful 695 * recovery. So, another node may have already recovered 696 * the jid and cleared the lvb bit for it. 697 */ 698 for (i = 0; i < recover_size; i++) { 699 if (ls->ls_recover_result[i] != LM_RD_SUCCESS) 700 continue; 701 702 ls->ls_recover_result[i] = 0; 703 704 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) 705 continue; 706 707 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 708 write_lvb = 1; 709 } 710 } 711 712 if (lvb_gen == start_gen) { 713 /* 714 * Failed slots before start_gen are already set in lvb. 715 */ 716 for (i = 0; i < recover_size; i++) { 717 if (!ls->ls_recover_submit[i]) 718 continue; 719 if (ls->ls_recover_submit[i] < lvb_gen) 720 ls->ls_recover_submit[i] = 0; 721 } 722 } else if (lvb_gen < start_gen) { 723 /* 724 * Failed slots before start_gen are not yet set in lvb. 725 */ 726 for (i = 0; i < recover_size; i++) { 727 if (!ls->ls_recover_submit[i]) 728 continue; 729 if (ls->ls_recover_submit[i] < start_gen) { 730 ls->ls_recover_submit[i] = 0; 731 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 732 } 733 } 734 /* even if there are no bits to set, we need to write the 735 latest generation to the lvb */ 736 write_lvb = 1; 737 } else { 738 /* 739 * we should be getting a recover_done() for lvb_gen soon 740 */ 741 } 742 spin_unlock(&ls->ls_recover_spin); 743 744 if (write_lvb) { 745 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 746 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK; 747 } else { 748 flags = DLM_LKF_CONVERT; 749 } 750 751 error = control_lock(sdp, DLM_LOCK_NL, flags); 752 if (error) { 753 fs_err(sdp, "control lock NL error %d\n", error); 754 return; 755 } 756 757 /* 758 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(), 759 * and clear a jid bit in the lvb if the recovery is a success. 760 * Eventually all journals will be recovered, all jid bits will 761 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS. 762 */ 763 764 for (i = 0; i < recover_size; i++) { 765 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) { 766 fs_info(sdp, "recover generation %u jid %d\n", 767 start_gen, i); 768 gfs2_recover_set(sdp, i); 769 recover_set++; 770 } 771 } 772 if (recover_set) 773 return; 774 775 /* 776 * No more jid bits set in lvb, all recovery is done, unblock locks 777 * (unless a new recover_prep callback has occured blocking locks 778 * again while working above) 779 */ 780 781 spin_lock(&ls->ls_recover_spin); 782 if (ls->ls_recover_block == block_gen && 783 ls->ls_recover_start == start_gen) { 784 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 785 spin_unlock(&ls->ls_recover_spin); 786 fs_info(sdp, "recover generation %u done\n", start_gen); 787 gfs2_glock_thaw(sdp); 788 } else { 789 fs_info(sdp, "recover generation %u block2 %u %u\n", 790 start_gen, block_gen, ls->ls_recover_block); 791 spin_unlock(&ls->ls_recover_spin); 792 } 793 } 794 795 static int control_mount(struct gfs2_sbd *sdp) 796 { 797 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 798 uint32_t start_gen, block_gen, mount_gen, lvb_gen; 799 int mounted_mode; 800 int retries = 0; 801 int error; 802 803 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb)); 804 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb)); 805 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE); 806 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb; 807 init_completion(&ls->ls_sync_wait); 808 809 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 810 811 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK); 812 if (error) { 813 fs_err(sdp, "control_mount control_lock NL error %d\n", error); 814 return error; 815 } 816 817 error = mounted_lock(sdp, DLM_LOCK_NL, 0); 818 if (error) { 819 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error); 820 control_unlock(sdp); 821 return error; 822 } 823 mounted_mode = DLM_LOCK_NL; 824 825 restart: 826 if (retries++ && signal_pending(current)) { 827 error = -EINTR; 828 goto fail; 829 } 830 831 /* 832 * We always start with both locks in NL. control_lock is 833 * demoted to NL below so we don't need to do it here. 834 */ 835 836 if (mounted_mode != DLM_LOCK_NL) { 837 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 838 if (error) 839 goto fail; 840 mounted_mode = DLM_LOCK_NL; 841 } 842 843 /* 844 * Other nodes need to do some work in dlm recovery and gfs2_control 845 * before the recover_done and control_lock will be ready for us below. 846 * A delay here is not required but often avoids having to retry. 847 */ 848 849 msleep_interruptible(500); 850 851 /* 852 * Acquire control_lock in EX and mounted_lock in either EX or PR. 853 * control_lock lvb keeps track of any pending journal recoveries. 854 * mounted_lock indicates if any other nodes have the fs mounted. 855 */ 856 857 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK); 858 if (error == -EAGAIN) { 859 goto restart; 860 } else if (error) { 861 fs_err(sdp, "control_mount control_lock EX error %d\n", error); 862 goto fail; 863 } 864 865 /** 866 * If we're a spectator, we don't want to take the lock in EX because 867 * we cannot do the first-mount responsibility it implies: recovery. 868 */ 869 if (sdp->sd_args.ar_spectator) 870 goto locks_done; 871 872 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 873 if (!error) { 874 mounted_mode = DLM_LOCK_EX; 875 goto locks_done; 876 } else if (error != -EAGAIN) { 877 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error); 878 goto fail; 879 } 880 881 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 882 if (!error) { 883 mounted_mode = DLM_LOCK_PR; 884 goto locks_done; 885 } else { 886 /* not even -EAGAIN should happen here */ 887 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error); 888 goto fail; 889 } 890 891 locks_done: 892 /* 893 * If we got both locks above in EX, then we're the first mounter. 894 * If not, then we need to wait for the control_lock lvb to be 895 * updated by other mounted nodes to reflect our mount generation. 896 * 897 * In simple first mounter cases, first mounter will see zero lvb_gen, 898 * but in cases where all existing nodes leave/fail before mounting 899 * nodes finish control_mount, then all nodes will be mounting and 900 * lvb_gen will be non-zero. 901 */ 902 903 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 904 905 if (lvb_gen == 0xFFFFFFFF) { 906 /* special value to force mount attempts to fail */ 907 fs_err(sdp, "control_mount control_lock disabled\n"); 908 error = -EINVAL; 909 goto fail; 910 } 911 912 if (mounted_mode == DLM_LOCK_EX) { 913 /* first mounter, keep both EX while doing first recovery */ 914 spin_lock(&ls->ls_recover_spin); 915 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 916 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 917 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 918 spin_unlock(&ls->ls_recover_spin); 919 fs_info(sdp, "first mounter control generation %u\n", lvb_gen); 920 return 0; 921 } 922 923 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 924 if (error) 925 goto fail; 926 927 /* 928 * We are not first mounter, now we need to wait for the control_lock 929 * lvb generation to be >= the generation from our first recover_done 930 * and all lvb bits to be clear (no pending journal recoveries.) 931 */ 932 933 if (!all_jid_bits_clear(ls->ls_lvb_bits)) { 934 /* journals need recovery, wait until all are clear */ 935 fs_info(sdp, "control_mount wait for journal recovery\n"); 936 goto restart; 937 } 938 939 spin_lock(&ls->ls_recover_spin); 940 block_gen = ls->ls_recover_block; 941 start_gen = ls->ls_recover_start; 942 mount_gen = ls->ls_recover_mount; 943 944 if (lvb_gen < mount_gen) { 945 /* wait for mounted nodes to update control_lock lvb to our 946 generation, which might include new recovery bits set */ 947 if (sdp->sd_args.ar_spectator) { 948 fs_info(sdp, "Recovery is required. Waiting for a " 949 "non-spectator to mount.\n"); 950 msleep_interruptible(1000); 951 } else { 952 fs_info(sdp, "control_mount wait1 block %u start %u " 953 "mount %u lvb %u flags %lx\n", block_gen, 954 start_gen, mount_gen, lvb_gen, 955 ls->ls_recover_flags); 956 } 957 spin_unlock(&ls->ls_recover_spin); 958 goto restart; 959 } 960 961 if (lvb_gen != start_gen) { 962 /* wait for mounted nodes to update control_lock lvb to the 963 latest recovery generation */ 964 fs_info(sdp, "control_mount wait2 block %u start %u mount %u " 965 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 966 lvb_gen, ls->ls_recover_flags); 967 spin_unlock(&ls->ls_recover_spin); 968 goto restart; 969 } 970 971 if (block_gen == start_gen) { 972 /* dlm recovery in progress, wait for it to finish */ 973 fs_info(sdp, "control_mount wait3 block %u start %u mount %u " 974 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 975 lvb_gen, ls->ls_recover_flags); 976 spin_unlock(&ls->ls_recover_spin); 977 goto restart; 978 } 979 980 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 981 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 982 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 983 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 984 spin_unlock(&ls->ls_recover_spin); 985 return 0; 986 987 fail: 988 mounted_unlock(sdp); 989 control_unlock(sdp); 990 return error; 991 } 992 993 static int control_first_done(struct gfs2_sbd *sdp) 994 { 995 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 996 uint32_t start_gen, block_gen; 997 int error; 998 999 restart: 1000 spin_lock(&ls->ls_recover_spin); 1001 start_gen = ls->ls_recover_start; 1002 block_gen = ls->ls_recover_block; 1003 1004 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) || 1005 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 1006 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1007 /* sanity check, should not happen */ 1008 fs_err(sdp, "control_first_done start %u block %u flags %lx\n", 1009 start_gen, block_gen, ls->ls_recover_flags); 1010 spin_unlock(&ls->ls_recover_spin); 1011 control_unlock(sdp); 1012 return -1; 1013 } 1014 1015 if (start_gen == block_gen) { 1016 /* 1017 * Wait for the end of a dlm recovery cycle to switch from 1018 * first mounter recovery. We can ignore any recover_slot 1019 * callbacks between the recover_prep and next recover_done 1020 * because we are still the first mounter and any failed nodes 1021 * have not fully mounted, so they don't need recovery. 1022 */ 1023 spin_unlock(&ls->ls_recover_spin); 1024 fs_info(sdp, "control_first_done wait gen %u\n", start_gen); 1025 1026 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY, 1027 TASK_UNINTERRUPTIBLE); 1028 goto restart; 1029 } 1030 1031 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1032 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags); 1033 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 1034 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 1035 spin_unlock(&ls->ls_recover_spin); 1036 1037 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE); 1038 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 1039 1040 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT); 1041 if (error) 1042 fs_err(sdp, "control_first_done mounted PR error %d\n", error); 1043 1044 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 1045 if (error) 1046 fs_err(sdp, "control_first_done control NL error %d\n", error); 1047 1048 return error; 1049 } 1050 1051 /* 1052 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC) 1053 * to accommodate the largest slot number. (NB dlm slot numbers start at 1, 1054 * gfs2 jids start at 0, so jid = slot - 1) 1055 */ 1056 1057 #define RECOVER_SIZE_INC 16 1058 1059 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots, 1060 int num_slots) 1061 { 1062 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1063 uint32_t *submit = NULL; 1064 uint32_t *result = NULL; 1065 uint32_t old_size, new_size; 1066 int i, max_jid; 1067 1068 if (!ls->ls_lvb_bits) { 1069 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS); 1070 if (!ls->ls_lvb_bits) 1071 return -ENOMEM; 1072 } 1073 1074 max_jid = 0; 1075 for (i = 0; i < num_slots; i++) { 1076 if (max_jid < slots[i].slot - 1) 1077 max_jid = slots[i].slot - 1; 1078 } 1079 1080 old_size = ls->ls_recover_size; 1081 new_size = old_size; 1082 while (new_size < max_jid + 1) 1083 new_size += RECOVER_SIZE_INC; 1084 if (new_size == old_size) 1085 return 0; 1086 1087 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1088 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1089 if (!submit || !result) { 1090 kfree(submit); 1091 kfree(result); 1092 return -ENOMEM; 1093 } 1094 1095 spin_lock(&ls->ls_recover_spin); 1096 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t)); 1097 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t)); 1098 kfree(ls->ls_recover_submit); 1099 kfree(ls->ls_recover_result); 1100 ls->ls_recover_submit = submit; 1101 ls->ls_recover_result = result; 1102 ls->ls_recover_size = new_size; 1103 spin_unlock(&ls->ls_recover_spin); 1104 return 0; 1105 } 1106 1107 static void free_recover_size(struct lm_lockstruct *ls) 1108 { 1109 kfree(ls->ls_lvb_bits); 1110 kfree(ls->ls_recover_submit); 1111 kfree(ls->ls_recover_result); 1112 ls->ls_recover_submit = NULL; 1113 ls->ls_recover_result = NULL; 1114 ls->ls_recover_size = 0; 1115 ls->ls_lvb_bits = NULL; 1116 } 1117 1118 /* dlm calls before it does lock recovery */ 1119 1120 static void gdlm_recover_prep(void *arg) 1121 { 1122 struct gfs2_sbd *sdp = arg; 1123 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1124 1125 if (gfs2_withdrawn(sdp)) { 1126 fs_err(sdp, "recover_prep ignored due to withdraw.\n"); 1127 return; 1128 } 1129 spin_lock(&ls->ls_recover_spin); 1130 ls->ls_recover_block = ls->ls_recover_start; 1131 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1132 1133 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 1134 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1135 spin_unlock(&ls->ls_recover_spin); 1136 return; 1137 } 1138 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 1139 spin_unlock(&ls->ls_recover_spin); 1140 } 1141 1142 /* dlm calls after recover_prep has been completed on all lockspace members; 1143 identifies slot/jid of failed member */ 1144 1145 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot) 1146 { 1147 struct gfs2_sbd *sdp = arg; 1148 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1149 int jid = slot->slot - 1; 1150 1151 if (gfs2_withdrawn(sdp)) { 1152 fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n", 1153 jid); 1154 return; 1155 } 1156 spin_lock(&ls->ls_recover_spin); 1157 if (ls->ls_recover_size < jid + 1) { 1158 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n", 1159 jid, ls->ls_recover_block, ls->ls_recover_size); 1160 spin_unlock(&ls->ls_recover_spin); 1161 return; 1162 } 1163 1164 if (ls->ls_recover_submit[jid]) { 1165 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n", 1166 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]); 1167 } 1168 ls->ls_recover_submit[jid] = ls->ls_recover_block; 1169 spin_unlock(&ls->ls_recover_spin); 1170 } 1171 1172 /* dlm calls after recover_slot and after it completes lock recovery */ 1173 1174 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots, 1175 int our_slot, uint32_t generation) 1176 { 1177 struct gfs2_sbd *sdp = arg; 1178 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1179 1180 if (gfs2_withdrawn(sdp)) { 1181 fs_err(sdp, "recover_done ignored due to withdraw.\n"); 1182 return; 1183 } 1184 /* ensure the ls jid arrays are large enough */ 1185 set_recover_size(sdp, slots, num_slots); 1186 1187 spin_lock(&ls->ls_recover_spin); 1188 ls->ls_recover_start = generation; 1189 1190 if (!ls->ls_recover_mount) { 1191 ls->ls_recover_mount = generation; 1192 ls->ls_jid = our_slot - 1; 1193 } 1194 1195 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1196 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0); 1197 1198 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1199 smp_mb__after_atomic(); 1200 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY); 1201 spin_unlock(&ls->ls_recover_spin); 1202 } 1203 1204 /* gfs2_recover thread has a journal recovery result */ 1205 1206 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid, 1207 unsigned int result) 1208 { 1209 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1210 1211 if (gfs2_withdrawn(sdp)) { 1212 fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n", 1213 jid); 1214 return; 1215 } 1216 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1217 return; 1218 1219 /* don't care about the recovery of own journal during mount */ 1220 if (jid == ls->ls_jid) 1221 return; 1222 1223 spin_lock(&ls->ls_recover_spin); 1224 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1225 spin_unlock(&ls->ls_recover_spin); 1226 return; 1227 } 1228 if (ls->ls_recover_size < jid + 1) { 1229 fs_err(sdp, "recovery_result jid %d short size %d\n", 1230 jid, ls->ls_recover_size); 1231 spin_unlock(&ls->ls_recover_spin); 1232 return; 1233 } 1234 1235 fs_info(sdp, "recover jid %d result %s\n", jid, 1236 result == LM_RD_GAVEUP ? "busy" : "success"); 1237 1238 ls->ls_recover_result[jid] = result; 1239 1240 /* GAVEUP means another node is recovering the journal; delay our 1241 next attempt to recover it, to give the other node a chance to 1242 finish before trying again */ 1243 1244 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1245 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 1246 result == LM_RD_GAVEUP ? HZ : 0); 1247 spin_unlock(&ls->ls_recover_spin); 1248 } 1249 1250 static const struct dlm_lockspace_ops gdlm_lockspace_ops = { 1251 .recover_prep = gdlm_recover_prep, 1252 .recover_slot = gdlm_recover_slot, 1253 .recover_done = gdlm_recover_done, 1254 }; 1255 1256 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table) 1257 { 1258 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1259 char cluster[GFS2_LOCKNAME_LEN]; 1260 const char *fsname; 1261 uint32_t flags; 1262 int error, ops_result; 1263 1264 /* 1265 * initialize everything 1266 */ 1267 1268 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func); 1269 spin_lock_init(&ls->ls_recover_spin); 1270 ls->ls_recover_flags = 0; 1271 ls->ls_recover_mount = 0; 1272 ls->ls_recover_start = 0; 1273 ls->ls_recover_block = 0; 1274 ls->ls_recover_size = 0; 1275 ls->ls_recover_submit = NULL; 1276 ls->ls_recover_result = NULL; 1277 ls->ls_lvb_bits = NULL; 1278 1279 error = set_recover_size(sdp, NULL, 0); 1280 if (error) 1281 goto fail; 1282 1283 /* 1284 * prepare dlm_new_lockspace args 1285 */ 1286 1287 fsname = strchr(table, ':'); 1288 if (!fsname) { 1289 fs_info(sdp, "no fsname found\n"); 1290 error = -EINVAL; 1291 goto fail_free; 1292 } 1293 memset(cluster, 0, sizeof(cluster)); 1294 memcpy(cluster, table, strlen(table) - strlen(fsname)); 1295 fsname++; 1296 1297 flags = DLM_LSFL_NEWEXCL; 1298 1299 /* 1300 * create/join lockspace 1301 */ 1302 1303 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE, 1304 &gdlm_lockspace_ops, sdp, &ops_result, 1305 &ls->ls_dlm); 1306 if (error) { 1307 fs_err(sdp, "dlm_new_lockspace error %d\n", error); 1308 goto fail_free; 1309 } 1310 1311 if (ops_result < 0) { 1312 /* 1313 * dlm does not support ops callbacks, 1314 * old dlm_controld/gfs_controld are used, try without ops. 1315 */ 1316 fs_info(sdp, "dlm lockspace ops not used\n"); 1317 free_recover_size(ls); 1318 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags); 1319 return 0; 1320 } 1321 1322 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) { 1323 fs_err(sdp, "dlm lockspace ops disallow jid preset\n"); 1324 error = -EINVAL; 1325 goto fail_release; 1326 } 1327 1328 /* 1329 * control_mount() uses control_lock to determine first mounter, 1330 * and for later mounts, waits for any recoveries to be cleared. 1331 */ 1332 1333 error = control_mount(sdp); 1334 if (error) { 1335 fs_err(sdp, "mount control error %d\n", error); 1336 goto fail_release; 1337 } 1338 1339 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1340 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags); 1341 smp_mb__after_atomic(); 1342 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID); 1343 return 0; 1344 1345 fail_release: 1346 dlm_release_lockspace(ls->ls_dlm, 2); 1347 fail_free: 1348 free_recover_size(ls); 1349 fail: 1350 return error; 1351 } 1352 1353 static void gdlm_first_done(struct gfs2_sbd *sdp) 1354 { 1355 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1356 int error; 1357 1358 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1359 return; 1360 1361 error = control_first_done(sdp); 1362 if (error) 1363 fs_err(sdp, "mount first_done error %d\n", error); 1364 } 1365 1366 static void gdlm_unmount(struct gfs2_sbd *sdp) 1367 { 1368 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1369 1370 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1371 goto release; 1372 1373 /* wait for gfs2_control_wq to be done with this mount */ 1374 1375 spin_lock(&ls->ls_recover_spin); 1376 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags); 1377 spin_unlock(&ls->ls_recover_spin); 1378 flush_delayed_work(&sdp->sd_control_work); 1379 1380 /* mounted_lock and control_lock will be purged in dlm recovery */ 1381 release: 1382 if (ls->ls_dlm) { 1383 dlm_release_lockspace(ls->ls_dlm, 2); 1384 ls->ls_dlm = NULL; 1385 } 1386 1387 free_recover_size(ls); 1388 } 1389 1390 static const match_table_t dlm_tokens = { 1391 { Opt_jid, "jid=%d"}, 1392 { Opt_id, "id=%d"}, 1393 { Opt_first, "first=%d"}, 1394 { Opt_nodir, "nodir=%d"}, 1395 { Opt_err, NULL }, 1396 }; 1397 1398 const struct lm_lockops gfs2_dlm_ops = { 1399 .lm_proto_name = "lock_dlm", 1400 .lm_mount = gdlm_mount, 1401 .lm_first_done = gdlm_first_done, 1402 .lm_recovery_result = gdlm_recovery_result, 1403 .lm_unmount = gdlm_unmount, 1404 .lm_put_lock = gdlm_put_lock, 1405 .lm_lock = gdlm_lock, 1406 .lm_cancel = gdlm_cancel, 1407 .lm_tokens = &dlm_tokens, 1408 }; 1409 1410