xref: /openbmc/linux/fs/gfs2/lock_dlm.c (revision 8fdff1dc)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright 2004-2011 Red Hat, Inc.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/dlm.h>
12 #include <linux/slab.h>
13 #include <linux/types.h>
14 #include <linux/delay.h>
15 #include <linux/gfs2_ondisk.h>
16 
17 #include "incore.h"
18 #include "glock.h"
19 #include "util.h"
20 #include "sys.h"
21 #include "trace_gfs2.h"
22 
23 extern struct workqueue_struct *gfs2_control_wq;
24 
25 /**
26  * gfs2_update_stats - Update time based stats
27  * @mv: Pointer to mean/variance structure to update
28  * @sample: New data to include
29  *
30  * @delta is the difference between the current rtt sample and the
31  * running average srtt. We add 1/8 of that to the srtt in order to
32  * update the current srtt estimate. The varience estimate is a bit
33  * more complicated. We subtract the abs value of the @delta from
34  * the current variance estimate and add 1/4 of that to the running
35  * total.
36  *
37  * Note that the index points at the array entry containing the smoothed
38  * mean value, and the variance is always in the following entry
39  *
40  * Reference: TCP/IP Illustrated, vol 2, p. 831,832
41  * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
42  * they are not scaled fixed point.
43  */
44 
45 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
46 				     s64 sample)
47 {
48 	s64 delta = sample - s->stats[index];
49 	s->stats[index] += (delta >> 3);
50 	index++;
51 	s->stats[index] += ((abs64(delta) - s->stats[index]) >> 2);
52 }
53 
54 /**
55  * gfs2_update_reply_times - Update locking statistics
56  * @gl: The glock to update
57  *
58  * This assumes that gl->gl_dstamp has been set earlier.
59  *
60  * The rtt (lock round trip time) is an estimate of the time
61  * taken to perform a dlm lock request. We update it on each
62  * reply from the dlm.
63  *
64  * The blocking flag is set on the glock for all dlm requests
65  * which may potentially block due to lock requests from other nodes.
66  * DLM requests where the current lock state is exclusive, the
67  * requested state is null (or unlocked) or where the TRY or
68  * TRY_1CB flags are set are classified as non-blocking. All
69  * other DLM requests are counted as (potentially) blocking.
70  */
71 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
72 {
73 	struct gfs2_pcpu_lkstats *lks;
74 	const unsigned gltype = gl->gl_name.ln_type;
75 	unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
76 			 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
77 	s64 rtt;
78 
79 	preempt_disable();
80 	rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
81 	lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats);
82 	gfs2_update_stats(&gl->gl_stats, index, rtt);		/* Local */
83 	gfs2_update_stats(&lks->lkstats[gltype], index, rtt);	/* Global */
84 	preempt_enable();
85 
86 	trace_gfs2_glock_lock_time(gl, rtt);
87 }
88 
89 /**
90  * gfs2_update_request_times - Update locking statistics
91  * @gl: The glock to update
92  *
93  * The irt (lock inter-request times) measures the average time
94  * between requests to the dlm. It is updated immediately before
95  * each dlm call.
96  */
97 
98 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
99 {
100 	struct gfs2_pcpu_lkstats *lks;
101 	const unsigned gltype = gl->gl_name.ln_type;
102 	ktime_t dstamp;
103 	s64 irt;
104 
105 	preempt_disable();
106 	dstamp = gl->gl_dstamp;
107 	gl->gl_dstamp = ktime_get_real();
108 	irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
109 	lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats);
110 	gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);		/* Local */
111 	gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);	/* Global */
112 	preempt_enable();
113 }
114 
115 static void gdlm_ast(void *arg)
116 {
117 	struct gfs2_glock *gl = arg;
118 	unsigned ret = gl->gl_state;
119 
120 	gfs2_update_reply_times(gl);
121 	BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
122 
123 	if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
124 		memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
125 
126 	switch (gl->gl_lksb.sb_status) {
127 	case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
128 		gfs2_glock_free(gl);
129 		return;
130 	case -DLM_ECANCEL: /* Cancel while getting lock */
131 		ret |= LM_OUT_CANCELED;
132 		goto out;
133 	case -EAGAIN: /* Try lock fails */
134 	case -EDEADLK: /* Deadlock detected */
135 		goto out;
136 	case -ETIMEDOUT: /* Canceled due to timeout */
137 		ret |= LM_OUT_ERROR;
138 		goto out;
139 	case 0: /* Success */
140 		break;
141 	default: /* Something unexpected */
142 		BUG();
143 	}
144 
145 	ret = gl->gl_req;
146 	if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
147 		if (gl->gl_req == LM_ST_SHARED)
148 			ret = LM_ST_DEFERRED;
149 		else if (gl->gl_req == LM_ST_DEFERRED)
150 			ret = LM_ST_SHARED;
151 		else
152 			BUG();
153 	}
154 
155 	set_bit(GLF_INITIAL, &gl->gl_flags);
156 	gfs2_glock_complete(gl, ret);
157 	return;
158 out:
159 	if (!test_bit(GLF_INITIAL, &gl->gl_flags))
160 		gl->gl_lksb.sb_lkid = 0;
161 	gfs2_glock_complete(gl, ret);
162 }
163 
164 static void gdlm_bast(void *arg, int mode)
165 {
166 	struct gfs2_glock *gl = arg;
167 
168 	switch (mode) {
169 	case DLM_LOCK_EX:
170 		gfs2_glock_cb(gl, LM_ST_UNLOCKED);
171 		break;
172 	case DLM_LOCK_CW:
173 		gfs2_glock_cb(gl, LM_ST_DEFERRED);
174 		break;
175 	case DLM_LOCK_PR:
176 		gfs2_glock_cb(gl, LM_ST_SHARED);
177 		break;
178 	default:
179 		printk(KERN_ERR "unknown bast mode %d", mode);
180 		BUG();
181 	}
182 }
183 
184 /* convert gfs lock-state to dlm lock-mode */
185 
186 static int make_mode(const unsigned int lmstate)
187 {
188 	switch (lmstate) {
189 	case LM_ST_UNLOCKED:
190 		return DLM_LOCK_NL;
191 	case LM_ST_EXCLUSIVE:
192 		return DLM_LOCK_EX;
193 	case LM_ST_DEFERRED:
194 		return DLM_LOCK_CW;
195 	case LM_ST_SHARED:
196 		return DLM_LOCK_PR;
197 	}
198 	printk(KERN_ERR "unknown LM state %d", lmstate);
199 	BUG();
200 	return -1;
201 }
202 
203 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
204 		      const int req)
205 {
206 	u32 lkf = 0;
207 
208 	if (gl->gl_lksb.sb_lvbptr)
209 		lkf |= DLM_LKF_VALBLK;
210 
211 	if (gfs_flags & LM_FLAG_TRY)
212 		lkf |= DLM_LKF_NOQUEUE;
213 
214 	if (gfs_flags & LM_FLAG_TRY_1CB) {
215 		lkf |= DLM_LKF_NOQUEUE;
216 		lkf |= DLM_LKF_NOQUEUEBAST;
217 	}
218 
219 	if (gfs_flags & LM_FLAG_PRIORITY) {
220 		lkf |= DLM_LKF_NOORDER;
221 		lkf |= DLM_LKF_HEADQUE;
222 	}
223 
224 	if (gfs_flags & LM_FLAG_ANY) {
225 		if (req == DLM_LOCK_PR)
226 			lkf |= DLM_LKF_ALTCW;
227 		else if (req == DLM_LOCK_CW)
228 			lkf |= DLM_LKF_ALTPR;
229 		else
230 			BUG();
231 	}
232 
233 	if (gl->gl_lksb.sb_lkid != 0) {
234 		lkf |= DLM_LKF_CONVERT;
235 		if (test_bit(GLF_BLOCKING, &gl->gl_flags))
236 			lkf |= DLM_LKF_QUECVT;
237 	}
238 
239 	return lkf;
240 }
241 
242 static void gfs2_reverse_hex(char *c, u64 value)
243 {
244 	*c = '0';
245 	while (value) {
246 		*c-- = hex_asc[value & 0x0f];
247 		value >>= 4;
248 	}
249 }
250 
251 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
252 		     unsigned int flags)
253 {
254 	struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
255 	int req;
256 	u32 lkf;
257 	char strname[GDLM_STRNAME_BYTES] = "";
258 
259 	req = make_mode(req_state);
260 	lkf = make_flags(gl, flags, req);
261 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
262 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
263 	if (gl->gl_lksb.sb_lkid) {
264 		gfs2_update_request_times(gl);
265 	} else {
266 		memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
267 		strname[GDLM_STRNAME_BYTES - 1] = '\0';
268 		gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
269 		gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
270 		gl->gl_dstamp = ktime_get_real();
271 	}
272 	/*
273 	 * Submit the actual lock request.
274 	 */
275 
276 	return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
277 			GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
278 }
279 
280 static void gdlm_put_lock(struct gfs2_glock *gl)
281 {
282 	struct gfs2_sbd *sdp = gl->gl_sbd;
283 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
284 	int error;
285 
286 	if (gl->gl_lksb.sb_lkid == 0) {
287 		gfs2_glock_free(gl);
288 		return;
289 	}
290 
291 	clear_bit(GLF_BLOCKING, &gl->gl_flags);
292 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
293 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
294 	gfs2_update_request_times(gl);
295 
296 	/* don't want to skip dlm_unlock writing the lvb when lock is ex */
297 	if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
298 	    gl->gl_lksb.sb_lvbptr && (gl->gl_state != LM_ST_EXCLUSIVE)) {
299 		gfs2_glock_free(gl);
300 		return;
301 	}
302 
303 	error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
304 			   NULL, gl);
305 	if (error) {
306 		printk(KERN_ERR "gdlm_unlock %x,%llx err=%d\n",
307 		       gl->gl_name.ln_type,
308 		       (unsigned long long)gl->gl_name.ln_number, error);
309 		return;
310 	}
311 }
312 
313 static void gdlm_cancel(struct gfs2_glock *gl)
314 {
315 	struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
316 	dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
317 }
318 
319 /*
320  * dlm/gfs2 recovery coordination using dlm_recover callbacks
321  *
322  *  1. dlm_controld sees lockspace members change
323  *  2. dlm_controld blocks dlm-kernel locking activity
324  *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
325  *  4. dlm_controld starts and finishes its own user level recovery
326  *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
327  *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
328  *  7. dlm_recoverd does its own lock recovery
329  *  8. dlm_recoverd unblocks dlm-kernel locking activity
330  *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
331  * 10. gfs2_control updates control_lock lvb with new generation and jid bits
332  * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
333  * 12. gfs2_recover dequeues and recovers journals of failed nodes
334  * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
335  * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
336  * 15. gfs2_control unblocks normal locking when all journals are recovered
337  *
338  * - failures during recovery
339  *
340  * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
341  * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
342  * recovering for a prior failure.  gfs2_control needs a way to detect
343  * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
344  * the recover_block and recover_start values.
345  *
346  * recover_done() provides a new lockspace generation number each time it
347  * is called (step 9).  This generation number is saved as recover_start.
348  * When recover_prep() is called, it sets BLOCK_LOCKS and sets
349  * recover_block = recover_start.  So, while recover_block is equal to
350  * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
351  * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
352  *
353  * - more specific gfs2 steps in sequence above
354  *
355  *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
356  *  6. recover_slot records any failed jids (maybe none)
357  *  9. recover_done sets recover_start = new generation number
358  * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
359  * 12. gfs2_recover does journal recoveries for failed jids identified above
360  * 14. gfs2_control clears control_lock lvb bits for recovered jids
361  * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
362  *     again) then do nothing, otherwise if recover_start > recover_block
363  *     then clear BLOCK_LOCKS.
364  *
365  * - parallel recovery steps across all nodes
366  *
367  * All nodes attempt to update the control_lock lvb with the new generation
368  * number and jid bits, but only the first to get the control_lock EX will
369  * do so; others will see that it's already done (lvb already contains new
370  * generation number.)
371  *
372  * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
373  * . All nodes attempt to set control_lock lvb gen + bits for the new gen
374  * . One node gets control_lock first and writes the lvb, others see it's done
375  * . All nodes attempt to recover jids for which they see control_lock bits set
376  * . One node succeeds for a jid, and that one clears the jid bit in the lvb
377  * . All nodes will eventually see all lvb bits clear and unblock locks
378  *
379  * - is there a problem with clearing an lvb bit that should be set
380  *   and missing a journal recovery?
381  *
382  * 1. jid fails
383  * 2. lvb bit set for step 1
384  * 3. jid recovered for step 1
385  * 4. jid taken again (new mount)
386  * 5. jid fails (for step 4)
387  * 6. lvb bit set for step 5 (will already be set)
388  * 7. lvb bit cleared for step 3
389  *
390  * This is not a problem because the failure in step 5 does not
391  * require recovery, because the mount in step 4 could not have
392  * progressed far enough to unblock locks and access the fs.  The
393  * control_mount() function waits for all recoveries to be complete
394  * for the latest lockspace generation before ever unblocking locks
395  * and returning.  The mount in step 4 waits until the recovery in
396  * step 1 is done.
397  *
398  * - special case of first mounter: first node to mount the fs
399  *
400  * The first node to mount a gfs2 fs needs to check all the journals
401  * and recover any that need recovery before other nodes are allowed
402  * to mount the fs.  (Others may begin mounting, but they must wait
403  * for the first mounter to be done before taking locks on the fs
404  * or accessing the fs.)  This has two parts:
405  *
406  * 1. The mounted_lock tells a node it's the first to mount the fs.
407  * Each node holds the mounted_lock in PR while it's mounted.
408  * Each node tries to acquire the mounted_lock in EX when it mounts.
409  * If a node is granted the mounted_lock EX it means there are no
410  * other mounted nodes (no PR locks exist), and it is the first mounter.
411  * The mounted_lock is demoted to PR when first recovery is done, so
412  * others will fail to get an EX lock, but will get a PR lock.
413  *
414  * 2. The control_lock blocks others in control_mount() while the first
415  * mounter is doing first mount recovery of all journals.
416  * A mounting node needs to acquire control_lock in EX mode before
417  * it can proceed.  The first mounter holds control_lock in EX while doing
418  * the first mount recovery, blocking mounts from other nodes, then demotes
419  * control_lock to NL when it's done (others_may_mount/first_done),
420  * allowing other nodes to continue mounting.
421  *
422  * first mounter:
423  * control_lock EX/NOQUEUE success
424  * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
425  * set first=1
426  * do first mounter recovery
427  * mounted_lock EX->PR
428  * control_lock EX->NL, write lvb generation
429  *
430  * other mounter:
431  * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
432  * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
433  * mounted_lock PR/NOQUEUE success
434  * read lvb generation
435  * control_lock EX->NL
436  * set first=0
437  *
438  * - mount during recovery
439  *
440  * If a node mounts while others are doing recovery (not first mounter),
441  * the mounting node will get its initial recover_done() callback without
442  * having seen any previous failures/callbacks.
443  *
444  * It must wait for all recoveries preceding its mount to be finished
445  * before it unblocks locks.  It does this by repeating the "other mounter"
446  * steps above until the lvb generation number is >= its mount generation
447  * number (from initial recover_done) and all lvb bits are clear.
448  *
449  * - control_lock lvb format
450  *
451  * 4 bytes generation number: the latest dlm lockspace generation number
452  * from recover_done callback.  Indicates the jid bitmap has been updated
453  * to reflect all slot failures through that generation.
454  * 4 bytes unused.
455  * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
456  * that jid N needs recovery.
457  */
458 
459 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
460 
461 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
462 			     char *lvb_bits)
463 {
464 	uint32_t gen;
465 	memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
466 	memcpy(&gen, lvb_bits, sizeof(uint32_t));
467 	*lvb_gen = le32_to_cpu(gen);
468 }
469 
470 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
471 			      char *lvb_bits)
472 {
473 	uint32_t gen;
474 	memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
475 	gen = cpu_to_le32(lvb_gen);
476 	memcpy(ls->ls_control_lvb, &gen, sizeof(uint32_t));
477 }
478 
479 static int all_jid_bits_clear(char *lvb)
480 {
481 	int i;
482 	for (i = JID_BITMAP_OFFSET; i < GDLM_LVB_SIZE; i++) {
483 		if (lvb[i])
484 			return 0;
485 	}
486 	return 1;
487 }
488 
489 static void sync_wait_cb(void *arg)
490 {
491 	struct lm_lockstruct *ls = arg;
492 	complete(&ls->ls_sync_wait);
493 }
494 
495 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
496 {
497 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
498 	int error;
499 
500 	error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
501 	if (error) {
502 		fs_err(sdp, "%s lkid %x error %d\n",
503 		       name, lksb->sb_lkid, error);
504 		return error;
505 	}
506 
507 	wait_for_completion(&ls->ls_sync_wait);
508 
509 	if (lksb->sb_status != -DLM_EUNLOCK) {
510 		fs_err(sdp, "%s lkid %x status %d\n",
511 		       name, lksb->sb_lkid, lksb->sb_status);
512 		return -1;
513 	}
514 	return 0;
515 }
516 
517 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
518 		     unsigned int num, struct dlm_lksb *lksb, char *name)
519 {
520 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
521 	char strname[GDLM_STRNAME_BYTES];
522 	int error, status;
523 
524 	memset(strname, 0, GDLM_STRNAME_BYTES);
525 	snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
526 
527 	error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
528 			 strname, GDLM_STRNAME_BYTES - 1,
529 			 0, sync_wait_cb, ls, NULL);
530 	if (error) {
531 		fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
532 		       name, lksb->sb_lkid, flags, mode, error);
533 		return error;
534 	}
535 
536 	wait_for_completion(&ls->ls_sync_wait);
537 
538 	status = lksb->sb_status;
539 
540 	if (status && status != -EAGAIN) {
541 		fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
542 		       name, lksb->sb_lkid, flags, mode, status);
543 	}
544 
545 	return status;
546 }
547 
548 static int mounted_unlock(struct gfs2_sbd *sdp)
549 {
550 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
551 	return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
552 }
553 
554 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
555 {
556 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
557 	return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
558 			 &ls->ls_mounted_lksb, "mounted_lock");
559 }
560 
561 static int control_unlock(struct gfs2_sbd *sdp)
562 {
563 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
564 	return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
565 }
566 
567 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
568 {
569 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
570 	return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
571 			 &ls->ls_control_lksb, "control_lock");
572 }
573 
574 static void gfs2_control_func(struct work_struct *work)
575 {
576 	struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
577 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
578 	char lvb_bits[GDLM_LVB_SIZE];
579 	uint32_t block_gen, start_gen, lvb_gen, flags;
580 	int recover_set = 0;
581 	int write_lvb = 0;
582 	int recover_size;
583 	int i, error;
584 
585 	spin_lock(&ls->ls_recover_spin);
586 	/*
587 	 * No MOUNT_DONE means we're still mounting; control_mount()
588 	 * will set this flag, after which this thread will take over
589 	 * all further clearing of BLOCK_LOCKS.
590 	 *
591 	 * FIRST_MOUNT means this node is doing first mounter recovery,
592 	 * for which recovery control is handled by
593 	 * control_mount()/control_first_done(), not this thread.
594 	 */
595 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
596 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
597 		spin_unlock(&ls->ls_recover_spin);
598 		return;
599 	}
600 	block_gen = ls->ls_recover_block;
601 	start_gen = ls->ls_recover_start;
602 	spin_unlock(&ls->ls_recover_spin);
603 
604 	/*
605 	 * Equal block_gen and start_gen implies we are between
606 	 * recover_prep and recover_done callbacks, which means
607 	 * dlm recovery is in progress and dlm locking is blocked.
608 	 * There's no point trying to do any work until recover_done.
609 	 */
610 
611 	if (block_gen == start_gen)
612 		return;
613 
614 	/*
615 	 * Propagate recover_submit[] and recover_result[] to lvb:
616 	 * dlm_recoverd adds to recover_submit[] jids needing recovery
617 	 * gfs2_recover adds to recover_result[] journal recovery results
618 	 *
619 	 * set lvb bit for jids in recover_submit[] if the lvb has not
620 	 * yet been updated for the generation of the failure
621 	 *
622 	 * clear lvb bit for jids in recover_result[] if the result of
623 	 * the journal recovery is SUCCESS
624 	 */
625 
626 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
627 	if (error) {
628 		fs_err(sdp, "control lock EX error %d\n", error);
629 		return;
630 	}
631 
632 	control_lvb_read(ls, &lvb_gen, lvb_bits);
633 
634 	spin_lock(&ls->ls_recover_spin);
635 	if (block_gen != ls->ls_recover_block ||
636 	    start_gen != ls->ls_recover_start) {
637 		fs_info(sdp, "recover generation %u block1 %u %u\n",
638 			start_gen, block_gen, ls->ls_recover_block);
639 		spin_unlock(&ls->ls_recover_spin);
640 		control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
641 		return;
642 	}
643 
644 	recover_size = ls->ls_recover_size;
645 
646 	if (lvb_gen <= start_gen) {
647 		/*
648 		 * Clear lvb bits for jids we've successfully recovered.
649 		 * Because all nodes attempt to recover failed journals,
650 		 * a journal can be recovered multiple times successfully
651 		 * in succession.  Only the first will really do recovery,
652 		 * the others find it clean, but still report a successful
653 		 * recovery.  So, another node may have already recovered
654 		 * the jid and cleared the lvb bit for it.
655 		 */
656 		for (i = 0; i < recover_size; i++) {
657 			if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
658 				continue;
659 
660 			ls->ls_recover_result[i] = 0;
661 
662 			if (!test_bit_le(i, lvb_bits + JID_BITMAP_OFFSET))
663 				continue;
664 
665 			__clear_bit_le(i, lvb_bits + JID_BITMAP_OFFSET);
666 			write_lvb = 1;
667 		}
668 	}
669 
670 	if (lvb_gen == start_gen) {
671 		/*
672 		 * Failed slots before start_gen are already set in lvb.
673 		 */
674 		for (i = 0; i < recover_size; i++) {
675 			if (!ls->ls_recover_submit[i])
676 				continue;
677 			if (ls->ls_recover_submit[i] < lvb_gen)
678 				ls->ls_recover_submit[i] = 0;
679 		}
680 	} else if (lvb_gen < start_gen) {
681 		/*
682 		 * Failed slots before start_gen are not yet set in lvb.
683 		 */
684 		for (i = 0; i < recover_size; i++) {
685 			if (!ls->ls_recover_submit[i])
686 				continue;
687 			if (ls->ls_recover_submit[i] < start_gen) {
688 				ls->ls_recover_submit[i] = 0;
689 				__set_bit_le(i, lvb_bits + JID_BITMAP_OFFSET);
690 			}
691 		}
692 		/* even if there are no bits to set, we need to write the
693 		   latest generation to the lvb */
694 		write_lvb = 1;
695 	} else {
696 		/*
697 		 * we should be getting a recover_done() for lvb_gen soon
698 		 */
699 	}
700 	spin_unlock(&ls->ls_recover_spin);
701 
702 	if (write_lvb) {
703 		control_lvb_write(ls, start_gen, lvb_bits);
704 		flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
705 	} else {
706 		flags = DLM_LKF_CONVERT;
707 	}
708 
709 	error = control_lock(sdp, DLM_LOCK_NL, flags);
710 	if (error) {
711 		fs_err(sdp, "control lock NL error %d\n", error);
712 		return;
713 	}
714 
715 	/*
716 	 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
717 	 * and clear a jid bit in the lvb if the recovery is a success.
718 	 * Eventually all journals will be recovered, all jid bits will
719 	 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
720 	 */
721 
722 	for (i = 0; i < recover_size; i++) {
723 		if (test_bit_le(i, lvb_bits + JID_BITMAP_OFFSET)) {
724 			fs_info(sdp, "recover generation %u jid %d\n",
725 				start_gen, i);
726 			gfs2_recover_set(sdp, i);
727 			recover_set++;
728 		}
729 	}
730 	if (recover_set)
731 		return;
732 
733 	/*
734 	 * No more jid bits set in lvb, all recovery is done, unblock locks
735 	 * (unless a new recover_prep callback has occured blocking locks
736 	 * again while working above)
737 	 */
738 
739 	spin_lock(&ls->ls_recover_spin);
740 	if (ls->ls_recover_block == block_gen &&
741 	    ls->ls_recover_start == start_gen) {
742 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
743 		spin_unlock(&ls->ls_recover_spin);
744 		fs_info(sdp, "recover generation %u done\n", start_gen);
745 		gfs2_glock_thaw(sdp);
746 	} else {
747 		fs_info(sdp, "recover generation %u block2 %u %u\n",
748 			start_gen, block_gen, ls->ls_recover_block);
749 		spin_unlock(&ls->ls_recover_spin);
750 	}
751 }
752 
753 static int control_mount(struct gfs2_sbd *sdp)
754 {
755 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
756 	char lvb_bits[GDLM_LVB_SIZE];
757 	uint32_t start_gen, block_gen, mount_gen, lvb_gen;
758 	int mounted_mode;
759 	int retries = 0;
760 	int error;
761 
762 	memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
763 	memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
764 	memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
765 	ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
766 	init_completion(&ls->ls_sync_wait);
767 
768 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
769 
770 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
771 	if (error) {
772 		fs_err(sdp, "control_mount control_lock NL error %d\n", error);
773 		return error;
774 	}
775 
776 	error = mounted_lock(sdp, DLM_LOCK_NL, 0);
777 	if (error) {
778 		fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
779 		control_unlock(sdp);
780 		return error;
781 	}
782 	mounted_mode = DLM_LOCK_NL;
783 
784 restart:
785 	if (retries++ && signal_pending(current)) {
786 		error = -EINTR;
787 		goto fail;
788 	}
789 
790 	/*
791 	 * We always start with both locks in NL. control_lock is
792 	 * demoted to NL below so we don't need to do it here.
793 	 */
794 
795 	if (mounted_mode != DLM_LOCK_NL) {
796 		error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
797 		if (error)
798 			goto fail;
799 		mounted_mode = DLM_LOCK_NL;
800 	}
801 
802 	/*
803 	 * Other nodes need to do some work in dlm recovery and gfs2_control
804 	 * before the recover_done and control_lock will be ready for us below.
805 	 * A delay here is not required but often avoids having to retry.
806 	 */
807 
808 	msleep_interruptible(500);
809 
810 	/*
811 	 * Acquire control_lock in EX and mounted_lock in either EX or PR.
812 	 * control_lock lvb keeps track of any pending journal recoveries.
813 	 * mounted_lock indicates if any other nodes have the fs mounted.
814 	 */
815 
816 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
817 	if (error == -EAGAIN) {
818 		goto restart;
819 	} else if (error) {
820 		fs_err(sdp, "control_mount control_lock EX error %d\n", error);
821 		goto fail;
822 	}
823 
824 	error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
825 	if (!error) {
826 		mounted_mode = DLM_LOCK_EX;
827 		goto locks_done;
828 	} else if (error != -EAGAIN) {
829 		fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
830 		goto fail;
831 	}
832 
833 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
834 	if (!error) {
835 		mounted_mode = DLM_LOCK_PR;
836 		goto locks_done;
837 	} else {
838 		/* not even -EAGAIN should happen here */
839 		fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
840 		goto fail;
841 	}
842 
843 locks_done:
844 	/*
845 	 * If we got both locks above in EX, then we're the first mounter.
846 	 * If not, then we need to wait for the control_lock lvb to be
847 	 * updated by other mounted nodes to reflect our mount generation.
848 	 *
849 	 * In simple first mounter cases, first mounter will see zero lvb_gen,
850 	 * but in cases where all existing nodes leave/fail before mounting
851 	 * nodes finish control_mount, then all nodes will be mounting and
852 	 * lvb_gen will be non-zero.
853 	 */
854 
855 	control_lvb_read(ls, &lvb_gen, lvb_bits);
856 
857 	if (lvb_gen == 0xFFFFFFFF) {
858 		/* special value to force mount attempts to fail */
859 		fs_err(sdp, "control_mount control_lock disabled\n");
860 		error = -EINVAL;
861 		goto fail;
862 	}
863 
864 	if (mounted_mode == DLM_LOCK_EX) {
865 		/* first mounter, keep both EX while doing first recovery */
866 		spin_lock(&ls->ls_recover_spin);
867 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
868 		set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
869 		set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
870 		spin_unlock(&ls->ls_recover_spin);
871 		fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
872 		return 0;
873 	}
874 
875 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
876 	if (error)
877 		goto fail;
878 
879 	/*
880 	 * We are not first mounter, now we need to wait for the control_lock
881 	 * lvb generation to be >= the generation from our first recover_done
882 	 * and all lvb bits to be clear (no pending journal recoveries.)
883 	 */
884 
885 	if (!all_jid_bits_clear(lvb_bits)) {
886 		/* journals need recovery, wait until all are clear */
887 		fs_info(sdp, "control_mount wait for journal recovery\n");
888 		goto restart;
889 	}
890 
891 	spin_lock(&ls->ls_recover_spin);
892 	block_gen = ls->ls_recover_block;
893 	start_gen = ls->ls_recover_start;
894 	mount_gen = ls->ls_recover_mount;
895 
896 	if (lvb_gen < mount_gen) {
897 		/* wait for mounted nodes to update control_lock lvb to our
898 		   generation, which might include new recovery bits set */
899 		fs_info(sdp, "control_mount wait1 block %u start %u mount %u "
900 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
901 			lvb_gen, ls->ls_recover_flags);
902 		spin_unlock(&ls->ls_recover_spin);
903 		goto restart;
904 	}
905 
906 	if (lvb_gen != start_gen) {
907 		/* wait for mounted nodes to update control_lock lvb to the
908 		   latest recovery generation */
909 		fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
910 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
911 			lvb_gen, ls->ls_recover_flags);
912 		spin_unlock(&ls->ls_recover_spin);
913 		goto restart;
914 	}
915 
916 	if (block_gen == start_gen) {
917 		/* dlm recovery in progress, wait for it to finish */
918 		fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
919 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
920 			lvb_gen, ls->ls_recover_flags);
921 		spin_unlock(&ls->ls_recover_spin);
922 		goto restart;
923 	}
924 
925 	clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
926 	set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
927 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
928 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
929 	spin_unlock(&ls->ls_recover_spin);
930 	return 0;
931 
932 fail:
933 	mounted_unlock(sdp);
934 	control_unlock(sdp);
935 	return error;
936 }
937 
938 static int dlm_recovery_wait(void *word)
939 {
940 	schedule();
941 	return 0;
942 }
943 
944 static int control_first_done(struct gfs2_sbd *sdp)
945 {
946 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
947 	char lvb_bits[GDLM_LVB_SIZE];
948 	uint32_t start_gen, block_gen;
949 	int error;
950 
951 restart:
952 	spin_lock(&ls->ls_recover_spin);
953 	start_gen = ls->ls_recover_start;
954 	block_gen = ls->ls_recover_block;
955 
956 	if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
957 	    !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
958 	    !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
959 		/* sanity check, should not happen */
960 		fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
961 		       start_gen, block_gen, ls->ls_recover_flags);
962 		spin_unlock(&ls->ls_recover_spin);
963 		control_unlock(sdp);
964 		return -1;
965 	}
966 
967 	if (start_gen == block_gen) {
968 		/*
969 		 * Wait for the end of a dlm recovery cycle to switch from
970 		 * first mounter recovery.  We can ignore any recover_slot
971 		 * callbacks between the recover_prep and next recover_done
972 		 * because we are still the first mounter and any failed nodes
973 		 * have not fully mounted, so they don't need recovery.
974 		 */
975 		spin_unlock(&ls->ls_recover_spin);
976 		fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
977 
978 		wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
979 			    dlm_recovery_wait, TASK_UNINTERRUPTIBLE);
980 		goto restart;
981 	}
982 
983 	clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
984 	set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
985 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
986 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
987 	spin_unlock(&ls->ls_recover_spin);
988 
989 	memset(lvb_bits, 0, sizeof(lvb_bits));
990 	control_lvb_write(ls, start_gen, lvb_bits);
991 
992 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
993 	if (error)
994 		fs_err(sdp, "control_first_done mounted PR error %d\n", error);
995 
996 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
997 	if (error)
998 		fs_err(sdp, "control_first_done control NL error %d\n", error);
999 
1000 	return error;
1001 }
1002 
1003 /*
1004  * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1005  * to accomodate the largest slot number.  (NB dlm slot numbers start at 1,
1006  * gfs2 jids start at 0, so jid = slot - 1)
1007  */
1008 
1009 #define RECOVER_SIZE_INC 16
1010 
1011 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1012 			    int num_slots)
1013 {
1014 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1015 	uint32_t *submit = NULL;
1016 	uint32_t *result = NULL;
1017 	uint32_t old_size, new_size;
1018 	int i, max_jid;
1019 
1020 	max_jid = 0;
1021 	for (i = 0; i < num_slots; i++) {
1022 		if (max_jid < slots[i].slot - 1)
1023 			max_jid = slots[i].slot - 1;
1024 	}
1025 
1026 	old_size = ls->ls_recover_size;
1027 
1028 	if (old_size >= max_jid + 1)
1029 		return 0;
1030 
1031 	new_size = old_size + RECOVER_SIZE_INC;
1032 
1033 	submit = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS);
1034 	result = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS);
1035 	if (!submit || !result) {
1036 		kfree(submit);
1037 		kfree(result);
1038 		return -ENOMEM;
1039 	}
1040 
1041 	spin_lock(&ls->ls_recover_spin);
1042 	memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1043 	memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1044 	kfree(ls->ls_recover_submit);
1045 	kfree(ls->ls_recover_result);
1046 	ls->ls_recover_submit = submit;
1047 	ls->ls_recover_result = result;
1048 	ls->ls_recover_size = new_size;
1049 	spin_unlock(&ls->ls_recover_spin);
1050 	return 0;
1051 }
1052 
1053 static void free_recover_size(struct lm_lockstruct *ls)
1054 {
1055 	kfree(ls->ls_recover_submit);
1056 	kfree(ls->ls_recover_result);
1057 	ls->ls_recover_submit = NULL;
1058 	ls->ls_recover_result = NULL;
1059 	ls->ls_recover_size = 0;
1060 }
1061 
1062 /* dlm calls before it does lock recovery */
1063 
1064 static void gdlm_recover_prep(void *arg)
1065 {
1066 	struct gfs2_sbd *sdp = arg;
1067 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1068 
1069 	spin_lock(&ls->ls_recover_spin);
1070 	ls->ls_recover_block = ls->ls_recover_start;
1071 	set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1072 
1073 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1074 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1075 		spin_unlock(&ls->ls_recover_spin);
1076 		return;
1077 	}
1078 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1079 	spin_unlock(&ls->ls_recover_spin);
1080 }
1081 
1082 /* dlm calls after recover_prep has been completed on all lockspace members;
1083    identifies slot/jid of failed member */
1084 
1085 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1086 {
1087 	struct gfs2_sbd *sdp = arg;
1088 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1089 	int jid = slot->slot - 1;
1090 
1091 	spin_lock(&ls->ls_recover_spin);
1092 	if (ls->ls_recover_size < jid + 1) {
1093 		fs_err(sdp, "recover_slot jid %d gen %u short size %d",
1094 		       jid, ls->ls_recover_block, ls->ls_recover_size);
1095 		spin_unlock(&ls->ls_recover_spin);
1096 		return;
1097 	}
1098 
1099 	if (ls->ls_recover_submit[jid]) {
1100 		fs_info(sdp, "recover_slot jid %d gen %u prev %u",
1101 			jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1102 	}
1103 	ls->ls_recover_submit[jid] = ls->ls_recover_block;
1104 	spin_unlock(&ls->ls_recover_spin);
1105 }
1106 
1107 /* dlm calls after recover_slot and after it completes lock recovery */
1108 
1109 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1110 			      int our_slot, uint32_t generation)
1111 {
1112 	struct gfs2_sbd *sdp = arg;
1113 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1114 
1115 	/* ensure the ls jid arrays are large enough */
1116 	set_recover_size(sdp, slots, num_slots);
1117 
1118 	spin_lock(&ls->ls_recover_spin);
1119 	ls->ls_recover_start = generation;
1120 
1121 	if (!ls->ls_recover_mount) {
1122 		ls->ls_recover_mount = generation;
1123 		ls->ls_jid = our_slot - 1;
1124 	}
1125 
1126 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1127 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1128 
1129 	clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1130 	smp_mb__after_clear_bit();
1131 	wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1132 	spin_unlock(&ls->ls_recover_spin);
1133 }
1134 
1135 /* gfs2_recover thread has a journal recovery result */
1136 
1137 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1138 				 unsigned int result)
1139 {
1140 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1141 
1142 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1143 		return;
1144 
1145 	/* don't care about the recovery of own journal during mount */
1146 	if (jid == ls->ls_jid)
1147 		return;
1148 
1149 	spin_lock(&ls->ls_recover_spin);
1150 	if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1151 		spin_unlock(&ls->ls_recover_spin);
1152 		return;
1153 	}
1154 	if (ls->ls_recover_size < jid + 1) {
1155 		fs_err(sdp, "recovery_result jid %d short size %d",
1156 		       jid, ls->ls_recover_size);
1157 		spin_unlock(&ls->ls_recover_spin);
1158 		return;
1159 	}
1160 
1161 	fs_info(sdp, "recover jid %d result %s\n", jid,
1162 		result == LM_RD_GAVEUP ? "busy" : "success");
1163 
1164 	ls->ls_recover_result[jid] = result;
1165 
1166 	/* GAVEUP means another node is recovering the journal; delay our
1167 	   next attempt to recover it, to give the other node a chance to
1168 	   finish before trying again */
1169 
1170 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1171 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1172 				   result == LM_RD_GAVEUP ? HZ : 0);
1173 	spin_unlock(&ls->ls_recover_spin);
1174 }
1175 
1176 const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1177 	.recover_prep = gdlm_recover_prep,
1178 	.recover_slot = gdlm_recover_slot,
1179 	.recover_done = gdlm_recover_done,
1180 };
1181 
1182 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1183 {
1184 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1185 	char cluster[GFS2_LOCKNAME_LEN];
1186 	const char *fsname;
1187 	uint32_t flags;
1188 	int error, ops_result;
1189 
1190 	/*
1191 	 * initialize everything
1192 	 */
1193 
1194 	INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1195 	spin_lock_init(&ls->ls_recover_spin);
1196 	ls->ls_recover_flags = 0;
1197 	ls->ls_recover_mount = 0;
1198 	ls->ls_recover_start = 0;
1199 	ls->ls_recover_block = 0;
1200 	ls->ls_recover_size = 0;
1201 	ls->ls_recover_submit = NULL;
1202 	ls->ls_recover_result = NULL;
1203 
1204 	error = set_recover_size(sdp, NULL, 0);
1205 	if (error)
1206 		goto fail;
1207 
1208 	/*
1209 	 * prepare dlm_new_lockspace args
1210 	 */
1211 
1212 	fsname = strchr(table, ':');
1213 	if (!fsname) {
1214 		fs_info(sdp, "no fsname found\n");
1215 		error = -EINVAL;
1216 		goto fail_free;
1217 	}
1218 	memset(cluster, 0, sizeof(cluster));
1219 	memcpy(cluster, table, strlen(table) - strlen(fsname));
1220 	fsname++;
1221 
1222 	flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1223 
1224 	/*
1225 	 * create/join lockspace
1226 	 */
1227 
1228 	error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1229 				  &gdlm_lockspace_ops, sdp, &ops_result,
1230 				  &ls->ls_dlm);
1231 	if (error) {
1232 		fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1233 		goto fail_free;
1234 	}
1235 
1236 	if (ops_result < 0) {
1237 		/*
1238 		 * dlm does not support ops callbacks,
1239 		 * old dlm_controld/gfs_controld are used, try without ops.
1240 		 */
1241 		fs_info(sdp, "dlm lockspace ops not used\n");
1242 		free_recover_size(ls);
1243 		set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1244 		return 0;
1245 	}
1246 
1247 	if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1248 		fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1249 		error = -EINVAL;
1250 		goto fail_release;
1251 	}
1252 
1253 	/*
1254 	 * control_mount() uses control_lock to determine first mounter,
1255 	 * and for later mounts, waits for any recoveries to be cleared.
1256 	 */
1257 
1258 	error = control_mount(sdp);
1259 	if (error) {
1260 		fs_err(sdp, "mount control error %d\n", error);
1261 		goto fail_release;
1262 	}
1263 
1264 	ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1265 	clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1266 	smp_mb__after_clear_bit();
1267 	wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1268 	return 0;
1269 
1270 fail_release:
1271 	dlm_release_lockspace(ls->ls_dlm, 2);
1272 fail_free:
1273 	free_recover_size(ls);
1274 fail:
1275 	return error;
1276 }
1277 
1278 static void gdlm_first_done(struct gfs2_sbd *sdp)
1279 {
1280 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1281 	int error;
1282 
1283 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1284 		return;
1285 
1286 	error = control_first_done(sdp);
1287 	if (error)
1288 		fs_err(sdp, "mount first_done error %d\n", error);
1289 }
1290 
1291 static void gdlm_unmount(struct gfs2_sbd *sdp)
1292 {
1293 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1294 
1295 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1296 		goto release;
1297 
1298 	/* wait for gfs2_control_wq to be done with this mount */
1299 
1300 	spin_lock(&ls->ls_recover_spin);
1301 	set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1302 	spin_unlock(&ls->ls_recover_spin);
1303 	flush_delayed_work(&sdp->sd_control_work);
1304 
1305 	/* mounted_lock and control_lock will be purged in dlm recovery */
1306 release:
1307 	if (ls->ls_dlm) {
1308 		dlm_release_lockspace(ls->ls_dlm, 2);
1309 		ls->ls_dlm = NULL;
1310 	}
1311 
1312 	free_recover_size(ls);
1313 }
1314 
1315 static const match_table_t dlm_tokens = {
1316 	{ Opt_jid, "jid=%d"},
1317 	{ Opt_id, "id=%d"},
1318 	{ Opt_first, "first=%d"},
1319 	{ Opt_nodir, "nodir=%d"},
1320 	{ Opt_err, NULL },
1321 };
1322 
1323 const struct lm_lockops gfs2_dlm_ops = {
1324 	.lm_proto_name = "lock_dlm",
1325 	.lm_mount = gdlm_mount,
1326 	.lm_first_done = gdlm_first_done,
1327 	.lm_recovery_result = gdlm_recovery_result,
1328 	.lm_unmount = gdlm_unmount,
1329 	.lm_put_lock = gdlm_put_lock,
1330 	.lm_lock = gdlm_lock,
1331 	.lm_cancel = gdlm_cancel,
1332 	.lm_tokens = &dlm_tokens,
1333 };
1334 
1335