1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright 2004-2011 Red Hat, Inc. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/dlm.h> 12 #include <linux/slab.h> 13 #include <linux/types.h> 14 #include <linux/delay.h> 15 #include <linux/gfs2_ondisk.h> 16 17 #include "incore.h" 18 #include "glock.h" 19 #include "util.h" 20 #include "sys.h" 21 #include "trace_gfs2.h" 22 23 extern struct workqueue_struct *gfs2_control_wq; 24 25 /** 26 * gfs2_update_stats - Update time based stats 27 * @mv: Pointer to mean/variance structure to update 28 * @sample: New data to include 29 * 30 * @delta is the difference between the current rtt sample and the 31 * running average srtt. We add 1/8 of that to the srtt in order to 32 * update the current srtt estimate. The varience estimate is a bit 33 * more complicated. We subtract the abs value of the @delta from 34 * the current variance estimate and add 1/4 of that to the running 35 * total. 36 * 37 * Note that the index points at the array entry containing the smoothed 38 * mean value, and the variance is always in the following entry 39 * 40 * Reference: TCP/IP Illustrated, vol 2, p. 831,832 41 * All times are in units of integer nanoseconds. Unlike the TCP/IP case, 42 * they are not scaled fixed point. 43 */ 44 45 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index, 46 s64 sample) 47 { 48 s64 delta = sample - s->stats[index]; 49 s->stats[index] += (delta >> 3); 50 index++; 51 s->stats[index] += ((abs64(delta) - s->stats[index]) >> 2); 52 } 53 54 /** 55 * gfs2_update_reply_times - Update locking statistics 56 * @gl: The glock to update 57 * 58 * This assumes that gl->gl_dstamp has been set earlier. 59 * 60 * The rtt (lock round trip time) is an estimate of the time 61 * taken to perform a dlm lock request. We update it on each 62 * reply from the dlm. 63 * 64 * The blocking flag is set on the glock for all dlm requests 65 * which may potentially block due to lock requests from other nodes. 66 * DLM requests where the current lock state is exclusive, the 67 * requested state is null (or unlocked) or where the TRY or 68 * TRY_1CB flags are set are classified as non-blocking. All 69 * other DLM requests are counted as (potentially) blocking. 70 */ 71 static inline void gfs2_update_reply_times(struct gfs2_glock *gl) 72 { 73 struct gfs2_pcpu_lkstats *lks; 74 const unsigned gltype = gl->gl_name.ln_type; 75 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ? 76 GFS2_LKS_SRTTB : GFS2_LKS_SRTT; 77 s64 rtt; 78 79 preempt_disable(); 80 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp)); 81 lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats); 82 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */ 83 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */ 84 preempt_enable(); 85 86 trace_gfs2_glock_lock_time(gl, rtt); 87 } 88 89 /** 90 * gfs2_update_request_times - Update locking statistics 91 * @gl: The glock to update 92 * 93 * The irt (lock inter-request times) measures the average time 94 * between requests to the dlm. It is updated immediately before 95 * each dlm call. 96 */ 97 98 static inline void gfs2_update_request_times(struct gfs2_glock *gl) 99 { 100 struct gfs2_pcpu_lkstats *lks; 101 const unsigned gltype = gl->gl_name.ln_type; 102 ktime_t dstamp; 103 s64 irt; 104 105 preempt_disable(); 106 dstamp = gl->gl_dstamp; 107 gl->gl_dstamp = ktime_get_real(); 108 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp)); 109 lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats); 110 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */ 111 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */ 112 preempt_enable(); 113 } 114 115 static void gdlm_ast(void *arg) 116 { 117 struct gfs2_glock *gl = arg; 118 unsigned ret = gl->gl_state; 119 120 gfs2_update_reply_times(gl); 121 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED); 122 123 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr) 124 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE); 125 126 switch (gl->gl_lksb.sb_status) { 127 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */ 128 gfs2_glock_free(gl); 129 return; 130 case -DLM_ECANCEL: /* Cancel while getting lock */ 131 ret |= LM_OUT_CANCELED; 132 goto out; 133 case -EAGAIN: /* Try lock fails */ 134 case -EDEADLK: /* Deadlock detected */ 135 goto out; 136 case -ETIMEDOUT: /* Canceled due to timeout */ 137 ret |= LM_OUT_ERROR; 138 goto out; 139 case 0: /* Success */ 140 break; 141 default: /* Something unexpected */ 142 BUG(); 143 } 144 145 ret = gl->gl_req; 146 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) { 147 if (gl->gl_req == LM_ST_SHARED) 148 ret = LM_ST_DEFERRED; 149 else if (gl->gl_req == LM_ST_DEFERRED) 150 ret = LM_ST_SHARED; 151 else 152 BUG(); 153 } 154 155 set_bit(GLF_INITIAL, &gl->gl_flags); 156 gfs2_glock_complete(gl, ret); 157 return; 158 out: 159 if (!test_bit(GLF_INITIAL, &gl->gl_flags)) 160 gl->gl_lksb.sb_lkid = 0; 161 gfs2_glock_complete(gl, ret); 162 } 163 164 static void gdlm_bast(void *arg, int mode) 165 { 166 struct gfs2_glock *gl = arg; 167 168 switch (mode) { 169 case DLM_LOCK_EX: 170 gfs2_glock_cb(gl, LM_ST_UNLOCKED); 171 break; 172 case DLM_LOCK_CW: 173 gfs2_glock_cb(gl, LM_ST_DEFERRED); 174 break; 175 case DLM_LOCK_PR: 176 gfs2_glock_cb(gl, LM_ST_SHARED); 177 break; 178 default: 179 printk(KERN_ERR "unknown bast mode %d", mode); 180 BUG(); 181 } 182 } 183 184 /* convert gfs lock-state to dlm lock-mode */ 185 186 static int make_mode(const unsigned int lmstate) 187 { 188 switch (lmstate) { 189 case LM_ST_UNLOCKED: 190 return DLM_LOCK_NL; 191 case LM_ST_EXCLUSIVE: 192 return DLM_LOCK_EX; 193 case LM_ST_DEFERRED: 194 return DLM_LOCK_CW; 195 case LM_ST_SHARED: 196 return DLM_LOCK_PR; 197 } 198 printk(KERN_ERR "unknown LM state %d", lmstate); 199 BUG(); 200 return -1; 201 } 202 203 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags, 204 const int req) 205 { 206 u32 lkf = 0; 207 208 if (gl->gl_lksb.sb_lvbptr) 209 lkf |= DLM_LKF_VALBLK; 210 211 if (gfs_flags & LM_FLAG_TRY) 212 lkf |= DLM_LKF_NOQUEUE; 213 214 if (gfs_flags & LM_FLAG_TRY_1CB) { 215 lkf |= DLM_LKF_NOQUEUE; 216 lkf |= DLM_LKF_NOQUEUEBAST; 217 } 218 219 if (gfs_flags & LM_FLAG_PRIORITY) { 220 lkf |= DLM_LKF_NOORDER; 221 lkf |= DLM_LKF_HEADQUE; 222 } 223 224 if (gfs_flags & LM_FLAG_ANY) { 225 if (req == DLM_LOCK_PR) 226 lkf |= DLM_LKF_ALTCW; 227 else if (req == DLM_LOCK_CW) 228 lkf |= DLM_LKF_ALTPR; 229 else 230 BUG(); 231 } 232 233 if (gl->gl_lksb.sb_lkid != 0) { 234 lkf |= DLM_LKF_CONVERT; 235 if (test_bit(GLF_BLOCKING, &gl->gl_flags)) 236 lkf |= DLM_LKF_QUECVT; 237 } 238 239 return lkf; 240 } 241 242 static void gfs2_reverse_hex(char *c, u64 value) 243 { 244 *c = '0'; 245 while (value) { 246 *c-- = hex_asc[value & 0x0f]; 247 value >>= 4; 248 } 249 } 250 251 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state, 252 unsigned int flags) 253 { 254 struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct; 255 int req; 256 u32 lkf; 257 char strname[GDLM_STRNAME_BYTES] = ""; 258 259 req = make_mode(req_state); 260 lkf = make_flags(gl, flags, req); 261 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 262 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 263 if (gl->gl_lksb.sb_lkid) { 264 gfs2_update_request_times(gl); 265 } else { 266 memset(strname, ' ', GDLM_STRNAME_BYTES - 1); 267 strname[GDLM_STRNAME_BYTES - 1] = '\0'; 268 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type); 269 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number); 270 gl->gl_dstamp = ktime_get_real(); 271 } 272 /* 273 * Submit the actual lock request. 274 */ 275 276 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname, 277 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast); 278 } 279 280 static void gdlm_put_lock(struct gfs2_glock *gl) 281 { 282 struct gfs2_sbd *sdp = gl->gl_sbd; 283 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 284 int error; 285 286 if (gl->gl_lksb.sb_lkid == 0) { 287 gfs2_glock_free(gl); 288 return; 289 } 290 291 clear_bit(GLF_BLOCKING, &gl->gl_flags); 292 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 293 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 294 gfs2_update_request_times(gl); 295 296 /* don't want to skip dlm_unlock writing the lvb when lock is ex */ 297 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) && 298 gl->gl_lksb.sb_lvbptr && (gl->gl_state != LM_ST_EXCLUSIVE)) { 299 gfs2_glock_free(gl); 300 return; 301 } 302 303 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK, 304 NULL, gl); 305 if (error) { 306 printk(KERN_ERR "gdlm_unlock %x,%llx err=%d\n", 307 gl->gl_name.ln_type, 308 (unsigned long long)gl->gl_name.ln_number, error); 309 return; 310 } 311 } 312 313 static void gdlm_cancel(struct gfs2_glock *gl) 314 { 315 struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct; 316 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl); 317 } 318 319 /* 320 * dlm/gfs2 recovery coordination using dlm_recover callbacks 321 * 322 * 1. dlm_controld sees lockspace members change 323 * 2. dlm_controld blocks dlm-kernel locking activity 324 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep) 325 * 4. dlm_controld starts and finishes its own user level recovery 326 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery 327 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot) 328 * 7. dlm_recoverd does its own lock recovery 329 * 8. dlm_recoverd unblocks dlm-kernel locking activity 330 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation) 331 * 10. gfs2_control updates control_lock lvb with new generation and jid bits 332 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none) 333 * 12. gfs2_recover dequeues and recovers journals of failed nodes 334 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result) 335 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals 336 * 15. gfs2_control unblocks normal locking when all journals are recovered 337 * 338 * - failures during recovery 339 * 340 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control 341 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still 342 * recovering for a prior failure. gfs2_control needs a way to detect 343 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using 344 * the recover_block and recover_start values. 345 * 346 * recover_done() provides a new lockspace generation number each time it 347 * is called (step 9). This generation number is saved as recover_start. 348 * When recover_prep() is called, it sets BLOCK_LOCKS and sets 349 * recover_block = recover_start. So, while recover_block is equal to 350 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must 351 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.) 352 * 353 * - more specific gfs2 steps in sequence above 354 * 355 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start 356 * 6. recover_slot records any failed jids (maybe none) 357 * 9. recover_done sets recover_start = new generation number 358 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids 359 * 12. gfs2_recover does journal recoveries for failed jids identified above 360 * 14. gfs2_control clears control_lock lvb bits for recovered jids 361 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured 362 * again) then do nothing, otherwise if recover_start > recover_block 363 * then clear BLOCK_LOCKS. 364 * 365 * - parallel recovery steps across all nodes 366 * 367 * All nodes attempt to update the control_lock lvb with the new generation 368 * number and jid bits, but only the first to get the control_lock EX will 369 * do so; others will see that it's already done (lvb already contains new 370 * generation number.) 371 * 372 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks 373 * . All nodes attempt to set control_lock lvb gen + bits for the new gen 374 * . One node gets control_lock first and writes the lvb, others see it's done 375 * . All nodes attempt to recover jids for which they see control_lock bits set 376 * . One node succeeds for a jid, and that one clears the jid bit in the lvb 377 * . All nodes will eventually see all lvb bits clear and unblock locks 378 * 379 * - is there a problem with clearing an lvb bit that should be set 380 * and missing a journal recovery? 381 * 382 * 1. jid fails 383 * 2. lvb bit set for step 1 384 * 3. jid recovered for step 1 385 * 4. jid taken again (new mount) 386 * 5. jid fails (for step 4) 387 * 6. lvb bit set for step 5 (will already be set) 388 * 7. lvb bit cleared for step 3 389 * 390 * This is not a problem because the failure in step 5 does not 391 * require recovery, because the mount in step 4 could not have 392 * progressed far enough to unblock locks and access the fs. The 393 * control_mount() function waits for all recoveries to be complete 394 * for the latest lockspace generation before ever unblocking locks 395 * and returning. The mount in step 4 waits until the recovery in 396 * step 1 is done. 397 * 398 * - special case of first mounter: first node to mount the fs 399 * 400 * The first node to mount a gfs2 fs needs to check all the journals 401 * and recover any that need recovery before other nodes are allowed 402 * to mount the fs. (Others may begin mounting, but they must wait 403 * for the first mounter to be done before taking locks on the fs 404 * or accessing the fs.) This has two parts: 405 * 406 * 1. The mounted_lock tells a node it's the first to mount the fs. 407 * Each node holds the mounted_lock in PR while it's mounted. 408 * Each node tries to acquire the mounted_lock in EX when it mounts. 409 * If a node is granted the mounted_lock EX it means there are no 410 * other mounted nodes (no PR locks exist), and it is the first mounter. 411 * The mounted_lock is demoted to PR when first recovery is done, so 412 * others will fail to get an EX lock, but will get a PR lock. 413 * 414 * 2. The control_lock blocks others in control_mount() while the first 415 * mounter is doing first mount recovery of all journals. 416 * A mounting node needs to acquire control_lock in EX mode before 417 * it can proceed. The first mounter holds control_lock in EX while doing 418 * the first mount recovery, blocking mounts from other nodes, then demotes 419 * control_lock to NL when it's done (others_may_mount/first_done), 420 * allowing other nodes to continue mounting. 421 * 422 * first mounter: 423 * control_lock EX/NOQUEUE success 424 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters) 425 * set first=1 426 * do first mounter recovery 427 * mounted_lock EX->PR 428 * control_lock EX->NL, write lvb generation 429 * 430 * other mounter: 431 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry) 432 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR) 433 * mounted_lock PR/NOQUEUE success 434 * read lvb generation 435 * control_lock EX->NL 436 * set first=0 437 * 438 * - mount during recovery 439 * 440 * If a node mounts while others are doing recovery (not first mounter), 441 * the mounting node will get its initial recover_done() callback without 442 * having seen any previous failures/callbacks. 443 * 444 * It must wait for all recoveries preceding its mount to be finished 445 * before it unblocks locks. It does this by repeating the "other mounter" 446 * steps above until the lvb generation number is >= its mount generation 447 * number (from initial recover_done) and all lvb bits are clear. 448 * 449 * - control_lock lvb format 450 * 451 * 4 bytes generation number: the latest dlm lockspace generation number 452 * from recover_done callback. Indicates the jid bitmap has been updated 453 * to reflect all slot failures through that generation. 454 * 4 bytes unused. 455 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates 456 * that jid N needs recovery. 457 */ 458 459 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */ 460 461 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen, 462 char *lvb_bits) 463 { 464 uint32_t gen; 465 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE); 466 memcpy(&gen, lvb_bits, sizeof(uint32_t)); 467 *lvb_gen = le32_to_cpu(gen); 468 } 469 470 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen, 471 char *lvb_bits) 472 { 473 uint32_t gen; 474 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE); 475 gen = cpu_to_le32(lvb_gen); 476 memcpy(ls->ls_control_lvb, &gen, sizeof(uint32_t)); 477 } 478 479 static int all_jid_bits_clear(char *lvb) 480 { 481 int i; 482 for (i = JID_BITMAP_OFFSET; i < GDLM_LVB_SIZE; i++) { 483 if (lvb[i]) 484 return 0; 485 } 486 return 1; 487 } 488 489 static void sync_wait_cb(void *arg) 490 { 491 struct lm_lockstruct *ls = arg; 492 complete(&ls->ls_sync_wait); 493 } 494 495 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name) 496 { 497 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 498 int error; 499 500 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls); 501 if (error) { 502 fs_err(sdp, "%s lkid %x error %d\n", 503 name, lksb->sb_lkid, error); 504 return error; 505 } 506 507 wait_for_completion(&ls->ls_sync_wait); 508 509 if (lksb->sb_status != -DLM_EUNLOCK) { 510 fs_err(sdp, "%s lkid %x status %d\n", 511 name, lksb->sb_lkid, lksb->sb_status); 512 return -1; 513 } 514 return 0; 515 } 516 517 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags, 518 unsigned int num, struct dlm_lksb *lksb, char *name) 519 { 520 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 521 char strname[GDLM_STRNAME_BYTES]; 522 int error, status; 523 524 memset(strname, 0, GDLM_STRNAME_BYTES); 525 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num); 526 527 error = dlm_lock(ls->ls_dlm, mode, lksb, flags, 528 strname, GDLM_STRNAME_BYTES - 1, 529 0, sync_wait_cb, ls, NULL); 530 if (error) { 531 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n", 532 name, lksb->sb_lkid, flags, mode, error); 533 return error; 534 } 535 536 wait_for_completion(&ls->ls_sync_wait); 537 538 status = lksb->sb_status; 539 540 if (status && status != -EAGAIN) { 541 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n", 542 name, lksb->sb_lkid, flags, mode, status); 543 } 544 545 return status; 546 } 547 548 static int mounted_unlock(struct gfs2_sbd *sdp) 549 { 550 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 551 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock"); 552 } 553 554 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 555 { 556 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 557 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK, 558 &ls->ls_mounted_lksb, "mounted_lock"); 559 } 560 561 static int control_unlock(struct gfs2_sbd *sdp) 562 { 563 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 564 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock"); 565 } 566 567 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 568 { 569 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 570 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK, 571 &ls->ls_control_lksb, "control_lock"); 572 } 573 574 static void gfs2_control_func(struct work_struct *work) 575 { 576 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work); 577 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 578 char lvb_bits[GDLM_LVB_SIZE]; 579 uint32_t block_gen, start_gen, lvb_gen, flags; 580 int recover_set = 0; 581 int write_lvb = 0; 582 int recover_size; 583 int i, error; 584 585 spin_lock(&ls->ls_recover_spin); 586 /* 587 * No MOUNT_DONE means we're still mounting; control_mount() 588 * will set this flag, after which this thread will take over 589 * all further clearing of BLOCK_LOCKS. 590 * 591 * FIRST_MOUNT means this node is doing first mounter recovery, 592 * for which recovery control is handled by 593 * control_mount()/control_first_done(), not this thread. 594 */ 595 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 596 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 597 spin_unlock(&ls->ls_recover_spin); 598 return; 599 } 600 block_gen = ls->ls_recover_block; 601 start_gen = ls->ls_recover_start; 602 spin_unlock(&ls->ls_recover_spin); 603 604 /* 605 * Equal block_gen and start_gen implies we are between 606 * recover_prep and recover_done callbacks, which means 607 * dlm recovery is in progress and dlm locking is blocked. 608 * There's no point trying to do any work until recover_done. 609 */ 610 611 if (block_gen == start_gen) 612 return; 613 614 /* 615 * Propagate recover_submit[] and recover_result[] to lvb: 616 * dlm_recoverd adds to recover_submit[] jids needing recovery 617 * gfs2_recover adds to recover_result[] journal recovery results 618 * 619 * set lvb bit for jids in recover_submit[] if the lvb has not 620 * yet been updated for the generation of the failure 621 * 622 * clear lvb bit for jids in recover_result[] if the result of 623 * the journal recovery is SUCCESS 624 */ 625 626 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 627 if (error) { 628 fs_err(sdp, "control lock EX error %d\n", error); 629 return; 630 } 631 632 control_lvb_read(ls, &lvb_gen, lvb_bits); 633 634 spin_lock(&ls->ls_recover_spin); 635 if (block_gen != ls->ls_recover_block || 636 start_gen != ls->ls_recover_start) { 637 fs_info(sdp, "recover generation %u block1 %u %u\n", 638 start_gen, block_gen, ls->ls_recover_block); 639 spin_unlock(&ls->ls_recover_spin); 640 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 641 return; 642 } 643 644 recover_size = ls->ls_recover_size; 645 646 if (lvb_gen <= start_gen) { 647 /* 648 * Clear lvb bits for jids we've successfully recovered. 649 * Because all nodes attempt to recover failed journals, 650 * a journal can be recovered multiple times successfully 651 * in succession. Only the first will really do recovery, 652 * the others find it clean, but still report a successful 653 * recovery. So, another node may have already recovered 654 * the jid and cleared the lvb bit for it. 655 */ 656 for (i = 0; i < recover_size; i++) { 657 if (ls->ls_recover_result[i] != LM_RD_SUCCESS) 658 continue; 659 660 ls->ls_recover_result[i] = 0; 661 662 if (!test_bit_le(i, lvb_bits + JID_BITMAP_OFFSET)) 663 continue; 664 665 __clear_bit_le(i, lvb_bits + JID_BITMAP_OFFSET); 666 write_lvb = 1; 667 } 668 } 669 670 if (lvb_gen == start_gen) { 671 /* 672 * Failed slots before start_gen are already set in lvb. 673 */ 674 for (i = 0; i < recover_size; i++) { 675 if (!ls->ls_recover_submit[i]) 676 continue; 677 if (ls->ls_recover_submit[i] < lvb_gen) 678 ls->ls_recover_submit[i] = 0; 679 } 680 } else if (lvb_gen < start_gen) { 681 /* 682 * Failed slots before start_gen are not yet set in lvb. 683 */ 684 for (i = 0; i < recover_size; i++) { 685 if (!ls->ls_recover_submit[i]) 686 continue; 687 if (ls->ls_recover_submit[i] < start_gen) { 688 ls->ls_recover_submit[i] = 0; 689 __set_bit_le(i, lvb_bits + JID_BITMAP_OFFSET); 690 } 691 } 692 /* even if there are no bits to set, we need to write the 693 latest generation to the lvb */ 694 write_lvb = 1; 695 } else { 696 /* 697 * we should be getting a recover_done() for lvb_gen soon 698 */ 699 } 700 spin_unlock(&ls->ls_recover_spin); 701 702 if (write_lvb) { 703 control_lvb_write(ls, start_gen, lvb_bits); 704 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK; 705 } else { 706 flags = DLM_LKF_CONVERT; 707 } 708 709 error = control_lock(sdp, DLM_LOCK_NL, flags); 710 if (error) { 711 fs_err(sdp, "control lock NL error %d\n", error); 712 return; 713 } 714 715 /* 716 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(), 717 * and clear a jid bit in the lvb if the recovery is a success. 718 * Eventually all journals will be recovered, all jid bits will 719 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS. 720 */ 721 722 for (i = 0; i < recover_size; i++) { 723 if (test_bit_le(i, lvb_bits + JID_BITMAP_OFFSET)) { 724 fs_info(sdp, "recover generation %u jid %d\n", 725 start_gen, i); 726 gfs2_recover_set(sdp, i); 727 recover_set++; 728 } 729 } 730 if (recover_set) 731 return; 732 733 /* 734 * No more jid bits set in lvb, all recovery is done, unblock locks 735 * (unless a new recover_prep callback has occured blocking locks 736 * again while working above) 737 */ 738 739 spin_lock(&ls->ls_recover_spin); 740 if (ls->ls_recover_block == block_gen && 741 ls->ls_recover_start == start_gen) { 742 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 743 spin_unlock(&ls->ls_recover_spin); 744 fs_info(sdp, "recover generation %u done\n", start_gen); 745 gfs2_glock_thaw(sdp); 746 } else { 747 fs_info(sdp, "recover generation %u block2 %u %u\n", 748 start_gen, block_gen, ls->ls_recover_block); 749 spin_unlock(&ls->ls_recover_spin); 750 } 751 } 752 753 static int control_mount(struct gfs2_sbd *sdp) 754 { 755 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 756 char lvb_bits[GDLM_LVB_SIZE]; 757 uint32_t start_gen, block_gen, mount_gen, lvb_gen; 758 int mounted_mode; 759 int retries = 0; 760 int error; 761 762 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb)); 763 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb)); 764 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE); 765 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb; 766 init_completion(&ls->ls_sync_wait); 767 768 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 769 770 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK); 771 if (error) { 772 fs_err(sdp, "control_mount control_lock NL error %d\n", error); 773 return error; 774 } 775 776 error = mounted_lock(sdp, DLM_LOCK_NL, 0); 777 if (error) { 778 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error); 779 control_unlock(sdp); 780 return error; 781 } 782 mounted_mode = DLM_LOCK_NL; 783 784 restart: 785 if (retries++ && signal_pending(current)) { 786 error = -EINTR; 787 goto fail; 788 } 789 790 /* 791 * We always start with both locks in NL. control_lock is 792 * demoted to NL below so we don't need to do it here. 793 */ 794 795 if (mounted_mode != DLM_LOCK_NL) { 796 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 797 if (error) 798 goto fail; 799 mounted_mode = DLM_LOCK_NL; 800 } 801 802 /* 803 * Other nodes need to do some work in dlm recovery and gfs2_control 804 * before the recover_done and control_lock will be ready for us below. 805 * A delay here is not required but often avoids having to retry. 806 */ 807 808 msleep_interruptible(500); 809 810 /* 811 * Acquire control_lock in EX and mounted_lock in either EX or PR. 812 * control_lock lvb keeps track of any pending journal recoveries. 813 * mounted_lock indicates if any other nodes have the fs mounted. 814 */ 815 816 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK); 817 if (error == -EAGAIN) { 818 goto restart; 819 } else if (error) { 820 fs_err(sdp, "control_mount control_lock EX error %d\n", error); 821 goto fail; 822 } 823 824 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 825 if (!error) { 826 mounted_mode = DLM_LOCK_EX; 827 goto locks_done; 828 } else if (error != -EAGAIN) { 829 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error); 830 goto fail; 831 } 832 833 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 834 if (!error) { 835 mounted_mode = DLM_LOCK_PR; 836 goto locks_done; 837 } else { 838 /* not even -EAGAIN should happen here */ 839 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error); 840 goto fail; 841 } 842 843 locks_done: 844 /* 845 * If we got both locks above in EX, then we're the first mounter. 846 * If not, then we need to wait for the control_lock lvb to be 847 * updated by other mounted nodes to reflect our mount generation. 848 * 849 * In simple first mounter cases, first mounter will see zero lvb_gen, 850 * but in cases where all existing nodes leave/fail before mounting 851 * nodes finish control_mount, then all nodes will be mounting and 852 * lvb_gen will be non-zero. 853 */ 854 855 control_lvb_read(ls, &lvb_gen, lvb_bits); 856 857 if (lvb_gen == 0xFFFFFFFF) { 858 /* special value to force mount attempts to fail */ 859 fs_err(sdp, "control_mount control_lock disabled\n"); 860 error = -EINVAL; 861 goto fail; 862 } 863 864 if (mounted_mode == DLM_LOCK_EX) { 865 /* first mounter, keep both EX while doing first recovery */ 866 spin_lock(&ls->ls_recover_spin); 867 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 868 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 869 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 870 spin_unlock(&ls->ls_recover_spin); 871 fs_info(sdp, "first mounter control generation %u\n", lvb_gen); 872 return 0; 873 } 874 875 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 876 if (error) 877 goto fail; 878 879 /* 880 * We are not first mounter, now we need to wait for the control_lock 881 * lvb generation to be >= the generation from our first recover_done 882 * and all lvb bits to be clear (no pending journal recoveries.) 883 */ 884 885 if (!all_jid_bits_clear(lvb_bits)) { 886 /* journals need recovery, wait until all are clear */ 887 fs_info(sdp, "control_mount wait for journal recovery\n"); 888 goto restart; 889 } 890 891 spin_lock(&ls->ls_recover_spin); 892 block_gen = ls->ls_recover_block; 893 start_gen = ls->ls_recover_start; 894 mount_gen = ls->ls_recover_mount; 895 896 if (lvb_gen < mount_gen) { 897 /* wait for mounted nodes to update control_lock lvb to our 898 generation, which might include new recovery bits set */ 899 fs_info(sdp, "control_mount wait1 block %u start %u mount %u " 900 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 901 lvb_gen, ls->ls_recover_flags); 902 spin_unlock(&ls->ls_recover_spin); 903 goto restart; 904 } 905 906 if (lvb_gen != start_gen) { 907 /* wait for mounted nodes to update control_lock lvb to the 908 latest recovery generation */ 909 fs_info(sdp, "control_mount wait2 block %u start %u mount %u " 910 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 911 lvb_gen, ls->ls_recover_flags); 912 spin_unlock(&ls->ls_recover_spin); 913 goto restart; 914 } 915 916 if (block_gen == start_gen) { 917 /* dlm recovery in progress, wait for it to finish */ 918 fs_info(sdp, "control_mount wait3 block %u start %u mount %u " 919 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 920 lvb_gen, ls->ls_recover_flags); 921 spin_unlock(&ls->ls_recover_spin); 922 goto restart; 923 } 924 925 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 926 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 927 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 928 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 929 spin_unlock(&ls->ls_recover_spin); 930 return 0; 931 932 fail: 933 mounted_unlock(sdp); 934 control_unlock(sdp); 935 return error; 936 } 937 938 static int dlm_recovery_wait(void *word) 939 { 940 schedule(); 941 return 0; 942 } 943 944 static int control_first_done(struct gfs2_sbd *sdp) 945 { 946 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 947 char lvb_bits[GDLM_LVB_SIZE]; 948 uint32_t start_gen, block_gen; 949 int error; 950 951 restart: 952 spin_lock(&ls->ls_recover_spin); 953 start_gen = ls->ls_recover_start; 954 block_gen = ls->ls_recover_block; 955 956 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) || 957 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 958 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 959 /* sanity check, should not happen */ 960 fs_err(sdp, "control_first_done start %u block %u flags %lx\n", 961 start_gen, block_gen, ls->ls_recover_flags); 962 spin_unlock(&ls->ls_recover_spin); 963 control_unlock(sdp); 964 return -1; 965 } 966 967 if (start_gen == block_gen) { 968 /* 969 * Wait for the end of a dlm recovery cycle to switch from 970 * first mounter recovery. We can ignore any recover_slot 971 * callbacks between the recover_prep and next recover_done 972 * because we are still the first mounter and any failed nodes 973 * have not fully mounted, so they don't need recovery. 974 */ 975 spin_unlock(&ls->ls_recover_spin); 976 fs_info(sdp, "control_first_done wait gen %u\n", start_gen); 977 978 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY, 979 dlm_recovery_wait, TASK_UNINTERRUPTIBLE); 980 goto restart; 981 } 982 983 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 984 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags); 985 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 986 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 987 spin_unlock(&ls->ls_recover_spin); 988 989 memset(lvb_bits, 0, sizeof(lvb_bits)); 990 control_lvb_write(ls, start_gen, lvb_bits); 991 992 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT); 993 if (error) 994 fs_err(sdp, "control_first_done mounted PR error %d\n", error); 995 996 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 997 if (error) 998 fs_err(sdp, "control_first_done control NL error %d\n", error); 999 1000 return error; 1001 } 1002 1003 /* 1004 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC) 1005 * to accomodate the largest slot number. (NB dlm slot numbers start at 1, 1006 * gfs2 jids start at 0, so jid = slot - 1) 1007 */ 1008 1009 #define RECOVER_SIZE_INC 16 1010 1011 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots, 1012 int num_slots) 1013 { 1014 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1015 uint32_t *submit = NULL; 1016 uint32_t *result = NULL; 1017 uint32_t old_size, new_size; 1018 int i, max_jid; 1019 1020 max_jid = 0; 1021 for (i = 0; i < num_slots; i++) { 1022 if (max_jid < slots[i].slot - 1) 1023 max_jid = slots[i].slot - 1; 1024 } 1025 1026 old_size = ls->ls_recover_size; 1027 1028 if (old_size >= max_jid + 1) 1029 return 0; 1030 1031 new_size = old_size + RECOVER_SIZE_INC; 1032 1033 submit = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS); 1034 result = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS); 1035 if (!submit || !result) { 1036 kfree(submit); 1037 kfree(result); 1038 return -ENOMEM; 1039 } 1040 1041 spin_lock(&ls->ls_recover_spin); 1042 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t)); 1043 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t)); 1044 kfree(ls->ls_recover_submit); 1045 kfree(ls->ls_recover_result); 1046 ls->ls_recover_submit = submit; 1047 ls->ls_recover_result = result; 1048 ls->ls_recover_size = new_size; 1049 spin_unlock(&ls->ls_recover_spin); 1050 return 0; 1051 } 1052 1053 static void free_recover_size(struct lm_lockstruct *ls) 1054 { 1055 kfree(ls->ls_recover_submit); 1056 kfree(ls->ls_recover_result); 1057 ls->ls_recover_submit = NULL; 1058 ls->ls_recover_result = NULL; 1059 ls->ls_recover_size = 0; 1060 } 1061 1062 /* dlm calls before it does lock recovery */ 1063 1064 static void gdlm_recover_prep(void *arg) 1065 { 1066 struct gfs2_sbd *sdp = arg; 1067 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1068 1069 spin_lock(&ls->ls_recover_spin); 1070 ls->ls_recover_block = ls->ls_recover_start; 1071 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1072 1073 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 1074 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1075 spin_unlock(&ls->ls_recover_spin); 1076 return; 1077 } 1078 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 1079 spin_unlock(&ls->ls_recover_spin); 1080 } 1081 1082 /* dlm calls after recover_prep has been completed on all lockspace members; 1083 identifies slot/jid of failed member */ 1084 1085 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot) 1086 { 1087 struct gfs2_sbd *sdp = arg; 1088 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1089 int jid = slot->slot - 1; 1090 1091 spin_lock(&ls->ls_recover_spin); 1092 if (ls->ls_recover_size < jid + 1) { 1093 fs_err(sdp, "recover_slot jid %d gen %u short size %d", 1094 jid, ls->ls_recover_block, ls->ls_recover_size); 1095 spin_unlock(&ls->ls_recover_spin); 1096 return; 1097 } 1098 1099 if (ls->ls_recover_submit[jid]) { 1100 fs_info(sdp, "recover_slot jid %d gen %u prev %u", 1101 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]); 1102 } 1103 ls->ls_recover_submit[jid] = ls->ls_recover_block; 1104 spin_unlock(&ls->ls_recover_spin); 1105 } 1106 1107 /* dlm calls after recover_slot and after it completes lock recovery */ 1108 1109 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots, 1110 int our_slot, uint32_t generation) 1111 { 1112 struct gfs2_sbd *sdp = arg; 1113 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1114 1115 /* ensure the ls jid arrays are large enough */ 1116 set_recover_size(sdp, slots, num_slots); 1117 1118 spin_lock(&ls->ls_recover_spin); 1119 ls->ls_recover_start = generation; 1120 1121 if (!ls->ls_recover_mount) { 1122 ls->ls_recover_mount = generation; 1123 ls->ls_jid = our_slot - 1; 1124 } 1125 1126 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1127 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0); 1128 1129 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1130 smp_mb__after_clear_bit(); 1131 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY); 1132 spin_unlock(&ls->ls_recover_spin); 1133 } 1134 1135 /* gfs2_recover thread has a journal recovery result */ 1136 1137 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid, 1138 unsigned int result) 1139 { 1140 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1141 1142 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1143 return; 1144 1145 /* don't care about the recovery of own journal during mount */ 1146 if (jid == ls->ls_jid) 1147 return; 1148 1149 spin_lock(&ls->ls_recover_spin); 1150 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1151 spin_unlock(&ls->ls_recover_spin); 1152 return; 1153 } 1154 if (ls->ls_recover_size < jid + 1) { 1155 fs_err(sdp, "recovery_result jid %d short size %d", 1156 jid, ls->ls_recover_size); 1157 spin_unlock(&ls->ls_recover_spin); 1158 return; 1159 } 1160 1161 fs_info(sdp, "recover jid %d result %s\n", jid, 1162 result == LM_RD_GAVEUP ? "busy" : "success"); 1163 1164 ls->ls_recover_result[jid] = result; 1165 1166 /* GAVEUP means another node is recovering the journal; delay our 1167 next attempt to recover it, to give the other node a chance to 1168 finish before trying again */ 1169 1170 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1171 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 1172 result == LM_RD_GAVEUP ? HZ : 0); 1173 spin_unlock(&ls->ls_recover_spin); 1174 } 1175 1176 const struct dlm_lockspace_ops gdlm_lockspace_ops = { 1177 .recover_prep = gdlm_recover_prep, 1178 .recover_slot = gdlm_recover_slot, 1179 .recover_done = gdlm_recover_done, 1180 }; 1181 1182 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table) 1183 { 1184 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1185 char cluster[GFS2_LOCKNAME_LEN]; 1186 const char *fsname; 1187 uint32_t flags; 1188 int error, ops_result; 1189 1190 /* 1191 * initialize everything 1192 */ 1193 1194 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func); 1195 spin_lock_init(&ls->ls_recover_spin); 1196 ls->ls_recover_flags = 0; 1197 ls->ls_recover_mount = 0; 1198 ls->ls_recover_start = 0; 1199 ls->ls_recover_block = 0; 1200 ls->ls_recover_size = 0; 1201 ls->ls_recover_submit = NULL; 1202 ls->ls_recover_result = NULL; 1203 1204 error = set_recover_size(sdp, NULL, 0); 1205 if (error) 1206 goto fail; 1207 1208 /* 1209 * prepare dlm_new_lockspace args 1210 */ 1211 1212 fsname = strchr(table, ':'); 1213 if (!fsname) { 1214 fs_info(sdp, "no fsname found\n"); 1215 error = -EINVAL; 1216 goto fail_free; 1217 } 1218 memset(cluster, 0, sizeof(cluster)); 1219 memcpy(cluster, table, strlen(table) - strlen(fsname)); 1220 fsname++; 1221 1222 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL; 1223 1224 /* 1225 * create/join lockspace 1226 */ 1227 1228 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE, 1229 &gdlm_lockspace_ops, sdp, &ops_result, 1230 &ls->ls_dlm); 1231 if (error) { 1232 fs_err(sdp, "dlm_new_lockspace error %d\n", error); 1233 goto fail_free; 1234 } 1235 1236 if (ops_result < 0) { 1237 /* 1238 * dlm does not support ops callbacks, 1239 * old dlm_controld/gfs_controld are used, try without ops. 1240 */ 1241 fs_info(sdp, "dlm lockspace ops not used\n"); 1242 free_recover_size(ls); 1243 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags); 1244 return 0; 1245 } 1246 1247 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) { 1248 fs_err(sdp, "dlm lockspace ops disallow jid preset\n"); 1249 error = -EINVAL; 1250 goto fail_release; 1251 } 1252 1253 /* 1254 * control_mount() uses control_lock to determine first mounter, 1255 * and for later mounts, waits for any recoveries to be cleared. 1256 */ 1257 1258 error = control_mount(sdp); 1259 if (error) { 1260 fs_err(sdp, "mount control error %d\n", error); 1261 goto fail_release; 1262 } 1263 1264 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1265 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags); 1266 smp_mb__after_clear_bit(); 1267 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID); 1268 return 0; 1269 1270 fail_release: 1271 dlm_release_lockspace(ls->ls_dlm, 2); 1272 fail_free: 1273 free_recover_size(ls); 1274 fail: 1275 return error; 1276 } 1277 1278 static void gdlm_first_done(struct gfs2_sbd *sdp) 1279 { 1280 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1281 int error; 1282 1283 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1284 return; 1285 1286 error = control_first_done(sdp); 1287 if (error) 1288 fs_err(sdp, "mount first_done error %d\n", error); 1289 } 1290 1291 static void gdlm_unmount(struct gfs2_sbd *sdp) 1292 { 1293 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1294 1295 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1296 goto release; 1297 1298 /* wait for gfs2_control_wq to be done with this mount */ 1299 1300 spin_lock(&ls->ls_recover_spin); 1301 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags); 1302 spin_unlock(&ls->ls_recover_spin); 1303 flush_delayed_work(&sdp->sd_control_work); 1304 1305 /* mounted_lock and control_lock will be purged in dlm recovery */ 1306 release: 1307 if (ls->ls_dlm) { 1308 dlm_release_lockspace(ls->ls_dlm, 2); 1309 ls->ls_dlm = NULL; 1310 } 1311 1312 free_recover_size(ls); 1313 } 1314 1315 static const match_table_t dlm_tokens = { 1316 { Opt_jid, "jid=%d"}, 1317 { Opt_id, "id=%d"}, 1318 { Opt_first, "first=%d"}, 1319 { Opt_nodir, "nodir=%d"}, 1320 { Opt_err, NULL }, 1321 }; 1322 1323 const struct lm_lockops gfs2_dlm_ops = { 1324 .lm_proto_name = "lock_dlm", 1325 .lm_mount = gdlm_mount, 1326 .lm_first_done = gdlm_first_done, 1327 .lm_recovery_result = gdlm_recovery_result, 1328 .lm_unmount = gdlm_unmount, 1329 .lm_put_lock = gdlm_put_lock, 1330 .lm_lock = gdlm_lock, 1331 .lm_cancel = gdlm_cancel, 1332 .lm_tokens = &dlm_tokens, 1333 }; 1334 1335