1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright 2004-2011 Red Hat, Inc. 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/fs.h> 10 #include <linux/dlm.h> 11 #include <linux/slab.h> 12 #include <linux/types.h> 13 #include <linux/delay.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/sched/signal.h> 16 17 #include "incore.h" 18 #include "glock.h" 19 #include "util.h" 20 #include "sys.h" 21 #include "trace_gfs2.h" 22 23 /** 24 * gfs2_update_stats - Update time based stats 25 * @mv: Pointer to mean/variance structure to update 26 * @sample: New data to include 27 * 28 * @delta is the difference between the current rtt sample and the 29 * running average srtt. We add 1/8 of that to the srtt in order to 30 * update the current srtt estimate. The variance estimate is a bit 31 * more complicated. We subtract the current variance estimate from 32 * the abs value of the @delta and add 1/4 of that to the running 33 * total. That's equivalent to 3/4 of the current variance 34 * estimate plus 1/4 of the abs of @delta. 35 * 36 * Note that the index points at the array entry containing the smoothed 37 * mean value, and the variance is always in the following entry 38 * 39 * Reference: TCP/IP Illustrated, vol 2, p. 831,832 40 * All times are in units of integer nanoseconds. Unlike the TCP/IP case, 41 * they are not scaled fixed point. 42 */ 43 44 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index, 45 s64 sample) 46 { 47 s64 delta = sample - s->stats[index]; 48 s->stats[index] += (delta >> 3); 49 index++; 50 s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2; 51 } 52 53 /** 54 * gfs2_update_reply_times - Update locking statistics 55 * @gl: The glock to update 56 * 57 * This assumes that gl->gl_dstamp has been set earlier. 58 * 59 * The rtt (lock round trip time) is an estimate of the time 60 * taken to perform a dlm lock request. We update it on each 61 * reply from the dlm. 62 * 63 * The blocking flag is set on the glock for all dlm requests 64 * which may potentially block due to lock requests from other nodes. 65 * DLM requests where the current lock state is exclusive, the 66 * requested state is null (or unlocked) or where the TRY or 67 * TRY_1CB flags are set are classified as non-blocking. All 68 * other DLM requests are counted as (potentially) blocking. 69 */ 70 static inline void gfs2_update_reply_times(struct gfs2_glock *gl) 71 { 72 struct gfs2_pcpu_lkstats *lks; 73 const unsigned gltype = gl->gl_name.ln_type; 74 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ? 75 GFS2_LKS_SRTTB : GFS2_LKS_SRTT; 76 s64 rtt; 77 78 preempt_disable(); 79 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp)); 80 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 81 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */ 82 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */ 83 preempt_enable(); 84 85 trace_gfs2_glock_lock_time(gl, rtt); 86 } 87 88 /** 89 * gfs2_update_request_times - Update locking statistics 90 * @gl: The glock to update 91 * 92 * The irt (lock inter-request times) measures the average time 93 * between requests to the dlm. It is updated immediately before 94 * each dlm call. 95 */ 96 97 static inline void gfs2_update_request_times(struct gfs2_glock *gl) 98 { 99 struct gfs2_pcpu_lkstats *lks; 100 const unsigned gltype = gl->gl_name.ln_type; 101 ktime_t dstamp; 102 s64 irt; 103 104 preempt_disable(); 105 dstamp = gl->gl_dstamp; 106 gl->gl_dstamp = ktime_get_real(); 107 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp)); 108 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 109 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */ 110 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */ 111 preempt_enable(); 112 } 113 114 static void gdlm_ast(void *arg) 115 { 116 struct gfs2_glock *gl = arg; 117 unsigned ret = gl->gl_state; 118 119 gfs2_update_reply_times(gl); 120 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED); 121 122 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr) 123 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE); 124 125 switch (gl->gl_lksb.sb_status) { 126 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */ 127 gfs2_glock_free(gl); 128 return; 129 case -DLM_ECANCEL: /* Cancel while getting lock */ 130 ret |= LM_OUT_CANCELED; 131 goto out; 132 case -EAGAIN: /* Try lock fails */ 133 case -EDEADLK: /* Deadlock detected */ 134 goto out; 135 case -ETIMEDOUT: /* Canceled due to timeout */ 136 ret |= LM_OUT_ERROR; 137 goto out; 138 case 0: /* Success */ 139 break; 140 default: /* Something unexpected */ 141 BUG(); 142 } 143 144 ret = gl->gl_req; 145 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) { 146 if (gl->gl_req == LM_ST_SHARED) 147 ret = LM_ST_DEFERRED; 148 else if (gl->gl_req == LM_ST_DEFERRED) 149 ret = LM_ST_SHARED; 150 else 151 BUG(); 152 } 153 154 set_bit(GLF_INITIAL, &gl->gl_flags); 155 gfs2_glock_complete(gl, ret); 156 return; 157 out: 158 if (!test_bit(GLF_INITIAL, &gl->gl_flags)) 159 gl->gl_lksb.sb_lkid = 0; 160 gfs2_glock_complete(gl, ret); 161 } 162 163 static void gdlm_bast(void *arg, int mode) 164 { 165 struct gfs2_glock *gl = arg; 166 167 switch (mode) { 168 case DLM_LOCK_EX: 169 gfs2_glock_cb(gl, LM_ST_UNLOCKED); 170 break; 171 case DLM_LOCK_CW: 172 gfs2_glock_cb(gl, LM_ST_DEFERRED); 173 break; 174 case DLM_LOCK_PR: 175 gfs2_glock_cb(gl, LM_ST_SHARED); 176 break; 177 default: 178 fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode); 179 BUG(); 180 } 181 } 182 183 /* convert gfs lock-state to dlm lock-mode */ 184 185 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate) 186 { 187 switch (lmstate) { 188 case LM_ST_UNLOCKED: 189 return DLM_LOCK_NL; 190 case LM_ST_EXCLUSIVE: 191 return DLM_LOCK_EX; 192 case LM_ST_DEFERRED: 193 return DLM_LOCK_CW; 194 case LM_ST_SHARED: 195 return DLM_LOCK_PR; 196 } 197 fs_err(sdp, "unknown LM state %d\n", lmstate); 198 BUG(); 199 return -1; 200 } 201 202 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags, 203 const int req) 204 { 205 u32 lkf = 0; 206 207 if (gl->gl_lksb.sb_lvbptr) 208 lkf |= DLM_LKF_VALBLK; 209 210 if (gfs_flags & LM_FLAG_TRY) 211 lkf |= DLM_LKF_NOQUEUE; 212 213 if (gfs_flags & LM_FLAG_TRY_1CB) { 214 lkf |= DLM_LKF_NOQUEUE; 215 lkf |= DLM_LKF_NOQUEUEBAST; 216 } 217 218 if (gfs_flags & LM_FLAG_PRIORITY) { 219 lkf |= DLM_LKF_NOORDER; 220 lkf |= DLM_LKF_HEADQUE; 221 } 222 223 if (gfs_flags & LM_FLAG_ANY) { 224 if (req == DLM_LOCK_PR) 225 lkf |= DLM_LKF_ALTCW; 226 else if (req == DLM_LOCK_CW) 227 lkf |= DLM_LKF_ALTPR; 228 else 229 BUG(); 230 } 231 232 if (gl->gl_lksb.sb_lkid != 0) { 233 lkf |= DLM_LKF_CONVERT; 234 if (test_bit(GLF_BLOCKING, &gl->gl_flags)) 235 lkf |= DLM_LKF_QUECVT; 236 } 237 238 return lkf; 239 } 240 241 static void gfs2_reverse_hex(char *c, u64 value) 242 { 243 *c = '0'; 244 while (value) { 245 *c-- = hex_asc[value & 0x0f]; 246 value >>= 4; 247 } 248 } 249 250 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state, 251 unsigned int flags) 252 { 253 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 254 int req; 255 u32 lkf; 256 char strname[GDLM_STRNAME_BYTES] = ""; 257 258 req = make_mode(gl->gl_name.ln_sbd, req_state); 259 lkf = make_flags(gl, flags, req); 260 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 261 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 262 if (gl->gl_lksb.sb_lkid) { 263 gfs2_update_request_times(gl); 264 } else { 265 memset(strname, ' ', GDLM_STRNAME_BYTES - 1); 266 strname[GDLM_STRNAME_BYTES - 1] = '\0'; 267 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type); 268 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number); 269 gl->gl_dstamp = ktime_get_real(); 270 } 271 /* 272 * Submit the actual lock request. 273 */ 274 275 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname, 276 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast); 277 } 278 279 static void gdlm_put_lock(struct gfs2_glock *gl) 280 { 281 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 282 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 283 int lvb_needs_unlock = 0; 284 int error; 285 286 if (gl->gl_lksb.sb_lkid == 0) { 287 gfs2_glock_free(gl); 288 return; 289 } 290 291 clear_bit(GLF_BLOCKING, &gl->gl_flags); 292 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 293 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 294 gfs2_update_request_times(gl); 295 296 /* don't want to skip dlm_unlock writing the lvb when lock is ex */ 297 298 if (gl->gl_lksb.sb_lvbptr && (gl->gl_state == LM_ST_EXCLUSIVE)) 299 lvb_needs_unlock = 1; 300 301 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) && 302 !lvb_needs_unlock) { 303 gfs2_glock_free(gl); 304 return; 305 } 306 307 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK, 308 NULL, gl); 309 if (error) { 310 fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n", 311 gl->gl_name.ln_type, 312 (unsigned long long)gl->gl_name.ln_number, error); 313 return; 314 } 315 } 316 317 static void gdlm_cancel(struct gfs2_glock *gl) 318 { 319 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 320 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl); 321 } 322 323 /* 324 * dlm/gfs2 recovery coordination using dlm_recover callbacks 325 * 326 * 1. dlm_controld sees lockspace members change 327 * 2. dlm_controld blocks dlm-kernel locking activity 328 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep) 329 * 4. dlm_controld starts and finishes its own user level recovery 330 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery 331 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot) 332 * 7. dlm_recoverd does its own lock recovery 333 * 8. dlm_recoverd unblocks dlm-kernel locking activity 334 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation) 335 * 10. gfs2_control updates control_lock lvb with new generation and jid bits 336 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none) 337 * 12. gfs2_recover dequeues and recovers journals of failed nodes 338 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result) 339 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals 340 * 15. gfs2_control unblocks normal locking when all journals are recovered 341 * 342 * - failures during recovery 343 * 344 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control 345 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still 346 * recovering for a prior failure. gfs2_control needs a way to detect 347 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using 348 * the recover_block and recover_start values. 349 * 350 * recover_done() provides a new lockspace generation number each time it 351 * is called (step 9). This generation number is saved as recover_start. 352 * When recover_prep() is called, it sets BLOCK_LOCKS and sets 353 * recover_block = recover_start. So, while recover_block is equal to 354 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must 355 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.) 356 * 357 * - more specific gfs2 steps in sequence above 358 * 359 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start 360 * 6. recover_slot records any failed jids (maybe none) 361 * 9. recover_done sets recover_start = new generation number 362 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids 363 * 12. gfs2_recover does journal recoveries for failed jids identified above 364 * 14. gfs2_control clears control_lock lvb bits for recovered jids 365 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured 366 * again) then do nothing, otherwise if recover_start > recover_block 367 * then clear BLOCK_LOCKS. 368 * 369 * - parallel recovery steps across all nodes 370 * 371 * All nodes attempt to update the control_lock lvb with the new generation 372 * number and jid bits, but only the first to get the control_lock EX will 373 * do so; others will see that it's already done (lvb already contains new 374 * generation number.) 375 * 376 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks 377 * . All nodes attempt to set control_lock lvb gen + bits for the new gen 378 * . One node gets control_lock first and writes the lvb, others see it's done 379 * . All nodes attempt to recover jids for which they see control_lock bits set 380 * . One node succeeds for a jid, and that one clears the jid bit in the lvb 381 * . All nodes will eventually see all lvb bits clear and unblock locks 382 * 383 * - is there a problem with clearing an lvb bit that should be set 384 * and missing a journal recovery? 385 * 386 * 1. jid fails 387 * 2. lvb bit set for step 1 388 * 3. jid recovered for step 1 389 * 4. jid taken again (new mount) 390 * 5. jid fails (for step 4) 391 * 6. lvb bit set for step 5 (will already be set) 392 * 7. lvb bit cleared for step 3 393 * 394 * This is not a problem because the failure in step 5 does not 395 * require recovery, because the mount in step 4 could not have 396 * progressed far enough to unblock locks and access the fs. The 397 * control_mount() function waits for all recoveries to be complete 398 * for the latest lockspace generation before ever unblocking locks 399 * and returning. The mount in step 4 waits until the recovery in 400 * step 1 is done. 401 * 402 * - special case of first mounter: first node to mount the fs 403 * 404 * The first node to mount a gfs2 fs needs to check all the journals 405 * and recover any that need recovery before other nodes are allowed 406 * to mount the fs. (Others may begin mounting, but they must wait 407 * for the first mounter to be done before taking locks on the fs 408 * or accessing the fs.) This has two parts: 409 * 410 * 1. The mounted_lock tells a node it's the first to mount the fs. 411 * Each node holds the mounted_lock in PR while it's mounted. 412 * Each node tries to acquire the mounted_lock in EX when it mounts. 413 * If a node is granted the mounted_lock EX it means there are no 414 * other mounted nodes (no PR locks exist), and it is the first mounter. 415 * The mounted_lock is demoted to PR when first recovery is done, so 416 * others will fail to get an EX lock, but will get a PR lock. 417 * 418 * 2. The control_lock blocks others in control_mount() while the first 419 * mounter is doing first mount recovery of all journals. 420 * A mounting node needs to acquire control_lock in EX mode before 421 * it can proceed. The first mounter holds control_lock in EX while doing 422 * the first mount recovery, blocking mounts from other nodes, then demotes 423 * control_lock to NL when it's done (others_may_mount/first_done), 424 * allowing other nodes to continue mounting. 425 * 426 * first mounter: 427 * control_lock EX/NOQUEUE success 428 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters) 429 * set first=1 430 * do first mounter recovery 431 * mounted_lock EX->PR 432 * control_lock EX->NL, write lvb generation 433 * 434 * other mounter: 435 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry) 436 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR) 437 * mounted_lock PR/NOQUEUE success 438 * read lvb generation 439 * control_lock EX->NL 440 * set first=0 441 * 442 * - mount during recovery 443 * 444 * If a node mounts while others are doing recovery (not first mounter), 445 * the mounting node will get its initial recover_done() callback without 446 * having seen any previous failures/callbacks. 447 * 448 * It must wait for all recoveries preceding its mount to be finished 449 * before it unblocks locks. It does this by repeating the "other mounter" 450 * steps above until the lvb generation number is >= its mount generation 451 * number (from initial recover_done) and all lvb bits are clear. 452 * 453 * - control_lock lvb format 454 * 455 * 4 bytes generation number: the latest dlm lockspace generation number 456 * from recover_done callback. Indicates the jid bitmap has been updated 457 * to reflect all slot failures through that generation. 458 * 4 bytes unused. 459 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates 460 * that jid N needs recovery. 461 */ 462 463 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */ 464 465 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen, 466 char *lvb_bits) 467 { 468 __le32 gen; 469 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE); 470 memcpy(&gen, lvb_bits, sizeof(__le32)); 471 *lvb_gen = le32_to_cpu(gen); 472 } 473 474 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen, 475 char *lvb_bits) 476 { 477 __le32 gen; 478 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE); 479 gen = cpu_to_le32(lvb_gen); 480 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32)); 481 } 482 483 static int all_jid_bits_clear(char *lvb) 484 { 485 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0, 486 GDLM_LVB_SIZE - JID_BITMAP_OFFSET); 487 } 488 489 static void sync_wait_cb(void *arg) 490 { 491 struct lm_lockstruct *ls = arg; 492 complete(&ls->ls_sync_wait); 493 } 494 495 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name) 496 { 497 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 498 int error; 499 500 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls); 501 if (error) { 502 fs_err(sdp, "%s lkid %x error %d\n", 503 name, lksb->sb_lkid, error); 504 return error; 505 } 506 507 wait_for_completion(&ls->ls_sync_wait); 508 509 if (lksb->sb_status != -DLM_EUNLOCK) { 510 fs_err(sdp, "%s lkid %x status %d\n", 511 name, lksb->sb_lkid, lksb->sb_status); 512 return -1; 513 } 514 return 0; 515 } 516 517 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags, 518 unsigned int num, struct dlm_lksb *lksb, char *name) 519 { 520 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 521 char strname[GDLM_STRNAME_BYTES]; 522 int error, status; 523 524 memset(strname, 0, GDLM_STRNAME_BYTES); 525 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num); 526 527 error = dlm_lock(ls->ls_dlm, mode, lksb, flags, 528 strname, GDLM_STRNAME_BYTES - 1, 529 0, sync_wait_cb, ls, NULL); 530 if (error) { 531 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n", 532 name, lksb->sb_lkid, flags, mode, error); 533 return error; 534 } 535 536 wait_for_completion(&ls->ls_sync_wait); 537 538 status = lksb->sb_status; 539 540 if (status && status != -EAGAIN) { 541 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n", 542 name, lksb->sb_lkid, flags, mode, status); 543 } 544 545 return status; 546 } 547 548 static int mounted_unlock(struct gfs2_sbd *sdp) 549 { 550 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 551 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock"); 552 } 553 554 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 555 { 556 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 557 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK, 558 &ls->ls_mounted_lksb, "mounted_lock"); 559 } 560 561 static int control_unlock(struct gfs2_sbd *sdp) 562 { 563 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 564 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock"); 565 } 566 567 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 568 { 569 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 570 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK, 571 &ls->ls_control_lksb, "control_lock"); 572 } 573 574 static void gfs2_control_func(struct work_struct *work) 575 { 576 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work); 577 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 578 uint32_t block_gen, start_gen, lvb_gen, flags; 579 int recover_set = 0; 580 int write_lvb = 0; 581 int recover_size; 582 int i, error; 583 584 spin_lock(&ls->ls_recover_spin); 585 /* 586 * No MOUNT_DONE means we're still mounting; control_mount() 587 * will set this flag, after which this thread will take over 588 * all further clearing of BLOCK_LOCKS. 589 * 590 * FIRST_MOUNT means this node is doing first mounter recovery, 591 * for which recovery control is handled by 592 * control_mount()/control_first_done(), not this thread. 593 */ 594 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 595 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 596 spin_unlock(&ls->ls_recover_spin); 597 return; 598 } 599 block_gen = ls->ls_recover_block; 600 start_gen = ls->ls_recover_start; 601 spin_unlock(&ls->ls_recover_spin); 602 603 /* 604 * Equal block_gen and start_gen implies we are between 605 * recover_prep and recover_done callbacks, which means 606 * dlm recovery is in progress and dlm locking is blocked. 607 * There's no point trying to do any work until recover_done. 608 */ 609 610 if (block_gen == start_gen) 611 return; 612 613 /* 614 * Propagate recover_submit[] and recover_result[] to lvb: 615 * dlm_recoverd adds to recover_submit[] jids needing recovery 616 * gfs2_recover adds to recover_result[] journal recovery results 617 * 618 * set lvb bit for jids in recover_submit[] if the lvb has not 619 * yet been updated for the generation of the failure 620 * 621 * clear lvb bit for jids in recover_result[] if the result of 622 * the journal recovery is SUCCESS 623 */ 624 625 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 626 if (error) { 627 fs_err(sdp, "control lock EX error %d\n", error); 628 return; 629 } 630 631 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 632 633 spin_lock(&ls->ls_recover_spin); 634 if (block_gen != ls->ls_recover_block || 635 start_gen != ls->ls_recover_start) { 636 fs_info(sdp, "recover generation %u block1 %u %u\n", 637 start_gen, block_gen, ls->ls_recover_block); 638 spin_unlock(&ls->ls_recover_spin); 639 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 640 return; 641 } 642 643 recover_size = ls->ls_recover_size; 644 645 if (lvb_gen <= start_gen) { 646 /* 647 * Clear lvb bits for jids we've successfully recovered. 648 * Because all nodes attempt to recover failed journals, 649 * a journal can be recovered multiple times successfully 650 * in succession. Only the first will really do recovery, 651 * the others find it clean, but still report a successful 652 * recovery. So, another node may have already recovered 653 * the jid and cleared the lvb bit for it. 654 */ 655 for (i = 0; i < recover_size; i++) { 656 if (ls->ls_recover_result[i] != LM_RD_SUCCESS) 657 continue; 658 659 ls->ls_recover_result[i] = 0; 660 661 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) 662 continue; 663 664 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 665 write_lvb = 1; 666 } 667 } 668 669 if (lvb_gen == start_gen) { 670 /* 671 * Failed slots before start_gen are already set in lvb. 672 */ 673 for (i = 0; i < recover_size; i++) { 674 if (!ls->ls_recover_submit[i]) 675 continue; 676 if (ls->ls_recover_submit[i] < lvb_gen) 677 ls->ls_recover_submit[i] = 0; 678 } 679 } else if (lvb_gen < start_gen) { 680 /* 681 * Failed slots before start_gen are not yet set in lvb. 682 */ 683 for (i = 0; i < recover_size; i++) { 684 if (!ls->ls_recover_submit[i]) 685 continue; 686 if (ls->ls_recover_submit[i] < start_gen) { 687 ls->ls_recover_submit[i] = 0; 688 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 689 } 690 } 691 /* even if there are no bits to set, we need to write the 692 latest generation to the lvb */ 693 write_lvb = 1; 694 } else { 695 /* 696 * we should be getting a recover_done() for lvb_gen soon 697 */ 698 } 699 spin_unlock(&ls->ls_recover_spin); 700 701 if (write_lvb) { 702 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 703 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK; 704 } else { 705 flags = DLM_LKF_CONVERT; 706 } 707 708 error = control_lock(sdp, DLM_LOCK_NL, flags); 709 if (error) { 710 fs_err(sdp, "control lock NL error %d\n", error); 711 return; 712 } 713 714 /* 715 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(), 716 * and clear a jid bit in the lvb if the recovery is a success. 717 * Eventually all journals will be recovered, all jid bits will 718 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS. 719 */ 720 721 for (i = 0; i < recover_size; i++) { 722 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) { 723 fs_info(sdp, "recover generation %u jid %d\n", 724 start_gen, i); 725 gfs2_recover_set(sdp, i); 726 recover_set++; 727 } 728 } 729 if (recover_set) 730 return; 731 732 /* 733 * No more jid bits set in lvb, all recovery is done, unblock locks 734 * (unless a new recover_prep callback has occured blocking locks 735 * again while working above) 736 */ 737 738 spin_lock(&ls->ls_recover_spin); 739 if (ls->ls_recover_block == block_gen && 740 ls->ls_recover_start == start_gen) { 741 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 742 spin_unlock(&ls->ls_recover_spin); 743 fs_info(sdp, "recover generation %u done\n", start_gen); 744 gfs2_glock_thaw(sdp); 745 } else { 746 fs_info(sdp, "recover generation %u block2 %u %u\n", 747 start_gen, block_gen, ls->ls_recover_block); 748 spin_unlock(&ls->ls_recover_spin); 749 } 750 } 751 752 static int control_mount(struct gfs2_sbd *sdp) 753 { 754 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 755 uint32_t start_gen, block_gen, mount_gen, lvb_gen; 756 int mounted_mode; 757 int retries = 0; 758 int error; 759 760 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb)); 761 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb)); 762 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE); 763 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb; 764 init_completion(&ls->ls_sync_wait); 765 766 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 767 768 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK); 769 if (error) { 770 fs_err(sdp, "control_mount control_lock NL error %d\n", error); 771 return error; 772 } 773 774 error = mounted_lock(sdp, DLM_LOCK_NL, 0); 775 if (error) { 776 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error); 777 control_unlock(sdp); 778 return error; 779 } 780 mounted_mode = DLM_LOCK_NL; 781 782 restart: 783 if (retries++ && signal_pending(current)) { 784 error = -EINTR; 785 goto fail; 786 } 787 788 /* 789 * We always start with both locks in NL. control_lock is 790 * demoted to NL below so we don't need to do it here. 791 */ 792 793 if (mounted_mode != DLM_LOCK_NL) { 794 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 795 if (error) 796 goto fail; 797 mounted_mode = DLM_LOCK_NL; 798 } 799 800 /* 801 * Other nodes need to do some work in dlm recovery and gfs2_control 802 * before the recover_done and control_lock will be ready for us below. 803 * A delay here is not required but often avoids having to retry. 804 */ 805 806 msleep_interruptible(500); 807 808 /* 809 * Acquire control_lock in EX and mounted_lock in either EX or PR. 810 * control_lock lvb keeps track of any pending journal recoveries. 811 * mounted_lock indicates if any other nodes have the fs mounted. 812 */ 813 814 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK); 815 if (error == -EAGAIN) { 816 goto restart; 817 } else if (error) { 818 fs_err(sdp, "control_mount control_lock EX error %d\n", error); 819 goto fail; 820 } 821 822 /** 823 * If we're a spectator, we don't want to take the lock in EX because 824 * we cannot do the first-mount responsibility it implies: recovery. 825 */ 826 if (sdp->sd_args.ar_spectator) 827 goto locks_done; 828 829 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 830 if (!error) { 831 mounted_mode = DLM_LOCK_EX; 832 goto locks_done; 833 } else if (error != -EAGAIN) { 834 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error); 835 goto fail; 836 } 837 838 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 839 if (!error) { 840 mounted_mode = DLM_LOCK_PR; 841 goto locks_done; 842 } else { 843 /* not even -EAGAIN should happen here */ 844 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error); 845 goto fail; 846 } 847 848 locks_done: 849 /* 850 * If we got both locks above in EX, then we're the first mounter. 851 * If not, then we need to wait for the control_lock lvb to be 852 * updated by other mounted nodes to reflect our mount generation. 853 * 854 * In simple first mounter cases, first mounter will see zero lvb_gen, 855 * but in cases where all existing nodes leave/fail before mounting 856 * nodes finish control_mount, then all nodes will be mounting and 857 * lvb_gen will be non-zero. 858 */ 859 860 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 861 862 if (lvb_gen == 0xFFFFFFFF) { 863 /* special value to force mount attempts to fail */ 864 fs_err(sdp, "control_mount control_lock disabled\n"); 865 error = -EINVAL; 866 goto fail; 867 } 868 869 if (mounted_mode == DLM_LOCK_EX) { 870 /* first mounter, keep both EX while doing first recovery */ 871 spin_lock(&ls->ls_recover_spin); 872 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 873 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 874 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 875 spin_unlock(&ls->ls_recover_spin); 876 fs_info(sdp, "first mounter control generation %u\n", lvb_gen); 877 return 0; 878 } 879 880 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 881 if (error) 882 goto fail; 883 884 /* 885 * We are not first mounter, now we need to wait for the control_lock 886 * lvb generation to be >= the generation from our first recover_done 887 * and all lvb bits to be clear (no pending journal recoveries.) 888 */ 889 890 if (!all_jid_bits_clear(ls->ls_lvb_bits)) { 891 /* journals need recovery, wait until all are clear */ 892 fs_info(sdp, "control_mount wait for journal recovery\n"); 893 goto restart; 894 } 895 896 spin_lock(&ls->ls_recover_spin); 897 block_gen = ls->ls_recover_block; 898 start_gen = ls->ls_recover_start; 899 mount_gen = ls->ls_recover_mount; 900 901 if (lvb_gen < mount_gen) { 902 /* wait for mounted nodes to update control_lock lvb to our 903 generation, which might include new recovery bits set */ 904 if (sdp->sd_args.ar_spectator) { 905 fs_info(sdp, "Recovery is required. Waiting for a " 906 "non-spectator to mount.\n"); 907 msleep_interruptible(1000); 908 } else { 909 fs_info(sdp, "control_mount wait1 block %u start %u " 910 "mount %u lvb %u flags %lx\n", block_gen, 911 start_gen, mount_gen, lvb_gen, 912 ls->ls_recover_flags); 913 } 914 spin_unlock(&ls->ls_recover_spin); 915 goto restart; 916 } 917 918 if (lvb_gen != start_gen) { 919 /* wait for mounted nodes to update control_lock lvb to the 920 latest recovery generation */ 921 fs_info(sdp, "control_mount wait2 block %u start %u mount %u " 922 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 923 lvb_gen, ls->ls_recover_flags); 924 spin_unlock(&ls->ls_recover_spin); 925 goto restart; 926 } 927 928 if (block_gen == start_gen) { 929 /* dlm recovery in progress, wait for it to finish */ 930 fs_info(sdp, "control_mount wait3 block %u start %u mount %u " 931 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 932 lvb_gen, ls->ls_recover_flags); 933 spin_unlock(&ls->ls_recover_spin); 934 goto restart; 935 } 936 937 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 938 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 939 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 940 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 941 spin_unlock(&ls->ls_recover_spin); 942 return 0; 943 944 fail: 945 mounted_unlock(sdp); 946 control_unlock(sdp); 947 return error; 948 } 949 950 static int control_first_done(struct gfs2_sbd *sdp) 951 { 952 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 953 uint32_t start_gen, block_gen; 954 int error; 955 956 restart: 957 spin_lock(&ls->ls_recover_spin); 958 start_gen = ls->ls_recover_start; 959 block_gen = ls->ls_recover_block; 960 961 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) || 962 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 963 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 964 /* sanity check, should not happen */ 965 fs_err(sdp, "control_first_done start %u block %u flags %lx\n", 966 start_gen, block_gen, ls->ls_recover_flags); 967 spin_unlock(&ls->ls_recover_spin); 968 control_unlock(sdp); 969 return -1; 970 } 971 972 if (start_gen == block_gen) { 973 /* 974 * Wait for the end of a dlm recovery cycle to switch from 975 * first mounter recovery. We can ignore any recover_slot 976 * callbacks between the recover_prep and next recover_done 977 * because we are still the first mounter and any failed nodes 978 * have not fully mounted, so they don't need recovery. 979 */ 980 spin_unlock(&ls->ls_recover_spin); 981 fs_info(sdp, "control_first_done wait gen %u\n", start_gen); 982 983 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY, 984 TASK_UNINTERRUPTIBLE); 985 goto restart; 986 } 987 988 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 989 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags); 990 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 991 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 992 spin_unlock(&ls->ls_recover_spin); 993 994 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE); 995 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 996 997 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT); 998 if (error) 999 fs_err(sdp, "control_first_done mounted PR error %d\n", error); 1000 1001 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 1002 if (error) 1003 fs_err(sdp, "control_first_done control NL error %d\n", error); 1004 1005 return error; 1006 } 1007 1008 /* 1009 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC) 1010 * to accomodate the largest slot number. (NB dlm slot numbers start at 1, 1011 * gfs2 jids start at 0, so jid = slot - 1) 1012 */ 1013 1014 #define RECOVER_SIZE_INC 16 1015 1016 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots, 1017 int num_slots) 1018 { 1019 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1020 uint32_t *submit = NULL; 1021 uint32_t *result = NULL; 1022 uint32_t old_size, new_size; 1023 int i, max_jid; 1024 1025 if (!ls->ls_lvb_bits) { 1026 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS); 1027 if (!ls->ls_lvb_bits) 1028 return -ENOMEM; 1029 } 1030 1031 max_jid = 0; 1032 for (i = 0; i < num_slots; i++) { 1033 if (max_jid < slots[i].slot - 1) 1034 max_jid = slots[i].slot - 1; 1035 } 1036 1037 old_size = ls->ls_recover_size; 1038 new_size = old_size; 1039 while (new_size < max_jid + 1) 1040 new_size += RECOVER_SIZE_INC; 1041 if (new_size == old_size) 1042 return 0; 1043 1044 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1045 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1046 if (!submit || !result) { 1047 kfree(submit); 1048 kfree(result); 1049 return -ENOMEM; 1050 } 1051 1052 spin_lock(&ls->ls_recover_spin); 1053 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t)); 1054 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t)); 1055 kfree(ls->ls_recover_submit); 1056 kfree(ls->ls_recover_result); 1057 ls->ls_recover_submit = submit; 1058 ls->ls_recover_result = result; 1059 ls->ls_recover_size = new_size; 1060 spin_unlock(&ls->ls_recover_spin); 1061 return 0; 1062 } 1063 1064 static void free_recover_size(struct lm_lockstruct *ls) 1065 { 1066 kfree(ls->ls_lvb_bits); 1067 kfree(ls->ls_recover_submit); 1068 kfree(ls->ls_recover_result); 1069 ls->ls_recover_submit = NULL; 1070 ls->ls_recover_result = NULL; 1071 ls->ls_recover_size = 0; 1072 ls->ls_lvb_bits = NULL; 1073 } 1074 1075 /* dlm calls before it does lock recovery */ 1076 1077 static void gdlm_recover_prep(void *arg) 1078 { 1079 struct gfs2_sbd *sdp = arg; 1080 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1081 1082 spin_lock(&ls->ls_recover_spin); 1083 ls->ls_recover_block = ls->ls_recover_start; 1084 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1085 1086 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 1087 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1088 spin_unlock(&ls->ls_recover_spin); 1089 return; 1090 } 1091 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 1092 spin_unlock(&ls->ls_recover_spin); 1093 } 1094 1095 /* dlm calls after recover_prep has been completed on all lockspace members; 1096 identifies slot/jid of failed member */ 1097 1098 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot) 1099 { 1100 struct gfs2_sbd *sdp = arg; 1101 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1102 int jid = slot->slot - 1; 1103 1104 spin_lock(&ls->ls_recover_spin); 1105 if (ls->ls_recover_size < jid + 1) { 1106 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n", 1107 jid, ls->ls_recover_block, ls->ls_recover_size); 1108 spin_unlock(&ls->ls_recover_spin); 1109 return; 1110 } 1111 1112 if (ls->ls_recover_submit[jid]) { 1113 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n", 1114 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]); 1115 } 1116 ls->ls_recover_submit[jid] = ls->ls_recover_block; 1117 spin_unlock(&ls->ls_recover_spin); 1118 } 1119 1120 /* dlm calls after recover_slot and after it completes lock recovery */ 1121 1122 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots, 1123 int our_slot, uint32_t generation) 1124 { 1125 struct gfs2_sbd *sdp = arg; 1126 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1127 1128 /* ensure the ls jid arrays are large enough */ 1129 set_recover_size(sdp, slots, num_slots); 1130 1131 spin_lock(&ls->ls_recover_spin); 1132 ls->ls_recover_start = generation; 1133 1134 if (!ls->ls_recover_mount) { 1135 ls->ls_recover_mount = generation; 1136 ls->ls_jid = our_slot - 1; 1137 } 1138 1139 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1140 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0); 1141 1142 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1143 smp_mb__after_atomic(); 1144 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY); 1145 spin_unlock(&ls->ls_recover_spin); 1146 } 1147 1148 /* gfs2_recover thread has a journal recovery result */ 1149 1150 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid, 1151 unsigned int result) 1152 { 1153 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1154 1155 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1156 return; 1157 1158 /* don't care about the recovery of own journal during mount */ 1159 if (jid == ls->ls_jid) 1160 return; 1161 1162 spin_lock(&ls->ls_recover_spin); 1163 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1164 spin_unlock(&ls->ls_recover_spin); 1165 return; 1166 } 1167 if (ls->ls_recover_size < jid + 1) { 1168 fs_err(sdp, "recovery_result jid %d short size %d\n", 1169 jid, ls->ls_recover_size); 1170 spin_unlock(&ls->ls_recover_spin); 1171 return; 1172 } 1173 1174 fs_info(sdp, "recover jid %d result %s\n", jid, 1175 result == LM_RD_GAVEUP ? "busy" : "success"); 1176 1177 ls->ls_recover_result[jid] = result; 1178 1179 /* GAVEUP means another node is recovering the journal; delay our 1180 next attempt to recover it, to give the other node a chance to 1181 finish before trying again */ 1182 1183 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1184 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 1185 result == LM_RD_GAVEUP ? HZ : 0); 1186 spin_unlock(&ls->ls_recover_spin); 1187 } 1188 1189 static const struct dlm_lockspace_ops gdlm_lockspace_ops = { 1190 .recover_prep = gdlm_recover_prep, 1191 .recover_slot = gdlm_recover_slot, 1192 .recover_done = gdlm_recover_done, 1193 }; 1194 1195 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table) 1196 { 1197 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1198 char cluster[GFS2_LOCKNAME_LEN]; 1199 const char *fsname; 1200 uint32_t flags; 1201 int error, ops_result; 1202 1203 /* 1204 * initialize everything 1205 */ 1206 1207 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func); 1208 spin_lock_init(&ls->ls_recover_spin); 1209 ls->ls_recover_flags = 0; 1210 ls->ls_recover_mount = 0; 1211 ls->ls_recover_start = 0; 1212 ls->ls_recover_block = 0; 1213 ls->ls_recover_size = 0; 1214 ls->ls_recover_submit = NULL; 1215 ls->ls_recover_result = NULL; 1216 ls->ls_lvb_bits = NULL; 1217 1218 error = set_recover_size(sdp, NULL, 0); 1219 if (error) 1220 goto fail; 1221 1222 /* 1223 * prepare dlm_new_lockspace args 1224 */ 1225 1226 fsname = strchr(table, ':'); 1227 if (!fsname) { 1228 fs_info(sdp, "no fsname found\n"); 1229 error = -EINVAL; 1230 goto fail_free; 1231 } 1232 memset(cluster, 0, sizeof(cluster)); 1233 memcpy(cluster, table, strlen(table) - strlen(fsname)); 1234 fsname++; 1235 1236 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL; 1237 1238 /* 1239 * create/join lockspace 1240 */ 1241 1242 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE, 1243 &gdlm_lockspace_ops, sdp, &ops_result, 1244 &ls->ls_dlm); 1245 if (error) { 1246 fs_err(sdp, "dlm_new_lockspace error %d\n", error); 1247 goto fail_free; 1248 } 1249 1250 if (ops_result < 0) { 1251 /* 1252 * dlm does not support ops callbacks, 1253 * old dlm_controld/gfs_controld are used, try without ops. 1254 */ 1255 fs_info(sdp, "dlm lockspace ops not used\n"); 1256 free_recover_size(ls); 1257 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags); 1258 return 0; 1259 } 1260 1261 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) { 1262 fs_err(sdp, "dlm lockspace ops disallow jid preset\n"); 1263 error = -EINVAL; 1264 goto fail_release; 1265 } 1266 1267 /* 1268 * control_mount() uses control_lock to determine first mounter, 1269 * and for later mounts, waits for any recoveries to be cleared. 1270 */ 1271 1272 error = control_mount(sdp); 1273 if (error) { 1274 fs_err(sdp, "mount control error %d\n", error); 1275 goto fail_release; 1276 } 1277 1278 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1279 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags); 1280 smp_mb__after_atomic(); 1281 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID); 1282 return 0; 1283 1284 fail_release: 1285 dlm_release_lockspace(ls->ls_dlm, 2); 1286 fail_free: 1287 free_recover_size(ls); 1288 fail: 1289 return error; 1290 } 1291 1292 static void gdlm_first_done(struct gfs2_sbd *sdp) 1293 { 1294 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1295 int error; 1296 1297 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1298 return; 1299 1300 error = control_first_done(sdp); 1301 if (error) 1302 fs_err(sdp, "mount first_done error %d\n", error); 1303 } 1304 1305 static void gdlm_unmount(struct gfs2_sbd *sdp) 1306 { 1307 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1308 1309 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1310 goto release; 1311 1312 /* wait for gfs2_control_wq to be done with this mount */ 1313 1314 spin_lock(&ls->ls_recover_spin); 1315 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags); 1316 spin_unlock(&ls->ls_recover_spin); 1317 flush_delayed_work(&sdp->sd_control_work); 1318 1319 /* mounted_lock and control_lock will be purged in dlm recovery */ 1320 release: 1321 if (ls->ls_dlm) { 1322 dlm_release_lockspace(ls->ls_dlm, 2); 1323 ls->ls_dlm = NULL; 1324 } 1325 1326 free_recover_size(ls); 1327 } 1328 1329 static const match_table_t dlm_tokens = { 1330 { Opt_jid, "jid=%d"}, 1331 { Opt_id, "id=%d"}, 1332 { Opt_first, "first=%d"}, 1333 { Opt_nodir, "nodir=%d"}, 1334 { Opt_err, NULL }, 1335 }; 1336 1337 const struct lm_lockops gfs2_dlm_ops = { 1338 .lm_proto_name = "lock_dlm", 1339 .lm_mount = gdlm_mount, 1340 .lm_first_done = gdlm_first_done, 1341 .lm_recovery_result = gdlm_recovery_result, 1342 .lm_unmount = gdlm_unmount, 1343 .lm_put_lock = gdlm_put_lock, 1344 .lm_lock = gdlm_lock, 1345 .lm_cancel = gdlm_cancel, 1346 .lm_tokens = &dlm_tokens, 1347 }; 1348 1349