1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright 2004-2011 Red Hat, Inc. 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/fs.h> 10 #include <linux/dlm.h> 11 #include <linux/slab.h> 12 #include <linux/types.h> 13 #include <linux/delay.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/sched/signal.h> 16 17 #include "incore.h" 18 #include "glock.h" 19 #include "glops.h" 20 #include "recovery.h" 21 #include "util.h" 22 #include "sys.h" 23 #include "trace_gfs2.h" 24 25 /** 26 * gfs2_update_stats - Update time based stats 27 * @mv: Pointer to mean/variance structure to update 28 * @sample: New data to include 29 * 30 * @delta is the difference between the current rtt sample and the 31 * running average srtt. We add 1/8 of that to the srtt in order to 32 * update the current srtt estimate. The variance estimate is a bit 33 * more complicated. We subtract the current variance estimate from 34 * the abs value of the @delta and add 1/4 of that to the running 35 * total. That's equivalent to 3/4 of the current variance 36 * estimate plus 1/4 of the abs of @delta. 37 * 38 * Note that the index points at the array entry containing the smoothed 39 * mean value, and the variance is always in the following entry 40 * 41 * Reference: TCP/IP Illustrated, vol 2, p. 831,832 42 * All times are in units of integer nanoseconds. Unlike the TCP/IP case, 43 * they are not scaled fixed point. 44 */ 45 46 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index, 47 s64 sample) 48 { 49 s64 delta = sample - s->stats[index]; 50 s->stats[index] += (delta >> 3); 51 index++; 52 s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2; 53 } 54 55 /** 56 * gfs2_update_reply_times - Update locking statistics 57 * @gl: The glock to update 58 * 59 * This assumes that gl->gl_dstamp has been set earlier. 60 * 61 * The rtt (lock round trip time) is an estimate of the time 62 * taken to perform a dlm lock request. We update it on each 63 * reply from the dlm. 64 * 65 * The blocking flag is set on the glock for all dlm requests 66 * which may potentially block due to lock requests from other nodes. 67 * DLM requests where the current lock state is exclusive, the 68 * requested state is null (or unlocked) or where the TRY or 69 * TRY_1CB flags are set are classified as non-blocking. All 70 * other DLM requests are counted as (potentially) blocking. 71 */ 72 static inline void gfs2_update_reply_times(struct gfs2_glock *gl) 73 { 74 struct gfs2_pcpu_lkstats *lks; 75 const unsigned gltype = gl->gl_name.ln_type; 76 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ? 77 GFS2_LKS_SRTTB : GFS2_LKS_SRTT; 78 s64 rtt; 79 80 preempt_disable(); 81 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp)); 82 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 83 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */ 84 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */ 85 preempt_enable(); 86 87 trace_gfs2_glock_lock_time(gl, rtt); 88 } 89 90 /** 91 * gfs2_update_request_times - Update locking statistics 92 * @gl: The glock to update 93 * 94 * The irt (lock inter-request times) measures the average time 95 * between requests to the dlm. It is updated immediately before 96 * each dlm call. 97 */ 98 99 static inline void gfs2_update_request_times(struct gfs2_glock *gl) 100 { 101 struct gfs2_pcpu_lkstats *lks; 102 const unsigned gltype = gl->gl_name.ln_type; 103 ktime_t dstamp; 104 s64 irt; 105 106 preempt_disable(); 107 dstamp = gl->gl_dstamp; 108 gl->gl_dstamp = ktime_get_real(); 109 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp)); 110 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 111 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */ 112 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */ 113 preempt_enable(); 114 } 115 116 static void gdlm_ast(void *arg) 117 { 118 struct gfs2_glock *gl = arg; 119 unsigned ret = gl->gl_state; 120 121 gfs2_update_reply_times(gl); 122 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED); 123 124 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr) 125 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE); 126 127 switch (gl->gl_lksb.sb_status) { 128 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */ 129 if (gl->gl_ops->go_free) 130 gl->gl_ops->go_free(gl); 131 gfs2_glock_free(gl); 132 return; 133 case -DLM_ECANCEL: /* Cancel while getting lock */ 134 ret |= LM_OUT_CANCELED; 135 goto out; 136 case -EAGAIN: /* Try lock fails */ 137 case -EDEADLK: /* Deadlock detected */ 138 goto out; 139 case -ETIMEDOUT: /* Canceled due to timeout */ 140 ret |= LM_OUT_ERROR; 141 goto out; 142 case 0: /* Success */ 143 break; 144 default: /* Something unexpected */ 145 BUG(); 146 } 147 148 ret = gl->gl_req; 149 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) { 150 if (gl->gl_req == LM_ST_SHARED) 151 ret = LM_ST_DEFERRED; 152 else if (gl->gl_req == LM_ST_DEFERRED) 153 ret = LM_ST_SHARED; 154 else 155 BUG(); 156 } 157 158 set_bit(GLF_INITIAL, &gl->gl_flags); 159 gfs2_glock_complete(gl, ret); 160 return; 161 out: 162 if (!test_bit(GLF_INITIAL, &gl->gl_flags)) 163 gl->gl_lksb.sb_lkid = 0; 164 gfs2_glock_complete(gl, ret); 165 } 166 167 static void gdlm_bast(void *arg, int mode) 168 { 169 struct gfs2_glock *gl = arg; 170 171 switch (mode) { 172 case DLM_LOCK_EX: 173 gfs2_glock_cb(gl, LM_ST_UNLOCKED); 174 break; 175 case DLM_LOCK_CW: 176 gfs2_glock_cb(gl, LM_ST_DEFERRED); 177 break; 178 case DLM_LOCK_PR: 179 gfs2_glock_cb(gl, LM_ST_SHARED); 180 break; 181 default: 182 fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode); 183 BUG(); 184 } 185 } 186 187 /* convert gfs lock-state to dlm lock-mode */ 188 189 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate) 190 { 191 switch (lmstate) { 192 case LM_ST_UNLOCKED: 193 return DLM_LOCK_NL; 194 case LM_ST_EXCLUSIVE: 195 return DLM_LOCK_EX; 196 case LM_ST_DEFERRED: 197 return DLM_LOCK_CW; 198 case LM_ST_SHARED: 199 return DLM_LOCK_PR; 200 } 201 fs_err(sdp, "unknown LM state %d\n", lmstate); 202 BUG(); 203 return -1; 204 } 205 206 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags, 207 const int req) 208 { 209 u32 lkf = 0; 210 211 if (gl->gl_lksb.sb_lvbptr) 212 lkf |= DLM_LKF_VALBLK; 213 214 if (gfs_flags & LM_FLAG_TRY) 215 lkf |= DLM_LKF_NOQUEUE; 216 217 if (gfs_flags & LM_FLAG_TRY_1CB) { 218 lkf |= DLM_LKF_NOQUEUE; 219 lkf |= DLM_LKF_NOQUEUEBAST; 220 } 221 222 if (gfs_flags & LM_FLAG_PRIORITY) { 223 lkf |= DLM_LKF_NOORDER; 224 lkf |= DLM_LKF_HEADQUE; 225 } 226 227 if (gfs_flags & LM_FLAG_ANY) { 228 if (req == DLM_LOCK_PR) 229 lkf |= DLM_LKF_ALTCW; 230 else if (req == DLM_LOCK_CW) 231 lkf |= DLM_LKF_ALTPR; 232 else 233 BUG(); 234 } 235 236 if (gl->gl_lksb.sb_lkid != 0) { 237 lkf |= DLM_LKF_CONVERT; 238 if (test_bit(GLF_BLOCKING, &gl->gl_flags)) 239 lkf |= DLM_LKF_QUECVT; 240 } 241 242 return lkf; 243 } 244 245 static void gfs2_reverse_hex(char *c, u64 value) 246 { 247 *c = '0'; 248 while (value) { 249 *c-- = hex_asc[value & 0x0f]; 250 value >>= 4; 251 } 252 } 253 254 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state, 255 unsigned int flags) 256 { 257 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 258 int req; 259 u32 lkf; 260 char strname[GDLM_STRNAME_BYTES] = ""; 261 262 req = make_mode(gl->gl_name.ln_sbd, req_state); 263 lkf = make_flags(gl, flags, req); 264 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 265 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 266 if (gl->gl_lksb.sb_lkid) { 267 gfs2_update_request_times(gl); 268 } else { 269 memset(strname, ' ', GDLM_STRNAME_BYTES - 1); 270 strname[GDLM_STRNAME_BYTES - 1] = '\0'; 271 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type); 272 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number); 273 gl->gl_dstamp = ktime_get_real(); 274 } 275 /* 276 * Submit the actual lock request. 277 */ 278 279 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname, 280 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast); 281 } 282 283 static void gdlm_put_lock(struct gfs2_glock *gl) 284 { 285 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 286 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 287 int error; 288 289 if (gl->gl_lksb.sb_lkid == 0) { 290 gfs2_glock_free(gl); 291 return; 292 } 293 294 clear_bit(GLF_BLOCKING, &gl->gl_flags); 295 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 296 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 297 gfs2_update_request_times(gl); 298 299 /* don't want to skip dlm_unlock writing the lvb when lock has one */ 300 301 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) && 302 !gl->gl_lksb.sb_lvbptr) { 303 gfs2_glock_free(gl); 304 return; 305 } 306 307 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK, 308 NULL, gl); 309 if (error) { 310 fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n", 311 gl->gl_name.ln_type, 312 (unsigned long long)gl->gl_name.ln_number, error); 313 return; 314 } 315 } 316 317 static void gdlm_cancel(struct gfs2_glock *gl) 318 { 319 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 320 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl); 321 } 322 323 /* 324 * dlm/gfs2 recovery coordination using dlm_recover callbacks 325 * 326 * 0. gfs2 checks for another cluster node withdraw, needing journal replay 327 * 1. dlm_controld sees lockspace members change 328 * 2. dlm_controld blocks dlm-kernel locking activity 329 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep) 330 * 4. dlm_controld starts and finishes its own user level recovery 331 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery 332 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot) 333 * 7. dlm_recoverd does its own lock recovery 334 * 8. dlm_recoverd unblocks dlm-kernel locking activity 335 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation) 336 * 10. gfs2_control updates control_lock lvb with new generation and jid bits 337 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none) 338 * 12. gfs2_recover dequeues and recovers journals of failed nodes 339 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result) 340 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals 341 * 15. gfs2_control unblocks normal locking when all journals are recovered 342 * 343 * - failures during recovery 344 * 345 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control 346 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still 347 * recovering for a prior failure. gfs2_control needs a way to detect 348 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using 349 * the recover_block and recover_start values. 350 * 351 * recover_done() provides a new lockspace generation number each time it 352 * is called (step 9). This generation number is saved as recover_start. 353 * When recover_prep() is called, it sets BLOCK_LOCKS and sets 354 * recover_block = recover_start. So, while recover_block is equal to 355 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must 356 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.) 357 * 358 * - more specific gfs2 steps in sequence above 359 * 360 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start 361 * 6. recover_slot records any failed jids (maybe none) 362 * 9. recover_done sets recover_start = new generation number 363 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids 364 * 12. gfs2_recover does journal recoveries for failed jids identified above 365 * 14. gfs2_control clears control_lock lvb bits for recovered jids 366 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured 367 * again) then do nothing, otherwise if recover_start > recover_block 368 * then clear BLOCK_LOCKS. 369 * 370 * - parallel recovery steps across all nodes 371 * 372 * All nodes attempt to update the control_lock lvb with the new generation 373 * number and jid bits, but only the first to get the control_lock EX will 374 * do so; others will see that it's already done (lvb already contains new 375 * generation number.) 376 * 377 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks 378 * . All nodes attempt to set control_lock lvb gen + bits for the new gen 379 * . One node gets control_lock first and writes the lvb, others see it's done 380 * . All nodes attempt to recover jids for which they see control_lock bits set 381 * . One node succeeds for a jid, and that one clears the jid bit in the lvb 382 * . All nodes will eventually see all lvb bits clear and unblock locks 383 * 384 * - is there a problem with clearing an lvb bit that should be set 385 * and missing a journal recovery? 386 * 387 * 1. jid fails 388 * 2. lvb bit set for step 1 389 * 3. jid recovered for step 1 390 * 4. jid taken again (new mount) 391 * 5. jid fails (for step 4) 392 * 6. lvb bit set for step 5 (will already be set) 393 * 7. lvb bit cleared for step 3 394 * 395 * This is not a problem because the failure in step 5 does not 396 * require recovery, because the mount in step 4 could not have 397 * progressed far enough to unblock locks and access the fs. The 398 * control_mount() function waits for all recoveries to be complete 399 * for the latest lockspace generation before ever unblocking locks 400 * and returning. The mount in step 4 waits until the recovery in 401 * step 1 is done. 402 * 403 * - special case of first mounter: first node to mount the fs 404 * 405 * The first node to mount a gfs2 fs needs to check all the journals 406 * and recover any that need recovery before other nodes are allowed 407 * to mount the fs. (Others may begin mounting, but they must wait 408 * for the first mounter to be done before taking locks on the fs 409 * or accessing the fs.) This has two parts: 410 * 411 * 1. The mounted_lock tells a node it's the first to mount the fs. 412 * Each node holds the mounted_lock in PR while it's mounted. 413 * Each node tries to acquire the mounted_lock in EX when it mounts. 414 * If a node is granted the mounted_lock EX it means there are no 415 * other mounted nodes (no PR locks exist), and it is the first mounter. 416 * The mounted_lock is demoted to PR when first recovery is done, so 417 * others will fail to get an EX lock, but will get a PR lock. 418 * 419 * 2. The control_lock blocks others in control_mount() while the first 420 * mounter is doing first mount recovery of all journals. 421 * A mounting node needs to acquire control_lock in EX mode before 422 * it can proceed. The first mounter holds control_lock in EX while doing 423 * the first mount recovery, blocking mounts from other nodes, then demotes 424 * control_lock to NL when it's done (others_may_mount/first_done), 425 * allowing other nodes to continue mounting. 426 * 427 * first mounter: 428 * control_lock EX/NOQUEUE success 429 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters) 430 * set first=1 431 * do first mounter recovery 432 * mounted_lock EX->PR 433 * control_lock EX->NL, write lvb generation 434 * 435 * other mounter: 436 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry) 437 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR) 438 * mounted_lock PR/NOQUEUE success 439 * read lvb generation 440 * control_lock EX->NL 441 * set first=0 442 * 443 * - mount during recovery 444 * 445 * If a node mounts while others are doing recovery (not first mounter), 446 * the mounting node will get its initial recover_done() callback without 447 * having seen any previous failures/callbacks. 448 * 449 * It must wait for all recoveries preceding its mount to be finished 450 * before it unblocks locks. It does this by repeating the "other mounter" 451 * steps above until the lvb generation number is >= its mount generation 452 * number (from initial recover_done) and all lvb bits are clear. 453 * 454 * - control_lock lvb format 455 * 456 * 4 bytes generation number: the latest dlm lockspace generation number 457 * from recover_done callback. Indicates the jid bitmap has been updated 458 * to reflect all slot failures through that generation. 459 * 4 bytes unused. 460 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates 461 * that jid N needs recovery. 462 */ 463 464 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */ 465 466 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen, 467 char *lvb_bits) 468 { 469 __le32 gen; 470 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE); 471 memcpy(&gen, lvb_bits, sizeof(__le32)); 472 *lvb_gen = le32_to_cpu(gen); 473 } 474 475 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen, 476 char *lvb_bits) 477 { 478 __le32 gen; 479 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE); 480 gen = cpu_to_le32(lvb_gen); 481 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32)); 482 } 483 484 static int all_jid_bits_clear(char *lvb) 485 { 486 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0, 487 GDLM_LVB_SIZE - JID_BITMAP_OFFSET); 488 } 489 490 static void sync_wait_cb(void *arg) 491 { 492 struct lm_lockstruct *ls = arg; 493 complete(&ls->ls_sync_wait); 494 } 495 496 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name) 497 { 498 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 499 int error; 500 501 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls); 502 if (error) { 503 fs_err(sdp, "%s lkid %x error %d\n", 504 name, lksb->sb_lkid, error); 505 return error; 506 } 507 508 wait_for_completion(&ls->ls_sync_wait); 509 510 if (lksb->sb_status != -DLM_EUNLOCK) { 511 fs_err(sdp, "%s lkid %x status %d\n", 512 name, lksb->sb_lkid, lksb->sb_status); 513 return -1; 514 } 515 return 0; 516 } 517 518 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags, 519 unsigned int num, struct dlm_lksb *lksb, char *name) 520 { 521 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 522 char strname[GDLM_STRNAME_BYTES]; 523 int error, status; 524 525 memset(strname, 0, GDLM_STRNAME_BYTES); 526 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num); 527 528 error = dlm_lock(ls->ls_dlm, mode, lksb, flags, 529 strname, GDLM_STRNAME_BYTES - 1, 530 0, sync_wait_cb, ls, NULL); 531 if (error) { 532 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n", 533 name, lksb->sb_lkid, flags, mode, error); 534 return error; 535 } 536 537 wait_for_completion(&ls->ls_sync_wait); 538 539 status = lksb->sb_status; 540 541 if (status && status != -EAGAIN) { 542 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n", 543 name, lksb->sb_lkid, flags, mode, status); 544 } 545 546 return status; 547 } 548 549 static int mounted_unlock(struct gfs2_sbd *sdp) 550 { 551 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 552 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock"); 553 } 554 555 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 556 { 557 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 558 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK, 559 &ls->ls_mounted_lksb, "mounted_lock"); 560 } 561 562 static int control_unlock(struct gfs2_sbd *sdp) 563 { 564 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 565 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock"); 566 } 567 568 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 569 { 570 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 571 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK, 572 &ls->ls_control_lksb, "control_lock"); 573 } 574 575 /** 576 * remote_withdraw - react to a node withdrawing from the file system 577 * @sdp: The superblock 578 */ 579 static void remote_withdraw(struct gfs2_sbd *sdp) 580 { 581 struct gfs2_jdesc *jd; 582 int ret = 0, count = 0; 583 584 list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) { 585 if (jd->jd_jid == sdp->sd_lockstruct.ls_jid) 586 continue; 587 ret = gfs2_recover_journal(jd, true); 588 if (ret) 589 break; 590 count++; 591 } 592 593 /* Now drop the additional reference we acquired */ 594 fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret); 595 } 596 597 static void gfs2_control_func(struct work_struct *work) 598 { 599 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work); 600 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 601 uint32_t block_gen, start_gen, lvb_gen, flags; 602 int recover_set = 0; 603 int write_lvb = 0; 604 int recover_size; 605 int i, error; 606 607 /* First check for other nodes that may have done a withdraw. */ 608 if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) { 609 remote_withdraw(sdp); 610 clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags); 611 return; 612 } 613 614 spin_lock(&ls->ls_recover_spin); 615 /* 616 * No MOUNT_DONE means we're still mounting; control_mount() 617 * will set this flag, after which this thread will take over 618 * all further clearing of BLOCK_LOCKS. 619 * 620 * FIRST_MOUNT means this node is doing first mounter recovery, 621 * for which recovery control is handled by 622 * control_mount()/control_first_done(), not this thread. 623 */ 624 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 625 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 626 spin_unlock(&ls->ls_recover_spin); 627 return; 628 } 629 block_gen = ls->ls_recover_block; 630 start_gen = ls->ls_recover_start; 631 spin_unlock(&ls->ls_recover_spin); 632 633 /* 634 * Equal block_gen and start_gen implies we are between 635 * recover_prep and recover_done callbacks, which means 636 * dlm recovery is in progress and dlm locking is blocked. 637 * There's no point trying to do any work until recover_done. 638 */ 639 640 if (block_gen == start_gen) 641 return; 642 643 /* 644 * Propagate recover_submit[] and recover_result[] to lvb: 645 * dlm_recoverd adds to recover_submit[] jids needing recovery 646 * gfs2_recover adds to recover_result[] journal recovery results 647 * 648 * set lvb bit for jids in recover_submit[] if the lvb has not 649 * yet been updated for the generation of the failure 650 * 651 * clear lvb bit for jids in recover_result[] if the result of 652 * the journal recovery is SUCCESS 653 */ 654 655 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 656 if (error) { 657 fs_err(sdp, "control lock EX error %d\n", error); 658 return; 659 } 660 661 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 662 663 spin_lock(&ls->ls_recover_spin); 664 if (block_gen != ls->ls_recover_block || 665 start_gen != ls->ls_recover_start) { 666 fs_info(sdp, "recover generation %u block1 %u %u\n", 667 start_gen, block_gen, ls->ls_recover_block); 668 spin_unlock(&ls->ls_recover_spin); 669 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 670 return; 671 } 672 673 recover_size = ls->ls_recover_size; 674 675 if (lvb_gen <= start_gen) { 676 /* 677 * Clear lvb bits for jids we've successfully recovered. 678 * Because all nodes attempt to recover failed journals, 679 * a journal can be recovered multiple times successfully 680 * in succession. Only the first will really do recovery, 681 * the others find it clean, but still report a successful 682 * recovery. So, another node may have already recovered 683 * the jid and cleared the lvb bit for it. 684 */ 685 for (i = 0; i < recover_size; i++) { 686 if (ls->ls_recover_result[i] != LM_RD_SUCCESS) 687 continue; 688 689 ls->ls_recover_result[i] = 0; 690 691 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) 692 continue; 693 694 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 695 write_lvb = 1; 696 } 697 } 698 699 if (lvb_gen == start_gen) { 700 /* 701 * Failed slots before start_gen are already set in lvb. 702 */ 703 for (i = 0; i < recover_size; i++) { 704 if (!ls->ls_recover_submit[i]) 705 continue; 706 if (ls->ls_recover_submit[i] < lvb_gen) 707 ls->ls_recover_submit[i] = 0; 708 } 709 } else if (lvb_gen < start_gen) { 710 /* 711 * Failed slots before start_gen are not yet set in lvb. 712 */ 713 for (i = 0; i < recover_size; i++) { 714 if (!ls->ls_recover_submit[i]) 715 continue; 716 if (ls->ls_recover_submit[i] < start_gen) { 717 ls->ls_recover_submit[i] = 0; 718 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 719 } 720 } 721 /* even if there are no bits to set, we need to write the 722 latest generation to the lvb */ 723 write_lvb = 1; 724 } else { 725 /* 726 * we should be getting a recover_done() for lvb_gen soon 727 */ 728 } 729 spin_unlock(&ls->ls_recover_spin); 730 731 if (write_lvb) { 732 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 733 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK; 734 } else { 735 flags = DLM_LKF_CONVERT; 736 } 737 738 error = control_lock(sdp, DLM_LOCK_NL, flags); 739 if (error) { 740 fs_err(sdp, "control lock NL error %d\n", error); 741 return; 742 } 743 744 /* 745 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(), 746 * and clear a jid bit in the lvb if the recovery is a success. 747 * Eventually all journals will be recovered, all jid bits will 748 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS. 749 */ 750 751 for (i = 0; i < recover_size; i++) { 752 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) { 753 fs_info(sdp, "recover generation %u jid %d\n", 754 start_gen, i); 755 gfs2_recover_set(sdp, i); 756 recover_set++; 757 } 758 } 759 if (recover_set) 760 return; 761 762 /* 763 * No more jid bits set in lvb, all recovery is done, unblock locks 764 * (unless a new recover_prep callback has occured blocking locks 765 * again while working above) 766 */ 767 768 spin_lock(&ls->ls_recover_spin); 769 if (ls->ls_recover_block == block_gen && 770 ls->ls_recover_start == start_gen) { 771 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 772 spin_unlock(&ls->ls_recover_spin); 773 fs_info(sdp, "recover generation %u done\n", start_gen); 774 gfs2_glock_thaw(sdp); 775 } else { 776 fs_info(sdp, "recover generation %u block2 %u %u\n", 777 start_gen, block_gen, ls->ls_recover_block); 778 spin_unlock(&ls->ls_recover_spin); 779 } 780 } 781 782 static int control_mount(struct gfs2_sbd *sdp) 783 { 784 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 785 uint32_t start_gen, block_gen, mount_gen, lvb_gen; 786 int mounted_mode; 787 int retries = 0; 788 int error; 789 790 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb)); 791 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb)); 792 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE); 793 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb; 794 init_completion(&ls->ls_sync_wait); 795 796 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 797 798 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK); 799 if (error) { 800 fs_err(sdp, "control_mount control_lock NL error %d\n", error); 801 return error; 802 } 803 804 error = mounted_lock(sdp, DLM_LOCK_NL, 0); 805 if (error) { 806 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error); 807 control_unlock(sdp); 808 return error; 809 } 810 mounted_mode = DLM_LOCK_NL; 811 812 restart: 813 if (retries++ && signal_pending(current)) { 814 error = -EINTR; 815 goto fail; 816 } 817 818 /* 819 * We always start with both locks in NL. control_lock is 820 * demoted to NL below so we don't need to do it here. 821 */ 822 823 if (mounted_mode != DLM_LOCK_NL) { 824 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 825 if (error) 826 goto fail; 827 mounted_mode = DLM_LOCK_NL; 828 } 829 830 /* 831 * Other nodes need to do some work in dlm recovery and gfs2_control 832 * before the recover_done and control_lock will be ready for us below. 833 * A delay here is not required but often avoids having to retry. 834 */ 835 836 msleep_interruptible(500); 837 838 /* 839 * Acquire control_lock in EX and mounted_lock in either EX or PR. 840 * control_lock lvb keeps track of any pending journal recoveries. 841 * mounted_lock indicates if any other nodes have the fs mounted. 842 */ 843 844 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK); 845 if (error == -EAGAIN) { 846 goto restart; 847 } else if (error) { 848 fs_err(sdp, "control_mount control_lock EX error %d\n", error); 849 goto fail; 850 } 851 852 /** 853 * If we're a spectator, we don't want to take the lock in EX because 854 * we cannot do the first-mount responsibility it implies: recovery. 855 */ 856 if (sdp->sd_args.ar_spectator) 857 goto locks_done; 858 859 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 860 if (!error) { 861 mounted_mode = DLM_LOCK_EX; 862 goto locks_done; 863 } else if (error != -EAGAIN) { 864 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error); 865 goto fail; 866 } 867 868 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 869 if (!error) { 870 mounted_mode = DLM_LOCK_PR; 871 goto locks_done; 872 } else { 873 /* not even -EAGAIN should happen here */ 874 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error); 875 goto fail; 876 } 877 878 locks_done: 879 /* 880 * If we got both locks above in EX, then we're the first mounter. 881 * If not, then we need to wait for the control_lock lvb to be 882 * updated by other mounted nodes to reflect our mount generation. 883 * 884 * In simple first mounter cases, first mounter will see zero lvb_gen, 885 * but in cases where all existing nodes leave/fail before mounting 886 * nodes finish control_mount, then all nodes will be mounting and 887 * lvb_gen will be non-zero. 888 */ 889 890 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 891 892 if (lvb_gen == 0xFFFFFFFF) { 893 /* special value to force mount attempts to fail */ 894 fs_err(sdp, "control_mount control_lock disabled\n"); 895 error = -EINVAL; 896 goto fail; 897 } 898 899 if (mounted_mode == DLM_LOCK_EX) { 900 /* first mounter, keep both EX while doing first recovery */ 901 spin_lock(&ls->ls_recover_spin); 902 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 903 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 904 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 905 spin_unlock(&ls->ls_recover_spin); 906 fs_info(sdp, "first mounter control generation %u\n", lvb_gen); 907 return 0; 908 } 909 910 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 911 if (error) 912 goto fail; 913 914 /* 915 * We are not first mounter, now we need to wait for the control_lock 916 * lvb generation to be >= the generation from our first recover_done 917 * and all lvb bits to be clear (no pending journal recoveries.) 918 */ 919 920 if (!all_jid_bits_clear(ls->ls_lvb_bits)) { 921 /* journals need recovery, wait until all are clear */ 922 fs_info(sdp, "control_mount wait for journal recovery\n"); 923 goto restart; 924 } 925 926 spin_lock(&ls->ls_recover_spin); 927 block_gen = ls->ls_recover_block; 928 start_gen = ls->ls_recover_start; 929 mount_gen = ls->ls_recover_mount; 930 931 if (lvb_gen < mount_gen) { 932 /* wait for mounted nodes to update control_lock lvb to our 933 generation, which might include new recovery bits set */ 934 if (sdp->sd_args.ar_spectator) { 935 fs_info(sdp, "Recovery is required. Waiting for a " 936 "non-spectator to mount.\n"); 937 msleep_interruptible(1000); 938 } else { 939 fs_info(sdp, "control_mount wait1 block %u start %u " 940 "mount %u lvb %u flags %lx\n", block_gen, 941 start_gen, mount_gen, lvb_gen, 942 ls->ls_recover_flags); 943 } 944 spin_unlock(&ls->ls_recover_spin); 945 goto restart; 946 } 947 948 if (lvb_gen != start_gen) { 949 /* wait for mounted nodes to update control_lock lvb to the 950 latest recovery generation */ 951 fs_info(sdp, "control_mount wait2 block %u start %u mount %u " 952 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 953 lvb_gen, ls->ls_recover_flags); 954 spin_unlock(&ls->ls_recover_spin); 955 goto restart; 956 } 957 958 if (block_gen == start_gen) { 959 /* dlm recovery in progress, wait for it to finish */ 960 fs_info(sdp, "control_mount wait3 block %u start %u mount %u " 961 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 962 lvb_gen, ls->ls_recover_flags); 963 spin_unlock(&ls->ls_recover_spin); 964 goto restart; 965 } 966 967 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 968 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 969 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 970 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 971 spin_unlock(&ls->ls_recover_spin); 972 return 0; 973 974 fail: 975 mounted_unlock(sdp); 976 control_unlock(sdp); 977 return error; 978 } 979 980 static int control_first_done(struct gfs2_sbd *sdp) 981 { 982 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 983 uint32_t start_gen, block_gen; 984 int error; 985 986 restart: 987 spin_lock(&ls->ls_recover_spin); 988 start_gen = ls->ls_recover_start; 989 block_gen = ls->ls_recover_block; 990 991 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) || 992 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 993 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 994 /* sanity check, should not happen */ 995 fs_err(sdp, "control_first_done start %u block %u flags %lx\n", 996 start_gen, block_gen, ls->ls_recover_flags); 997 spin_unlock(&ls->ls_recover_spin); 998 control_unlock(sdp); 999 return -1; 1000 } 1001 1002 if (start_gen == block_gen) { 1003 /* 1004 * Wait for the end of a dlm recovery cycle to switch from 1005 * first mounter recovery. We can ignore any recover_slot 1006 * callbacks between the recover_prep and next recover_done 1007 * because we are still the first mounter and any failed nodes 1008 * have not fully mounted, so they don't need recovery. 1009 */ 1010 spin_unlock(&ls->ls_recover_spin); 1011 fs_info(sdp, "control_first_done wait gen %u\n", start_gen); 1012 1013 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY, 1014 TASK_UNINTERRUPTIBLE); 1015 goto restart; 1016 } 1017 1018 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1019 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags); 1020 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 1021 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 1022 spin_unlock(&ls->ls_recover_spin); 1023 1024 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE); 1025 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 1026 1027 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT); 1028 if (error) 1029 fs_err(sdp, "control_first_done mounted PR error %d\n", error); 1030 1031 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 1032 if (error) 1033 fs_err(sdp, "control_first_done control NL error %d\n", error); 1034 1035 return error; 1036 } 1037 1038 /* 1039 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC) 1040 * to accomodate the largest slot number. (NB dlm slot numbers start at 1, 1041 * gfs2 jids start at 0, so jid = slot - 1) 1042 */ 1043 1044 #define RECOVER_SIZE_INC 16 1045 1046 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots, 1047 int num_slots) 1048 { 1049 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1050 uint32_t *submit = NULL; 1051 uint32_t *result = NULL; 1052 uint32_t old_size, new_size; 1053 int i, max_jid; 1054 1055 if (!ls->ls_lvb_bits) { 1056 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS); 1057 if (!ls->ls_lvb_bits) 1058 return -ENOMEM; 1059 } 1060 1061 max_jid = 0; 1062 for (i = 0; i < num_slots; i++) { 1063 if (max_jid < slots[i].slot - 1) 1064 max_jid = slots[i].slot - 1; 1065 } 1066 1067 old_size = ls->ls_recover_size; 1068 new_size = old_size; 1069 while (new_size < max_jid + 1) 1070 new_size += RECOVER_SIZE_INC; 1071 if (new_size == old_size) 1072 return 0; 1073 1074 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1075 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1076 if (!submit || !result) { 1077 kfree(submit); 1078 kfree(result); 1079 return -ENOMEM; 1080 } 1081 1082 spin_lock(&ls->ls_recover_spin); 1083 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t)); 1084 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t)); 1085 kfree(ls->ls_recover_submit); 1086 kfree(ls->ls_recover_result); 1087 ls->ls_recover_submit = submit; 1088 ls->ls_recover_result = result; 1089 ls->ls_recover_size = new_size; 1090 spin_unlock(&ls->ls_recover_spin); 1091 return 0; 1092 } 1093 1094 static void free_recover_size(struct lm_lockstruct *ls) 1095 { 1096 kfree(ls->ls_lvb_bits); 1097 kfree(ls->ls_recover_submit); 1098 kfree(ls->ls_recover_result); 1099 ls->ls_recover_submit = NULL; 1100 ls->ls_recover_result = NULL; 1101 ls->ls_recover_size = 0; 1102 ls->ls_lvb_bits = NULL; 1103 } 1104 1105 /* dlm calls before it does lock recovery */ 1106 1107 static void gdlm_recover_prep(void *arg) 1108 { 1109 struct gfs2_sbd *sdp = arg; 1110 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1111 1112 if (gfs2_withdrawn(sdp)) { 1113 fs_err(sdp, "recover_prep ignored due to withdraw.\n"); 1114 return; 1115 } 1116 spin_lock(&ls->ls_recover_spin); 1117 ls->ls_recover_block = ls->ls_recover_start; 1118 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1119 1120 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 1121 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1122 spin_unlock(&ls->ls_recover_spin); 1123 return; 1124 } 1125 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 1126 spin_unlock(&ls->ls_recover_spin); 1127 } 1128 1129 /* dlm calls after recover_prep has been completed on all lockspace members; 1130 identifies slot/jid of failed member */ 1131 1132 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot) 1133 { 1134 struct gfs2_sbd *sdp = arg; 1135 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1136 int jid = slot->slot - 1; 1137 1138 if (gfs2_withdrawn(sdp)) { 1139 fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n", 1140 jid); 1141 return; 1142 } 1143 spin_lock(&ls->ls_recover_spin); 1144 if (ls->ls_recover_size < jid + 1) { 1145 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n", 1146 jid, ls->ls_recover_block, ls->ls_recover_size); 1147 spin_unlock(&ls->ls_recover_spin); 1148 return; 1149 } 1150 1151 if (ls->ls_recover_submit[jid]) { 1152 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n", 1153 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]); 1154 } 1155 ls->ls_recover_submit[jid] = ls->ls_recover_block; 1156 spin_unlock(&ls->ls_recover_spin); 1157 } 1158 1159 /* dlm calls after recover_slot and after it completes lock recovery */ 1160 1161 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots, 1162 int our_slot, uint32_t generation) 1163 { 1164 struct gfs2_sbd *sdp = arg; 1165 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1166 1167 if (gfs2_withdrawn(sdp)) { 1168 fs_err(sdp, "recover_done ignored due to withdraw.\n"); 1169 return; 1170 } 1171 /* ensure the ls jid arrays are large enough */ 1172 set_recover_size(sdp, slots, num_slots); 1173 1174 spin_lock(&ls->ls_recover_spin); 1175 ls->ls_recover_start = generation; 1176 1177 if (!ls->ls_recover_mount) { 1178 ls->ls_recover_mount = generation; 1179 ls->ls_jid = our_slot - 1; 1180 } 1181 1182 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1183 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0); 1184 1185 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1186 smp_mb__after_atomic(); 1187 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY); 1188 spin_unlock(&ls->ls_recover_spin); 1189 } 1190 1191 /* gfs2_recover thread has a journal recovery result */ 1192 1193 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid, 1194 unsigned int result) 1195 { 1196 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1197 1198 if (gfs2_withdrawn(sdp)) { 1199 fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n", 1200 jid); 1201 return; 1202 } 1203 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1204 return; 1205 1206 /* don't care about the recovery of own journal during mount */ 1207 if (jid == ls->ls_jid) 1208 return; 1209 1210 spin_lock(&ls->ls_recover_spin); 1211 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1212 spin_unlock(&ls->ls_recover_spin); 1213 return; 1214 } 1215 if (ls->ls_recover_size < jid + 1) { 1216 fs_err(sdp, "recovery_result jid %d short size %d\n", 1217 jid, ls->ls_recover_size); 1218 spin_unlock(&ls->ls_recover_spin); 1219 return; 1220 } 1221 1222 fs_info(sdp, "recover jid %d result %s\n", jid, 1223 result == LM_RD_GAVEUP ? "busy" : "success"); 1224 1225 ls->ls_recover_result[jid] = result; 1226 1227 /* GAVEUP means another node is recovering the journal; delay our 1228 next attempt to recover it, to give the other node a chance to 1229 finish before trying again */ 1230 1231 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1232 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 1233 result == LM_RD_GAVEUP ? HZ : 0); 1234 spin_unlock(&ls->ls_recover_spin); 1235 } 1236 1237 static const struct dlm_lockspace_ops gdlm_lockspace_ops = { 1238 .recover_prep = gdlm_recover_prep, 1239 .recover_slot = gdlm_recover_slot, 1240 .recover_done = gdlm_recover_done, 1241 }; 1242 1243 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table) 1244 { 1245 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1246 char cluster[GFS2_LOCKNAME_LEN]; 1247 const char *fsname; 1248 uint32_t flags; 1249 int error, ops_result; 1250 1251 /* 1252 * initialize everything 1253 */ 1254 1255 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func); 1256 spin_lock_init(&ls->ls_recover_spin); 1257 ls->ls_recover_flags = 0; 1258 ls->ls_recover_mount = 0; 1259 ls->ls_recover_start = 0; 1260 ls->ls_recover_block = 0; 1261 ls->ls_recover_size = 0; 1262 ls->ls_recover_submit = NULL; 1263 ls->ls_recover_result = NULL; 1264 ls->ls_lvb_bits = NULL; 1265 1266 error = set_recover_size(sdp, NULL, 0); 1267 if (error) 1268 goto fail; 1269 1270 /* 1271 * prepare dlm_new_lockspace args 1272 */ 1273 1274 fsname = strchr(table, ':'); 1275 if (!fsname) { 1276 fs_info(sdp, "no fsname found\n"); 1277 error = -EINVAL; 1278 goto fail_free; 1279 } 1280 memset(cluster, 0, sizeof(cluster)); 1281 memcpy(cluster, table, strlen(table) - strlen(fsname)); 1282 fsname++; 1283 1284 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL; 1285 1286 /* 1287 * create/join lockspace 1288 */ 1289 1290 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE, 1291 &gdlm_lockspace_ops, sdp, &ops_result, 1292 &ls->ls_dlm); 1293 if (error) { 1294 fs_err(sdp, "dlm_new_lockspace error %d\n", error); 1295 goto fail_free; 1296 } 1297 1298 if (ops_result < 0) { 1299 /* 1300 * dlm does not support ops callbacks, 1301 * old dlm_controld/gfs_controld are used, try without ops. 1302 */ 1303 fs_info(sdp, "dlm lockspace ops not used\n"); 1304 free_recover_size(ls); 1305 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags); 1306 return 0; 1307 } 1308 1309 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) { 1310 fs_err(sdp, "dlm lockspace ops disallow jid preset\n"); 1311 error = -EINVAL; 1312 goto fail_release; 1313 } 1314 1315 /* 1316 * control_mount() uses control_lock to determine first mounter, 1317 * and for later mounts, waits for any recoveries to be cleared. 1318 */ 1319 1320 error = control_mount(sdp); 1321 if (error) { 1322 fs_err(sdp, "mount control error %d\n", error); 1323 goto fail_release; 1324 } 1325 1326 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1327 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags); 1328 smp_mb__after_atomic(); 1329 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID); 1330 return 0; 1331 1332 fail_release: 1333 dlm_release_lockspace(ls->ls_dlm, 2); 1334 fail_free: 1335 free_recover_size(ls); 1336 fail: 1337 return error; 1338 } 1339 1340 static void gdlm_first_done(struct gfs2_sbd *sdp) 1341 { 1342 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1343 int error; 1344 1345 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1346 return; 1347 1348 error = control_first_done(sdp); 1349 if (error) 1350 fs_err(sdp, "mount first_done error %d\n", error); 1351 } 1352 1353 static void gdlm_unmount(struct gfs2_sbd *sdp) 1354 { 1355 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1356 1357 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1358 goto release; 1359 1360 /* wait for gfs2_control_wq to be done with this mount */ 1361 1362 spin_lock(&ls->ls_recover_spin); 1363 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags); 1364 spin_unlock(&ls->ls_recover_spin); 1365 flush_delayed_work(&sdp->sd_control_work); 1366 1367 /* mounted_lock and control_lock will be purged in dlm recovery */ 1368 release: 1369 if (ls->ls_dlm) { 1370 dlm_release_lockspace(ls->ls_dlm, 2); 1371 ls->ls_dlm = NULL; 1372 } 1373 1374 free_recover_size(ls); 1375 } 1376 1377 static const match_table_t dlm_tokens = { 1378 { Opt_jid, "jid=%d"}, 1379 { Opt_id, "id=%d"}, 1380 { Opt_first, "first=%d"}, 1381 { Opt_nodir, "nodir=%d"}, 1382 { Opt_err, NULL }, 1383 }; 1384 1385 const struct lm_lockops gfs2_dlm_ops = { 1386 .lm_proto_name = "lock_dlm", 1387 .lm_mount = gdlm_mount, 1388 .lm_first_done = gdlm_first_done, 1389 .lm_recovery_result = gdlm_recovery_result, 1390 .lm_unmount = gdlm_unmount, 1391 .lm_put_lock = gdlm_put_lock, 1392 .lm_lock = gdlm_lock, 1393 .lm_cancel = gdlm_cancel, 1394 .lm_tokens = &dlm_tokens, 1395 }; 1396 1397