xref: /openbmc/linux/fs/gfs2/lock_dlm.c (revision 4ce94eab)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright 2004-2011 Red Hat, Inc.
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/fs.h>
10 #include <linux/dlm.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/sched/signal.h>
16 
17 #include "incore.h"
18 #include "glock.h"
19 #include "glops.h"
20 #include "recovery.h"
21 #include "util.h"
22 #include "sys.h"
23 #include "trace_gfs2.h"
24 
25 /**
26  * gfs2_update_stats - Update time based stats
27  * @mv: Pointer to mean/variance structure to update
28  * @sample: New data to include
29  *
30  * @delta is the difference between the current rtt sample and the
31  * running average srtt. We add 1/8 of that to the srtt in order to
32  * update the current srtt estimate. The variance estimate is a bit
33  * more complicated. We subtract the current variance estimate from
34  * the abs value of the @delta and add 1/4 of that to the running
35  * total.  That's equivalent to 3/4 of the current variance
36  * estimate plus 1/4 of the abs of @delta.
37  *
38  * Note that the index points at the array entry containing the smoothed
39  * mean value, and the variance is always in the following entry
40  *
41  * Reference: TCP/IP Illustrated, vol 2, p. 831,832
42  * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
43  * they are not scaled fixed point.
44  */
45 
46 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
47 				     s64 sample)
48 {
49 	s64 delta = sample - s->stats[index];
50 	s->stats[index] += (delta >> 3);
51 	index++;
52 	s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
53 }
54 
55 /**
56  * gfs2_update_reply_times - Update locking statistics
57  * @gl: The glock to update
58  *
59  * This assumes that gl->gl_dstamp has been set earlier.
60  *
61  * The rtt (lock round trip time) is an estimate of the time
62  * taken to perform a dlm lock request. We update it on each
63  * reply from the dlm.
64  *
65  * The blocking flag is set on the glock for all dlm requests
66  * which may potentially block due to lock requests from other nodes.
67  * DLM requests where the current lock state is exclusive, the
68  * requested state is null (or unlocked) or where the TRY or
69  * TRY_1CB flags are set are classified as non-blocking. All
70  * other DLM requests are counted as (potentially) blocking.
71  */
72 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
73 {
74 	struct gfs2_pcpu_lkstats *lks;
75 	const unsigned gltype = gl->gl_name.ln_type;
76 	unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
77 			 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
78 	s64 rtt;
79 
80 	preempt_disable();
81 	rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
82 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
83 	gfs2_update_stats(&gl->gl_stats, index, rtt);		/* Local */
84 	gfs2_update_stats(&lks->lkstats[gltype], index, rtt);	/* Global */
85 	preempt_enable();
86 
87 	trace_gfs2_glock_lock_time(gl, rtt);
88 }
89 
90 /**
91  * gfs2_update_request_times - Update locking statistics
92  * @gl: The glock to update
93  *
94  * The irt (lock inter-request times) measures the average time
95  * between requests to the dlm. It is updated immediately before
96  * each dlm call.
97  */
98 
99 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
100 {
101 	struct gfs2_pcpu_lkstats *lks;
102 	const unsigned gltype = gl->gl_name.ln_type;
103 	ktime_t dstamp;
104 	s64 irt;
105 
106 	preempt_disable();
107 	dstamp = gl->gl_dstamp;
108 	gl->gl_dstamp = ktime_get_real();
109 	irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
110 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
111 	gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);		/* Local */
112 	gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);	/* Global */
113 	preempt_enable();
114 }
115 
116 static void gdlm_ast(void *arg)
117 {
118 	struct gfs2_glock *gl = arg;
119 	unsigned ret = gl->gl_state;
120 
121 	gfs2_update_reply_times(gl);
122 	BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
123 
124 	if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
125 		memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
126 
127 	switch (gl->gl_lksb.sb_status) {
128 	case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
129 		if (gl->gl_ops->go_free)
130 			gl->gl_ops->go_free(gl);
131 		gfs2_glock_free(gl);
132 		return;
133 	case -DLM_ECANCEL: /* Cancel while getting lock */
134 		ret |= LM_OUT_CANCELED;
135 		goto out;
136 	case -EAGAIN: /* Try lock fails */
137 	case -EDEADLK: /* Deadlock detected */
138 		goto out;
139 	case -ETIMEDOUT: /* Canceled due to timeout */
140 		ret |= LM_OUT_ERROR;
141 		goto out;
142 	case 0: /* Success */
143 		break;
144 	default: /* Something unexpected */
145 		BUG();
146 	}
147 
148 	ret = gl->gl_req;
149 	if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
150 		if (gl->gl_req == LM_ST_SHARED)
151 			ret = LM_ST_DEFERRED;
152 		else if (gl->gl_req == LM_ST_DEFERRED)
153 			ret = LM_ST_SHARED;
154 		else
155 			BUG();
156 	}
157 
158 	set_bit(GLF_INITIAL, &gl->gl_flags);
159 	gfs2_glock_complete(gl, ret);
160 	return;
161 out:
162 	if (!test_bit(GLF_INITIAL, &gl->gl_flags))
163 		gl->gl_lksb.sb_lkid = 0;
164 	gfs2_glock_complete(gl, ret);
165 }
166 
167 static void gdlm_bast(void *arg, int mode)
168 {
169 	struct gfs2_glock *gl = arg;
170 
171 	switch (mode) {
172 	case DLM_LOCK_EX:
173 		gfs2_glock_cb(gl, LM_ST_UNLOCKED);
174 		break;
175 	case DLM_LOCK_CW:
176 		gfs2_glock_cb(gl, LM_ST_DEFERRED);
177 		break;
178 	case DLM_LOCK_PR:
179 		gfs2_glock_cb(gl, LM_ST_SHARED);
180 		break;
181 	default:
182 		fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
183 		BUG();
184 	}
185 }
186 
187 /* convert gfs lock-state to dlm lock-mode */
188 
189 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
190 {
191 	switch (lmstate) {
192 	case LM_ST_UNLOCKED:
193 		return DLM_LOCK_NL;
194 	case LM_ST_EXCLUSIVE:
195 		return DLM_LOCK_EX;
196 	case LM_ST_DEFERRED:
197 		return DLM_LOCK_CW;
198 	case LM_ST_SHARED:
199 		return DLM_LOCK_PR;
200 	}
201 	fs_err(sdp, "unknown LM state %d\n", lmstate);
202 	BUG();
203 	return -1;
204 }
205 
206 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
207 		      const int req)
208 {
209 	u32 lkf = 0;
210 
211 	if (gl->gl_lksb.sb_lvbptr)
212 		lkf |= DLM_LKF_VALBLK;
213 
214 	if (gfs_flags & LM_FLAG_TRY)
215 		lkf |= DLM_LKF_NOQUEUE;
216 
217 	if (gfs_flags & LM_FLAG_TRY_1CB) {
218 		lkf |= DLM_LKF_NOQUEUE;
219 		lkf |= DLM_LKF_NOQUEUEBAST;
220 	}
221 
222 	if (gfs_flags & LM_FLAG_PRIORITY) {
223 		lkf |= DLM_LKF_NOORDER;
224 		lkf |= DLM_LKF_HEADQUE;
225 	}
226 
227 	if (gfs_flags & LM_FLAG_ANY) {
228 		if (req == DLM_LOCK_PR)
229 			lkf |= DLM_LKF_ALTCW;
230 		else if (req == DLM_LOCK_CW)
231 			lkf |= DLM_LKF_ALTPR;
232 		else
233 			BUG();
234 	}
235 
236 	if (gl->gl_lksb.sb_lkid != 0) {
237 		lkf |= DLM_LKF_CONVERT;
238 		if (test_bit(GLF_BLOCKING, &gl->gl_flags))
239 			lkf |= DLM_LKF_QUECVT;
240 	}
241 
242 	return lkf;
243 }
244 
245 static void gfs2_reverse_hex(char *c, u64 value)
246 {
247 	*c = '0';
248 	while (value) {
249 		*c-- = hex_asc[value & 0x0f];
250 		value >>= 4;
251 	}
252 }
253 
254 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
255 		     unsigned int flags)
256 {
257 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
258 	int req;
259 	u32 lkf;
260 	char strname[GDLM_STRNAME_BYTES] = "";
261 
262 	req = make_mode(gl->gl_name.ln_sbd, req_state);
263 	lkf = make_flags(gl, flags, req);
264 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
265 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
266 	if (gl->gl_lksb.sb_lkid) {
267 		gfs2_update_request_times(gl);
268 	} else {
269 		memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
270 		strname[GDLM_STRNAME_BYTES - 1] = '\0';
271 		gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
272 		gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
273 		gl->gl_dstamp = ktime_get_real();
274 	}
275 	/*
276 	 * Submit the actual lock request.
277 	 */
278 
279 	return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
280 			GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
281 }
282 
283 static void gdlm_put_lock(struct gfs2_glock *gl)
284 {
285 	struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
286 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
287 	int error;
288 
289 	if (gl->gl_lksb.sb_lkid == 0) {
290 		gfs2_glock_free(gl);
291 		return;
292 	}
293 
294 	clear_bit(GLF_BLOCKING, &gl->gl_flags);
295 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
296 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
297 	gfs2_update_request_times(gl);
298 
299 	/* don't want to skip dlm_unlock writing the lvb when lock has one */
300 
301 	if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
302 	    !gl->gl_lksb.sb_lvbptr) {
303 		gfs2_glock_free(gl);
304 		return;
305 	}
306 
307 	error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
308 			   NULL, gl);
309 	if (error) {
310 		fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
311 		       gl->gl_name.ln_type,
312 		       (unsigned long long)gl->gl_name.ln_number, error);
313 		return;
314 	}
315 }
316 
317 static void gdlm_cancel(struct gfs2_glock *gl)
318 {
319 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
320 	dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
321 }
322 
323 /*
324  * dlm/gfs2 recovery coordination using dlm_recover callbacks
325  *
326  *  0. gfs2 checks for another cluster node withdraw, needing journal replay
327  *  1. dlm_controld sees lockspace members change
328  *  2. dlm_controld blocks dlm-kernel locking activity
329  *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
330  *  4. dlm_controld starts and finishes its own user level recovery
331  *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
332  *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
333  *  7. dlm_recoverd does its own lock recovery
334  *  8. dlm_recoverd unblocks dlm-kernel locking activity
335  *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
336  * 10. gfs2_control updates control_lock lvb with new generation and jid bits
337  * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
338  * 12. gfs2_recover dequeues and recovers journals of failed nodes
339  * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
340  * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
341  * 15. gfs2_control unblocks normal locking when all journals are recovered
342  *
343  * - failures during recovery
344  *
345  * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
346  * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
347  * recovering for a prior failure.  gfs2_control needs a way to detect
348  * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
349  * the recover_block and recover_start values.
350  *
351  * recover_done() provides a new lockspace generation number each time it
352  * is called (step 9).  This generation number is saved as recover_start.
353  * When recover_prep() is called, it sets BLOCK_LOCKS and sets
354  * recover_block = recover_start.  So, while recover_block is equal to
355  * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
356  * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
357  *
358  * - more specific gfs2 steps in sequence above
359  *
360  *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
361  *  6. recover_slot records any failed jids (maybe none)
362  *  9. recover_done sets recover_start = new generation number
363  * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
364  * 12. gfs2_recover does journal recoveries for failed jids identified above
365  * 14. gfs2_control clears control_lock lvb bits for recovered jids
366  * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
367  *     again) then do nothing, otherwise if recover_start > recover_block
368  *     then clear BLOCK_LOCKS.
369  *
370  * - parallel recovery steps across all nodes
371  *
372  * All nodes attempt to update the control_lock lvb with the new generation
373  * number and jid bits, but only the first to get the control_lock EX will
374  * do so; others will see that it's already done (lvb already contains new
375  * generation number.)
376  *
377  * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
378  * . All nodes attempt to set control_lock lvb gen + bits for the new gen
379  * . One node gets control_lock first and writes the lvb, others see it's done
380  * . All nodes attempt to recover jids for which they see control_lock bits set
381  * . One node succeeds for a jid, and that one clears the jid bit in the lvb
382  * . All nodes will eventually see all lvb bits clear and unblock locks
383  *
384  * - is there a problem with clearing an lvb bit that should be set
385  *   and missing a journal recovery?
386  *
387  * 1. jid fails
388  * 2. lvb bit set for step 1
389  * 3. jid recovered for step 1
390  * 4. jid taken again (new mount)
391  * 5. jid fails (for step 4)
392  * 6. lvb bit set for step 5 (will already be set)
393  * 7. lvb bit cleared for step 3
394  *
395  * This is not a problem because the failure in step 5 does not
396  * require recovery, because the mount in step 4 could not have
397  * progressed far enough to unblock locks and access the fs.  The
398  * control_mount() function waits for all recoveries to be complete
399  * for the latest lockspace generation before ever unblocking locks
400  * and returning.  The mount in step 4 waits until the recovery in
401  * step 1 is done.
402  *
403  * - special case of first mounter: first node to mount the fs
404  *
405  * The first node to mount a gfs2 fs needs to check all the journals
406  * and recover any that need recovery before other nodes are allowed
407  * to mount the fs.  (Others may begin mounting, but they must wait
408  * for the first mounter to be done before taking locks on the fs
409  * or accessing the fs.)  This has two parts:
410  *
411  * 1. The mounted_lock tells a node it's the first to mount the fs.
412  * Each node holds the mounted_lock in PR while it's mounted.
413  * Each node tries to acquire the mounted_lock in EX when it mounts.
414  * If a node is granted the mounted_lock EX it means there are no
415  * other mounted nodes (no PR locks exist), and it is the first mounter.
416  * The mounted_lock is demoted to PR when first recovery is done, so
417  * others will fail to get an EX lock, but will get a PR lock.
418  *
419  * 2. The control_lock blocks others in control_mount() while the first
420  * mounter is doing first mount recovery of all journals.
421  * A mounting node needs to acquire control_lock in EX mode before
422  * it can proceed.  The first mounter holds control_lock in EX while doing
423  * the first mount recovery, blocking mounts from other nodes, then demotes
424  * control_lock to NL when it's done (others_may_mount/first_done),
425  * allowing other nodes to continue mounting.
426  *
427  * first mounter:
428  * control_lock EX/NOQUEUE success
429  * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
430  * set first=1
431  * do first mounter recovery
432  * mounted_lock EX->PR
433  * control_lock EX->NL, write lvb generation
434  *
435  * other mounter:
436  * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
437  * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
438  * mounted_lock PR/NOQUEUE success
439  * read lvb generation
440  * control_lock EX->NL
441  * set first=0
442  *
443  * - mount during recovery
444  *
445  * If a node mounts while others are doing recovery (not first mounter),
446  * the mounting node will get its initial recover_done() callback without
447  * having seen any previous failures/callbacks.
448  *
449  * It must wait for all recoveries preceding its mount to be finished
450  * before it unblocks locks.  It does this by repeating the "other mounter"
451  * steps above until the lvb generation number is >= its mount generation
452  * number (from initial recover_done) and all lvb bits are clear.
453  *
454  * - control_lock lvb format
455  *
456  * 4 bytes generation number: the latest dlm lockspace generation number
457  * from recover_done callback.  Indicates the jid bitmap has been updated
458  * to reflect all slot failures through that generation.
459  * 4 bytes unused.
460  * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
461  * that jid N needs recovery.
462  */
463 
464 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
465 
466 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
467 			     char *lvb_bits)
468 {
469 	__le32 gen;
470 	memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
471 	memcpy(&gen, lvb_bits, sizeof(__le32));
472 	*lvb_gen = le32_to_cpu(gen);
473 }
474 
475 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
476 			      char *lvb_bits)
477 {
478 	__le32 gen;
479 	memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
480 	gen = cpu_to_le32(lvb_gen);
481 	memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
482 }
483 
484 static int all_jid_bits_clear(char *lvb)
485 {
486 	return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
487 			GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
488 }
489 
490 static void sync_wait_cb(void *arg)
491 {
492 	struct lm_lockstruct *ls = arg;
493 	complete(&ls->ls_sync_wait);
494 }
495 
496 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
497 {
498 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
499 	int error;
500 
501 	error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
502 	if (error) {
503 		fs_err(sdp, "%s lkid %x error %d\n",
504 		       name, lksb->sb_lkid, error);
505 		return error;
506 	}
507 
508 	wait_for_completion(&ls->ls_sync_wait);
509 
510 	if (lksb->sb_status != -DLM_EUNLOCK) {
511 		fs_err(sdp, "%s lkid %x status %d\n",
512 		       name, lksb->sb_lkid, lksb->sb_status);
513 		return -1;
514 	}
515 	return 0;
516 }
517 
518 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
519 		     unsigned int num, struct dlm_lksb *lksb, char *name)
520 {
521 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
522 	char strname[GDLM_STRNAME_BYTES];
523 	int error, status;
524 
525 	memset(strname, 0, GDLM_STRNAME_BYTES);
526 	snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
527 
528 	error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
529 			 strname, GDLM_STRNAME_BYTES - 1,
530 			 0, sync_wait_cb, ls, NULL);
531 	if (error) {
532 		fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
533 		       name, lksb->sb_lkid, flags, mode, error);
534 		return error;
535 	}
536 
537 	wait_for_completion(&ls->ls_sync_wait);
538 
539 	status = lksb->sb_status;
540 
541 	if (status && status != -EAGAIN) {
542 		fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
543 		       name, lksb->sb_lkid, flags, mode, status);
544 	}
545 
546 	return status;
547 }
548 
549 static int mounted_unlock(struct gfs2_sbd *sdp)
550 {
551 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
552 	return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
553 }
554 
555 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
556 {
557 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
558 	return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
559 			 &ls->ls_mounted_lksb, "mounted_lock");
560 }
561 
562 static int control_unlock(struct gfs2_sbd *sdp)
563 {
564 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
565 	return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
566 }
567 
568 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
569 {
570 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
571 	return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
572 			 &ls->ls_control_lksb, "control_lock");
573 }
574 
575 /**
576  * remote_withdraw - react to a node withdrawing from the file system
577  * @sdp: The superblock
578  */
579 static void remote_withdraw(struct gfs2_sbd *sdp)
580 {
581 	struct gfs2_jdesc *jd;
582 	int ret = 0, count = 0;
583 
584 	list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) {
585 		if (jd->jd_jid == sdp->sd_lockstruct.ls_jid)
586 			continue;
587 		ret = gfs2_recover_journal(jd, true);
588 		if (ret)
589 			break;
590 		count++;
591 	}
592 
593 	/* Now drop the additional reference we acquired */
594 	fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret);
595 }
596 
597 static void gfs2_control_func(struct work_struct *work)
598 {
599 	struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
600 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
601 	uint32_t block_gen, start_gen, lvb_gen, flags;
602 	int recover_set = 0;
603 	int write_lvb = 0;
604 	int recover_size;
605 	int i, error;
606 
607 	/* First check for other nodes that may have done a withdraw. */
608 	if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) {
609 		remote_withdraw(sdp);
610 		clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags);
611 		return;
612 	}
613 
614 	spin_lock(&ls->ls_recover_spin);
615 	/*
616 	 * No MOUNT_DONE means we're still mounting; control_mount()
617 	 * will set this flag, after which this thread will take over
618 	 * all further clearing of BLOCK_LOCKS.
619 	 *
620 	 * FIRST_MOUNT means this node is doing first mounter recovery,
621 	 * for which recovery control is handled by
622 	 * control_mount()/control_first_done(), not this thread.
623 	 */
624 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
625 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
626 		spin_unlock(&ls->ls_recover_spin);
627 		return;
628 	}
629 	block_gen = ls->ls_recover_block;
630 	start_gen = ls->ls_recover_start;
631 	spin_unlock(&ls->ls_recover_spin);
632 
633 	/*
634 	 * Equal block_gen and start_gen implies we are between
635 	 * recover_prep and recover_done callbacks, which means
636 	 * dlm recovery is in progress and dlm locking is blocked.
637 	 * There's no point trying to do any work until recover_done.
638 	 */
639 
640 	if (block_gen == start_gen)
641 		return;
642 
643 	/*
644 	 * Propagate recover_submit[] and recover_result[] to lvb:
645 	 * dlm_recoverd adds to recover_submit[] jids needing recovery
646 	 * gfs2_recover adds to recover_result[] journal recovery results
647 	 *
648 	 * set lvb bit for jids in recover_submit[] if the lvb has not
649 	 * yet been updated for the generation of the failure
650 	 *
651 	 * clear lvb bit for jids in recover_result[] if the result of
652 	 * the journal recovery is SUCCESS
653 	 */
654 
655 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
656 	if (error) {
657 		fs_err(sdp, "control lock EX error %d\n", error);
658 		return;
659 	}
660 
661 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
662 
663 	spin_lock(&ls->ls_recover_spin);
664 	if (block_gen != ls->ls_recover_block ||
665 	    start_gen != ls->ls_recover_start) {
666 		fs_info(sdp, "recover generation %u block1 %u %u\n",
667 			start_gen, block_gen, ls->ls_recover_block);
668 		spin_unlock(&ls->ls_recover_spin);
669 		control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
670 		return;
671 	}
672 
673 	recover_size = ls->ls_recover_size;
674 
675 	if (lvb_gen <= start_gen) {
676 		/*
677 		 * Clear lvb bits for jids we've successfully recovered.
678 		 * Because all nodes attempt to recover failed journals,
679 		 * a journal can be recovered multiple times successfully
680 		 * in succession.  Only the first will really do recovery,
681 		 * the others find it clean, but still report a successful
682 		 * recovery.  So, another node may have already recovered
683 		 * the jid and cleared the lvb bit for it.
684 		 */
685 		for (i = 0; i < recover_size; i++) {
686 			if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
687 				continue;
688 
689 			ls->ls_recover_result[i] = 0;
690 
691 			if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
692 				continue;
693 
694 			__clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
695 			write_lvb = 1;
696 		}
697 	}
698 
699 	if (lvb_gen == start_gen) {
700 		/*
701 		 * Failed slots before start_gen are already set in lvb.
702 		 */
703 		for (i = 0; i < recover_size; i++) {
704 			if (!ls->ls_recover_submit[i])
705 				continue;
706 			if (ls->ls_recover_submit[i] < lvb_gen)
707 				ls->ls_recover_submit[i] = 0;
708 		}
709 	} else if (lvb_gen < start_gen) {
710 		/*
711 		 * Failed slots before start_gen are not yet set in lvb.
712 		 */
713 		for (i = 0; i < recover_size; i++) {
714 			if (!ls->ls_recover_submit[i])
715 				continue;
716 			if (ls->ls_recover_submit[i] < start_gen) {
717 				ls->ls_recover_submit[i] = 0;
718 				__set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
719 			}
720 		}
721 		/* even if there are no bits to set, we need to write the
722 		   latest generation to the lvb */
723 		write_lvb = 1;
724 	} else {
725 		/*
726 		 * we should be getting a recover_done() for lvb_gen soon
727 		 */
728 	}
729 	spin_unlock(&ls->ls_recover_spin);
730 
731 	if (write_lvb) {
732 		control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
733 		flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
734 	} else {
735 		flags = DLM_LKF_CONVERT;
736 	}
737 
738 	error = control_lock(sdp, DLM_LOCK_NL, flags);
739 	if (error) {
740 		fs_err(sdp, "control lock NL error %d\n", error);
741 		return;
742 	}
743 
744 	/*
745 	 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
746 	 * and clear a jid bit in the lvb if the recovery is a success.
747 	 * Eventually all journals will be recovered, all jid bits will
748 	 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
749 	 */
750 
751 	for (i = 0; i < recover_size; i++) {
752 		if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
753 			fs_info(sdp, "recover generation %u jid %d\n",
754 				start_gen, i);
755 			gfs2_recover_set(sdp, i);
756 			recover_set++;
757 		}
758 	}
759 	if (recover_set)
760 		return;
761 
762 	/*
763 	 * No more jid bits set in lvb, all recovery is done, unblock locks
764 	 * (unless a new recover_prep callback has occured blocking locks
765 	 * again while working above)
766 	 */
767 
768 	spin_lock(&ls->ls_recover_spin);
769 	if (ls->ls_recover_block == block_gen &&
770 	    ls->ls_recover_start == start_gen) {
771 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
772 		spin_unlock(&ls->ls_recover_spin);
773 		fs_info(sdp, "recover generation %u done\n", start_gen);
774 		gfs2_glock_thaw(sdp);
775 	} else {
776 		fs_info(sdp, "recover generation %u block2 %u %u\n",
777 			start_gen, block_gen, ls->ls_recover_block);
778 		spin_unlock(&ls->ls_recover_spin);
779 	}
780 }
781 
782 static int control_mount(struct gfs2_sbd *sdp)
783 {
784 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
785 	uint32_t start_gen, block_gen, mount_gen, lvb_gen;
786 	int mounted_mode;
787 	int retries = 0;
788 	int error;
789 
790 	memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
791 	memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
792 	memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
793 	ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
794 	init_completion(&ls->ls_sync_wait);
795 
796 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
797 
798 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
799 	if (error) {
800 		fs_err(sdp, "control_mount control_lock NL error %d\n", error);
801 		return error;
802 	}
803 
804 	error = mounted_lock(sdp, DLM_LOCK_NL, 0);
805 	if (error) {
806 		fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
807 		control_unlock(sdp);
808 		return error;
809 	}
810 	mounted_mode = DLM_LOCK_NL;
811 
812 restart:
813 	if (retries++ && signal_pending(current)) {
814 		error = -EINTR;
815 		goto fail;
816 	}
817 
818 	/*
819 	 * We always start with both locks in NL. control_lock is
820 	 * demoted to NL below so we don't need to do it here.
821 	 */
822 
823 	if (mounted_mode != DLM_LOCK_NL) {
824 		error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
825 		if (error)
826 			goto fail;
827 		mounted_mode = DLM_LOCK_NL;
828 	}
829 
830 	/*
831 	 * Other nodes need to do some work in dlm recovery and gfs2_control
832 	 * before the recover_done and control_lock will be ready for us below.
833 	 * A delay here is not required but often avoids having to retry.
834 	 */
835 
836 	msleep_interruptible(500);
837 
838 	/*
839 	 * Acquire control_lock in EX and mounted_lock in either EX or PR.
840 	 * control_lock lvb keeps track of any pending journal recoveries.
841 	 * mounted_lock indicates if any other nodes have the fs mounted.
842 	 */
843 
844 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
845 	if (error == -EAGAIN) {
846 		goto restart;
847 	} else if (error) {
848 		fs_err(sdp, "control_mount control_lock EX error %d\n", error);
849 		goto fail;
850 	}
851 
852 	/**
853 	 * If we're a spectator, we don't want to take the lock in EX because
854 	 * we cannot do the first-mount responsibility it implies: recovery.
855 	 */
856 	if (sdp->sd_args.ar_spectator)
857 		goto locks_done;
858 
859 	error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
860 	if (!error) {
861 		mounted_mode = DLM_LOCK_EX;
862 		goto locks_done;
863 	} else if (error != -EAGAIN) {
864 		fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
865 		goto fail;
866 	}
867 
868 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
869 	if (!error) {
870 		mounted_mode = DLM_LOCK_PR;
871 		goto locks_done;
872 	} else {
873 		/* not even -EAGAIN should happen here */
874 		fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
875 		goto fail;
876 	}
877 
878 locks_done:
879 	/*
880 	 * If we got both locks above in EX, then we're the first mounter.
881 	 * If not, then we need to wait for the control_lock lvb to be
882 	 * updated by other mounted nodes to reflect our mount generation.
883 	 *
884 	 * In simple first mounter cases, first mounter will see zero lvb_gen,
885 	 * but in cases where all existing nodes leave/fail before mounting
886 	 * nodes finish control_mount, then all nodes will be mounting and
887 	 * lvb_gen will be non-zero.
888 	 */
889 
890 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
891 
892 	if (lvb_gen == 0xFFFFFFFF) {
893 		/* special value to force mount attempts to fail */
894 		fs_err(sdp, "control_mount control_lock disabled\n");
895 		error = -EINVAL;
896 		goto fail;
897 	}
898 
899 	if (mounted_mode == DLM_LOCK_EX) {
900 		/* first mounter, keep both EX while doing first recovery */
901 		spin_lock(&ls->ls_recover_spin);
902 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
903 		set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
904 		set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
905 		spin_unlock(&ls->ls_recover_spin);
906 		fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
907 		return 0;
908 	}
909 
910 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
911 	if (error)
912 		goto fail;
913 
914 	/*
915 	 * We are not first mounter, now we need to wait for the control_lock
916 	 * lvb generation to be >= the generation from our first recover_done
917 	 * and all lvb bits to be clear (no pending journal recoveries.)
918 	 */
919 
920 	if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
921 		/* journals need recovery, wait until all are clear */
922 		fs_info(sdp, "control_mount wait for journal recovery\n");
923 		goto restart;
924 	}
925 
926 	spin_lock(&ls->ls_recover_spin);
927 	block_gen = ls->ls_recover_block;
928 	start_gen = ls->ls_recover_start;
929 	mount_gen = ls->ls_recover_mount;
930 
931 	if (lvb_gen < mount_gen) {
932 		/* wait for mounted nodes to update control_lock lvb to our
933 		   generation, which might include new recovery bits set */
934 		if (sdp->sd_args.ar_spectator) {
935 			fs_info(sdp, "Recovery is required. Waiting for a "
936 				"non-spectator to mount.\n");
937 			msleep_interruptible(1000);
938 		} else {
939 			fs_info(sdp, "control_mount wait1 block %u start %u "
940 				"mount %u lvb %u flags %lx\n", block_gen,
941 				start_gen, mount_gen, lvb_gen,
942 				ls->ls_recover_flags);
943 		}
944 		spin_unlock(&ls->ls_recover_spin);
945 		goto restart;
946 	}
947 
948 	if (lvb_gen != start_gen) {
949 		/* wait for mounted nodes to update control_lock lvb to the
950 		   latest recovery generation */
951 		fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
952 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
953 			lvb_gen, ls->ls_recover_flags);
954 		spin_unlock(&ls->ls_recover_spin);
955 		goto restart;
956 	}
957 
958 	if (block_gen == start_gen) {
959 		/* dlm recovery in progress, wait for it to finish */
960 		fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
961 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
962 			lvb_gen, ls->ls_recover_flags);
963 		spin_unlock(&ls->ls_recover_spin);
964 		goto restart;
965 	}
966 
967 	clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
968 	set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
969 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
970 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
971 	spin_unlock(&ls->ls_recover_spin);
972 	return 0;
973 
974 fail:
975 	mounted_unlock(sdp);
976 	control_unlock(sdp);
977 	return error;
978 }
979 
980 static int control_first_done(struct gfs2_sbd *sdp)
981 {
982 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
983 	uint32_t start_gen, block_gen;
984 	int error;
985 
986 restart:
987 	spin_lock(&ls->ls_recover_spin);
988 	start_gen = ls->ls_recover_start;
989 	block_gen = ls->ls_recover_block;
990 
991 	if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
992 	    !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
993 	    !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
994 		/* sanity check, should not happen */
995 		fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
996 		       start_gen, block_gen, ls->ls_recover_flags);
997 		spin_unlock(&ls->ls_recover_spin);
998 		control_unlock(sdp);
999 		return -1;
1000 	}
1001 
1002 	if (start_gen == block_gen) {
1003 		/*
1004 		 * Wait for the end of a dlm recovery cycle to switch from
1005 		 * first mounter recovery.  We can ignore any recover_slot
1006 		 * callbacks between the recover_prep and next recover_done
1007 		 * because we are still the first mounter and any failed nodes
1008 		 * have not fully mounted, so they don't need recovery.
1009 		 */
1010 		spin_unlock(&ls->ls_recover_spin);
1011 		fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
1012 
1013 		wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
1014 			    TASK_UNINTERRUPTIBLE);
1015 		goto restart;
1016 	}
1017 
1018 	clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1019 	set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
1020 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1021 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1022 	spin_unlock(&ls->ls_recover_spin);
1023 
1024 	memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
1025 	control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
1026 
1027 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1028 	if (error)
1029 		fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1030 
1031 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1032 	if (error)
1033 		fs_err(sdp, "control_first_done control NL error %d\n", error);
1034 
1035 	return error;
1036 }
1037 
1038 /*
1039  * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1040  * to accomodate the largest slot number.  (NB dlm slot numbers start at 1,
1041  * gfs2 jids start at 0, so jid = slot - 1)
1042  */
1043 
1044 #define RECOVER_SIZE_INC 16
1045 
1046 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1047 			    int num_slots)
1048 {
1049 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1050 	uint32_t *submit = NULL;
1051 	uint32_t *result = NULL;
1052 	uint32_t old_size, new_size;
1053 	int i, max_jid;
1054 
1055 	if (!ls->ls_lvb_bits) {
1056 		ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1057 		if (!ls->ls_lvb_bits)
1058 			return -ENOMEM;
1059 	}
1060 
1061 	max_jid = 0;
1062 	for (i = 0; i < num_slots; i++) {
1063 		if (max_jid < slots[i].slot - 1)
1064 			max_jid = slots[i].slot - 1;
1065 	}
1066 
1067 	old_size = ls->ls_recover_size;
1068 	new_size = old_size;
1069 	while (new_size < max_jid + 1)
1070 		new_size += RECOVER_SIZE_INC;
1071 	if (new_size == old_size)
1072 		return 0;
1073 
1074 	submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1075 	result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1076 	if (!submit || !result) {
1077 		kfree(submit);
1078 		kfree(result);
1079 		return -ENOMEM;
1080 	}
1081 
1082 	spin_lock(&ls->ls_recover_spin);
1083 	memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1084 	memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1085 	kfree(ls->ls_recover_submit);
1086 	kfree(ls->ls_recover_result);
1087 	ls->ls_recover_submit = submit;
1088 	ls->ls_recover_result = result;
1089 	ls->ls_recover_size = new_size;
1090 	spin_unlock(&ls->ls_recover_spin);
1091 	return 0;
1092 }
1093 
1094 static void free_recover_size(struct lm_lockstruct *ls)
1095 {
1096 	kfree(ls->ls_lvb_bits);
1097 	kfree(ls->ls_recover_submit);
1098 	kfree(ls->ls_recover_result);
1099 	ls->ls_recover_submit = NULL;
1100 	ls->ls_recover_result = NULL;
1101 	ls->ls_recover_size = 0;
1102 	ls->ls_lvb_bits = NULL;
1103 }
1104 
1105 /* dlm calls before it does lock recovery */
1106 
1107 static void gdlm_recover_prep(void *arg)
1108 {
1109 	struct gfs2_sbd *sdp = arg;
1110 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1111 
1112 	if (gfs2_withdrawn(sdp)) {
1113 		fs_err(sdp, "recover_prep ignored due to withdraw.\n");
1114 		return;
1115 	}
1116 	spin_lock(&ls->ls_recover_spin);
1117 	ls->ls_recover_block = ls->ls_recover_start;
1118 	set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1119 
1120 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1121 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1122 		spin_unlock(&ls->ls_recover_spin);
1123 		return;
1124 	}
1125 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1126 	spin_unlock(&ls->ls_recover_spin);
1127 }
1128 
1129 /* dlm calls after recover_prep has been completed on all lockspace members;
1130    identifies slot/jid of failed member */
1131 
1132 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1133 {
1134 	struct gfs2_sbd *sdp = arg;
1135 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1136 	int jid = slot->slot - 1;
1137 
1138 	if (gfs2_withdrawn(sdp)) {
1139 		fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n",
1140 		       jid);
1141 		return;
1142 	}
1143 	spin_lock(&ls->ls_recover_spin);
1144 	if (ls->ls_recover_size < jid + 1) {
1145 		fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1146 		       jid, ls->ls_recover_block, ls->ls_recover_size);
1147 		spin_unlock(&ls->ls_recover_spin);
1148 		return;
1149 	}
1150 
1151 	if (ls->ls_recover_submit[jid]) {
1152 		fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1153 			jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1154 	}
1155 	ls->ls_recover_submit[jid] = ls->ls_recover_block;
1156 	spin_unlock(&ls->ls_recover_spin);
1157 }
1158 
1159 /* dlm calls after recover_slot and after it completes lock recovery */
1160 
1161 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1162 			      int our_slot, uint32_t generation)
1163 {
1164 	struct gfs2_sbd *sdp = arg;
1165 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1166 
1167 	if (gfs2_withdrawn(sdp)) {
1168 		fs_err(sdp, "recover_done ignored due to withdraw.\n");
1169 		return;
1170 	}
1171 	/* ensure the ls jid arrays are large enough */
1172 	set_recover_size(sdp, slots, num_slots);
1173 
1174 	spin_lock(&ls->ls_recover_spin);
1175 	ls->ls_recover_start = generation;
1176 
1177 	if (!ls->ls_recover_mount) {
1178 		ls->ls_recover_mount = generation;
1179 		ls->ls_jid = our_slot - 1;
1180 	}
1181 
1182 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1183 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1184 
1185 	clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1186 	smp_mb__after_atomic();
1187 	wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1188 	spin_unlock(&ls->ls_recover_spin);
1189 }
1190 
1191 /* gfs2_recover thread has a journal recovery result */
1192 
1193 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1194 				 unsigned int result)
1195 {
1196 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1197 
1198 	if (gfs2_withdrawn(sdp)) {
1199 		fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n",
1200 		       jid);
1201 		return;
1202 	}
1203 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1204 		return;
1205 
1206 	/* don't care about the recovery of own journal during mount */
1207 	if (jid == ls->ls_jid)
1208 		return;
1209 
1210 	spin_lock(&ls->ls_recover_spin);
1211 	if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1212 		spin_unlock(&ls->ls_recover_spin);
1213 		return;
1214 	}
1215 	if (ls->ls_recover_size < jid + 1) {
1216 		fs_err(sdp, "recovery_result jid %d short size %d\n",
1217 		       jid, ls->ls_recover_size);
1218 		spin_unlock(&ls->ls_recover_spin);
1219 		return;
1220 	}
1221 
1222 	fs_info(sdp, "recover jid %d result %s\n", jid,
1223 		result == LM_RD_GAVEUP ? "busy" : "success");
1224 
1225 	ls->ls_recover_result[jid] = result;
1226 
1227 	/* GAVEUP means another node is recovering the journal; delay our
1228 	   next attempt to recover it, to give the other node a chance to
1229 	   finish before trying again */
1230 
1231 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1232 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1233 				   result == LM_RD_GAVEUP ? HZ : 0);
1234 	spin_unlock(&ls->ls_recover_spin);
1235 }
1236 
1237 static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1238 	.recover_prep = gdlm_recover_prep,
1239 	.recover_slot = gdlm_recover_slot,
1240 	.recover_done = gdlm_recover_done,
1241 };
1242 
1243 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1244 {
1245 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1246 	char cluster[GFS2_LOCKNAME_LEN];
1247 	const char *fsname;
1248 	uint32_t flags;
1249 	int error, ops_result;
1250 
1251 	/*
1252 	 * initialize everything
1253 	 */
1254 
1255 	INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1256 	spin_lock_init(&ls->ls_recover_spin);
1257 	ls->ls_recover_flags = 0;
1258 	ls->ls_recover_mount = 0;
1259 	ls->ls_recover_start = 0;
1260 	ls->ls_recover_block = 0;
1261 	ls->ls_recover_size = 0;
1262 	ls->ls_recover_submit = NULL;
1263 	ls->ls_recover_result = NULL;
1264 	ls->ls_lvb_bits = NULL;
1265 
1266 	error = set_recover_size(sdp, NULL, 0);
1267 	if (error)
1268 		goto fail;
1269 
1270 	/*
1271 	 * prepare dlm_new_lockspace args
1272 	 */
1273 
1274 	fsname = strchr(table, ':');
1275 	if (!fsname) {
1276 		fs_info(sdp, "no fsname found\n");
1277 		error = -EINVAL;
1278 		goto fail_free;
1279 	}
1280 	memset(cluster, 0, sizeof(cluster));
1281 	memcpy(cluster, table, strlen(table) - strlen(fsname));
1282 	fsname++;
1283 
1284 	flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1285 
1286 	/*
1287 	 * create/join lockspace
1288 	 */
1289 
1290 	error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1291 				  &gdlm_lockspace_ops, sdp, &ops_result,
1292 				  &ls->ls_dlm);
1293 	if (error) {
1294 		fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1295 		goto fail_free;
1296 	}
1297 
1298 	if (ops_result < 0) {
1299 		/*
1300 		 * dlm does not support ops callbacks,
1301 		 * old dlm_controld/gfs_controld are used, try without ops.
1302 		 */
1303 		fs_info(sdp, "dlm lockspace ops not used\n");
1304 		free_recover_size(ls);
1305 		set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1306 		return 0;
1307 	}
1308 
1309 	if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1310 		fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1311 		error = -EINVAL;
1312 		goto fail_release;
1313 	}
1314 
1315 	/*
1316 	 * control_mount() uses control_lock to determine first mounter,
1317 	 * and for later mounts, waits for any recoveries to be cleared.
1318 	 */
1319 
1320 	error = control_mount(sdp);
1321 	if (error) {
1322 		fs_err(sdp, "mount control error %d\n", error);
1323 		goto fail_release;
1324 	}
1325 
1326 	ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1327 	clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1328 	smp_mb__after_atomic();
1329 	wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1330 	return 0;
1331 
1332 fail_release:
1333 	dlm_release_lockspace(ls->ls_dlm, 2);
1334 fail_free:
1335 	free_recover_size(ls);
1336 fail:
1337 	return error;
1338 }
1339 
1340 static void gdlm_first_done(struct gfs2_sbd *sdp)
1341 {
1342 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1343 	int error;
1344 
1345 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1346 		return;
1347 
1348 	error = control_first_done(sdp);
1349 	if (error)
1350 		fs_err(sdp, "mount first_done error %d\n", error);
1351 }
1352 
1353 static void gdlm_unmount(struct gfs2_sbd *sdp)
1354 {
1355 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1356 
1357 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1358 		goto release;
1359 
1360 	/* wait for gfs2_control_wq to be done with this mount */
1361 
1362 	spin_lock(&ls->ls_recover_spin);
1363 	set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1364 	spin_unlock(&ls->ls_recover_spin);
1365 	flush_delayed_work(&sdp->sd_control_work);
1366 
1367 	/* mounted_lock and control_lock will be purged in dlm recovery */
1368 release:
1369 	if (ls->ls_dlm) {
1370 		dlm_release_lockspace(ls->ls_dlm, 2);
1371 		ls->ls_dlm = NULL;
1372 	}
1373 
1374 	free_recover_size(ls);
1375 }
1376 
1377 static const match_table_t dlm_tokens = {
1378 	{ Opt_jid, "jid=%d"},
1379 	{ Opt_id, "id=%d"},
1380 	{ Opt_first, "first=%d"},
1381 	{ Opt_nodir, "nodir=%d"},
1382 	{ Opt_err, NULL },
1383 };
1384 
1385 const struct lm_lockops gfs2_dlm_ops = {
1386 	.lm_proto_name = "lock_dlm",
1387 	.lm_mount = gdlm_mount,
1388 	.lm_first_done = gdlm_first_done,
1389 	.lm_recovery_result = gdlm_recovery_result,
1390 	.lm_unmount = gdlm_unmount,
1391 	.lm_put_lock = gdlm_put_lock,
1392 	.lm_lock = gdlm_lock,
1393 	.lm_cancel = gdlm_cancel,
1394 	.lm_tokens = &dlm_tokens,
1395 };
1396 
1397