1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright 2004-2011 Red Hat, Inc. 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/fs.h> 10 #include <linux/dlm.h> 11 #include <linux/slab.h> 12 #include <linux/types.h> 13 #include <linux/delay.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/sched/signal.h> 16 17 #include "incore.h" 18 #include "glock.h" 19 #include "glops.h" 20 #include "recovery.h" 21 #include "util.h" 22 #include "sys.h" 23 #include "trace_gfs2.h" 24 25 /** 26 * gfs2_update_stats - Update time based stats 27 * @s: The stats to update (local or global) 28 * @index: The index inside @s 29 * @sample: New data to include 30 */ 31 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index, 32 s64 sample) 33 { 34 /* 35 * @delta is the difference between the current rtt sample and the 36 * running average srtt. We add 1/8 of that to the srtt in order to 37 * update the current srtt estimate. The variance estimate is a bit 38 * more complicated. We subtract the current variance estimate from 39 * the abs value of the @delta and add 1/4 of that to the running 40 * total. That's equivalent to 3/4 of the current variance 41 * estimate plus 1/4 of the abs of @delta. 42 * 43 * Note that the index points at the array entry containing the 44 * smoothed mean value, and the variance is always in the following 45 * entry 46 * 47 * Reference: TCP/IP Illustrated, vol 2, p. 831,832 48 * All times are in units of integer nanoseconds. Unlike the TCP/IP 49 * case, they are not scaled fixed point. 50 */ 51 52 s64 delta = sample - s->stats[index]; 53 s->stats[index] += (delta >> 3); 54 index++; 55 s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2; 56 } 57 58 /** 59 * gfs2_update_reply_times - Update locking statistics 60 * @gl: The glock to update 61 * 62 * This assumes that gl->gl_dstamp has been set earlier. 63 * 64 * The rtt (lock round trip time) is an estimate of the time 65 * taken to perform a dlm lock request. We update it on each 66 * reply from the dlm. 67 * 68 * The blocking flag is set on the glock for all dlm requests 69 * which may potentially block due to lock requests from other nodes. 70 * DLM requests where the current lock state is exclusive, the 71 * requested state is null (or unlocked) or where the TRY or 72 * TRY_1CB flags are set are classified as non-blocking. All 73 * other DLM requests are counted as (potentially) blocking. 74 */ 75 static inline void gfs2_update_reply_times(struct gfs2_glock *gl) 76 { 77 struct gfs2_pcpu_lkstats *lks; 78 const unsigned gltype = gl->gl_name.ln_type; 79 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ? 80 GFS2_LKS_SRTTB : GFS2_LKS_SRTT; 81 s64 rtt; 82 83 preempt_disable(); 84 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp)); 85 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 86 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */ 87 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */ 88 preempt_enable(); 89 90 trace_gfs2_glock_lock_time(gl, rtt); 91 } 92 93 /** 94 * gfs2_update_request_times - Update locking statistics 95 * @gl: The glock to update 96 * 97 * The irt (lock inter-request times) measures the average time 98 * between requests to the dlm. It is updated immediately before 99 * each dlm call. 100 */ 101 102 static inline void gfs2_update_request_times(struct gfs2_glock *gl) 103 { 104 struct gfs2_pcpu_lkstats *lks; 105 const unsigned gltype = gl->gl_name.ln_type; 106 ktime_t dstamp; 107 s64 irt; 108 109 preempt_disable(); 110 dstamp = gl->gl_dstamp; 111 gl->gl_dstamp = ktime_get_real(); 112 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp)); 113 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 114 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */ 115 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */ 116 preempt_enable(); 117 } 118 119 static void gdlm_ast(void *arg) 120 { 121 struct gfs2_glock *gl = arg; 122 unsigned ret = gl->gl_state; 123 124 gfs2_update_reply_times(gl); 125 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED); 126 127 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr) 128 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE); 129 130 switch (gl->gl_lksb.sb_status) { 131 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */ 132 if (gl->gl_ops->go_free) 133 gl->gl_ops->go_free(gl); 134 gfs2_glock_free(gl); 135 return; 136 case -DLM_ECANCEL: /* Cancel while getting lock */ 137 ret |= LM_OUT_CANCELED; 138 goto out; 139 case -EAGAIN: /* Try lock fails */ 140 case -EDEADLK: /* Deadlock detected */ 141 goto out; 142 case -ETIMEDOUT: /* Canceled due to timeout */ 143 ret |= LM_OUT_ERROR; 144 goto out; 145 case 0: /* Success */ 146 break; 147 default: /* Something unexpected */ 148 BUG(); 149 } 150 151 ret = gl->gl_req; 152 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) { 153 if (gl->gl_req == LM_ST_SHARED) 154 ret = LM_ST_DEFERRED; 155 else if (gl->gl_req == LM_ST_DEFERRED) 156 ret = LM_ST_SHARED; 157 else 158 BUG(); 159 } 160 161 set_bit(GLF_INITIAL, &gl->gl_flags); 162 gfs2_glock_complete(gl, ret); 163 return; 164 out: 165 if (!test_bit(GLF_INITIAL, &gl->gl_flags)) 166 gl->gl_lksb.sb_lkid = 0; 167 gfs2_glock_complete(gl, ret); 168 } 169 170 static void gdlm_bast(void *arg, int mode) 171 { 172 struct gfs2_glock *gl = arg; 173 174 switch (mode) { 175 case DLM_LOCK_EX: 176 gfs2_glock_cb(gl, LM_ST_UNLOCKED); 177 break; 178 case DLM_LOCK_CW: 179 gfs2_glock_cb(gl, LM_ST_DEFERRED); 180 break; 181 case DLM_LOCK_PR: 182 gfs2_glock_cb(gl, LM_ST_SHARED); 183 break; 184 default: 185 fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode); 186 BUG(); 187 } 188 } 189 190 /* convert gfs lock-state to dlm lock-mode */ 191 192 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate) 193 { 194 switch (lmstate) { 195 case LM_ST_UNLOCKED: 196 return DLM_LOCK_NL; 197 case LM_ST_EXCLUSIVE: 198 return DLM_LOCK_EX; 199 case LM_ST_DEFERRED: 200 return DLM_LOCK_CW; 201 case LM_ST_SHARED: 202 return DLM_LOCK_PR; 203 } 204 fs_err(sdp, "unknown LM state %d\n", lmstate); 205 BUG(); 206 return -1; 207 } 208 209 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags, 210 const int req) 211 { 212 u32 lkf = 0; 213 214 if (gl->gl_lksb.sb_lvbptr) 215 lkf |= DLM_LKF_VALBLK; 216 217 if (gfs_flags & LM_FLAG_TRY) 218 lkf |= DLM_LKF_NOQUEUE; 219 220 if (gfs_flags & LM_FLAG_TRY_1CB) { 221 lkf |= DLM_LKF_NOQUEUE; 222 lkf |= DLM_LKF_NOQUEUEBAST; 223 } 224 225 if (gfs_flags & LM_FLAG_PRIORITY) { 226 lkf |= DLM_LKF_NOORDER; 227 lkf |= DLM_LKF_HEADQUE; 228 } 229 230 if (gfs_flags & LM_FLAG_ANY) { 231 if (req == DLM_LOCK_PR) 232 lkf |= DLM_LKF_ALTCW; 233 else if (req == DLM_LOCK_CW) 234 lkf |= DLM_LKF_ALTPR; 235 else 236 BUG(); 237 } 238 239 if (gl->gl_lksb.sb_lkid != 0) { 240 lkf |= DLM_LKF_CONVERT; 241 if (test_bit(GLF_BLOCKING, &gl->gl_flags)) 242 lkf |= DLM_LKF_QUECVT; 243 } 244 245 return lkf; 246 } 247 248 static void gfs2_reverse_hex(char *c, u64 value) 249 { 250 *c = '0'; 251 while (value) { 252 *c-- = hex_asc[value & 0x0f]; 253 value >>= 4; 254 } 255 } 256 257 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state, 258 unsigned int flags) 259 { 260 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 261 int req; 262 u32 lkf; 263 char strname[GDLM_STRNAME_BYTES] = ""; 264 265 req = make_mode(gl->gl_name.ln_sbd, req_state); 266 lkf = make_flags(gl, flags, req); 267 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 268 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 269 if (gl->gl_lksb.sb_lkid) { 270 gfs2_update_request_times(gl); 271 } else { 272 memset(strname, ' ', GDLM_STRNAME_BYTES - 1); 273 strname[GDLM_STRNAME_BYTES - 1] = '\0'; 274 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type); 275 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number); 276 gl->gl_dstamp = ktime_get_real(); 277 } 278 /* 279 * Submit the actual lock request. 280 */ 281 282 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname, 283 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast); 284 } 285 286 static void gdlm_put_lock(struct gfs2_glock *gl) 287 { 288 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 289 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 290 int error; 291 292 if (gl->gl_lksb.sb_lkid == 0) { 293 gfs2_glock_free(gl); 294 return; 295 } 296 297 clear_bit(GLF_BLOCKING, &gl->gl_flags); 298 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 299 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 300 gfs2_update_request_times(gl); 301 302 /* don't want to call dlm if we've unmounted the lock protocol */ 303 if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) { 304 gfs2_glock_free(gl); 305 return; 306 } 307 /* don't want to skip dlm_unlock writing the lvb when lock has one */ 308 309 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) && 310 !gl->gl_lksb.sb_lvbptr) { 311 gfs2_glock_free(gl); 312 return; 313 } 314 315 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK, 316 NULL, gl); 317 if (error) { 318 fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n", 319 gl->gl_name.ln_type, 320 (unsigned long long)gl->gl_name.ln_number, error); 321 return; 322 } 323 } 324 325 static void gdlm_cancel(struct gfs2_glock *gl) 326 { 327 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 328 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl); 329 } 330 331 /* 332 * dlm/gfs2 recovery coordination using dlm_recover callbacks 333 * 334 * 0. gfs2 checks for another cluster node withdraw, needing journal replay 335 * 1. dlm_controld sees lockspace members change 336 * 2. dlm_controld blocks dlm-kernel locking activity 337 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep) 338 * 4. dlm_controld starts and finishes its own user level recovery 339 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery 340 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot) 341 * 7. dlm_recoverd does its own lock recovery 342 * 8. dlm_recoverd unblocks dlm-kernel locking activity 343 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation) 344 * 10. gfs2_control updates control_lock lvb with new generation and jid bits 345 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none) 346 * 12. gfs2_recover dequeues and recovers journals of failed nodes 347 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result) 348 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals 349 * 15. gfs2_control unblocks normal locking when all journals are recovered 350 * 351 * - failures during recovery 352 * 353 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control 354 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still 355 * recovering for a prior failure. gfs2_control needs a way to detect 356 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using 357 * the recover_block and recover_start values. 358 * 359 * recover_done() provides a new lockspace generation number each time it 360 * is called (step 9). This generation number is saved as recover_start. 361 * When recover_prep() is called, it sets BLOCK_LOCKS and sets 362 * recover_block = recover_start. So, while recover_block is equal to 363 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must 364 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.) 365 * 366 * - more specific gfs2 steps in sequence above 367 * 368 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start 369 * 6. recover_slot records any failed jids (maybe none) 370 * 9. recover_done sets recover_start = new generation number 371 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids 372 * 12. gfs2_recover does journal recoveries for failed jids identified above 373 * 14. gfs2_control clears control_lock lvb bits for recovered jids 374 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured 375 * again) then do nothing, otherwise if recover_start > recover_block 376 * then clear BLOCK_LOCKS. 377 * 378 * - parallel recovery steps across all nodes 379 * 380 * All nodes attempt to update the control_lock lvb with the new generation 381 * number and jid bits, but only the first to get the control_lock EX will 382 * do so; others will see that it's already done (lvb already contains new 383 * generation number.) 384 * 385 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks 386 * . All nodes attempt to set control_lock lvb gen + bits for the new gen 387 * . One node gets control_lock first and writes the lvb, others see it's done 388 * . All nodes attempt to recover jids for which they see control_lock bits set 389 * . One node succeeds for a jid, and that one clears the jid bit in the lvb 390 * . All nodes will eventually see all lvb bits clear and unblock locks 391 * 392 * - is there a problem with clearing an lvb bit that should be set 393 * and missing a journal recovery? 394 * 395 * 1. jid fails 396 * 2. lvb bit set for step 1 397 * 3. jid recovered for step 1 398 * 4. jid taken again (new mount) 399 * 5. jid fails (for step 4) 400 * 6. lvb bit set for step 5 (will already be set) 401 * 7. lvb bit cleared for step 3 402 * 403 * This is not a problem because the failure in step 5 does not 404 * require recovery, because the mount in step 4 could not have 405 * progressed far enough to unblock locks and access the fs. The 406 * control_mount() function waits for all recoveries to be complete 407 * for the latest lockspace generation before ever unblocking locks 408 * and returning. The mount in step 4 waits until the recovery in 409 * step 1 is done. 410 * 411 * - special case of first mounter: first node to mount the fs 412 * 413 * The first node to mount a gfs2 fs needs to check all the journals 414 * and recover any that need recovery before other nodes are allowed 415 * to mount the fs. (Others may begin mounting, but they must wait 416 * for the first mounter to be done before taking locks on the fs 417 * or accessing the fs.) This has two parts: 418 * 419 * 1. The mounted_lock tells a node it's the first to mount the fs. 420 * Each node holds the mounted_lock in PR while it's mounted. 421 * Each node tries to acquire the mounted_lock in EX when it mounts. 422 * If a node is granted the mounted_lock EX it means there are no 423 * other mounted nodes (no PR locks exist), and it is the first mounter. 424 * The mounted_lock is demoted to PR when first recovery is done, so 425 * others will fail to get an EX lock, but will get a PR lock. 426 * 427 * 2. The control_lock blocks others in control_mount() while the first 428 * mounter is doing first mount recovery of all journals. 429 * A mounting node needs to acquire control_lock in EX mode before 430 * it can proceed. The first mounter holds control_lock in EX while doing 431 * the first mount recovery, blocking mounts from other nodes, then demotes 432 * control_lock to NL when it's done (others_may_mount/first_done), 433 * allowing other nodes to continue mounting. 434 * 435 * first mounter: 436 * control_lock EX/NOQUEUE success 437 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters) 438 * set first=1 439 * do first mounter recovery 440 * mounted_lock EX->PR 441 * control_lock EX->NL, write lvb generation 442 * 443 * other mounter: 444 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry) 445 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR) 446 * mounted_lock PR/NOQUEUE success 447 * read lvb generation 448 * control_lock EX->NL 449 * set first=0 450 * 451 * - mount during recovery 452 * 453 * If a node mounts while others are doing recovery (not first mounter), 454 * the mounting node will get its initial recover_done() callback without 455 * having seen any previous failures/callbacks. 456 * 457 * It must wait for all recoveries preceding its mount to be finished 458 * before it unblocks locks. It does this by repeating the "other mounter" 459 * steps above until the lvb generation number is >= its mount generation 460 * number (from initial recover_done) and all lvb bits are clear. 461 * 462 * - control_lock lvb format 463 * 464 * 4 bytes generation number: the latest dlm lockspace generation number 465 * from recover_done callback. Indicates the jid bitmap has been updated 466 * to reflect all slot failures through that generation. 467 * 4 bytes unused. 468 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates 469 * that jid N needs recovery. 470 */ 471 472 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */ 473 474 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen, 475 char *lvb_bits) 476 { 477 __le32 gen; 478 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE); 479 memcpy(&gen, lvb_bits, sizeof(__le32)); 480 *lvb_gen = le32_to_cpu(gen); 481 } 482 483 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen, 484 char *lvb_bits) 485 { 486 __le32 gen; 487 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE); 488 gen = cpu_to_le32(lvb_gen); 489 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32)); 490 } 491 492 static int all_jid_bits_clear(char *lvb) 493 { 494 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0, 495 GDLM_LVB_SIZE - JID_BITMAP_OFFSET); 496 } 497 498 static void sync_wait_cb(void *arg) 499 { 500 struct lm_lockstruct *ls = arg; 501 complete(&ls->ls_sync_wait); 502 } 503 504 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name) 505 { 506 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 507 int error; 508 509 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls); 510 if (error) { 511 fs_err(sdp, "%s lkid %x error %d\n", 512 name, lksb->sb_lkid, error); 513 return error; 514 } 515 516 wait_for_completion(&ls->ls_sync_wait); 517 518 if (lksb->sb_status != -DLM_EUNLOCK) { 519 fs_err(sdp, "%s lkid %x status %d\n", 520 name, lksb->sb_lkid, lksb->sb_status); 521 return -1; 522 } 523 return 0; 524 } 525 526 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags, 527 unsigned int num, struct dlm_lksb *lksb, char *name) 528 { 529 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 530 char strname[GDLM_STRNAME_BYTES]; 531 int error, status; 532 533 memset(strname, 0, GDLM_STRNAME_BYTES); 534 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num); 535 536 error = dlm_lock(ls->ls_dlm, mode, lksb, flags, 537 strname, GDLM_STRNAME_BYTES - 1, 538 0, sync_wait_cb, ls, NULL); 539 if (error) { 540 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n", 541 name, lksb->sb_lkid, flags, mode, error); 542 return error; 543 } 544 545 wait_for_completion(&ls->ls_sync_wait); 546 547 status = lksb->sb_status; 548 549 if (status && status != -EAGAIN) { 550 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n", 551 name, lksb->sb_lkid, flags, mode, status); 552 } 553 554 return status; 555 } 556 557 static int mounted_unlock(struct gfs2_sbd *sdp) 558 { 559 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 560 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock"); 561 } 562 563 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 564 { 565 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 566 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK, 567 &ls->ls_mounted_lksb, "mounted_lock"); 568 } 569 570 static int control_unlock(struct gfs2_sbd *sdp) 571 { 572 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 573 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock"); 574 } 575 576 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 577 { 578 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 579 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK, 580 &ls->ls_control_lksb, "control_lock"); 581 } 582 583 /** 584 * remote_withdraw - react to a node withdrawing from the file system 585 * @sdp: The superblock 586 */ 587 static void remote_withdraw(struct gfs2_sbd *sdp) 588 { 589 struct gfs2_jdesc *jd; 590 int ret = 0, count = 0; 591 592 list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) { 593 if (jd->jd_jid == sdp->sd_lockstruct.ls_jid) 594 continue; 595 ret = gfs2_recover_journal(jd, true); 596 if (ret) 597 break; 598 count++; 599 } 600 601 /* Now drop the additional reference we acquired */ 602 fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret); 603 } 604 605 static void gfs2_control_func(struct work_struct *work) 606 { 607 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work); 608 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 609 uint32_t block_gen, start_gen, lvb_gen, flags; 610 int recover_set = 0; 611 int write_lvb = 0; 612 int recover_size; 613 int i, error; 614 615 /* First check for other nodes that may have done a withdraw. */ 616 if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) { 617 remote_withdraw(sdp); 618 clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags); 619 return; 620 } 621 622 spin_lock(&ls->ls_recover_spin); 623 /* 624 * No MOUNT_DONE means we're still mounting; control_mount() 625 * will set this flag, after which this thread will take over 626 * all further clearing of BLOCK_LOCKS. 627 * 628 * FIRST_MOUNT means this node is doing first mounter recovery, 629 * for which recovery control is handled by 630 * control_mount()/control_first_done(), not this thread. 631 */ 632 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 633 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 634 spin_unlock(&ls->ls_recover_spin); 635 return; 636 } 637 block_gen = ls->ls_recover_block; 638 start_gen = ls->ls_recover_start; 639 spin_unlock(&ls->ls_recover_spin); 640 641 /* 642 * Equal block_gen and start_gen implies we are between 643 * recover_prep and recover_done callbacks, which means 644 * dlm recovery is in progress and dlm locking is blocked. 645 * There's no point trying to do any work until recover_done. 646 */ 647 648 if (block_gen == start_gen) 649 return; 650 651 /* 652 * Propagate recover_submit[] and recover_result[] to lvb: 653 * dlm_recoverd adds to recover_submit[] jids needing recovery 654 * gfs2_recover adds to recover_result[] journal recovery results 655 * 656 * set lvb bit for jids in recover_submit[] if the lvb has not 657 * yet been updated for the generation of the failure 658 * 659 * clear lvb bit for jids in recover_result[] if the result of 660 * the journal recovery is SUCCESS 661 */ 662 663 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 664 if (error) { 665 fs_err(sdp, "control lock EX error %d\n", error); 666 return; 667 } 668 669 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 670 671 spin_lock(&ls->ls_recover_spin); 672 if (block_gen != ls->ls_recover_block || 673 start_gen != ls->ls_recover_start) { 674 fs_info(sdp, "recover generation %u block1 %u %u\n", 675 start_gen, block_gen, ls->ls_recover_block); 676 spin_unlock(&ls->ls_recover_spin); 677 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 678 return; 679 } 680 681 recover_size = ls->ls_recover_size; 682 683 if (lvb_gen <= start_gen) { 684 /* 685 * Clear lvb bits for jids we've successfully recovered. 686 * Because all nodes attempt to recover failed journals, 687 * a journal can be recovered multiple times successfully 688 * in succession. Only the first will really do recovery, 689 * the others find it clean, but still report a successful 690 * recovery. So, another node may have already recovered 691 * the jid and cleared the lvb bit for it. 692 */ 693 for (i = 0; i < recover_size; i++) { 694 if (ls->ls_recover_result[i] != LM_RD_SUCCESS) 695 continue; 696 697 ls->ls_recover_result[i] = 0; 698 699 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) 700 continue; 701 702 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 703 write_lvb = 1; 704 } 705 } 706 707 if (lvb_gen == start_gen) { 708 /* 709 * Failed slots before start_gen are already set in lvb. 710 */ 711 for (i = 0; i < recover_size; i++) { 712 if (!ls->ls_recover_submit[i]) 713 continue; 714 if (ls->ls_recover_submit[i] < lvb_gen) 715 ls->ls_recover_submit[i] = 0; 716 } 717 } else if (lvb_gen < start_gen) { 718 /* 719 * Failed slots before start_gen are not yet set in lvb. 720 */ 721 for (i = 0; i < recover_size; i++) { 722 if (!ls->ls_recover_submit[i]) 723 continue; 724 if (ls->ls_recover_submit[i] < start_gen) { 725 ls->ls_recover_submit[i] = 0; 726 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 727 } 728 } 729 /* even if there are no bits to set, we need to write the 730 latest generation to the lvb */ 731 write_lvb = 1; 732 } else { 733 /* 734 * we should be getting a recover_done() for lvb_gen soon 735 */ 736 } 737 spin_unlock(&ls->ls_recover_spin); 738 739 if (write_lvb) { 740 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 741 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK; 742 } else { 743 flags = DLM_LKF_CONVERT; 744 } 745 746 error = control_lock(sdp, DLM_LOCK_NL, flags); 747 if (error) { 748 fs_err(sdp, "control lock NL error %d\n", error); 749 return; 750 } 751 752 /* 753 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(), 754 * and clear a jid bit in the lvb if the recovery is a success. 755 * Eventually all journals will be recovered, all jid bits will 756 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS. 757 */ 758 759 for (i = 0; i < recover_size; i++) { 760 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) { 761 fs_info(sdp, "recover generation %u jid %d\n", 762 start_gen, i); 763 gfs2_recover_set(sdp, i); 764 recover_set++; 765 } 766 } 767 if (recover_set) 768 return; 769 770 /* 771 * No more jid bits set in lvb, all recovery is done, unblock locks 772 * (unless a new recover_prep callback has occured blocking locks 773 * again while working above) 774 */ 775 776 spin_lock(&ls->ls_recover_spin); 777 if (ls->ls_recover_block == block_gen && 778 ls->ls_recover_start == start_gen) { 779 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 780 spin_unlock(&ls->ls_recover_spin); 781 fs_info(sdp, "recover generation %u done\n", start_gen); 782 gfs2_glock_thaw(sdp); 783 } else { 784 fs_info(sdp, "recover generation %u block2 %u %u\n", 785 start_gen, block_gen, ls->ls_recover_block); 786 spin_unlock(&ls->ls_recover_spin); 787 } 788 } 789 790 static int control_mount(struct gfs2_sbd *sdp) 791 { 792 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 793 uint32_t start_gen, block_gen, mount_gen, lvb_gen; 794 int mounted_mode; 795 int retries = 0; 796 int error; 797 798 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb)); 799 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb)); 800 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE); 801 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb; 802 init_completion(&ls->ls_sync_wait); 803 804 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 805 806 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK); 807 if (error) { 808 fs_err(sdp, "control_mount control_lock NL error %d\n", error); 809 return error; 810 } 811 812 error = mounted_lock(sdp, DLM_LOCK_NL, 0); 813 if (error) { 814 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error); 815 control_unlock(sdp); 816 return error; 817 } 818 mounted_mode = DLM_LOCK_NL; 819 820 restart: 821 if (retries++ && signal_pending(current)) { 822 error = -EINTR; 823 goto fail; 824 } 825 826 /* 827 * We always start with both locks in NL. control_lock is 828 * demoted to NL below so we don't need to do it here. 829 */ 830 831 if (mounted_mode != DLM_LOCK_NL) { 832 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 833 if (error) 834 goto fail; 835 mounted_mode = DLM_LOCK_NL; 836 } 837 838 /* 839 * Other nodes need to do some work in dlm recovery and gfs2_control 840 * before the recover_done and control_lock will be ready for us below. 841 * A delay here is not required but often avoids having to retry. 842 */ 843 844 msleep_interruptible(500); 845 846 /* 847 * Acquire control_lock in EX and mounted_lock in either EX or PR. 848 * control_lock lvb keeps track of any pending journal recoveries. 849 * mounted_lock indicates if any other nodes have the fs mounted. 850 */ 851 852 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK); 853 if (error == -EAGAIN) { 854 goto restart; 855 } else if (error) { 856 fs_err(sdp, "control_mount control_lock EX error %d\n", error); 857 goto fail; 858 } 859 860 /** 861 * If we're a spectator, we don't want to take the lock in EX because 862 * we cannot do the first-mount responsibility it implies: recovery. 863 */ 864 if (sdp->sd_args.ar_spectator) 865 goto locks_done; 866 867 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 868 if (!error) { 869 mounted_mode = DLM_LOCK_EX; 870 goto locks_done; 871 } else if (error != -EAGAIN) { 872 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error); 873 goto fail; 874 } 875 876 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 877 if (!error) { 878 mounted_mode = DLM_LOCK_PR; 879 goto locks_done; 880 } else { 881 /* not even -EAGAIN should happen here */ 882 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error); 883 goto fail; 884 } 885 886 locks_done: 887 /* 888 * If we got both locks above in EX, then we're the first mounter. 889 * If not, then we need to wait for the control_lock lvb to be 890 * updated by other mounted nodes to reflect our mount generation. 891 * 892 * In simple first mounter cases, first mounter will see zero lvb_gen, 893 * but in cases where all existing nodes leave/fail before mounting 894 * nodes finish control_mount, then all nodes will be mounting and 895 * lvb_gen will be non-zero. 896 */ 897 898 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 899 900 if (lvb_gen == 0xFFFFFFFF) { 901 /* special value to force mount attempts to fail */ 902 fs_err(sdp, "control_mount control_lock disabled\n"); 903 error = -EINVAL; 904 goto fail; 905 } 906 907 if (mounted_mode == DLM_LOCK_EX) { 908 /* first mounter, keep both EX while doing first recovery */ 909 spin_lock(&ls->ls_recover_spin); 910 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 911 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 912 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 913 spin_unlock(&ls->ls_recover_spin); 914 fs_info(sdp, "first mounter control generation %u\n", lvb_gen); 915 return 0; 916 } 917 918 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 919 if (error) 920 goto fail; 921 922 /* 923 * We are not first mounter, now we need to wait for the control_lock 924 * lvb generation to be >= the generation from our first recover_done 925 * and all lvb bits to be clear (no pending journal recoveries.) 926 */ 927 928 if (!all_jid_bits_clear(ls->ls_lvb_bits)) { 929 /* journals need recovery, wait until all are clear */ 930 fs_info(sdp, "control_mount wait for journal recovery\n"); 931 goto restart; 932 } 933 934 spin_lock(&ls->ls_recover_spin); 935 block_gen = ls->ls_recover_block; 936 start_gen = ls->ls_recover_start; 937 mount_gen = ls->ls_recover_mount; 938 939 if (lvb_gen < mount_gen) { 940 /* wait for mounted nodes to update control_lock lvb to our 941 generation, which might include new recovery bits set */ 942 if (sdp->sd_args.ar_spectator) { 943 fs_info(sdp, "Recovery is required. Waiting for a " 944 "non-spectator to mount.\n"); 945 msleep_interruptible(1000); 946 } else { 947 fs_info(sdp, "control_mount wait1 block %u start %u " 948 "mount %u lvb %u flags %lx\n", block_gen, 949 start_gen, mount_gen, lvb_gen, 950 ls->ls_recover_flags); 951 } 952 spin_unlock(&ls->ls_recover_spin); 953 goto restart; 954 } 955 956 if (lvb_gen != start_gen) { 957 /* wait for mounted nodes to update control_lock lvb to the 958 latest recovery generation */ 959 fs_info(sdp, "control_mount wait2 block %u start %u mount %u " 960 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 961 lvb_gen, ls->ls_recover_flags); 962 spin_unlock(&ls->ls_recover_spin); 963 goto restart; 964 } 965 966 if (block_gen == start_gen) { 967 /* dlm recovery in progress, wait for it to finish */ 968 fs_info(sdp, "control_mount wait3 block %u start %u mount %u " 969 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 970 lvb_gen, ls->ls_recover_flags); 971 spin_unlock(&ls->ls_recover_spin); 972 goto restart; 973 } 974 975 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 976 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 977 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 978 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 979 spin_unlock(&ls->ls_recover_spin); 980 return 0; 981 982 fail: 983 mounted_unlock(sdp); 984 control_unlock(sdp); 985 return error; 986 } 987 988 static int control_first_done(struct gfs2_sbd *sdp) 989 { 990 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 991 uint32_t start_gen, block_gen; 992 int error; 993 994 restart: 995 spin_lock(&ls->ls_recover_spin); 996 start_gen = ls->ls_recover_start; 997 block_gen = ls->ls_recover_block; 998 999 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) || 1000 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 1001 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1002 /* sanity check, should not happen */ 1003 fs_err(sdp, "control_first_done start %u block %u flags %lx\n", 1004 start_gen, block_gen, ls->ls_recover_flags); 1005 spin_unlock(&ls->ls_recover_spin); 1006 control_unlock(sdp); 1007 return -1; 1008 } 1009 1010 if (start_gen == block_gen) { 1011 /* 1012 * Wait for the end of a dlm recovery cycle to switch from 1013 * first mounter recovery. We can ignore any recover_slot 1014 * callbacks between the recover_prep and next recover_done 1015 * because we are still the first mounter and any failed nodes 1016 * have not fully mounted, so they don't need recovery. 1017 */ 1018 spin_unlock(&ls->ls_recover_spin); 1019 fs_info(sdp, "control_first_done wait gen %u\n", start_gen); 1020 1021 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY, 1022 TASK_UNINTERRUPTIBLE); 1023 goto restart; 1024 } 1025 1026 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1027 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags); 1028 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 1029 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 1030 spin_unlock(&ls->ls_recover_spin); 1031 1032 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE); 1033 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 1034 1035 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT); 1036 if (error) 1037 fs_err(sdp, "control_first_done mounted PR error %d\n", error); 1038 1039 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 1040 if (error) 1041 fs_err(sdp, "control_first_done control NL error %d\n", error); 1042 1043 return error; 1044 } 1045 1046 /* 1047 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC) 1048 * to accomodate the largest slot number. (NB dlm slot numbers start at 1, 1049 * gfs2 jids start at 0, so jid = slot - 1) 1050 */ 1051 1052 #define RECOVER_SIZE_INC 16 1053 1054 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots, 1055 int num_slots) 1056 { 1057 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1058 uint32_t *submit = NULL; 1059 uint32_t *result = NULL; 1060 uint32_t old_size, new_size; 1061 int i, max_jid; 1062 1063 if (!ls->ls_lvb_bits) { 1064 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS); 1065 if (!ls->ls_lvb_bits) 1066 return -ENOMEM; 1067 } 1068 1069 max_jid = 0; 1070 for (i = 0; i < num_slots; i++) { 1071 if (max_jid < slots[i].slot - 1) 1072 max_jid = slots[i].slot - 1; 1073 } 1074 1075 old_size = ls->ls_recover_size; 1076 new_size = old_size; 1077 while (new_size < max_jid + 1) 1078 new_size += RECOVER_SIZE_INC; 1079 if (new_size == old_size) 1080 return 0; 1081 1082 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1083 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1084 if (!submit || !result) { 1085 kfree(submit); 1086 kfree(result); 1087 return -ENOMEM; 1088 } 1089 1090 spin_lock(&ls->ls_recover_spin); 1091 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t)); 1092 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t)); 1093 kfree(ls->ls_recover_submit); 1094 kfree(ls->ls_recover_result); 1095 ls->ls_recover_submit = submit; 1096 ls->ls_recover_result = result; 1097 ls->ls_recover_size = new_size; 1098 spin_unlock(&ls->ls_recover_spin); 1099 return 0; 1100 } 1101 1102 static void free_recover_size(struct lm_lockstruct *ls) 1103 { 1104 kfree(ls->ls_lvb_bits); 1105 kfree(ls->ls_recover_submit); 1106 kfree(ls->ls_recover_result); 1107 ls->ls_recover_submit = NULL; 1108 ls->ls_recover_result = NULL; 1109 ls->ls_recover_size = 0; 1110 ls->ls_lvb_bits = NULL; 1111 } 1112 1113 /* dlm calls before it does lock recovery */ 1114 1115 static void gdlm_recover_prep(void *arg) 1116 { 1117 struct gfs2_sbd *sdp = arg; 1118 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1119 1120 if (gfs2_withdrawn(sdp)) { 1121 fs_err(sdp, "recover_prep ignored due to withdraw.\n"); 1122 return; 1123 } 1124 spin_lock(&ls->ls_recover_spin); 1125 ls->ls_recover_block = ls->ls_recover_start; 1126 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1127 1128 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 1129 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1130 spin_unlock(&ls->ls_recover_spin); 1131 return; 1132 } 1133 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 1134 spin_unlock(&ls->ls_recover_spin); 1135 } 1136 1137 /* dlm calls after recover_prep has been completed on all lockspace members; 1138 identifies slot/jid of failed member */ 1139 1140 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot) 1141 { 1142 struct gfs2_sbd *sdp = arg; 1143 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1144 int jid = slot->slot - 1; 1145 1146 if (gfs2_withdrawn(sdp)) { 1147 fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n", 1148 jid); 1149 return; 1150 } 1151 spin_lock(&ls->ls_recover_spin); 1152 if (ls->ls_recover_size < jid + 1) { 1153 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n", 1154 jid, ls->ls_recover_block, ls->ls_recover_size); 1155 spin_unlock(&ls->ls_recover_spin); 1156 return; 1157 } 1158 1159 if (ls->ls_recover_submit[jid]) { 1160 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n", 1161 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]); 1162 } 1163 ls->ls_recover_submit[jid] = ls->ls_recover_block; 1164 spin_unlock(&ls->ls_recover_spin); 1165 } 1166 1167 /* dlm calls after recover_slot and after it completes lock recovery */ 1168 1169 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots, 1170 int our_slot, uint32_t generation) 1171 { 1172 struct gfs2_sbd *sdp = arg; 1173 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1174 1175 if (gfs2_withdrawn(sdp)) { 1176 fs_err(sdp, "recover_done ignored due to withdraw.\n"); 1177 return; 1178 } 1179 /* ensure the ls jid arrays are large enough */ 1180 set_recover_size(sdp, slots, num_slots); 1181 1182 spin_lock(&ls->ls_recover_spin); 1183 ls->ls_recover_start = generation; 1184 1185 if (!ls->ls_recover_mount) { 1186 ls->ls_recover_mount = generation; 1187 ls->ls_jid = our_slot - 1; 1188 } 1189 1190 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1191 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0); 1192 1193 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1194 smp_mb__after_atomic(); 1195 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY); 1196 spin_unlock(&ls->ls_recover_spin); 1197 } 1198 1199 /* gfs2_recover thread has a journal recovery result */ 1200 1201 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid, 1202 unsigned int result) 1203 { 1204 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1205 1206 if (gfs2_withdrawn(sdp)) { 1207 fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n", 1208 jid); 1209 return; 1210 } 1211 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1212 return; 1213 1214 /* don't care about the recovery of own journal during mount */ 1215 if (jid == ls->ls_jid) 1216 return; 1217 1218 spin_lock(&ls->ls_recover_spin); 1219 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1220 spin_unlock(&ls->ls_recover_spin); 1221 return; 1222 } 1223 if (ls->ls_recover_size < jid + 1) { 1224 fs_err(sdp, "recovery_result jid %d short size %d\n", 1225 jid, ls->ls_recover_size); 1226 spin_unlock(&ls->ls_recover_spin); 1227 return; 1228 } 1229 1230 fs_info(sdp, "recover jid %d result %s\n", jid, 1231 result == LM_RD_GAVEUP ? "busy" : "success"); 1232 1233 ls->ls_recover_result[jid] = result; 1234 1235 /* GAVEUP means another node is recovering the journal; delay our 1236 next attempt to recover it, to give the other node a chance to 1237 finish before trying again */ 1238 1239 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1240 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 1241 result == LM_RD_GAVEUP ? HZ : 0); 1242 spin_unlock(&ls->ls_recover_spin); 1243 } 1244 1245 static const struct dlm_lockspace_ops gdlm_lockspace_ops = { 1246 .recover_prep = gdlm_recover_prep, 1247 .recover_slot = gdlm_recover_slot, 1248 .recover_done = gdlm_recover_done, 1249 }; 1250 1251 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table) 1252 { 1253 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1254 char cluster[GFS2_LOCKNAME_LEN]; 1255 const char *fsname; 1256 uint32_t flags; 1257 int error, ops_result; 1258 1259 /* 1260 * initialize everything 1261 */ 1262 1263 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func); 1264 spin_lock_init(&ls->ls_recover_spin); 1265 ls->ls_recover_flags = 0; 1266 ls->ls_recover_mount = 0; 1267 ls->ls_recover_start = 0; 1268 ls->ls_recover_block = 0; 1269 ls->ls_recover_size = 0; 1270 ls->ls_recover_submit = NULL; 1271 ls->ls_recover_result = NULL; 1272 ls->ls_lvb_bits = NULL; 1273 1274 error = set_recover_size(sdp, NULL, 0); 1275 if (error) 1276 goto fail; 1277 1278 /* 1279 * prepare dlm_new_lockspace args 1280 */ 1281 1282 fsname = strchr(table, ':'); 1283 if (!fsname) { 1284 fs_info(sdp, "no fsname found\n"); 1285 error = -EINVAL; 1286 goto fail_free; 1287 } 1288 memset(cluster, 0, sizeof(cluster)); 1289 memcpy(cluster, table, strlen(table) - strlen(fsname)); 1290 fsname++; 1291 1292 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL; 1293 1294 /* 1295 * create/join lockspace 1296 */ 1297 1298 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE, 1299 &gdlm_lockspace_ops, sdp, &ops_result, 1300 &ls->ls_dlm); 1301 if (error) { 1302 fs_err(sdp, "dlm_new_lockspace error %d\n", error); 1303 goto fail_free; 1304 } 1305 1306 if (ops_result < 0) { 1307 /* 1308 * dlm does not support ops callbacks, 1309 * old dlm_controld/gfs_controld are used, try without ops. 1310 */ 1311 fs_info(sdp, "dlm lockspace ops not used\n"); 1312 free_recover_size(ls); 1313 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags); 1314 return 0; 1315 } 1316 1317 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) { 1318 fs_err(sdp, "dlm lockspace ops disallow jid preset\n"); 1319 error = -EINVAL; 1320 goto fail_release; 1321 } 1322 1323 /* 1324 * control_mount() uses control_lock to determine first mounter, 1325 * and for later mounts, waits for any recoveries to be cleared. 1326 */ 1327 1328 error = control_mount(sdp); 1329 if (error) { 1330 fs_err(sdp, "mount control error %d\n", error); 1331 goto fail_release; 1332 } 1333 1334 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1335 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags); 1336 smp_mb__after_atomic(); 1337 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID); 1338 return 0; 1339 1340 fail_release: 1341 dlm_release_lockspace(ls->ls_dlm, 2); 1342 fail_free: 1343 free_recover_size(ls); 1344 fail: 1345 return error; 1346 } 1347 1348 static void gdlm_first_done(struct gfs2_sbd *sdp) 1349 { 1350 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1351 int error; 1352 1353 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1354 return; 1355 1356 error = control_first_done(sdp); 1357 if (error) 1358 fs_err(sdp, "mount first_done error %d\n", error); 1359 } 1360 1361 static void gdlm_unmount(struct gfs2_sbd *sdp) 1362 { 1363 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1364 1365 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1366 goto release; 1367 1368 /* wait for gfs2_control_wq to be done with this mount */ 1369 1370 spin_lock(&ls->ls_recover_spin); 1371 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags); 1372 spin_unlock(&ls->ls_recover_spin); 1373 flush_delayed_work(&sdp->sd_control_work); 1374 1375 /* mounted_lock and control_lock will be purged in dlm recovery */ 1376 release: 1377 if (ls->ls_dlm) { 1378 dlm_release_lockspace(ls->ls_dlm, 2); 1379 ls->ls_dlm = NULL; 1380 } 1381 1382 free_recover_size(ls); 1383 } 1384 1385 static const match_table_t dlm_tokens = { 1386 { Opt_jid, "jid=%d"}, 1387 { Opt_id, "id=%d"}, 1388 { Opt_first, "first=%d"}, 1389 { Opt_nodir, "nodir=%d"}, 1390 { Opt_err, NULL }, 1391 }; 1392 1393 const struct lm_lockops gfs2_dlm_ops = { 1394 .lm_proto_name = "lock_dlm", 1395 .lm_mount = gdlm_mount, 1396 .lm_first_done = gdlm_first_done, 1397 .lm_recovery_result = gdlm_recovery_result, 1398 .lm_unmount = gdlm_unmount, 1399 .lm_put_lock = gdlm_put_lock, 1400 .lm_lock = gdlm_lock, 1401 .lm_cancel = gdlm_cancel, 1402 .lm_tokens = &dlm_tokens, 1403 }; 1404 1405