xref: /openbmc/linux/fs/gfs2/lock_dlm.c (revision 0d456bad)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright 2004-2011 Red Hat, Inc.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/dlm.h>
12 #include <linux/slab.h>
13 #include <linux/types.h>
14 #include <linux/delay.h>
15 #include <linux/gfs2_ondisk.h>
16 
17 #include "incore.h"
18 #include "glock.h"
19 #include "util.h"
20 #include "sys.h"
21 #include "trace_gfs2.h"
22 
23 extern struct workqueue_struct *gfs2_control_wq;
24 
25 /**
26  * gfs2_update_stats - Update time based stats
27  * @mv: Pointer to mean/variance structure to update
28  * @sample: New data to include
29  *
30  * @delta is the difference between the current rtt sample and the
31  * running average srtt. We add 1/8 of that to the srtt in order to
32  * update the current srtt estimate. The varience estimate is a bit
33  * more complicated. We subtract the abs value of the @delta from
34  * the current variance estimate and add 1/4 of that to the running
35  * total.
36  *
37  * Note that the index points at the array entry containing the smoothed
38  * mean value, and the variance is always in the following entry
39  *
40  * Reference: TCP/IP Illustrated, vol 2, p. 831,832
41  * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
42  * they are not scaled fixed point.
43  */
44 
45 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
46 				     s64 sample)
47 {
48 	s64 delta = sample - s->stats[index];
49 	s->stats[index] += (delta >> 3);
50 	index++;
51 	s->stats[index] += ((abs64(delta) - s->stats[index]) >> 2);
52 }
53 
54 /**
55  * gfs2_update_reply_times - Update locking statistics
56  * @gl: The glock to update
57  *
58  * This assumes that gl->gl_dstamp has been set earlier.
59  *
60  * The rtt (lock round trip time) is an estimate of the time
61  * taken to perform a dlm lock request. We update it on each
62  * reply from the dlm.
63  *
64  * The blocking flag is set on the glock for all dlm requests
65  * which may potentially block due to lock requests from other nodes.
66  * DLM requests where the current lock state is exclusive, the
67  * requested state is null (or unlocked) or where the TRY or
68  * TRY_1CB flags are set are classified as non-blocking. All
69  * other DLM requests are counted as (potentially) blocking.
70  */
71 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
72 {
73 	struct gfs2_pcpu_lkstats *lks;
74 	const unsigned gltype = gl->gl_name.ln_type;
75 	unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
76 			 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
77 	s64 rtt;
78 
79 	preempt_disable();
80 	rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
81 	lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats);
82 	gfs2_update_stats(&gl->gl_stats, index, rtt);		/* Local */
83 	gfs2_update_stats(&lks->lkstats[gltype], index, rtt);	/* Global */
84 	preempt_enable();
85 
86 	trace_gfs2_glock_lock_time(gl, rtt);
87 }
88 
89 /**
90  * gfs2_update_request_times - Update locking statistics
91  * @gl: The glock to update
92  *
93  * The irt (lock inter-request times) measures the average time
94  * between requests to the dlm. It is updated immediately before
95  * each dlm call.
96  */
97 
98 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
99 {
100 	struct gfs2_pcpu_lkstats *lks;
101 	const unsigned gltype = gl->gl_name.ln_type;
102 	ktime_t dstamp;
103 	s64 irt;
104 
105 	preempt_disable();
106 	dstamp = gl->gl_dstamp;
107 	gl->gl_dstamp = ktime_get_real();
108 	irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
109 	lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats);
110 	gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);		/* Local */
111 	gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);	/* Global */
112 	preempt_enable();
113 }
114 
115 static void gdlm_ast(void *arg)
116 {
117 	struct gfs2_glock *gl = arg;
118 	unsigned ret = gl->gl_state;
119 
120 	gfs2_update_reply_times(gl);
121 	BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
122 
123 	if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
124 		memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
125 
126 	switch (gl->gl_lksb.sb_status) {
127 	case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
128 		gfs2_glock_free(gl);
129 		return;
130 	case -DLM_ECANCEL: /* Cancel while getting lock */
131 		ret |= LM_OUT_CANCELED;
132 		goto out;
133 	case -EAGAIN: /* Try lock fails */
134 	case -EDEADLK: /* Deadlock detected */
135 		goto out;
136 	case -ETIMEDOUT: /* Canceled due to timeout */
137 		ret |= LM_OUT_ERROR;
138 		goto out;
139 	case 0: /* Success */
140 		break;
141 	default: /* Something unexpected */
142 		BUG();
143 	}
144 
145 	ret = gl->gl_req;
146 	if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
147 		if (gl->gl_req == LM_ST_SHARED)
148 			ret = LM_ST_DEFERRED;
149 		else if (gl->gl_req == LM_ST_DEFERRED)
150 			ret = LM_ST_SHARED;
151 		else
152 			BUG();
153 	}
154 
155 	set_bit(GLF_INITIAL, &gl->gl_flags);
156 	gfs2_glock_complete(gl, ret);
157 	return;
158 out:
159 	if (!test_bit(GLF_INITIAL, &gl->gl_flags))
160 		gl->gl_lksb.sb_lkid = 0;
161 	gfs2_glock_complete(gl, ret);
162 }
163 
164 static void gdlm_bast(void *arg, int mode)
165 {
166 	struct gfs2_glock *gl = arg;
167 
168 	switch (mode) {
169 	case DLM_LOCK_EX:
170 		gfs2_glock_cb(gl, LM_ST_UNLOCKED);
171 		break;
172 	case DLM_LOCK_CW:
173 		gfs2_glock_cb(gl, LM_ST_DEFERRED);
174 		break;
175 	case DLM_LOCK_PR:
176 		gfs2_glock_cb(gl, LM_ST_SHARED);
177 		break;
178 	default:
179 		printk(KERN_ERR "unknown bast mode %d", mode);
180 		BUG();
181 	}
182 }
183 
184 /* convert gfs lock-state to dlm lock-mode */
185 
186 static int make_mode(const unsigned int lmstate)
187 {
188 	switch (lmstate) {
189 	case LM_ST_UNLOCKED:
190 		return DLM_LOCK_NL;
191 	case LM_ST_EXCLUSIVE:
192 		return DLM_LOCK_EX;
193 	case LM_ST_DEFERRED:
194 		return DLM_LOCK_CW;
195 	case LM_ST_SHARED:
196 		return DLM_LOCK_PR;
197 	}
198 	printk(KERN_ERR "unknown LM state %d", lmstate);
199 	BUG();
200 	return -1;
201 }
202 
203 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
204 		      const int req)
205 {
206 	u32 lkf = 0;
207 
208 	if (gl->gl_lksb.sb_lvbptr)
209 		lkf |= DLM_LKF_VALBLK;
210 
211 	if (gfs_flags & LM_FLAG_TRY)
212 		lkf |= DLM_LKF_NOQUEUE;
213 
214 	if (gfs_flags & LM_FLAG_TRY_1CB) {
215 		lkf |= DLM_LKF_NOQUEUE;
216 		lkf |= DLM_LKF_NOQUEUEBAST;
217 	}
218 
219 	if (gfs_flags & LM_FLAG_PRIORITY) {
220 		lkf |= DLM_LKF_NOORDER;
221 		lkf |= DLM_LKF_HEADQUE;
222 	}
223 
224 	if (gfs_flags & LM_FLAG_ANY) {
225 		if (req == DLM_LOCK_PR)
226 			lkf |= DLM_LKF_ALTCW;
227 		else if (req == DLM_LOCK_CW)
228 			lkf |= DLM_LKF_ALTPR;
229 		else
230 			BUG();
231 	}
232 
233 	if (gl->gl_lksb.sb_lkid != 0) {
234 		lkf |= DLM_LKF_CONVERT;
235 		if (test_bit(GLF_BLOCKING, &gl->gl_flags))
236 			lkf |= DLM_LKF_QUECVT;
237 	}
238 
239 	return lkf;
240 }
241 
242 static void gfs2_reverse_hex(char *c, u64 value)
243 {
244 	while (value) {
245 		*c-- = hex_asc[value & 0x0f];
246 		value >>= 4;
247 	}
248 }
249 
250 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
251 		     unsigned int flags)
252 {
253 	struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
254 	int req;
255 	u32 lkf;
256 	char strname[GDLM_STRNAME_BYTES] = "";
257 
258 	req = make_mode(req_state);
259 	lkf = make_flags(gl, flags, req);
260 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
261 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
262 	if (gl->gl_lksb.sb_lkid) {
263 		gfs2_update_request_times(gl);
264 	} else {
265 		memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
266 		strname[GDLM_STRNAME_BYTES - 1] = '\0';
267 		gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
268 		gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
269 		gl->gl_dstamp = ktime_get_real();
270 	}
271 	/*
272 	 * Submit the actual lock request.
273 	 */
274 
275 	return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
276 			GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
277 }
278 
279 static void gdlm_put_lock(struct gfs2_glock *gl)
280 {
281 	struct gfs2_sbd *sdp = gl->gl_sbd;
282 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
283 	int error;
284 
285 	if (gl->gl_lksb.sb_lkid == 0) {
286 		gfs2_glock_free(gl);
287 		return;
288 	}
289 
290 	clear_bit(GLF_BLOCKING, &gl->gl_flags);
291 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
292 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
293 	gfs2_update_request_times(gl);
294 
295 	/* don't want to skip dlm_unlock writing the lvb when lock is ex */
296 	if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
297 	    gl->gl_lksb.sb_lvbptr && (gl->gl_state != LM_ST_EXCLUSIVE)) {
298 		gfs2_glock_free(gl);
299 		return;
300 	}
301 
302 	error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
303 			   NULL, gl);
304 	if (error) {
305 		printk(KERN_ERR "gdlm_unlock %x,%llx err=%d\n",
306 		       gl->gl_name.ln_type,
307 		       (unsigned long long)gl->gl_name.ln_number, error);
308 		return;
309 	}
310 }
311 
312 static void gdlm_cancel(struct gfs2_glock *gl)
313 {
314 	struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
315 	dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
316 }
317 
318 /*
319  * dlm/gfs2 recovery coordination using dlm_recover callbacks
320  *
321  *  1. dlm_controld sees lockspace members change
322  *  2. dlm_controld blocks dlm-kernel locking activity
323  *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
324  *  4. dlm_controld starts and finishes its own user level recovery
325  *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
326  *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
327  *  7. dlm_recoverd does its own lock recovery
328  *  8. dlm_recoverd unblocks dlm-kernel locking activity
329  *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
330  * 10. gfs2_control updates control_lock lvb with new generation and jid bits
331  * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
332  * 12. gfs2_recover dequeues and recovers journals of failed nodes
333  * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
334  * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
335  * 15. gfs2_control unblocks normal locking when all journals are recovered
336  *
337  * - failures during recovery
338  *
339  * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
340  * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
341  * recovering for a prior failure.  gfs2_control needs a way to detect
342  * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
343  * the recover_block and recover_start values.
344  *
345  * recover_done() provides a new lockspace generation number each time it
346  * is called (step 9).  This generation number is saved as recover_start.
347  * When recover_prep() is called, it sets BLOCK_LOCKS and sets
348  * recover_block = recover_start.  So, while recover_block is equal to
349  * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
350  * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
351  *
352  * - more specific gfs2 steps in sequence above
353  *
354  *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
355  *  6. recover_slot records any failed jids (maybe none)
356  *  9. recover_done sets recover_start = new generation number
357  * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
358  * 12. gfs2_recover does journal recoveries for failed jids identified above
359  * 14. gfs2_control clears control_lock lvb bits for recovered jids
360  * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
361  *     again) then do nothing, otherwise if recover_start > recover_block
362  *     then clear BLOCK_LOCKS.
363  *
364  * - parallel recovery steps across all nodes
365  *
366  * All nodes attempt to update the control_lock lvb with the new generation
367  * number and jid bits, but only the first to get the control_lock EX will
368  * do so; others will see that it's already done (lvb already contains new
369  * generation number.)
370  *
371  * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
372  * . All nodes attempt to set control_lock lvb gen + bits for the new gen
373  * . One node gets control_lock first and writes the lvb, others see it's done
374  * . All nodes attempt to recover jids for which they see control_lock bits set
375  * . One node succeeds for a jid, and that one clears the jid bit in the lvb
376  * . All nodes will eventually see all lvb bits clear and unblock locks
377  *
378  * - is there a problem with clearing an lvb bit that should be set
379  *   and missing a journal recovery?
380  *
381  * 1. jid fails
382  * 2. lvb bit set for step 1
383  * 3. jid recovered for step 1
384  * 4. jid taken again (new mount)
385  * 5. jid fails (for step 4)
386  * 6. lvb bit set for step 5 (will already be set)
387  * 7. lvb bit cleared for step 3
388  *
389  * This is not a problem because the failure in step 5 does not
390  * require recovery, because the mount in step 4 could not have
391  * progressed far enough to unblock locks and access the fs.  The
392  * control_mount() function waits for all recoveries to be complete
393  * for the latest lockspace generation before ever unblocking locks
394  * and returning.  The mount in step 4 waits until the recovery in
395  * step 1 is done.
396  *
397  * - special case of first mounter: first node to mount the fs
398  *
399  * The first node to mount a gfs2 fs needs to check all the journals
400  * and recover any that need recovery before other nodes are allowed
401  * to mount the fs.  (Others may begin mounting, but they must wait
402  * for the first mounter to be done before taking locks on the fs
403  * or accessing the fs.)  This has two parts:
404  *
405  * 1. The mounted_lock tells a node it's the first to mount the fs.
406  * Each node holds the mounted_lock in PR while it's mounted.
407  * Each node tries to acquire the mounted_lock in EX when it mounts.
408  * If a node is granted the mounted_lock EX it means there are no
409  * other mounted nodes (no PR locks exist), and it is the first mounter.
410  * The mounted_lock is demoted to PR when first recovery is done, so
411  * others will fail to get an EX lock, but will get a PR lock.
412  *
413  * 2. The control_lock blocks others in control_mount() while the first
414  * mounter is doing first mount recovery of all journals.
415  * A mounting node needs to acquire control_lock in EX mode before
416  * it can proceed.  The first mounter holds control_lock in EX while doing
417  * the first mount recovery, blocking mounts from other nodes, then demotes
418  * control_lock to NL when it's done (others_may_mount/first_done),
419  * allowing other nodes to continue mounting.
420  *
421  * first mounter:
422  * control_lock EX/NOQUEUE success
423  * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
424  * set first=1
425  * do first mounter recovery
426  * mounted_lock EX->PR
427  * control_lock EX->NL, write lvb generation
428  *
429  * other mounter:
430  * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
431  * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
432  * mounted_lock PR/NOQUEUE success
433  * read lvb generation
434  * control_lock EX->NL
435  * set first=0
436  *
437  * - mount during recovery
438  *
439  * If a node mounts while others are doing recovery (not first mounter),
440  * the mounting node will get its initial recover_done() callback without
441  * having seen any previous failures/callbacks.
442  *
443  * It must wait for all recoveries preceding its mount to be finished
444  * before it unblocks locks.  It does this by repeating the "other mounter"
445  * steps above until the lvb generation number is >= its mount generation
446  * number (from initial recover_done) and all lvb bits are clear.
447  *
448  * - control_lock lvb format
449  *
450  * 4 bytes generation number: the latest dlm lockspace generation number
451  * from recover_done callback.  Indicates the jid bitmap has been updated
452  * to reflect all slot failures through that generation.
453  * 4 bytes unused.
454  * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
455  * that jid N needs recovery.
456  */
457 
458 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
459 
460 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
461 			     char *lvb_bits)
462 {
463 	uint32_t gen;
464 	memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
465 	memcpy(&gen, lvb_bits, sizeof(uint32_t));
466 	*lvb_gen = le32_to_cpu(gen);
467 }
468 
469 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
470 			      char *lvb_bits)
471 {
472 	uint32_t gen;
473 	memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
474 	gen = cpu_to_le32(lvb_gen);
475 	memcpy(ls->ls_control_lvb, &gen, sizeof(uint32_t));
476 }
477 
478 static int all_jid_bits_clear(char *lvb)
479 {
480 	int i;
481 	for (i = JID_BITMAP_OFFSET; i < GDLM_LVB_SIZE; i++) {
482 		if (lvb[i])
483 			return 0;
484 	}
485 	return 1;
486 }
487 
488 static void sync_wait_cb(void *arg)
489 {
490 	struct lm_lockstruct *ls = arg;
491 	complete(&ls->ls_sync_wait);
492 }
493 
494 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
495 {
496 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
497 	int error;
498 
499 	error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
500 	if (error) {
501 		fs_err(sdp, "%s lkid %x error %d\n",
502 		       name, lksb->sb_lkid, error);
503 		return error;
504 	}
505 
506 	wait_for_completion(&ls->ls_sync_wait);
507 
508 	if (lksb->sb_status != -DLM_EUNLOCK) {
509 		fs_err(sdp, "%s lkid %x status %d\n",
510 		       name, lksb->sb_lkid, lksb->sb_status);
511 		return -1;
512 	}
513 	return 0;
514 }
515 
516 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
517 		     unsigned int num, struct dlm_lksb *lksb, char *name)
518 {
519 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
520 	char strname[GDLM_STRNAME_BYTES];
521 	int error, status;
522 
523 	memset(strname, 0, GDLM_STRNAME_BYTES);
524 	snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
525 
526 	error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
527 			 strname, GDLM_STRNAME_BYTES - 1,
528 			 0, sync_wait_cb, ls, NULL);
529 	if (error) {
530 		fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
531 		       name, lksb->sb_lkid, flags, mode, error);
532 		return error;
533 	}
534 
535 	wait_for_completion(&ls->ls_sync_wait);
536 
537 	status = lksb->sb_status;
538 
539 	if (status && status != -EAGAIN) {
540 		fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
541 		       name, lksb->sb_lkid, flags, mode, status);
542 	}
543 
544 	return status;
545 }
546 
547 static int mounted_unlock(struct gfs2_sbd *sdp)
548 {
549 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
550 	return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
551 }
552 
553 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
554 {
555 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
556 	return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
557 			 &ls->ls_mounted_lksb, "mounted_lock");
558 }
559 
560 static int control_unlock(struct gfs2_sbd *sdp)
561 {
562 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
563 	return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
564 }
565 
566 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
567 {
568 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
569 	return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
570 			 &ls->ls_control_lksb, "control_lock");
571 }
572 
573 static void gfs2_control_func(struct work_struct *work)
574 {
575 	struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
576 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
577 	char lvb_bits[GDLM_LVB_SIZE];
578 	uint32_t block_gen, start_gen, lvb_gen, flags;
579 	int recover_set = 0;
580 	int write_lvb = 0;
581 	int recover_size;
582 	int i, error;
583 
584 	spin_lock(&ls->ls_recover_spin);
585 	/*
586 	 * No MOUNT_DONE means we're still mounting; control_mount()
587 	 * will set this flag, after which this thread will take over
588 	 * all further clearing of BLOCK_LOCKS.
589 	 *
590 	 * FIRST_MOUNT means this node is doing first mounter recovery,
591 	 * for which recovery control is handled by
592 	 * control_mount()/control_first_done(), not this thread.
593 	 */
594 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
595 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
596 		spin_unlock(&ls->ls_recover_spin);
597 		return;
598 	}
599 	block_gen = ls->ls_recover_block;
600 	start_gen = ls->ls_recover_start;
601 	spin_unlock(&ls->ls_recover_spin);
602 
603 	/*
604 	 * Equal block_gen and start_gen implies we are between
605 	 * recover_prep and recover_done callbacks, which means
606 	 * dlm recovery is in progress and dlm locking is blocked.
607 	 * There's no point trying to do any work until recover_done.
608 	 */
609 
610 	if (block_gen == start_gen)
611 		return;
612 
613 	/*
614 	 * Propagate recover_submit[] and recover_result[] to lvb:
615 	 * dlm_recoverd adds to recover_submit[] jids needing recovery
616 	 * gfs2_recover adds to recover_result[] journal recovery results
617 	 *
618 	 * set lvb bit for jids in recover_submit[] if the lvb has not
619 	 * yet been updated for the generation of the failure
620 	 *
621 	 * clear lvb bit for jids in recover_result[] if the result of
622 	 * the journal recovery is SUCCESS
623 	 */
624 
625 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
626 	if (error) {
627 		fs_err(sdp, "control lock EX error %d\n", error);
628 		return;
629 	}
630 
631 	control_lvb_read(ls, &lvb_gen, lvb_bits);
632 
633 	spin_lock(&ls->ls_recover_spin);
634 	if (block_gen != ls->ls_recover_block ||
635 	    start_gen != ls->ls_recover_start) {
636 		fs_info(sdp, "recover generation %u block1 %u %u\n",
637 			start_gen, block_gen, ls->ls_recover_block);
638 		spin_unlock(&ls->ls_recover_spin);
639 		control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
640 		return;
641 	}
642 
643 	recover_size = ls->ls_recover_size;
644 
645 	if (lvb_gen <= start_gen) {
646 		/*
647 		 * Clear lvb bits for jids we've successfully recovered.
648 		 * Because all nodes attempt to recover failed journals,
649 		 * a journal can be recovered multiple times successfully
650 		 * in succession.  Only the first will really do recovery,
651 		 * the others find it clean, but still report a successful
652 		 * recovery.  So, another node may have already recovered
653 		 * the jid and cleared the lvb bit for it.
654 		 */
655 		for (i = 0; i < recover_size; i++) {
656 			if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
657 				continue;
658 
659 			ls->ls_recover_result[i] = 0;
660 
661 			if (!test_bit_le(i, lvb_bits + JID_BITMAP_OFFSET))
662 				continue;
663 
664 			__clear_bit_le(i, lvb_bits + JID_BITMAP_OFFSET);
665 			write_lvb = 1;
666 		}
667 	}
668 
669 	if (lvb_gen == start_gen) {
670 		/*
671 		 * Failed slots before start_gen are already set in lvb.
672 		 */
673 		for (i = 0; i < recover_size; i++) {
674 			if (!ls->ls_recover_submit[i])
675 				continue;
676 			if (ls->ls_recover_submit[i] < lvb_gen)
677 				ls->ls_recover_submit[i] = 0;
678 		}
679 	} else if (lvb_gen < start_gen) {
680 		/*
681 		 * Failed slots before start_gen are not yet set in lvb.
682 		 */
683 		for (i = 0; i < recover_size; i++) {
684 			if (!ls->ls_recover_submit[i])
685 				continue;
686 			if (ls->ls_recover_submit[i] < start_gen) {
687 				ls->ls_recover_submit[i] = 0;
688 				__set_bit_le(i, lvb_bits + JID_BITMAP_OFFSET);
689 			}
690 		}
691 		/* even if there are no bits to set, we need to write the
692 		   latest generation to the lvb */
693 		write_lvb = 1;
694 	} else {
695 		/*
696 		 * we should be getting a recover_done() for lvb_gen soon
697 		 */
698 	}
699 	spin_unlock(&ls->ls_recover_spin);
700 
701 	if (write_lvb) {
702 		control_lvb_write(ls, start_gen, lvb_bits);
703 		flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
704 	} else {
705 		flags = DLM_LKF_CONVERT;
706 	}
707 
708 	error = control_lock(sdp, DLM_LOCK_NL, flags);
709 	if (error) {
710 		fs_err(sdp, "control lock NL error %d\n", error);
711 		return;
712 	}
713 
714 	/*
715 	 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
716 	 * and clear a jid bit in the lvb if the recovery is a success.
717 	 * Eventually all journals will be recovered, all jid bits will
718 	 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
719 	 */
720 
721 	for (i = 0; i < recover_size; i++) {
722 		if (test_bit_le(i, lvb_bits + JID_BITMAP_OFFSET)) {
723 			fs_info(sdp, "recover generation %u jid %d\n",
724 				start_gen, i);
725 			gfs2_recover_set(sdp, i);
726 			recover_set++;
727 		}
728 	}
729 	if (recover_set)
730 		return;
731 
732 	/*
733 	 * No more jid bits set in lvb, all recovery is done, unblock locks
734 	 * (unless a new recover_prep callback has occured blocking locks
735 	 * again while working above)
736 	 */
737 
738 	spin_lock(&ls->ls_recover_spin);
739 	if (ls->ls_recover_block == block_gen &&
740 	    ls->ls_recover_start == start_gen) {
741 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
742 		spin_unlock(&ls->ls_recover_spin);
743 		fs_info(sdp, "recover generation %u done\n", start_gen);
744 		gfs2_glock_thaw(sdp);
745 	} else {
746 		fs_info(sdp, "recover generation %u block2 %u %u\n",
747 			start_gen, block_gen, ls->ls_recover_block);
748 		spin_unlock(&ls->ls_recover_spin);
749 	}
750 }
751 
752 static int control_mount(struct gfs2_sbd *sdp)
753 {
754 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
755 	char lvb_bits[GDLM_LVB_SIZE];
756 	uint32_t start_gen, block_gen, mount_gen, lvb_gen;
757 	int mounted_mode;
758 	int retries = 0;
759 	int error;
760 
761 	memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
762 	memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
763 	memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
764 	ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
765 	init_completion(&ls->ls_sync_wait);
766 
767 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
768 
769 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
770 	if (error) {
771 		fs_err(sdp, "control_mount control_lock NL error %d\n", error);
772 		return error;
773 	}
774 
775 	error = mounted_lock(sdp, DLM_LOCK_NL, 0);
776 	if (error) {
777 		fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
778 		control_unlock(sdp);
779 		return error;
780 	}
781 	mounted_mode = DLM_LOCK_NL;
782 
783 restart:
784 	if (retries++ && signal_pending(current)) {
785 		error = -EINTR;
786 		goto fail;
787 	}
788 
789 	/*
790 	 * We always start with both locks in NL. control_lock is
791 	 * demoted to NL below so we don't need to do it here.
792 	 */
793 
794 	if (mounted_mode != DLM_LOCK_NL) {
795 		error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
796 		if (error)
797 			goto fail;
798 		mounted_mode = DLM_LOCK_NL;
799 	}
800 
801 	/*
802 	 * Other nodes need to do some work in dlm recovery and gfs2_control
803 	 * before the recover_done and control_lock will be ready for us below.
804 	 * A delay here is not required but often avoids having to retry.
805 	 */
806 
807 	msleep_interruptible(500);
808 
809 	/*
810 	 * Acquire control_lock in EX and mounted_lock in either EX or PR.
811 	 * control_lock lvb keeps track of any pending journal recoveries.
812 	 * mounted_lock indicates if any other nodes have the fs mounted.
813 	 */
814 
815 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
816 	if (error == -EAGAIN) {
817 		goto restart;
818 	} else if (error) {
819 		fs_err(sdp, "control_mount control_lock EX error %d\n", error);
820 		goto fail;
821 	}
822 
823 	error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
824 	if (!error) {
825 		mounted_mode = DLM_LOCK_EX;
826 		goto locks_done;
827 	} else if (error != -EAGAIN) {
828 		fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
829 		goto fail;
830 	}
831 
832 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
833 	if (!error) {
834 		mounted_mode = DLM_LOCK_PR;
835 		goto locks_done;
836 	} else {
837 		/* not even -EAGAIN should happen here */
838 		fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
839 		goto fail;
840 	}
841 
842 locks_done:
843 	/*
844 	 * If we got both locks above in EX, then we're the first mounter.
845 	 * If not, then we need to wait for the control_lock lvb to be
846 	 * updated by other mounted nodes to reflect our mount generation.
847 	 *
848 	 * In simple first mounter cases, first mounter will see zero lvb_gen,
849 	 * but in cases where all existing nodes leave/fail before mounting
850 	 * nodes finish control_mount, then all nodes will be mounting and
851 	 * lvb_gen will be non-zero.
852 	 */
853 
854 	control_lvb_read(ls, &lvb_gen, lvb_bits);
855 
856 	if (lvb_gen == 0xFFFFFFFF) {
857 		/* special value to force mount attempts to fail */
858 		fs_err(sdp, "control_mount control_lock disabled\n");
859 		error = -EINVAL;
860 		goto fail;
861 	}
862 
863 	if (mounted_mode == DLM_LOCK_EX) {
864 		/* first mounter, keep both EX while doing first recovery */
865 		spin_lock(&ls->ls_recover_spin);
866 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
867 		set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
868 		set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
869 		spin_unlock(&ls->ls_recover_spin);
870 		fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
871 		return 0;
872 	}
873 
874 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
875 	if (error)
876 		goto fail;
877 
878 	/*
879 	 * We are not first mounter, now we need to wait for the control_lock
880 	 * lvb generation to be >= the generation from our first recover_done
881 	 * and all lvb bits to be clear (no pending journal recoveries.)
882 	 */
883 
884 	if (!all_jid_bits_clear(lvb_bits)) {
885 		/* journals need recovery, wait until all are clear */
886 		fs_info(sdp, "control_mount wait for journal recovery\n");
887 		goto restart;
888 	}
889 
890 	spin_lock(&ls->ls_recover_spin);
891 	block_gen = ls->ls_recover_block;
892 	start_gen = ls->ls_recover_start;
893 	mount_gen = ls->ls_recover_mount;
894 
895 	if (lvb_gen < mount_gen) {
896 		/* wait for mounted nodes to update control_lock lvb to our
897 		   generation, which might include new recovery bits set */
898 		fs_info(sdp, "control_mount wait1 block %u start %u mount %u "
899 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
900 			lvb_gen, ls->ls_recover_flags);
901 		spin_unlock(&ls->ls_recover_spin);
902 		goto restart;
903 	}
904 
905 	if (lvb_gen != start_gen) {
906 		/* wait for mounted nodes to update control_lock lvb to the
907 		   latest recovery generation */
908 		fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
909 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
910 			lvb_gen, ls->ls_recover_flags);
911 		spin_unlock(&ls->ls_recover_spin);
912 		goto restart;
913 	}
914 
915 	if (block_gen == start_gen) {
916 		/* dlm recovery in progress, wait for it to finish */
917 		fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
918 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
919 			lvb_gen, ls->ls_recover_flags);
920 		spin_unlock(&ls->ls_recover_spin);
921 		goto restart;
922 	}
923 
924 	clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
925 	set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
926 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
927 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
928 	spin_unlock(&ls->ls_recover_spin);
929 	return 0;
930 
931 fail:
932 	mounted_unlock(sdp);
933 	control_unlock(sdp);
934 	return error;
935 }
936 
937 static int dlm_recovery_wait(void *word)
938 {
939 	schedule();
940 	return 0;
941 }
942 
943 static int control_first_done(struct gfs2_sbd *sdp)
944 {
945 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
946 	char lvb_bits[GDLM_LVB_SIZE];
947 	uint32_t start_gen, block_gen;
948 	int error;
949 
950 restart:
951 	spin_lock(&ls->ls_recover_spin);
952 	start_gen = ls->ls_recover_start;
953 	block_gen = ls->ls_recover_block;
954 
955 	if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
956 	    !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
957 	    !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
958 		/* sanity check, should not happen */
959 		fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
960 		       start_gen, block_gen, ls->ls_recover_flags);
961 		spin_unlock(&ls->ls_recover_spin);
962 		control_unlock(sdp);
963 		return -1;
964 	}
965 
966 	if (start_gen == block_gen) {
967 		/*
968 		 * Wait for the end of a dlm recovery cycle to switch from
969 		 * first mounter recovery.  We can ignore any recover_slot
970 		 * callbacks between the recover_prep and next recover_done
971 		 * because we are still the first mounter and any failed nodes
972 		 * have not fully mounted, so they don't need recovery.
973 		 */
974 		spin_unlock(&ls->ls_recover_spin);
975 		fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
976 
977 		wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
978 			    dlm_recovery_wait, TASK_UNINTERRUPTIBLE);
979 		goto restart;
980 	}
981 
982 	clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
983 	set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
984 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
985 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
986 	spin_unlock(&ls->ls_recover_spin);
987 
988 	memset(lvb_bits, 0, sizeof(lvb_bits));
989 	control_lvb_write(ls, start_gen, lvb_bits);
990 
991 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
992 	if (error)
993 		fs_err(sdp, "control_first_done mounted PR error %d\n", error);
994 
995 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
996 	if (error)
997 		fs_err(sdp, "control_first_done control NL error %d\n", error);
998 
999 	return error;
1000 }
1001 
1002 /*
1003  * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1004  * to accomodate the largest slot number.  (NB dlm slot numbers start at 1,
1005  * gfs2 jids start at 0, so jid = slot - 1)
1006  */
1007 
1008 #define RECOVER_SIZE_INC 16
1009 
1010 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1011 			    int num_slots)
1012 {
1013 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1014 	uint32_t *submit = NULL;
1015 	uint32_t *result = NULL;
1016 	uint32_t old_size, new_size;
1017 	int i, max_jid;
1018 
1019 	max_jid = 0;
1020 	for (i = 0; i < num_slots; i++) {
1021 		if (max_jid < slots[i].slot - 1)
1022 			max_jid = slots[i].slot - 1;
1023 	}
1024 
1025 	old_size = ls->ls_recover_size;
1026 
1027 	if (old_size >= max_jid + 1)
1028 		return 0;
1029 
1030 	new_size = old_size + RECOVER_SIZE_INC;
1031 
1032 	submit = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS);
1033 	result = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS);
1034 	if (!submit || !result) {
1035 		kfree(submit);
1036 		kfree(result);
1037 		return -ENOMEM;
1038 	}
1039 
1040 	spin_lock(&ls->ls_recover_spin);
1041 	memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1042 	memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1043 	kfree(ls->ls_recover_submit);
1044 	kfree(ls->ls_recover_result);
1045 	ls->ls_recover_submit = submit;
1046 	ls->ls_recover_result = result;
1047 	ls->ls_recover_size = new_size;
1048 	spin_unlock(&ls->ls_recover_spin);
1049 	return 0;
1050 }
1051 
1052 static void free_recover_size(struct lm_lockstruct *ls)
1053 {
1054 	kfree(ls->ls_recover_submit);
1055 	kfree(ls->ls_recover_result);
1056 	ls->ls_recover_submit = NULL;
1057 	ls->ls_recover_result = NULL;
1058 	ls->ls_recover_size = 0;
1059 }
1060 
1061 /* dlm calls before it does lock recovery */
1062 
1063 static void gdlm_recover_prep(void *arg)
1064 {
1065 	struct gfs2_sbd *sdp = arg;
1066 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1067 
1068 	spin_lock(&ls->ls_recover_spin);
1069 	ls->ls_recover_block = ls->ls_recover_start;
1070 	set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1071 
1072 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1073 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1074 		spin_unlock(&ls->ls_recover_spin);
1075 		return;
1076 	}
1077 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1078 	spin_unlock(&ls->ls_recover_spin);
1079 }
1080 
1081 /* dlm calls after recover_prep has been completed on all lockspace members;
1082    identifies slot/jid of failed member */
1083 
1084 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1085 {
1086 	struct gfs2_sbd *sdp = arg;
1087 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1088 	int jid = slot->slot - 1;
1089 
1090 	spin_lock(&ls->ls_recover_spin);
1091 	if (ls->ls_recover_size < jid + 1) {
1092 		fs_err(sdp, "recover_slot jid %d gen %u short size %d",
1093 		       jid, ls->ls_recover_block, ls->ls_recover_size);
1094 		spin_unlock(&ls->ls_recover_spin);
1095 		return;
1096 	}
1097 
1098 	if (ls->ls_recover_submit[jid]) {
1099 		fs_info(sdp, "recover_slot jid %d gen %u prev %u",
1100 			jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1101 	}
1102 	ls->ls_recover_submit[jid] = ls->ls_recover_block;
1103 	spin_unlock(&ls->ls_recover_spin);
1104 }
1105 
1106 /* dlm calls after recover_slot and after it completes lock recovery */
1107 
1108 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1109 			      int our_slot, uint32_t generation)
1110 {
1111 	struct gfs2_sbd *sdp = arg;
1112 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1113 
1114 	/* ensure the ls jid arrays are large enough */
1115 	set_recover_size(sdp, slots, num_slots);
1116 
1117 	spin_lock(&ls->ls_recover_spin);
1118 	ls->ls_recover_start = generation;
1119 
1120 	if (!ls->ls_recover_mount) {
1121 		ls->ls_recover_mount = generation;
1122 		ls->ls_jid = our_slot - 1;
1123 	}
1124 
1125 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1126 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1127 
1128 	clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1129 	smp_mb__after_clear_bit();
1130 	wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1131 	spin_unlock(&ls->ls_recover_spin);
1132 }
1133 
1134 /* gfs2_recover thread has a journal recovery result */
1135 
1136 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1137 				 unsigned int result)
1138 {
1139 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1140 
1141 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1142 		return;
1143 
1144 	/* don't care about the recovery of own journal during mount */
1145 	if (jid == ls->ls_jid)
1146 		return;
1147 
1148 	spin_lock(&ls->ls_recover_spin);
1149 	if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1150 		spin_unlock(&ls->ls_recover_spin);
1151 		return;
1152 	}
1153 	if (ls->ls_recover_size < jid + 1) {
1154 		fs_err(sdp, "recovery_result jid %d short size %d",
1155 		       jid, ls->ls_recover_size);
1156 		spin_unlock(&ls->ls_recover_spin);
1157 		return;
1158 	}
1159 
1160 	fs_info(sdp, "recover jid %d result %s\n", jid,
1161 		result == LM_RD_GAVEUP ? "busy" : "success");
1162 
1163 	ls->ls_recover_result[jid] = result;
1164 
1165 	/* GAVEUP means another node is recovering the journal; delay our
1166 	   next attempt to recover it, to give the other node a chance to
1167 	   finish before trying again */
1168 
1169 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1170 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1171 				   result == LM_RD_GAVEUP ? HZ : 0);
1172 	spin_unlock(&ls->ls_recover_spin);
1173 }
1174 
1175 const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1176 	.recover_prep = gdlm_recover_prep,
1177 	.recover_slot = gdlm_recover_slot,
1178 	.recover_done = gdlm_recover_done,
1179 };
1180 
1181 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1182 {
1183 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1184 	char cluster[GFS2_LOCKNAME_LEN];
1185 	const char *fsname;
1186 	uint32_t flags;
1187 	int error, ops_result;
1188 
1189 	/*
1190 	 * initialize everything
1191 	 */
1192 
1193 	INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1194 	spin_lock_init(&ls->ls_recover_spin);
1195 	ls->ls_recover_flags = 0;
1196 	ls->ls_recover_mount = 0;
1197 	ls->ls_recover_start = 0;
1198 	ls->ls_recover_block = 0;
1199 	ls->ls_recover_size = 0;
1200 	ls->ls_recover_submit = NULL;
1201 	ls->ls_recover_result = NULL;
1202 
1203 	error = set_recover_size(sdp, NULL, 0);
1204 	if (error)
1205 		goto fail;
1206 
1207 	/*
1208 	 * prepare dlm_new_lockspace args
1209 	 */
1210 
1211 	fsname = strchr(table, ':');
1212 	if (!fsname) {
1213 		fs_info(sdp, "no fsname found\n");
1214 		error = -EINVAL;
1215 		goto fail_free;
1216 	}
1217 	memset(cluster, 0, sizeof(cluster));
1218 	memcpy(cluster, table, strlen(table) - strlen(fsname));
1219 	fsname++;
1220 
1221 	flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1222 
1223 	/*
1224 	 * create/join lockspace
1225 	 */
1226 
1227 	error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1228 				  &gdlm_lockspace_ops, sdp, &ops_result,
1229 				  &ls->ls_dlm);
1230 	if (error) {
1231 		fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1232 		goto fail_free;
1233 	}
1234 
1235 	if (ops_result < 0) {
1236 		/*
1237 		 * dlm does not support ops callbacks,
1238 		 * old dlm_controld/gfs_controld are used, try without ops.
1239 		 */
1240 		fs_info(sdp, "dlm lockspace ops not used\n");
1241 		free_recover_size(ls);
1242 		set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1243 		return 0;
1244 	}
1245 
1246 	if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1247 		fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1248 		error = -EINVAL;
1249 		goto fail_release;
1250 	}
1251 
1252 	/*
1253 	 * control_mount() uses control_lock to determine first mounter,
1254 	 * and for later mounts, waits for any recoveries to be cleared.
1255 	 */
1256 
1257 	error = control_mount(sdp);
1258 	if (error) {
1259 		fs_err(sdp, "mount control error %d\n", error);
1260 		goto fail_release;
1261 	}
1262 
1263 	ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1264 	clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1265 	smp_mb__after_clear_bit();
1266 	wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1267 	return 0;
1268 
1269 fail_release:
1270 	dlm_release_lockspace(ls->ls_dlm, 2);
1271 fail_free:
1272 	free_recover_size(ls);
1273 fail:
1274 	return error;
1275 }
1276 
1277 static void gdlm_first_done(struct gfs2_sbd *sdp)
1278 {
1279 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1280 	int error;
1281 
1282 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1283 		return;
1284 
1285 	error = control_first_done(sdp);
1286 	if (error)
1287 		fs_err(sdp, "mount first_done error %d\n", error);
1288 }
1289 
1290 static void gdlm_unmount(struct gfs2_sbd *sdp)
1291 {
1292 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1293 
1294 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1295 		goto release;
1296 
1297 	/* wait for gfs2_control_wq to be done with this mount */
1298 
1299 	spin_lock(&ls->ls_recover_spin);
1300 	set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1301 	spin_unlock(&ls->ls_recover_spin);
1302 	flush_delayed_work(&sdp->sd_control_work);
1303 
1304 	/* mounted_lock and control_lock will be purged in dlm recovery */
1305 release:
1306 	if (ls->ls_dlm) {
1307 		dlm_release_lockspace(ls->ls_dlm, 2);
1308 		ls->ls_dlm = NULL;
1309 	}
1310 
1311 	free_recover_size(ls);
1312 }
1313 
1314 static const match_table_t dlm_tokens = {
1315 	{ Opt_jid, "jid=%d"},
1316 	{ Opt_id, "id=%d"},
1317 	{ Opt_first, "first=%d"},
1318 	{ Opt_nodir, "nodir=%d"},
1319 	{ Opt_err, NULL },
1320 };
1321 
1322 const struct lm_lockops gfs2_dlm_ops = {
1323 	.lm_proto_name = "lock_dlm",
1324 	.lm_mount = gdlm_mount,
1325 	.lm_first_done = gdlm_first_done,
1326 	.lm_recovery_result = gdlm_recovery_result,
1327 	.lm_unmount = gdlm_unmount,
1328 	.lm_put_lock = gdlm_put_lock,
1329 	.lm_lock = gdlm_lock,
1330 	.lm_cancel = gdlm_cancel,
1331 	.lm_tokens = &dlm_tokens,
1332 };
1333 
1334