xref: /openbmc/linux/fs/gfs2/file.c (revision fadbafc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/spinlock.h>
9 #include <linux/compat.h>
10 #include <linux/completion.h>
11 #include <linux/buffer_head.h>
12 #include <linux/pagemap.h>
13 #include <linux/uio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mm.h>
16 #include <linux/mount.h>
17 #include <linux/fs.h>
18 #include <linux/gfs2_ondisk.h>
19 #include <linux/falloc.h>
20 #include <linux/swap.h>
21 #include <linux/crc32.h>
22 #include <linux/writeback.h>
23 #include <linux/uaccess.h>
24 #include <linux/dlm.h>
25 #include <linux/dlm_plock.h>
26 #include <linux/delay.h>
27 #include <linux/backing-dev.h>
28 #include <linux/fileattr.h>
29 
30 #include "gfs2.h"
31 #include "incore.h"
32 #include "bmap.h"
33 #include "aops.h"
34 #include "dir.h"
35 #include "glock.h"
36 #include "glops.h"
37 #include "inode.h"
38 #include "log.h"
39 #include "meta_io.h"
40 #include "quota.h"
41 #include "rgrp.h"
42 #include "trans.h"
43 #include "util.h"
44 
45 /**
46  * gfs2_llseek - seek to a location in a file
47  * @file: the file
48  * @offset: the offset
49  * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
50  *
51  * SEEK_END requires the glock for the file because it references the
52  * file's size.
53  *
54  * Returns: The new offset, or errno
55  */
56 
57 static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
58 {
59 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
60 	struct gfs2_holder i_gh;
61 	loff_t error;
62 
63 	switch (whence) {
64 	case SEEK_END:
65 		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
66 					   &i_gh);
67 		if (!error) {
68 			error = generic_file_llseek(file, offset, whence);
69 			gfs2_glock_dq_uninit(&i_gh);
70 		}
71 		break;
72 
73 	case SEEK_DATA:
74 		error = gfs2_seek_data(file, offset);
75 		break;
76 
77 	case SEEK_HOLE:
78 		error = gfs2_seek_hole(file, offset);
79 		break;
80 
81 	case SEEK_CUR:
82 	case SEEK_SET:
83 		/*
84 		 * These don't reference inode->i_size and don't depend on the
85 		 * block mapping, so we don't need the glock.
86 		 */
87 		error = generic_file_llseek(file, offset, whence);
88 		break;
89 	default:
90 		error = -EINVAL;
91 	}
92 
93 	return error;
94 }
95 
96 /**
97  * gfs2_readdir - Iterator for a directory
98  * @file: The directory to read from
99  * @ctx: What to feed directory entries to
100  *
101  * Returns: errno
102  */
103 
104 static int gfs2_readdir(struct file *file, struct dir_context *ctx)
105 {
106 	struct inode *dir = file->f_mapping->host;
107 	struct gfs2_inode *dip = GFS2_I(dir);
108 	struct gfs2_holder d_gh;
109 	int error;
110 
111 	error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
112 	if (error)
113 		return error;
114 
115 	error = gfs2_dir_read(dir, ctx, &file->f_ra);
116 
117 	gfs2_glock_dq_uninit(&d_gh);
118 
119 	return error;
120 }
121 
122 /*
123  * struct fsflag_gfs2flag
124  *
125  * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
126  * and to GFS2_DIF_JDATA for non-directories.
127  */
128 static struct {
129 	u32 fsflag;
130 	u32 gfsflag;
131 } fsflag_gfs2flag[] = {
132 	{FS_SYNC_FL, GFS2_DIF_SYNC},
133 	{FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
134 	{FS_APPEND_FL, GFS2_DIF_APPENDONLY},
135 	{FS_NOATIME_FL, GFS2_DIF_NOATIME},
136 	{FS_INDEX_FL, GFS2_DIF_EXHASH},
137 	{FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
138 	{FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
139 };
140 
141 static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags)
142 {
143 	int i;
144 	u32 fsflags = 0;
145 
146 	if (S_ISDIR(inode->i_mode))
147 		gfsflags &= ~GFS2_DIF_JDATA;
148 	else
149 		gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
150 
151 	for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
152 		if (gfsflags & fsflag_gfs2flag[i].gfsflag)
153 			fsflags |= fsflag_gfs2flag[i].fsflag;
154 	return fsflags;
155 }
156 
157 int gfs2_fileattr_get(struct dentry *dentry, struct fileattr *fa)
158 {
159 	struct inode *inode = d_inode(dentry);
160 	struct gfs2_inode *ip = GFS2_I(inode);
161 	struct gfs2_holder gh;
162 	int error;
163 	u32 fsflags;
164 
165 	if (d_is_special(dentry))
166 		return -ENOTTY;
167 
168 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
169 	error = gfs2_glock_nq(&gh);
170 	if (error)
171 		goto out_uninit;
172 
173 	fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
174 
175 	fileattr_fill_flags(fa, fsflags);
176 
177 	gfs2_glock_dq(&gh);
178 out_uninit:
179 	gfs2_holder_uninit(&gh);
180 	return error;
181 }
182 
183 void gfs2_set_inode_flags(struct inode *inode)
184 {
185 	struct gfs2_inode *ip = GFS2_I(inode);
186 	unsigned int flags = inode->i_flags;
187 
188 	flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
189 	if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
190 		flags |= S_NOSEC;
191 	if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
192 		flags |= S_IMMUTABLE;
193 	if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
194 		flags |= S_APPEND;
195 	if (ip->i_diskflags & GFS2_DIF_NOATIME)
196 		flags |= S_NOATIME;
197 	if (ip->i_diskflags & GFS2_DIF_SYNC)
198 		flags |= S_SYNC;
199 	inode->i_flags = flags;
200 }
201 
202 /* Flags that can be set by user space */
203 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA|			\
204 			     GFS2_DIF_IMMUTABLE|		\
205 			     GFS2_DIF_APPENDONLY|		\
206 			     GFS2_DIF_NOATIME|			\
207 			     GFS2_DIF_SYNC|			\
208 			     GFS2_DIF_TOPDIR|			\
209 			     GFS2_DIF_INHERIT_JDATA)
210 
211 /**
212  * do_gfs2_set_flags - set flags on an inode
213  * @inode: The inode
214  * @reqflags: The flags to set
215  * @mask: Indicates which flags are valid
216  *
217  */
218 static int do_gfs2_set_flags(struct inode *inode, u32 reqflags, u32 mask)
219 {
220 	struct gfs2_inode *ip = GFS2_I(inode);
221 	struct gfs2_sbd *sdp = GFS2_SB(inode);
222 	struct buffer_head *bh;
223 	struct gfs2_holder gh;
224 	int error;
225 	u32 new_flags, flags;
226 
227 	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
228 	if (error)
229 		return error;
230 
231 	error = 0;
232 	flags = ip->i_diskflags;
233 	new_flags = (flags & ~mask) | (reqflags & mask);
234 	if ((new_flags ^ flags) == 0)
235 		goto out;
236 
237 	if (!IS_IMMUTABLE(inode)) {
238 		error = gfs2_permission(&init_user_ns, inode, MAY_WRITE);
239 		if (error)
240 			goto out;
241 	}
242 	if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
243 		if (new_flags & GFS2_DIF_JDATA)
244 			gfs2_log_flush(sdp, ip->i_gl,
245 				       GFS2_LOG_HEAD_FLUSH_NORMAL |
246 				       GFS2_LFC_SET_FLAGS);
247 		error = filemap_fdatawrite(inode->i_mapping);
248 		if (error)
249 			goto out;
250 		error = filemap_fdatawait(inode->i_mapping);
251 		if (error)
252 			goto out;
253 		if (new_flags & GFS2_DIF_JDATA)
254 			gfs2_ordered_del_inode(ip);
255 	}
256 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
257 	if (error)
258 		goto out;
259 	error = gfs2_meta_inode_buffer(ip, &bh);
260 	if (error)
261 		goto out_trans_end;
262 	inode->i_ctime = current_time(inode);
263 	gfs2_trans_add_meta(ip->i_gl, bh);
264 	ip->i_diskflags = new_flags;
265 	gfs2_dinode_out(ip, bh->b_data);
266 	brelse(bh);
267 	gfs2_set_inode_flags(inode);
268 	gfs2_set_aops(inode);
269 out_trans_end:
270 	gfs2_trans_end(sdp);
271 out:
272 	gfs2_glock_dq_uninit(&gh);
273 	return error;
274 }
275 
276 int gfs2_fileattr_set(struct user_namespace *mnt_userns,
277 		      struct dentry *dentry, struct fileattr *fa)
278 {
279 	struct inode *inode = d_inode(dentry);
280 	u32 fsflags = fa->flags, gfsflags = 0;
281 	u32 mask;
282 	int i;
283 
284 	if (d_is_special(dentry))
285 		return -ENOTTY;
286 
287 	if (fileattr_has_fsx(fa))
288 		return -EOPNOTSUPP;
289 
290 	for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
291 		if (fsflags & fsflag_gfs2flag[i].fsflag) {
292 			fsflags &= ~fsflag_gfs2flag[i].fsflag;
293 			gfsflags |= fsflag_gfs2flag[i].gfsflag;
294 		}
295 	}
296 	if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
297 		return -EINVAL;
298 
299 	mask = GFS2_FLAGS_USER_SET;
300 	if (S_ISDIR(inode->i_mode)) {
301 		mask &= ~GFS2_DIF_JDATA;
302 	} else {
303 		/* The GFS2_DIF_TOPDIR flag is only valid for directories. */
304 		if (gfsflags & GFS2_DIF_TOPDIR)
305 			return -EINVAL;
306 		mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
307 	}
308 
309 	return do_gfs2_set_flags(inode, gfsflags, mask);
310 }
311 
312 static int gfs2_getlabel(struct file *filp, char __user *label)
313 {
314 	struct inode *inode = file_inode(filp);
315 	struct gfs2_sbd *sdp = GFS2_SB(inode);
316 
317 	if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN))
318 		return -EFAULT;
319 
320 	return 0;
321 }
322 
323 static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
324 {
325 	switch(cmd) {
326 	case FITRIM:
327 		return gfs2_fitrim(filp, (void __user *)arg);
328 	case FS_IOC_GETFSLABEL:
329 		return gfs2_getlabel(filp, (char __user *)arg);
330 	}
331 
332 	return -ENOTTY;
333 }
334 
335 #ifdef CONFIG_COMPAT
336 static long gfs2_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
337 {
338 	switch(cmd) {
339 	/* Keep this list in sync with gfs2_ioctl */
340 	case FITRIM:
341 	case FS_IOC_GETFSLABEL:
342 		break;
343 	default:
344 		return -ENOIOCTLCMD;
345 	}
346 
347 	return gfs2_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
348 }
349 #else
350 #define gfs2_compat_ioctl NULL
351 #endif
352 
353 /**
354  * gfs2_size_hint - Give a hint to the size of a write request
355  * @filep: The struct file
356  * @offset: The file offset of the write
357  * @size: The length of the write
358  *
359  * When we are about to do a write, this function records the total
360  * write size in order to provide a suitable hint to the lower layers
361  * about how many blocks will be required.
362  *
363  */
364 
365 static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
366 {
367 	struct inode *inode = file_inode(filep);
368 	struct gfs2_sbd *sdp = GFS2_SB(inode);
369 	struct gfs2_inode *ip = GFS2_I(inode);
370 	size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
371 	int hint = min_t(size_t, INT_MAX, blks);
372 
373 	if (hint > atomic_read(&ip->i_sizehint))
374 		atomic_set(&ip->i_sizehint, hint);
375 }
376 
377 /**
378  * gfs2_allocate_page_backing - Allocate blocks for a write fault
379  * @page: The (locked) page to allocate backing for
380  * @length: Size of the allocation
381  *
382  * We try to allocate all the blocks required for the page in one go.  This
383  * might fail for various reasons, so we keep trying until all the blocks to
384  * back this page are allocated.  If some of the blocks are already allocated,
385  * that is ok too.
386  */
387 static int gfs2_allocate_page_backing(struct page *page, unsigned int length)
388 {
389 	u64 pos = page_offset(page);
390 
391 	do {
392 		struct iomap iomap = { };
393 
394 		if (gfs2_iomap_alloc(page->mapping->host, pos, length, &iomap))
395 			return -EIO;
396 
397 		if (length < iomap.length)
398 			iomap.length = length;
399 		length -= iomap.length;
400 		pos += iomap.length;
401 	} while (length > 0);
402 
403 	return 0;
404 }
405 
406 /**
407  * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
408  * @vmf: The virtual memory fault containing the page to become writable
409  *
410  * When the page becomes writable, we need to ensure that we have
411  * blocks allocated on disk to back that page.
412  */
413 
414 static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf)
415 {
416 	struct page *page = vmf->page;
417 	struct inode *inode = file_inode(vmf->vma->vm_file);
418 	struct gfs2_inode *ip = GFS2_I(inode);
419 	struct gfs2_sbd *sdp = GFS2_SB(inode);
420 	struct gfs2_alloc_parms ap = { .aflags = 0, };
421 	u64 offset = page_offset(page);
422 	unsigned int data_blocks, ind_blocks, rblocks;
423 	vm_fault_t ret = VM_FAULT_LOCKED;
424 	struct gfs2_holder gh;
425 	unsigned int length;
426 	loff_t size;
427 	int err;
428 
429 	sb_start_pagefault(inode->i_sb);
430 
431 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
432 	err = gfs2_glock_nq(&gh);
433 	if (err) {
434 		ret = block_page_mkwrite_return(err);
435 		goto out_uninit;
436 	}
437 
438 	/* Check page index against inode size */
439 	size = i_size_read(inode);
440 	if (offset >= size) {
441 		ret = VM_FAULT_SIGBUS;
442 		goto out_unlock;
443 	}
444 
445 	/* Update file times before taking page lock */
446 	file_update_time(vmf->vma->vm_file);
447 
448 	/* page is wholly or partially inside EOF */
449 	if (size - offset < PAGE_SIZE)
450 		length = size - offset;
451 	else
452 		length = PAGE_SIZE;
453 
454 	gfs2_size_hint(vmf->vma->vm_file, offset, length);
455 
456 	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
457 	set_bit(GIF_SW_PAGED, &ip->i_flags);
458 
459 	/*
460 	 * iomap_writepage / iomap_writepages currently don't support inline
461 	 * files, so always unstuff here.
462 	 */
463 
464 	if (!gfs2_is_stuffed(ip) &&
465 	    !gfs2_write_alloc_required(ip, offset, length)) {
466 		lock_page(page);
467 		if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
468 			ret = VM_FAULT_NOPAGE;
469 			unlock_page(page);
470 		}
471 		goto out_unlock;
472 	}
473 
474 	err = gfs2_rindex_update(sdp);
475 	if (err) {
476 		ret = block_page_mkwrite_return(err);
477 		goto out_unlock;
478 	}
479 
480 	gfs2_write_calc_reserv(ip, length, &data_blocks, &ind_blocks);
481 	ap.target = data_blocks + ind_blocks;
482 	err = gfs2_quota_lock_check(ip, &ap);
483 	if (err) {
484 		ret = block_page_mkwrite_return(err);
485 		goto out_unlock;
486 	}
487 	err = gfs2_inplace_reserve(ip, &ap);
488 	if (err) {
489 		ret = block_page_mkwrite_return(err);
490 		goto out_quota_unlock;
491 	}
492 
493 	rblocks = RES_DINODE + ind_blocks;
494 	if (gfs2_is_jdata(ip))
495 		rblocks += data_blocks ? data_blocks : 1;
496 	if (ind_blocks || data_blocks) {
497 		rblocks += RES_STATFS + RES_QUOTA;
498 		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
499 	}
500 	err = gfs2_trans_begin(sdp, rblocks, 0);
501 	if (err) {
502 		ret = block_page_mkwrite_return(err);
503 		goto out_trans_fail;
504 	}
505 
506 	/* Unstuff, if required, and allocate backing blocks for page */
507 	if (gfs2_is_stuffed(ip)) {
508 		err = gfs2_unstuff_dinode(ip);
509 		if (err) {
510 			ret = block_page_mkwrite_return(err);
511 			goto out_trans_end;
512 		}
513 	}
514 
515 	lock_page(page);
516 	/* If truncated, we must retry the operation, we may have raced
517 	 * with the glock demotion code.
518 	 */
519 	if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
520 		ret = VM_FAULT_NOPAGE;
521 		goto out_page_locked;
522 	}
523 
524 	err = gfs2_allocate_page_backing(page, length);
525 	if (err)
526 		ret = block_page_mkwrite_return(err);
527 
528 out_page_locked:
529 	if (ret != VM_FAULT_LOCKED)
530 		unlock_page(page);
531 out_trans_end:
532 	gfs2_trans_end(sdp);
533 out_trans_fail:
534 	gfs2_inplace_release(ip);
535 out_quota_unlock:
536 	gfs2_quota_unlock(ip);
537 out_unlock:
538 	gfs2_glock_dq(&gh);
539 out_uninit:
540 	gfs2_holder_uninit(&gh);
541 	if (ret == VM_FAULT_LOCKED) {
542 		set_page_dirty(page);
543 		wait_for_stable_page(page);
544 	}
545 	sb_end_pagefault(inode->i_sb);
546 	return ret;
547 }
548 
549 static vm_fault_t gfs2_fault(struct vm_fault *vmf)
550 {
551 	struct inode *inode = file_inode(vmf->vma->vm_file);
552 	struct gfs2_inode *ip = GFS2_I(inode);
553 	struct gfs2_holder gh;
554 	vm_fault_t ret;
555 	int err;
556 
557 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
558 	err = gfs2_glock_nq(&gh);
559 	if (err) {
560 		ret = block_page_mkwrite_return(err);
561 		goto out_uninit;
562 	}
563 	ret = filemap_fault(vmf);
564 	gfs2_glock_dq(&gh);
565 out_uninit:
566 	gfs2_holder_uninit(&gh);
567 	return ret;
568 }
569 
570 static const struct vm_operations_struct gfs2_vm_ops = {
571 	.fault = gfs2_fault,
572 	.map_pages = filemap_map_pages,
573 	.page_mkwrite = gfs2_page_mkwrite,
574 };
575 
576 /**
577  * gfs2_mmap
578  * @file: The file to map
579  * @vma: The VMA which described the mapping
580  *
581  * There is no need to get a lock here unless we should be updating
582  * atime. We ignore any locking errors since the only consequence is
583  * a missed atime update (which will just be deferred until later).
584  *
585  * Returns: 0
586  */
587 
588 static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
589 {
590 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
591 
592 	if (!(file->f_flags & O_NOATIME) &&
593 	    !IS_NOATIME(&ip->i_inode)) {
594 		struct gfs2_holder i_gh;
595 		int error;
596 
597 		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
598 					   &i_gh);
599 		if (error)
600 			return error;
601 		/* grab lock to update inode */
602 		gfs2_glock_dq_uninit(&i_gh);
603 		file_accessed(file);
604 	}
605 	vma->vm_ops = &gfs2_vm_ops;
606 
607 	return 0;
608 }
609 
610 /**
611  * gfs2_open_common - This is common to open and atomic_open
612  * @inode: The inode being opened
613  * @file: The file being opened
614  *
615  * This maybe called under a glock or not depending upon how it has
616  * been called. We must always be called under a glock for regular
617  * files, however. For other file types, it does not matter whether
618  * we hold the glock or not.
619  *
620  * Returns: Error code or 0 for success
621  */
622 
623 int gfs2_open_common(struct inode *inode, struct file *file)
624 {
625 	struct gfs2_file *fp;
626 	int ret;
627 
628 	if (S_ISREG(inode->i_mode)) {
629 		ret = generic_file_open(inode, file);
630 		if (ret)
631 			return ret;
632 	}
633 
634 	fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
635 	if (!fp)
636 		return -ENOMEM;
637 
638 	mutex_init(&fp->f_fl_mutex);
639 
640 	gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
641 	file->private_data = fp;
642 	if (file->f_mode & FMODE_WRITE) {
643 		ret = gfs2_qa_get(GFS2_I(inode));
644 		if (ret)
645 			goto fail;
646 	}
647 	return 0;
648 
649 fail:
650 	kfree(file->private_data);
651 	file->private_data = NULL;
652 	return ret;
653 }
654 
655 /**
656  * gfs2_open - open a file
657  * @inode: the inode to open
658  * @file: the struct file for this opening
659  *
660  * After atomic_open, this function is only used for opening files
661  * which are already cached. We must still get the glock for regular
662  * files to ensure that we have the file size uptodate for the large
663  * file check which is in the common code. That is only an issue for
664  * regular files though.
665  *
666  * Returns: errno
667  */
668 
669 static int gfs2_open(struct inode *inode, struct file *file)
670 {
671 	struct gfs2_inode *ip = GFS2_I(inode);
672 	struct gfs2_holder i_gh;
673 	int error;
674 	bool need_unlock = false;
675 
676 	if (S_ISREG(ip->i_inode.i_mode)) {
677 		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
678 					   &i_gh);
679 		if (error)
680 			return error;
681 		need_unlock = true;
682 	}
683 
684 	error = gfs2_open_common(inode, file);
685 
686 	if (need_unlock)
687 		gfs2_glock_dq_uninit(&i_gh);
688 
689 	return error;
690 }
691 
692 /**
693  * gfs2_release - called to close a struct file
694  * @inode: the inode the struct file belongs to
695  * @file: the struct file being closed
696  *
697  * Returns: errno
698  */
699 
700 static int gfs2_release(struct inode *inode, struct file *file)
701 {
702 	struct gfs2_inode *ip = GFS2_I(inode);
703 
704 	kfree(file->private_data);
705 	file->private_data = NULL;
706 
707 	if (file->f_mode & FMODE_WRITE) {
708 		if (gfs2_rs_active(&ip->i_res))
709 			gfs2_rs_delete(ip);
710 		gfs2_qa_put(ip);
711 	}
712 	return 0;
713 }
714 
715 /**
716  * gfs2_fsync - sync the dirty data for a file (across the cluster)
717  * @file: the file that points to the dentry
718  * @start: the start position in the file to sync
719  * @end: the end position in the file to sync
720  * @datasync: set if we can ignore timestamp changes
721  *
722  * We split the data flushing here so that we don't wait for the data
723  * until after we've also sent the metadata to disk. Note that for
724  * data=ordered, we will write & wait for the data at the log flush
725  * stage anyway, so this is unlikely to make much of a difference
726  * except in the data=writeback case.
727  *
728  * If the fdatawrite fails due to any reason except -EIO, we will
729  * continue the remainder of the fsync, although we'll still report
730  * the error at the end. This is to match filemap_write_and_wait_range()
731  * behaviour.
732  *
733  * Returns: errno
734  */
735 
736 static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
737 		      int datasync)
738 {
739 	struct address_space *mapping = file->f_mapping;
740 	struct inode *inode = mapping->host;
741 	int sync_state = inode->i_state & I_DIRTY;
742 	struct gfs2_inode *ip = GFS2_I(inode);
743 	int ret = 0, ret1 = 0;
744 
745 	if (mapping->nrpages) {
746 		ret1 = filemap_fdatawrite_range(mapping, start, end);
747 		if (ret1 == -EIO)
748 			return ret1;
749 	}
750 
751 	if (!gfs2_is_jdata(ip))
752 		sync_state &= ~I_DIRTY_PAGES;
753 	if (datasync)
754 		sync_state &= ~I_DIRTY_SYNC;
755 
756 	if (sync_state) {
757 		ret = sync_inode_metadata(inode, 1);
758 		if (ret)
759 			return ret;
760 		if (gfs2_is_jdata(ip))
761 			ret = file_write_and_wait(file);
762 		if (ret)
763 			return ret;
764 		gfs2_ail_flush(ip->i_gl, 1);
765 	}
766 
767 	if (mapping->nrpages)
768 		ret = file_fdatawait_range(file, start, end);
769 
770 	return ret ? ret : ret1;
771 }
772 
773 static inline bool should_fault_in_pages(struct iov_iter *i,
774 					 struct kiocb *iocb,
775 					 size_t *prev_count,
776 					 size_t *window_size)
777 {
778 	size_t count = iov_iter_count(i);
779 	size_t size, offs;
780 
781 	if (!count)
782 		return false;
783 	if (!user_backed_iter(i))
784 		return false;
785 
786 	size = PAGE_SIZE;
787 	offs = offset_in_page(iocb->ki_pos);
788 	if (*prev_count != count || !*window_size) {
789 		size_t nr_dirtied;
790 
791 		nr_dirtied = max(current->nr_dirtied_pause -
792 				 current->nr_dirtied, 8);
793 		size = min_t(size_t, SZ_1M, nr_dirtied << PAGE_SHIFT);
794 	}
795 
796 	*prev_count = count;
797 	*window_size = size - offs;
798 	return true;
799 }
800 
801 static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to,
802 				     struct gfs2_holder *gh)
803 {
804 	struct file *file = iocb->ki_filp;
805 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
806 	size_t prev_count = 0, window_size = 0;
807 	size_t read = 0;
808 	ssize_t ret;
809 
810 	/*
811 	 * In this function, we disable page faults when we're holding the
812 	 * inode glock while doing I/O.  If a page fault occurs, we indicate
813 	 * that the inode glock may be dropped, fault in the pages manually,
814 	 * and retry.
815 	 *
816 	 * Unlike generic_file_read_iter, for reads, iomap_dio_rw can trigger
817 	 * physical as well as manual page faults, and we need to disable both
818 	 * kinds.
819 	 *
820 	 * For direct I/O, gfs2 takes the inode glock in deferred mode.  This
821 	 * locking mode is compatible with other deferred holders, so multiple
822 	 * processes and nodes can do direct I/O to a file at the same time.
823 	 * There's no guarantee that reads or writes will be atomic.  Any
824 	 * coordination among readers and writers needs to happen externally.
825 	 */
826 
827 	if (!iov_iter_count(to))
828 		return 0; /* skip atime */
829 
830 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
831 retry:
832 	ret = gfs2_glock_nq(gh);
833 	if (ret)
834 		goto out_uninit;
835 	pagefault_disable();
836 	to->nofault = true;
837 	ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL,
838 			   IOMAP_DIO_PARTIAL, NULL, read);
839 	to->nofault = false;
840 	pagefault_enable();
841 	if (ret <= 0 && ret != -EFAULT)
842 		goto out_unlock;
843 	/* No increment (+=) because iomap_dio_rw returns a cumulative value. */
844 	if (ret > 0)
845 		read = ret;
846 
847 	if (should_fault_in_pages(to, iocb, &prev_count, &window_size)) {
848 		gfs2_glock_dq(gh);
849 		window_size -= fault_in_iov_iter_writeable(to, window_size);
850 		if (window_size)
851 			goto retry;
852 	}
853 out_unlock:
854 	if (gfs2_holder_queued(gh))
855 		gfs2_glock_dq(gh);
856 out_uninit:
857 	gfs2_holder_uninit(gh);
858 	/* User space doesn't expect partial success. */
859 	if (ret < 0)
860 		return ret;
861 	return read;
862 }
863 
864 static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from,
865 				      struct gfs2_holder *gh)
866 {
867 	struct file *file = iocb->ki_filp;
868 	struct inode *inode = file->f_mapping->host;
869 	struct gfs2_inode *ip = GFS2_I(inode);
870 	size_t prev_count = 0, window_size = 0;
871 	size_t written = 0;
872 	ssize_t ret;
873 
874 	/*
875 	 * In this function, we disable page faults when we're holding the
876 	 * inode glock while doing I/O.  If a page fault occurs, we indicate
877 	 * that the inode glock may be dropped, fault in the pages manually,
878 	 * and retry.
879 	 *
880 	 * For writes, iomap_dio_rw only triggers manual page faults, so we
881 	 * don't need to disable physical ones.
882 	 */
883 
884 	/*
885 	 * Deferred lock, even if its a write, since we do no allocation on
886 	 * this path. All we need to change is the atime, and this lock mode
887 	 * ensures that other nodes have flushed their buffered read caches
888 	 * (i.e. their page cache entries for this inode). We do not,
889 	 * unfortunately, have the option of only flushing a range like the
890 	 * VFS does.
891 	 */
892 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
893 retry:
894 	ret = gfs2_glock_nq(gh);
895 	if (ret)
896 		goto out_uninit;
897 	/* Silently fall back to buffered I/O when writing beyond EOF */
898 	if (iocb->ki_pos + iov_iter_count(from) > i_size_read(&ip->i_inode))
899 		goto out_unlock;
900 
901 	from->nofault = true;
902 	ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL,
903 			   IOMAP_DIO_PARTIAL, NULL, written);
904 	from->nofault = false;
905 	if (ret <= 0) {
906 		if (ret == -ENOTBLK)
907 			ret = 0;
908 		if (ret != -EFAULT)
909 			goto out_unlock;
910 	}
911 	/* No increment (+=) because iomap_dio_rw returns a cumulative value. */
912 	if (ret > 0)
913 		written = ret;
914 
915 	if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
916 		gfs2_glock_dq(gh);
917 		window_size -= fault_in_iov_iter_readable(from, window_size);
918 		if (window_size)
919 			goto retry;
920 	}
921 out_unlock:
922 	if (gfs2_holder_queued(gh))
923 		gfs2_glock_dq(gh);
924 out_uninit:
925 	gfs2_holder_uninit(gh);
926 	/* User space doesn't expect partial success. */
927 	if (ret < 0)
928 		return ret;
929 	return written;
930 }
931 
932 static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
933 {
934 	struct gfs2_inode *ip;
935 	struct gfs2_holder gh;
936 	size_t prev_count = 0, window_size = 0;
937 	size_t read = 0;
938 	ssize_t ret;
939 
940 	/*
941 	 * In this function, we disable page faults when we're holding the
942 	 * inode glock while doing I/O.  If a page fault occurs, we indicate
943 	 * that the inode glock may be dropped, fault in the pages manually,
944 	 * and retry.
945 	 */
946 
947 	if (iocb->ki_flags & IOCB_DIRECT)
948 		return gfs2_file_direct_read(iocb, to, &gh);
949 
950 	pagefault_disable();
951 	iocb->ki_flags |= IOCB_NOIO;
952 	ret = generic_file_read_iter(iocb, to);
953 	iocb->ki_flags &= ~IOCB_NOIO;
954 	pagefault_enable();
955 	if (ret >= 0) {
956 		if (!iov_iter_count(to))
957 			return ret;
958 		read = ret;
959 	} else if (ret != -EFAULT) {
960 		if (ret != -EAGAIN)
961 			return ret;
962 		if (iocb->ki_flags & IOCB_NOWAIT)
963 			return ret;
964 	}
965 	ip = GFS2_I(iocb->ki_filp->f_mapping->host);
966 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
967 retry:
968 	ret = gfs2_glock_nq(&gh);
969 	if (ret)
970 		goto out_uninit;
971 	pagefault_disable();
972 	ret = generic_file_read_iter(iocb, to);
973 	pagefault_enable();
974 	if (ret <= 0 && ret != -EFAULT)
975 		goto out_unlock;
976 	if (ret > 0)
977 		read += ret;
978 
979 	if (should_fault_in_pages(to, iocb, &prev_count, &window_size)) {
980 		gfs2_glock_dq(&gh);
981 		window_size -= fault_in_iov_iter_writeable(to, window_size);
982 		if (window_size)
983 			goto retry;
984 	}
985 out_unlock:
986 	if (gfs2_holder_queued(&gh))
987 		gfs2_glock_dq(&gh);
988 out_uninit:
989 	gfs2_holder_uninit(&gh);
990 	return read ? read : ret;
991 }
992 
993 static ssize_t gfs2_file_buffered_write(struct kiocb *iocb,
994 					struct iov_iter *from,
995 					struct gfs2_holder *gh)
996 {
997 	struct file *file = iocb->ki_filp;
998 	struct inode *inode = file_inode(file);
999 	struct gfs2_inode *ip = GFS2_I(inode);
1000 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1001 	struct gfs2_holder *statfs_gh = NULL;
1002 	size_t prev_count = 0, window_size = 0;
1003 	size_t orig_count = iov_iter_count(from);
1004 	size_t written = 0;
1005 	ssize_t ret;
1006 
1007 	/*
1008 	 * In this function, we disable page faults when we're holding the
1009 	 * inode glock while doing I/O.  If a page fault occurs, we indicate
1010 	 * that the inode glock may be dropped, fault in the pages manually,
1011 	 * and retry.
1012 	 */
1013 
1014 	if (inode == sdp->sd_rindex) {
1015 		statfs_gh = kmalloc(sizeof(*statfs_gh), GFP_NOFS);
1016 		if (!statfs_gh)
1017 			return -ENOMEM;
1018 	}
1019 
1020 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, gh);
1021 retry:
1022 	if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
1023 		window_size -= fault_in_iov_iter_readable(from, window_size);
1024 		if (!window_size) {
1025 			ret = -EFAULT;
1026 			goto out_uninit;
1027 		}
1028 		from->count = min(from->count, window_size);
1029 	}
1030 	ret = gfs2_glock_nq(gh);
1031 	if (ret)
1032 		goto out_uninit;
1033 
1034 	if (inode == sdp->sd_rindex) {
1035 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
1036 
1037 		ret = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
1038 					 GL_NOCACHE, statfs_gh);
1039 		if (ret)
1040 			goto out_unlock;
1041 	}
1042 
1043 	current->backing_dev_info = inode_to_bdi(inode);
1044 	pagefault_disable();
1045 	ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
1046 	pagefault_enable();
1047 	current->backing_dev_info = NULL;
1048 	if (ret > 0) {
1049 		iocb->ki_pos += ret;
1050 		written += ret;
1051 	}
1052 
1053 	if (inode == sdp->sd_rindex)
1054 		gfs2_glock_dq_uninit(statfs_gh);
1055 
1056 	if (ret <= 0 && ret != -EFAULT)
1057 		goto out_unlock;
1058 
1059 	from->count = orig_count - written;
1060 	if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
1061 		gfs2_glock_dq(gh);
1062 		goto retry;
1063 	}
1064 out_unlock:
1065 	if (gfs2_holder_queued(gh))
1066 		gfs2_glock_dq(gh);
1067 out_uninit:
1068 	gfs2_holder_uninit(gh);
1069 	kfree(statfs_gh);
1070 	from->count = orig_count - written;
1071 	return written ? written : ret;
1072 }
1073 
1074 /**
1075  * gfs2_file_write_iter - Perform a write to a file
1076  * @iocb: The io context
1077  * @from: The data to write
1078  *
1079  * We have to do a lock/unlock here to refresh the inode size for
1080  * O_APPEND writes, otherwise we can land up writing at the wrong
1081  * offset. There is still a race, but provided the app is using its
1082  * own file locking, this will make O_APPEND work as expected.
1083  *
1084  */
1085 
1086 static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1087 {
1088 	struct file *file = iocb->ki_filp;
1089 	struct inode *inode = file_inode(file);
1090 	struct gfs2_inode *ip = GFS2_I(inode);
1091 	struct gfs2_holder gh;
1092 	ssize_t ret;
1093 
1094 	gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
1095 
1096 	if (iocb->ki_flags & IOCB_APPEND) {
1097 		ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
1098 		if (ret)
1099 			return ret;
1100 		gfs2_glock_dq_uninit(&gh);
1101 	}
1102 
1103 	inode_lock(inode);
1104 	ret = generic_write_checks(iocb, from);
1105 	if (ret <= 0)
1106 		goto out_unlock;
1107 
1108 	ret = file_remove_privs(file);
1109 	if (ret)
1110 		goto out_unlock;
1111 
1112 	ret = file_update_time(file);
1113 	if (ret)
1114 		goto out_unlock;
1115 
1116 	if (iocb->ki_flags & IOCB_DIRECT) {
1117 		struct address_space *mapping = file->f_mapping;
1118 		ssize_t buffered, ret2;
1119 
1120 		ret = gfs2_file_direct_write(iocb, from, &gh);
1121 		if (ret < 0 || !iov_iter_count(from))
1122 			goto out_unlock;
1123 
1124 		iocb->ki_flags |= IOCB_DSYNC;
1125 		buffered = gfs2_file_buffered_write(iocb, from, &gh);
1126 		if (unlikely(buffered <= 0)) {
1127 			if (!ret)
1128 				ret = buffered;
1129 			goto out_unlock;
1130 		}
1131 
1132 		/*
1133 		 * We need to ensure that the page cache pages are written to
1134 		 * disk and invalidated to preserve the expected O_DIRECT
1135 		 * semantics.  If the writeback or invalidate fails, only report
1136 		 * the direct I/O range as we don't know if the buffered pages
1137 		 * made it to disk.
1138 		 */
1139 		ret2 = generic_write_sync(iocb, buffered);
1140 		invalidate_mapping_pages(mapping,
1141 				(iocb->ki_pos - buffered) >> PAGE_SHIFT,
1142 				(iocb->ki_pos - 1) >> PAGE_SHIFT);
1143 		if (!ret || ret2 > 0)
1144 			ret += ret2;
1145 	} else {
1146 		ret = gfs2_file_buffered_write(iocb, from, &gh);
1147 		if (likely(ret > 0))
1148 			ret = generic_write_sync(iocb, ret);
1149 	}
1150 
1151 out_unlock:
1152 	inode_unlock(inode);
1153 	return ret;
1154 }
1155 
1156 static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
1157 			   int mode)
1158 {
1159 	struct super_block *sb = inode->i_sb;
1160 	struct gfs2_inode *ip = GFS2_I(inode);
1161 	loff_t end = offset + len;
1162 	struct buffer_head *dibh;
1163 	int error;
1164 
1165 	error = gfs2_meta_inode_buffer(ip, &dibh);
1166 	if (unlikely(error))
1167 		return error;
1168 
1169 	gfs2_trans_add_meta(ip->i_gl, dibh);
1170 
1171 	if (gfs2_is_stuffed(ip)) {
1172 		error = gfs2_unstuff_dinode(ip);
1173 		if (unlikely(error))
1174 			goto out;
1175 	}
1176 
1177 	while (offset < end) {
1178 		struct iomap iomap = { };
1179 
1180 		error = gfs2_iomap_alloc(inode, offset, end - offset, &iomap);
1181 		if (error)
1182 			goto out;
1183 		offset = iomap.offset + iomap.length;
1184 		if (!(iomap.flags & IOMAP_F_NEW))
1185 			continue;
1186 		error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
1187 					 iomap.length >> inode->i_blkbits,
1188 					 GFP_NOFS);
1189 		if (error) {
1190 			fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
1191 			goto out;
1192 		}
1193 	}
1194 out:
1195 	brelse(dibh);
1196 	return error;
1197 }
1198 
1199 /**
1200  * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
1201  *                     blocks, determine how many bytes can be written.
1202  * @ip:          The inode in question.
1203  * @len:         Max cap of bytes. What we return in *len must be <= this.
1204  * @data_blocks: Compute and return the number of data blocks needed
1205  * @ind_blocks:  Compute and return the number of indirect blocks needed
1206  * @max_blocks:  The total blocks available to work with.
1207  *
1208  * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
1209  */
1210 static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
1211 			    unsigned int *data_blocks, unsigned int *ind_blocks,
1212 			    unsigned int max_blocks)
1213 {
1214 	loff_t max = *len;
1215 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1216 	unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
1217 
1218 	for (tmp = max_data; tmp > sdp->sd_diptrs;) {
1219 		tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
1220 		max_data -= tmp;
1221 	}
1222 
1223 	*data_blocks = max_data;
1224 	*ind_blocks = max_blocks - max_data;
1225 	*len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
1226 	if (*len > max) {
1227 		*len = max;
1228 		gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
1229 	}
1230 }
1231 
1232 static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1233 {
1234 	struct inode *inode = file_inode(file);
1235 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1236 	struct gfs2_inode *ip = GFS2_I(inode);
1237 	struct gfs2_alloc_parms ap = { .aflags = 0, };
1238 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
1239 	loff_t bytes, max_bytes, max_blks;
1240 	int error;
1241 	const loff_t pos = offset;
1242 	const loff_t count = len;
1243 	loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
1244 	loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
1245 	loff_t max_chunk_size = UINT_MAX & bsize_mask;
1246 
1247 	next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
1248 
1249 	offset &= bsize_mask;
1250 
1251 	len = next - offset;
1252 	bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
1253 	if (!bytes)
1254 		bytes = UINT_MAX;
1255 	bytes &= bsize_mask;
1256 	if (bytes == 0)
1257 		bytes = sdp->sd_sb.sb_bsize;
1258 
1259 	gfs2_size_hint(file, offset, len);
1260 
1261 	gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
1262 	ap.min_target = data_blocks + ind_blocks;
1263 
1264 	while (len > 0) {
1265 		if (len < bytes)
1266 			bytes = len;
1267 		if (!gfs2_write_alloc_required(ip, offset, bytes)) {
1268 			len -= bytes;
1269 			offset += bytes;
1270 			continue;
1271 		}
1272 
1273 		/* We need to determine how many bytes we can actually
1274 		 * fallocate without exceeding quota or going over the
1275 		 * end of the fs. We start off optimistically by assuming
1276 		 * we can write max_bytes */
1277 		max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
1278 
1279 		/* Since max_bytes is most likely a theoretical max, we
1280 		 * calculate a more realistic 'bytes' to serve as a good
1281 		 * starting point for the number of bytes we may be able
1282 		 * to write */
1283 		gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
1284 		ap.target = data_blocks + ind_blocks;
1285 
1286 		error = gfs2_quota_lock_check(ip, &ap);
1287 		if (error)
1288 			return error;
1289 		/* ap.allowed tells us how many blocks quota will allow
1290 		 * us to write. Check if this reduces max_blks */
1291 		max_blks = UINT_MAX;
1292 		if (ap.allowed)
1293 			max_blks = ap.allowed;
1294 
1295 		error = gfs2_inplace_reserve(ip, &ap);
1296 		if (error)
1297 			goto out_qunlock;
1298 
1299 		/* check if the selected rgrp limits our max_blks further */
1300 		if (ip->i_res.rs_reserved < max_blks)
1301 			max_blks = ip->i_res.rs_reserved;
1302 
1303 		/* Almost done. Calculate bytes that can be written using
1304 		 * max_blks. We also recompute max_bytes, data_blocks and
1305 		 * ind_blocks */
1306 		calc_max_reserv(ip, &max_bytes, &data_blocks,
1307 				&ind_blocks, max_blks);
1308 
1309 		rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
1310 			  RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1311 		if (gfs2_is_jdata(ip))
1312 			rblocks += data_blocks ? data_blocks : 1;
1313 
1314 		error = gfs2_trans_begin(sdp, rblocks,
1315 					 PAGE_SIZE >> inode->i_blkbits);
1316 		if (error)
1317 			goto out_trans_fail;
1318 
1319 		error = fallocate_chunk(inode, offset, max_bytes, mode);
1320 		gfs2_trans_end(sdp);
1321 
1322 		if (error)
1323 			goto out_trans_fail;
1324 
1325 		len -= max_bytes;
1326 		offset += max_bytes;
1327 		gfs2_inplace_release(ip);
1328 		gfs2_quota_unlock(ip);
1329 	}
1330 
1331 	if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size)
1332 		i_size_write(inode, pos + count);
1333 	file_update_time(file);
1334 	mark_inode_dirty(inode);
1335 
1336 	if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
1337 		return vfs_fsync_range(file, pos, pos + count - 1,
1338 			       (file->f_flags & __O_SYNC) ? 0 : 1);
1339 	return 0;
1340 
1341 out_trans_fail:
1342 	gfs2_inplace_release(ip);
1343 out_qunlock:
1344 	gfs2_quota_unlock(ip);
1345 	return error;
1346 }
1347 
1348 static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1349 {
1350 	struct inode *inode = file_inode(file);
1351 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1352 	struct gfs2_inode *ip = GFS2_I(inode);
1353 	struct gfs2_holder gh;
1354 	int ret;
1355 
1356 	if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
1357 		return -EOPNOTSUPP;
1358 	/* fallocate is needed by gfs2_grow to reserve space in the rindex */
1359 	if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
1360 		return -EOPNOTSUPP;
1361 
1362 	inode_lock(inode);
1363 
1364 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
1365 	ret = gfs2_glock_nq(&gh);
1366 	if (ret)
1367 		goto out_uninit;
1368 
1369 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1370 	    (offset + len) > inode->i_size) {
1371 		ret = inode_newsize_ok(inode, offset + len);
1372 		if (ret)
1373 			goto out_unlock;
1374 	}
1375 
1376 	ret = get_write_access(inode);
1377 	if (ret)
1378 		goto out_unlock;
1379 
1380 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1381 		ret = __gfs2_punch_hole(file, offset, len);
1382 	} else {
1383 		ret = __gfs2_fallocate(file, mode, offset, len);
1384 		if (ret)
1385 			gfs2_rs_deltree(&ip->i_res);
1386 	}
1387 
1388 	put_write_access(inode);
1389 out_unlock:
1390 	gfs2_glock_dq(&gh);
1391 out_uninit:
1392 	gfs2_holder_uninit(&gh);
1393 	inode_unlock(inode);
1394 	return ret;
1395 }
1396 
1397 static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
1398 				      struct file *out, loff_t *ppos,
1399 				      size_t len, unsigned int flags)
1400 {
1401 	ssize_t ret;
1402 
1403 	gfs2_size_hint(out, *ppos, len);
1404 
1405 	ret = iter_file_splice_write(pipe, out, ppos, len, flags);
1406 	return ret;
1407 }
1408 
1409 #ifdef CONFIG_GFS2_FS_LOCKING_DLM
1410 
1411 /**
1412  * gfs2_lock - acquire/release a posix lock on a file
1413  * @file: the file pointer
1414  * @cmd: either modify or retrieve lock state, possibly wait
1415  * @fl: type and range of lock
1416  *
1417  * Returns: errno
1418  */
1419 
1420 static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
1421 {
1422 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
1423 	struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
1424 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1425 
1426 	if (!(fl->fl_flags & FL_POSIX))
1427 		return -ENOLCK;
1428 	if (cmd == F_CANCELLK) {
1429 		/* Hack: */
1430 		cmd = F_SETLK;
1431 		fl->fl_type = F_UNLCK;
1432 	}
1433 	if (unlikely(gfs2_withdrawn(sdp))) {
1434 		if (fl->fl_type == F_UNLCK)
1435 			locks_lock_file_wait(file, fl);
1436 		return -EIO;
1437 	}
1438 	if (IS_GETLK(cmd))
1439 		return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
1440 	else if (fl->fl_type == F_UNLCK)
1441 		return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
1442 	else
1443 		return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
1444 }
1445 
1446 static void __flock_holder_uninit(struct file *file, struct gfs2_holder *fl_gh)
1447 {
1448 	struct gfs2_glock *gl = fl_gh->gh_gl;
1449 
1450 	/*
1451 	 * Make sure gfs2_glock_put() won't sleep under the file->f_lock
1452 	 * spinlock.
1453 	 */
1454 
1455 	gfs2_glock_hold(gl);
1456 	spin_lock(&file->f_lock);
1457 	gfs2_holder_uninit(fl_gh);
1458 	spin_unlock(&file->f_lock);
1459 	gfs2_glock_put(gl);
1460 }
1461 
1462 static int do_flock(struct file *file, int cmd, struct file_lock *fl)
1463 {
1464 	struct gfs2_file *fp = file->private_data;
1465 	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1466 	struct gfs2_inode *ip = GFS2_I(file_inode(file));
1467 	struct gfs2_glock *gl;
1468 	unsigned int state;
1469 	u16 flags;
1470 	int error = 0;
1471 	int sleeptime;
1472 
1473 	state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
1474 	flags = GL_EXACT | GL_NOPID;
1475 	if (!IS_SETLKW(cmd))
1476 		flags |= LM_FLAG_TRY_1CB;
1477 
1478 	mutex_lock(&fp->f_fl_mutex);
1479 
1480 	if (gfs2_holder_initialized(fl_gh)) {
1481 		struct file_lock request;
1482 		if (fl_gh->gh_state == state)
1483 			goto out;
1484 		locks_init_lock(&request);
1485 		request.fl_type = F_UNLCK;
1486 		request.fl_flags = FL_FLOCK;
1487 		locks_lock_file_wait(file, &request);
1488 		gfs2_glock_dq(fl_gh);
1489 		gfs2_holder_reinit(state, flags, fl_gh);
1490 	} else {
1491 		error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1492 				       &gfs2_flock_glops, CREATE, &gl);
1493 		if (error)
1494 			goto out;
1495 		spin_lock(&file->f_lock);
1496 		gfs2_holder_init(gl, state, flags, fl_gh);
1497 		spin_unlock(&file->f_lock);
1498 		gfs2_glock_put(gl);
1499 	}
1500 	for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
1501 		error = gfs2_glock_nq(fl_gh);
1502 		if (error != GLR_TRYFAILED)
1503 			break;
1504 		fl_gh->gh_flags &= ~LM_FLAG_TRY_1CB;
1505 		fl_gh->gh_flags |= LM_FLAG_TRY;
1506 		msleep(sleeptime);
1507 	}
1508 	if (error) {
1509 		__flock_holder_uninit(file, fl_gh);
1510 		if (error == GLR_TRYFAILED)
1511 			error = -EAGAIN;
1512 	} else {
1513 		error = locks_lock_file_wait(file, fl);
1514 		gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
1515 	}
1516 
1517 out:
1518 	mutex_unlock(&fp->f_fl_mutex);
1519 	return error;
1520 }
1521 
1522 static void do_unflock(struct file *file, struct file_lock *fl)
1523 {
1524 	struct gfs2_file *fp = file->private_data;
1525 	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1526 
1527 	mutex_lock(&fp->f_fl_mutex);
1528 	locks_lock_file_wait(file, fl);
1529 	if (gfs2_holder_initialized(fl_gh)) {
1530 		gfs2_glock_dq(fl_gh);
1531 		__flock_holder_uninit(file, fl_gh);
1532 	}
1533 	mutex_unlock(&fp->f_fl_mutex);
1534 }
1535 
1536 /**
1537  * gfs2_flock - acquire/release a flock lock on a file
1538  * @file: the file pointer
1539  * @cmd: either modify or retrieve lock state, possibly wait
1540  * @fl: type and range of lock
1541  *
1542  * Returns: errno
1543  */
1544 
1545 static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1546 {
1547 	if (!(fl->fl_flags & FL_FLOCK))
1548 		return -ENOLCK;
1549 
1550 	if (fl->fl_type == F_UNLCK) {
1551 		do_unflock(file, fl);
1552 		return 0;
1553 	} else {
1554 		return do_flock(file, cmd, fl);
1555 	}
1556 }
1557 
1558 const struct file_operations gfs2_file_fops = {
1559 	.llseek		= gfs2_llseek,
1560 	.read_iter	= gfs2_file_read_iter,
1561 	.write_iter	= gfs2_file_write_iter,
1562 	.iopoll		= iocb_bio_iopoll,
1563 	.unlocked_ioctl	= gfs2_ioctl,
1564 	.compat_ioctl	= gfs2_compat_ioctl,
1565 	.mmap		= gfs2_mmap,
1566 	.open		= gfs2_open,
1567 	.release	= gfs2_release,
1568 	.fsync		= gfs2_fsync,
1569 	.lock		= gfs2_lock,
1570 	.flock		= gfs2_flock,
1571 	.splice_read	= generic_file_splice_read,
1572 	.splice_write	= gfs2_file_splice_write,
1573 	.setlease	= simple_nosetlease,
1574 	.fallocate	= gfs2_fallocate,
1575 };
1576 
1577 const struct file_operations gfs2_dir_fops = {
1578 	.iterate_shared	= gfs2_readdir,
1579 	.unlocked_ioctl	= gfs2_ioctl,
1580 	.compat_ioctl	= gfs2_compat_ioctl,
1581 	.open		= gfs2_open,
1582 	.release	= gfs2_release,
1583 	.fsync		= gfs2_fsync,
1584 	.lock		= gfs2_lock,
1585 	.flock		= gfs2_flock,
1586 	.llseek		= default_llseek,
1587 };
1588 
1589 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1590 
1591 const struct file_operations gfs2_file_fops_nolock = {
1592 	.llseek		= gfs2_llseek,
1593 	.read_iter	= gfs2_file_read_iter,
1594 	.write_iter	= gfs2_file_write_iter,
1595 	.iopoll		= iocb_bio_iopoll,
1596 	.unlocked_ioctl	= gfs2_ioctl,
1597 	.compat_ioctl	= gfs2_compat_ioctl,
1598 	.mmap		= gfs2_mmap,
1599 	.open		= gfs2_open,
1600 	.release	= gfs2_release,
1601 	.fsync		= gfs2_fsync,
1602 	.splice_read	= generic_file_splice_read,
1603 	.splice_write	= gfs2_file_splice_write,
1604 	.setlease	= generic_setlease,
1605 	.fallocate	= gfs2_fallocate,
1606 };
1607 
1608 const struct file_operations gfs2_dir_fops_nolock = {
1609 	.iterate_shared	= gfs2_readdir,
1610 	.unlocked_ioctl	= gfs2_ioctl,
1611 	.compat_ioctl	= gfs2_compat_ioctl,
1612 	.open		= gfs2_open,
1613 	.release	= gfs2_release,
1614 	.fsync		= gfs2_fsync,
1615 	.llseek		= default_llseek,
1616 };
1617 
1618