1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #include <linux/slab.h> 11 #include <linux/spinlock.h> 12 #include <linux/completion.h> 13 #include <linux/buffer_head.h> 14 #include <linux/pagemap.h> 15 #include <linux/uio.h> 16 #include <linux/blkdev.h> 17 #include <linux/mm.h> 18 #include <linux/mount.h> 19 #include <linux/fs.h> 20 #include <linux/gfs2_ondisk.h> 21 #include <linux/falloc.h> 22 #include <linux/swap.h> 23 #include <linux/crc32.h> 24 #include <linux/writeback.h> 25 #include <linux/uaccess.h> 26 #include <linux/dlm.h> 27 #include <linux/dlm_plock.h> 28 #include <linux/delay.h> 29 #include <linux/backing-dev.h> 30 31 #include "gfs2.h" 32 #include "incore.h" 33 #include "bmap.h" 34 #include "aops.h" 35 #include "dir.h" 36 #include "glock.h" 37 #include "glops.h" 38 #include "inode.h" 39 #include "log.h" 40 #include "meta_io.h" 41 #include "quota.h" 42 #include "rgrp.h" 43 #include "trans.h" 44 #include "util.h" 45 46 /** 47 * gfs2_llseek - seek to a location in a file 48 * @file: the file 49 * @offset: the offset 50 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END) 51 * 52 * SEEK_END requires the glock for the file because it references the 53 * file's size. 54 * 55 * Returns: The new offset, or errno 56 */ 57 58 static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence) 59 { 60 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 61 struct gfs2_holder i_gh; 62 loff_t error; 63 64 switch (whence) { 65 case SEEK_END: 66 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 67 &i_gh); 68 if (!error) { 69 error = generic_file_llseek(file, offset, whence); 70 gfs2_glock_dq_uninit(&i_gh); 71 } 72 break; 73 74 case SEEK_DATA: 75 error = gfs2_seek_data(file, offset); 76 break; 77 78 case SEEK_HOLE: 79 error = gfs2_seek_hole(file, offset); 80 break; 81 82 case SEEK_CUR: 83 case SEEK_SET: 84 /* 85 * These don't reference inode->i_size and don't depend on the 86 * block mapping, so we don't need the glock. 87 */ 88 error = generic_file_llseek(file, offset, whence); 89 break; 90 default: 91 error = -EINVAL; 92 } 93 94 return error; 95 } 96 97 /** 98 * gfs2_readdir - Iterator for a directory 99 * @file: The directory to read from 100 * @ctx: What to feed directory entries to 101 * 102 * Returns: errno 103 */ 104 105 static int gfs2_readdir(struct file *file, struct dir_context *ctx) 106 { 107 struct inode *dir = file->f_mapping->host; 108 struct gfs2_inode *dip = GFS2_I(dir); 109 struct gfs2_holder d_gh; 110 int error; 111 112 error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh); 113 if (error) 114 return error; 115 116 error = gfs2_dir_read(dir, ctx, &file->f_ra); 117 118 gfs2_glock_dq_uninit(&d_gh); 119 120 return error; 121 } 122 123 /** 124 * fsflag_gfs2flag 125 * 126 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories, 127 * and to GFS2_DIF_JDATA for non-directories. 128 */ 129 static struct { 130 u32 fsflag; 131 u32 gfsflag; 132 } fsflag_gfs2flag[] = { 133 {FS_SYNC_FL, GFS2_DIF_SYNC}, 134 {FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE}, 135 {FS_APPEND_FL, GFS2_DIF_APPENDONLY}, 136 {FS_NOATIME_FL, GFS2_DIF_NOATIME}, 137 {FS_INDEX_FL, GFS2_DIF_EXHASH}, 138 {FS_TOPDIR_FL, GFS2_DIF_TOPDIR}, 139 {FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA}, 140 }; 141 142 static int gfs2_get_flags(struct file *filp, u32 __user *ptr) 143 { 144 struct inode *inode = file_inode(filp); 145 struct gfs2_inode *ip = GFS2_I(inode); 146 struct gfs2_holder gh; 147 int i, error; 148 u32 gfsflags, fsflags = 0; 149 150 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 151 error = gfs2_glock_nq(&gh); 152 if (error) 153 goto out_uninit; 154 155 gfsflags = ip->i_diskflags; 156 if (S_ISDIR(inode->i_mode)) 157 gfsflags &= ~GFS2_DIF_JDATA; 158 else 159 gfsflags &= ~GFS2_DIF_INHERIT_JDATA; 160 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) 161 if (gfsflags & fsflag_gfs2flag[i].gfsflag) 162 fsflags |= fsflag_gfs2flag[i].fsflag; 163 164 if (put_user(fsflags, ptr)) 165 error = -EFAULT; 166 167 gfs2_glock_dq(&gh); 168 out_uninit: 169 gfs2_holder_uninit(&gh); 170 return error; 171 } 172 173 void gfs2_set_inode_flags(struct inode *inode) 174 { 175 struct gfs2_inode *ip = GFS2_I(inode); 176 unsigned int flags = inode->i_flags; 177 178 flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC); 179 if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode)) 180 flags |= S_NOSEC; 181 if (ip->i_diskflags & GFS2_DIF_IMMUTABLE) 182 flags |= S_IMMUTABLE; 183 if (ip->i_diskflags & GFS2_DIF_APPENDONLY) 184 flags |= S_APPEND; 185 if (ip->i_diskflags & GFS2_DIF_NOATIME) 186 flags |= S_NOATIME; 187 if (ip->i_diskflags & GFS2_DIF_SYNC) 188 flags |= S_SYNC; 189 inode->i_flags = flags; 190 } 191 192 /* Flags that can be set by user space */ 193 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA| \ 194 GFS2_DIF_IMMUTABLE| \ 195 GFS2_DIF_APPENDONLY| \ 196 GFS2_DIF_NOATIME| \ 197 GFS2_DIF_SYNC| \ 198 GFS2_DIF_TOPDIR| \ 199 GFS2_DIF_INHERIT_JDATA) 200 201 /** 202 * do_gfs2_set_flags - set flags on an inode 203 * @filp: file pointer 204 * @reqflags: The flags to set 205 * @mask: Indicates which flags are valid 206 * 207 */ 208 static int do_gfs2_set_flags(struct file *filp, u32 reqflags, u32 mask) 209 { 210 struct inode *inode = file_inode(filp); 211 struct gfs2_inode *ip = GFS2_I(inode); 212 struct gfs2_sbd *sdp = GFS2_SB(inode); 213 struct buffer_head *bh; 214 struct gfs2_holder gh; 215 int error; 216 u32 new_flags, flags; 217 218 error = mnt_want_write_file(filp); 219 if (error) 220 return error; 221 222 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 223 if (error) 224 goto out_drop_write; 225 226 error = -EACCES; 227 if (!inode_owner_or_capable(inode)) 228 goto out; 229 230 error = 0; 231 flags = ip->i_diskflags; 232 new_flags = (flags & ~mask) | (reqflags & mask); 233 if ((new_flags ^ flags) == 0) 234 goto out; 235 236 error = -EPERM; 237 if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE)) 238 goto out; 239 if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY)) 240 goto out; 241 if (((new_flags ^ flags) & GFS2_DIF_IMMUTABLE) && 242 !capable(CAP_LINUX_IMMUTABLE)) 243 goto out; 244 if (!IS_IMMUTABLE(inode)) { 245 error = gfs2_permission(inode, MAY_WRITE); 246 if (error) 247 goto out; 248 } 249 if ((flags ^ new_flags) & GFS2_DIF_JDATA) { 250 if (new_flags & GFS2_DIF_JDATA) 251 gfs2_log_flush(sdp, ip->i_gl, 252 GFS2_LOG_HEAD_FLUSH_NORMAL | 253 GFS2_LFC_SET_FLAGS); 254 error = filemap_fdatawrite(inode->i_mapping); 255 if (error) 256 goto out; 257 error = filemap_fdatawait(inode->i_mapping); 258 if (error) 259 goto out; 260 if (new_flags & GFS2_DIF_JDATA) 261 gfs2_ordered_del_inode(ip); 262 } 263 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 264 if (error) 265 goto out; 266 error = gfs2_meta_inode_buffer(ip, &bh); 267 if (error) 268 goto out_trans_end; 269 inode->i_ctime = current_time(inode); 270 gfs2_trans_add_meta(ip->i_gl, bh); 271 ip->i_diskflags = new_flags; 272 gfs2_dinode_out(ip, bh->b_data); 273 brelse(bh); 274 gfs2_set_inode_flags(inode); 275 gfs2_set_aops(inode); 276 out_trans_end: 277 gfs2_trans_end(sdp); 278 out: 279 gfs2_glock_dq_uninit(&gh); 280 out_drop_write: 281 mnt_drop_write_file(filp); 282 return error; 283 } 284 285 static int gfs2_set_flags(struct file *filp, u32 __user *ptr) 286 { 287 struct inode *inode = file_inode(filp); 288 u32 fsflags, gfsflags = 0; 289 u32 mask; 290 int i; 291 292 if (get_user(fsflags, ptr)) 293 return -EFAULT; 294 295 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) { 296 if (fsflags & fsflag_gfs2flag[i].fsflag) { 297 fsflags &= ~fsflag_gfs2flag[i].fsflag; 298 gfsflags |= fsflag_gfs2flag[i].gfsflag; 299 } 300 } 301 if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET) 302 return -EINVAL; 303 304 mask = GFS2_FLAGS_USER_SET; 305 if (S_ISDIR(inode->i_mode)) { 306 mask &= ~GFS2_DIF_JDATA; 307 } else { 308 /* The GFS2_DIF_TOPDIR flag is only valid for directories. */ 309 if (gfsflags & GFS2_DIF_TOPDIR) 310 return -EINVAL; 311 mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA); 312 } 313 314 return do_gfs2_set_flags(filp, gfsflags, mask); 315 } 316 317 static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 318 { 319 switch(cmd) { 320 case FS_IOC_GETFLAGS: 321 return gfs2_get_flags(filp, (u32 __user *)arg); 322 case FS_IOC_SETFLAGS: 323 return gfs2_set_flags(filp, (u32 __user *)arg); 324 case FITRIM: 325 return gfs2_fitrim(filp, (void __user *)arg); 326 } 327 return -ENOTTY; 328 } 329 330 /** 331 * gfs2_size_hint - Give a hint to the size of a write request 332 * @filep: The struct file 333 * @offset: The file offset of the write 334 * @size: The length of the write 335 * 336 * When we are about to do a write, this function records the total 337 * write size in order to provide a suitable hint to the lower layers 338 * about how many blocks will be required. 339 * 340 */ 341 342 static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size) 343 { 344 struct inode *inode = file_inode(filep); 345 struct gfs2_sbd *sdp = GFS2_SB(inode); 346 struct gfs2_inode *ip = GFS2_I(inode); 347 size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift; 348 int hint = min_t(size_t, INT_MAX, blks); 349 350 if (hint > atomic_read(&ip->i_res.rs_sizehint)) 351 atomic_set(&ip->i_res.rs_sizehint, hint); 352 } 353 354 /** 355 * gfs2_allocate_page_backing - Use bmap to allocate blocks 356 * @page: The (locked) page to allocate backing for 357 * 358 * We try to allocate all the blocks required for the page in 359 * one go. This might fail for various reasons, so we keep 360 * trying until all the blocks to back this page are allocated. 361 * If some of the blocks are already allocated, thats ok too. 362 */ 363 364 static int gfs2_allocate_page_backing(struct page *page) 365 { 366 struct inode *inode = page->mapping->host; 367 struct buffer_head bh; 368 unsigned long size = PAGE_SIZE; 369 u64 lblock = page->index << (PAGE_SHIFT - inode->i_blkbits); 370 371 do { 372 bh.b_state = 0; 373 bh.b_size = size; 374 gfs2_block_map(inode, lblock, &bh, 1); 375 if (!buffer_mapped(&bh)) 376 return -EIO; 377 size -= bh.b_size; 378 lblock += (bh.b_size >> inode->i_blkbits); 379 } while(size > 0); 380 return 0; 381 } 382 383 /** 384 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable 385 * @vma: The virtual memory area 386 * @vmf: The virtual memory fault containing the page to become writable 387 * 388 * When the page becomes writable, we need to ensure that we have 389 * blocks allocated on disk to back that page. 390 */ 391 392 static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf) 393 { 394 struct page *page = vmf->page; 395 struct inode *inode = file_inode(vmf->vma->vm_file); 396 struct gfs2_inode *ip = GFS2_I(inode); 397 struct gfs2_sbd *sdp = GFS2_SB(inode); 398 struct gfs2_alloc_parms ap = { .aflags = 0, }; 399 unsigned long last_index; 400 u64 pos = page->index << PAGE_SHIFT; 401 unsigned int data_blocks, ind_blocks, rblocks; 402 struct gfs2_holder gh; 403 loff_t size; 404 int ret; 405 406 sb_start_pagefault(inode->i_sb); 407 408 ret = gfs2_rsqa_alloc(ip); 409 if (ret) 410 goto out; 411 412 gfs2_size_hint(vmf->vma->vm_file, pos, PAGE_SIZE); 413 414 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 415 ret = gfs2_glock_nq(&gh); 416 if (ret) 417 goto out_uninit; 418 419 /* Update file times before taking page lock */ 420 file_update_time(vmf->vma->vm_file); 421 422 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags); 423 set_bit(GIF_SW_PAGED, &ip->i_flags); 424 425 if (!gfs2_write_alloc_required(ip, pos, PAGE_SIZE)) { 426 lock_page(page); 427 if (!PageUptodate(page) || page->mapping != inode->i_mapping) { 428 ret = -EAGAIN; 429 unlock_page(page); 430 } 431 goto out_unlock; 432 } 433 434 ret = gfs2_rindex_update(sdp); 435 if (ret) 436 goto out_unlock; 437 438 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks); 439 ap.target = data_blocks + ind_blocks; 440 ret = gfs2_quota_lock_check(ip, &ap); 441 if (ret) 442 goto out_unlock; 443 ret = gfs2_inplace_reserve(ip, &ap); 444 if (ret) 445 goto out_quota_unlock; 446 447 rblocks = RES_DINODE + ind_blocks; 448 if (gfs2_is_jdata(ip)) 449 rblocks += data_blocks ? data_blocks : 1; 450 if (ind_blocks || data_blocks) { 451 rblocks += RES_STATFS + RES_QUOTA; 452 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 453 } 454 ret = gfs2_trans_begin(sdp, rblocks, 0); 455 if (ret) 456 goto out_trans_fail; 457 458 lock_page(page); 459 ret = -EINVAL; 460 size = i_size_read(inode); 461 last_index = (size - 1) >> PAGE_SHIFT; 462 /* Check page index against inode size */ 463 if (size == 0 || (page->index > last_index)) 464 goto out_trans_end; 465 466 ret = -EAGAIN; 467 /* If truncated, we must retry the operation, we may have raced 468 * with the glock demotion code. 469 */ 470 if (!PageUptodate(page) || page->mapping != inode->i_mapping) 471 goto out_trans_end; 472 473 /* Unstuff, if required, and allocate backing blocks for page */ 474 ret = 0; 475 if (gfs2_is_stuffed(ip)) 476 ret = gfs2_unstuff_dinode(ip, page); 477 if (ret == 0) 478 ret = gfs2_allocate_page_backing(page); 479 480 out_trans_end: 481 if (ret) 482 unlock_page(page); 483 gfs2_trans_end(sdp); 484 out_trans_fail: 485 gfs2_inplace_release(ip); 486 out_quota_unlock: 487 gfs2_quota_unlock(ip); 488 out_unlock: 489 gfs2_glock_dq(&gh); 490 out_uninit: 491 gfs2_holder_uninit(&gh); 492 if (ret == 0) { 493 set_page_dirty(page); 494 wait_for_stable_page(page); 495 } 496 out: 497 sb_end_pagefault(inode->i_sb); 498 return block_page_mkwrite_return(ret); 499 } 500 501 static const struct vm_operations_struct gfs2_vm_ops = { 502 .fault = filemap_fault, 503 .map_pages = filemap_map_pages, 504 .page_mkwrite = gfs2_page_mkwrite, 505 }; 506 507 /** 508 * gfs2_mmap - 509 * @file: The file to map 510 * @vma: The VMA which described the mapping 511 * 512 * There is no need to get a lock here unless we should be updating 513 * atime. We ignore any locking errors since the only consequence is 514 * a missed atime update (which will just be deferred until later). 515 * 516 * Returns: 0 517 */ 518 519 static int gfs2_mmap(struct file *file, struct vm_area_struct *vma) 520 { 521 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 522 523 if (!(file->f_flags & O_NOATIME) && 524 !IS_NOATIME(&ip->i_inode)) { 525 struct gfs2_holder i_gh; 526 int error; 527 528 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 529 &i_gh); 530 if (error) 531 return error; 532 /* grab lock to update inode */ 533 gfs2_glock_dq_uninit(&i_gh); 534 file_accessed(file); 535 } 536 vma->vm_ops = &gfs2_vm_ops; 537 538 return 0; 539 } 540 541 /** 542 * gfs2_open_common - This is common to open and atomic_open 543 * @inode: The inode being opened 544 * @file: The file being opened 545 * 546 * This maybe called under a glock or not depending upon how it has 547 * been called. We must always be called under a glock for regular 548 * files, however. For other file types, it does not matter whether 549 * we hold the glock or not. 550 * 551 * Returns: Error code or 0 for success 552 */ 553 554 int gfs2_open_common(struct inode *inode, struct file *file) 555 { 556 struct gfs2_file *fp; 557 int ret; 558 559 if (S_ISREG(inode->i_mode)) { 560 ret = generic_file_open(inode, file); 561 if (ret) 562 return ret; 563 } 564 565 fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS); 566 if (!fp) 567 return -ENOMEM; 568 569 mutex_init(&fp->f_fl_mutex); 570 571 gfs2_assert_warn(GFS2_SB(inode), !file->private_data); 572 file->private_data = fp; 573 return 0; 574 } 575 576 /** 577 * gfs2_open - open a file 578 * @inode: the inode to open 579 * @file: the struct file for this opening 580 * 581 * After atomic_open, this function is only used for opening files 582 * which are already cached. We must still get the glock for regular 583 * files to ensure that we have the file size uptodate for the large 584 * file check which is in the common code. That is only an issue for 585 * regular files though. 586 * 587 * Returns: errno 588 */ 589 590 static int gfs2_open(struct inode *inode, struct file *file) 591 { 592 struct gfs2_inode *ip = GFS2_I(inode); 593 struct gfs2_holder i_gh; 594 int error; 595 bool need_unlock = false; 596 597 if (S_ISREG(ip->i_inode.i_mode)) { 598 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 599 &i_gh); 600 if (error) 601 return error; 602 need_unlock = true; 603 } 604 605 error = gfs2_open_common(inode, file); 606 607 if (need_unlock) 608 gfs2_glock_dq_uninit(&i_gh); 609 610 return error; 611 } 612 613 /** 614 * gfs2_release - called to close a struct file 615 * @inode: the inode the struct file belongs to 616 * @file: the struct file being closed 617 * 618 * Returns: errno 619 */ 620 621 static int gfs2_release(struct inode *inode, struct file *file) 622 { 623 struct gfs2_inode *ip = GFS2_I(inode); 624 625 kfree(file->private_data); 626 file->private_data = NULL; 627 628 if (!(file->f_mode & FMODE_WRITE)) 629 return 0; 630 631 gfs2_rsqa_delete(ip, &inode->i_writecount); 632 return 0; 633 } 634 635 /** 636 * gfs2_fsync - sync the dirty data for a file (across the cluster) 637 * @file: the file that points to the dentry 638 * @start: the start position in the file to sync 639 * @end: the end position in the file to sync 640 * @datasync: set if we can ignore timestamp changes 641 * 642 * We split the data flushing here so that we don't wait for the data 643 * until after we've also sent the metadata to disk. Note that for 644 * data=ordered, we will write & wait for the data at the log flush 645 * stage anyway, so this is unlikely to make much of a difference 646 * except in the data=writeback case. 647 * 648 * If the fdatawrite fails due to any reason except -EIO, we will 649 * continue the remainder of the fsync, although we'll still report 650 * the error at the end. This is to match filemap_write_and_wait_range() 651 * behaviour. 652 * 653 * Returns: errno 654 */ 655 656 static int gfs2_fsync(struct file *file, loff_t start, loff_t end, 657 int datasync) 658 { 659 struct address_space *mapping = file->f_mapping; 660 struct inode *inode = mapping->host; 661 int sync_state = inode->i_state & I_DIRTY_ALL; 662 struct gfs2_inode *ip = GFS2_I(inode); 663 int ret = 0, ret1 = 0; 664 665 if (mapping->nrpages) { 666 ret1 = filemap_fdatawrite_range(mapping, start, end); 667 if (ret1 == -EIO) 668 return ret1; 669 } 670 671 if (!gfs2_is_jdata(ip)) 672 sync_state &= ~I_DIRTY_PAGES; 673 if (datasync) 674 sync_state &= ~(I_DIRTY_SYNC | I_DIRTY_TIME); 675 676 if (sync_state) { 677 ret = sync_inode_metadata(inode, 1); 678 if (ret) 679 return ret; 680 if (gfs2_is_jdata(ip)) 681 ret = file_write_and_wait(file); 682 if (ret) 683 return ret; 684 gfs2_ail_flush(ip->i_gl, 1); 685 } 686 687 if (mapping->nrpages) 688 ret = file_fdatawait_range(file, start, end); 689 690 return ret ? ret : ret1; 691 } 692 693 static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to) 694 { 695 struct file *file = iocb->ki_filp; 696 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 697 size_t count = iov_iter_count(to); 698 struct gfs2_holder gh; 699 ssize_t ret; 700 701 if (!count) 702 return 0; /* skip atime */ 703 704 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh); 705 ret = gfs2_glock_nq(&gh); 706 if (ret) 707 goto out_uninit; 708 709 ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL); 710 711 gfs2_glock_dq(&gh); 712 out_uninit: 713 gfs2_holder_uninit(&gh); 714 return ret; 715 } 716 717 static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 718 { 719 struct file *file = iocb->ki_filp; 720 struct inode *inode = file->f_mapping->host; 721 struct gfs2_inode *ip = GFS2_I(inode); 722 size_t len = iov_iter_count(from); 723 loff_t offset = iocb->ki_pos; 724 struct gfs2_holder gh; 725 ssize_t ret; 726 727 /* 728 * Deferred lock, even if its a write, since we do no allocation on 729 * this path. All we need to change is the atime, and this lock mode 730 * ensures that other nodes have flushed their buffered read caches 731 * (i.e. their page cache entries for this inode). We do not, 732 * unfortunately, have the option of only flushing a range like the 733 * VFS does. 734 */ 735 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh); 736 ret = gfs2_glock_nq(&gh); 737 if (ret) 738 goto out_uninit; 739 740 /* Silently fall back to buffered I/O when writing beyond EOF */ 741 if (offset + len > i_size_read(&ip->i_inode)) 742 goto out; 743 744 ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL); 745 746 out: 747 gfs2_glock_dq(&gh); 748 out_uninit: 749 gfs2_holder_uninit(&gh); 750 return ret; 751 } 752 753 static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 754 { 755 ssize_t ret; 756 757 if (iocb->ki_flags & IOCB_DIRECT) { 758 ret = gfs2_file_direct_read(iocb, to); 759 if (likely(ret != -ENOTBLK)) 760 return ret; 761 iocb->ki_flags &= ~IOCB_DIRECT; 762 } 763 return generic_file_read_iter(iocb, to); 764 } 765 766 /** 767 * gfs2_file_write_iter - Perform a write to a file 768 * @iocb: The io context 769 * @from: The data to write 770 * 771 * We have to do a lock/unlock here to refresh the inode size for 772 * O_APPEND writes, otherwise we can land up writing at the wrong 773 * offset. There is still a race, but provided the app is using its 774 * own file locking, this will make O_APPEND work as expected. 775 * 776 */ 777 778 static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 779 { 780 struct file *file = iocb->ki_filp; 781 struct inode *inode = file_inode(file); 782 struct gfs2_inode *ip = GFS2_I(inode); 783 ssize_t written = 0, ret; 784 785 ret = gfs2_rsqa_alloc(ip); 786 if (ret) 787 return ret; 788 789 gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from)); 790 791 if (iocb->ki_flags & IOCB_APPEND) { 792 struct gfs2_holder gh; 793 794 ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 795 if (ret) 796 return ret; 797 gfs2_glock_dq_uninit(&gh); 798 } 799 800 inode_lock(inode); 801 ret = generic_write_checks(iocb, from); 802 if (ret <= 0) 803 goto out; 804 805 /* We can write back this queue in page reclaim */ 806 current->backing_dev_info = inode_to_bdi(inode); 807 808 ret = file_remove_privs(file); 809 if (ret) 810 goto out2; 811 812 ret = file_update_time(file); 813 if (ret) 814 goto out2; 815 816 if (iocb->ki_flags & IOCB_DIRECT) { 817 struct address_space *mapping = file->f_mapping; 818 loff_t pos, endbyte; 819 ssize_t buffered; 820 821 written = gfs2_file_direct_write(iocb, from); 822 if (written < 0 || !iov_iter_count(from)) 823 goto out2; 824 825 ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops); 826 if (unlikely(ret < 0)) 827 goto out2; 828 buffered = ret; 829 830 /* 831 * We need to ensure that the page cache pages are written to 832 * disk and invalidated to preserve the expected O_DIRECT 833 * semantics. 834 */ 835 pos = iocb->ki_pos; 836 endbyte = pos + buffered - 1; 837 ret = filemap_write_and_wait_range(mapping, pos, endbyte); 838 if (!ret) { 839 iocb->ki_pos += buffered; 840 written += buffered; 841 invalidate_mapping_pages(mapping, 842 pos >> PAGE_SHIFT, 843 endbyte >> PAGE_SHIFT); 844 } else { 845 /* 846 * We don't know how much we wrote, so just return 847 * the number of bytes which were direct-written 848 */ 849 } 850 } else { 851 ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops); 852 if (likely(ret > 0)) 853 iocb->ki_pos += ret; 854 } 855 856 out2: 857 current->backing_dev_info = NULL; 858 out: 859 inode_unlock(inode); 860 if (likely(ret > 0)) { 861 /* Handle various SYNC-type writes */ 862 ret = generic_write_sync(iocb, ret); 863 } 864 return written ? written : ret; 865 } 866 867 static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len, 868 int mode) 869 { 870 struct super_block *sb = inode->i_sb; 871 struct gfs2_inode *ip = GFS2_I(inode); 872 loff_t end = offset + len; 873 struct buffer_head *dibh; 874 int error; 875 876 error = gfs2_meta_inode_buffer(ip, &dibh); 877 if (unlikely(error)) 878 return error; 879 880 gfs2_trans_add_meta(ip->i_gl, dibh); 881 882 if (gfs2_is_stuffed(ip)) { 883 error = gfs2_unstuff_dinode(ip, NULL); 884 if (unlikely(error)) 885 goto out; 886 } 887 888 while (offset < end) { 889 struct iomap iomap = { }; 890 891 error = gfs2_iomap_get_alloc(inode, offset, end - offset, 892 &iomap); 893 if (error) 894 goto out; 895 offset = iomap.offset + iomap.length; 896 if (!(iomap.flags & IOMAP_F_NEW)) 897 continue; 898 error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits, 899 iomap.length >> inode->i_blkbits, 900 GFP_NOFS); 901 if (error) { 902 fs_err(GFS2_SB(inode), "Failed to zero data buffers\n"); 903 goto out; 904 } 905 } 906 out: 907 brelse(dibh); 908 return error; 909 } 910 /** 911 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of 912 * blocks, determine how many bytes can be written. 913 * @ip: The inode in question. 914 * @len: Max cap of bytes. What we return in *len must be <= this. 915 * @data_blocks: Compute and return the number of data blocks needed 916 * @ind_blocks: Compute and return the number of indirect blocks needed 917 * @max_blocks: The total blocks available to work with. 918 * 919 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in. 920 */ 921 static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len, 922 unsigned int *data_blocks, unsigned int *ind_blocks, 923 unsigned int max_blocks) 924 { 925 loff_t max = *len; 926 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 927 unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1); 928 929 for (tmp = max_data; tmp > sdp->sd_diptrs;) { 930 tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs); 931 max_data -= tmp; 932 } 933 934 *data_blocks = max_data; 935 *ind_blocks = max_blocks - max_data; 936 *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift; 937 if (*len > max) { 938 *len = max; 939 gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks); 940 } 941 } 942 943 static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 944 { 945 struct inode *inode = file_inode(file); 946 struct gfs2_sbd *sdp = GFS2_SB(inode); 947 struct gfs2_inode *ip = GFS2_I(inode); 948 struct gfs2_alloc_parms ap = { .aflags = 0, }; 949 unsigned int data_blocks = 0, ind_blocks = 0, rblocks; 950 loff_t bytes, max_bytes, max_blks; 951 int error; 952 const loff_t pos = offset; 953 const loff_t count = len; 954 loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1); 955 loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift; 956 loff_t max_chunk_size = UINT_MAX & bsize_mask; 957 958 next = (next + 1) << sdp->sd_sb.sb_bsize_shift; 959 960 offset &= bsize_mask; 961 962 len = next - offset; 963 bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2; 964 if (!bytes) 965 bytes = UINT_MAX; 966 bytes &= bsize_mask; 967 if (bytes == 0) 968 bytes = sdp->sd_sb.sb_bsize; 969 970 gfs2_size_hint(file, offset, len); 971 972 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks); 973 ap.min_target = data_blocks + ind_blocks; 974 975 while (len > 0) { 976 if (len < bytes) 977 bytes = len; 978 if (!gfs2_write_alloc_required(ip, offset, bytes)) { 979 len -= bytes; 980 offset += bytes; 981 continue; 982 } 983 984 /* We need to determine how many bytes we can actually 985 * fallocate without exceeding quota or going over the 986 * end of the fs. We start off optimistically by assuming 987 * we can write max_bytes */ 988 max_bytes = (len > max_chunk_size) ? max_chunk_size : len; 989 990 /* Since max_bytes is most likely a theoretical max, we 991 * calculate a more realistic 'bytes' to serve as a good 992 * starting point for the number of bytes we may be able 993 * to write */ 994 gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks); 995 ap.target = data_blocks + ind_blocks; 996 997 error = gfs2_quota_lock_check(ip, &ap); 998 if (error) 999 return error; 1000 /* ap.allowed tells us how many blocks quota will allow 1001 * us to write. Check if this reduces max_blks */ 1002 max_blks = UINT_MAX; 1003 if (ap.allowed) 1004 max_blks = ap.allowed; 1005 1006 error = gfs2_inplace_reserve(ip, &ap); 1007 if (error) 1008 goto out_qunlock; 1009 1010 /* check if the selected rgrp limits our max_blks further */ 1011 if (ap.allowed && ap.allowed < max_blks) 1012 max_blks = ap.allowed; 1013 1014 /* Almost done. Calculate bytes that can be written using 1015 * max_blks. We also recompute max_bytes, data_blocks and 1016 * ind_blocks */ 1017 calc_max_reserv(ip, &max_bytes, &data_blocks, 1018 &ind_blocks, max_blks); 1019 1020 rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA + 1021 RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks); 1022 if (gfs2_is_jdata(ip)) 1023 rblocks += data_blocks ? data_blocks : 1; 1024 1025 error = gfs2_trans_begin(sdp, rblocks, 1026 PAGE_SIZE/sdp->sd_sb.sb_bsize); 1027 if (error) 1028 goto out_trans_fail; 1029 1030 error = fallocate_chunk(inode, offset, max_bytes, mode); 1031 gfs2_trans_end(sdp); 1032 1033 if (error) 1034 goto out_trans_fail; 1035 1036 len -= max_bytes; 1037 offset += max_bytes; 1038 gfs2_inplace_release(ip); 1039 gfs2_quota_unlock(ip); 1040 } 1041 1042 if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size) { 1043 i_size_write(inode, pos + count); 1044 file_update_time(file); 1045 mark_inode_dirty(inode); 1046 } 1047 1048 if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host)) 1049 return vfs_fsync_range(file, pos, pos + count - 1, 1050 (file->f_flags & __O_SYNC) ? 0 : 1); 1051 return 0; 1052 1053 out_trans_fail: 1054 gfs2_inplace_release(ip); 1055 out_qunlock: 1056 gfs2_quota_unlock(ip); 1057 return error; 1058 } 1059 1060 static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 1061 { 1062 struct inode *inode = file_inode(file); 1063 struct gfs2_sbd *sdp = GFS2_SB(inode); 1064 struct gfs2_inode *ip = GFS2_I(inode); 1065 struct gfs2_holder gh; 1066 int ret; 1067 1068 if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE)) 1069 return -EOPNOTSUPP; 1070 /* fallocate is needed by gfs2_grow to reserve space in the rindex */ 1071 if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex) 1072 return -EOPNOTSUPP; 1073 1074 inode_lock(inode); 1075 1076 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 1077 ret = gfs2_glock_nq(&gh); 1078 if (ret) 1079 goto out_uninit; 1080 1081 if (!(mode & FALLOC_FL_KEEP_SIZE) && 1082 (offset + len) > inode->i_size) { 1083 ret = inode_newsize_ok(inode, offset + len); 1084 if (ret) 1085 goto out_unlock; 1086 } 1087 1088 ret = get_write_access(inode); 1089 if (ret) 1090 goto out_unlock; 1091 1092 if (mode & FALLOC_FL_PUNCH_HOLE) { 1093 ret = __gfs2_punch_hole(file, offset, len); 1094 } else { 1095 ret = gfs2_rsqa_alloc(ip); 1096 if (ret) 1097 goto out_putw; 1098 1099 ret = __gfs2_fallocate(file, mode, offset, len); 1100 1101 if (ret) 1102 gfs2_rs_deltree(&ip->i_res); 1103 } 1104 1105 out_putw: 1106 put_write_access(inode); 1107 out_unlock: 1108 gfs2_glock_dq(&gh); 1109 out_uninit: 1110 gfs2_holder_uninit(&gh); 1111 inode_unlock(inode); 1112 return ret; 1113 } 1114 1115 static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe, 1116 struct file *out, loff_t *ppos, 1117 size_t len, unsigned int flags) 1118 { 1119 int error; 1120 struct gfs2_inode *ip = GFS2_I(out->f_mapping->host); 1121 1122 error = gfs2_rsqa_alloc(ip); 1123 if (error) 1124 return (ssize_t)error; 1125 1126 gfs2_size_hint(out, *ppos, len); 1127 1128 return iter_file_splice_write(pipe, out, ppos, len, flags); 1129 } 1130 1131 #ifdef CONFIG_GFS2_FS_LOCKING_DLM 1132 1133 /** 1134 * gfs2_lock - acquire/release a posix lock on a file 1135 * @file: the file pointer 1136 * @cmd: either modify or retrieve lock state, possibly wait 1137 * @fl: type and range of lock 1138 * 1139 * Returns: errno 1140 */ 1141 1142 static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl) 1143 { 1144 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 1145 struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host); 1146 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1147 1148 if (!(fl->fl_flags & FL_POSIX)) 1149 return -ENOLCK; 1150 if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK) 1151 return -ENOLCK; 1152 1153 if (cmd == F_CANCELLK) { 1154 /* Hack: */ 1155 cmd = F_SETLK; 1156 fl->fl_type = F_UNLCK; 1157 } 1158 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) { 1159 if (fl->fl_type == F_UNLCK) 1160 locks_lock_file_wait(file, fl); 1161 return -EIO; 1162 } 1163 if (IS_GETLK(cmd)) 1164 return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl); 1165 else if (fl->fl_type == F_UNLCK) 1166 return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl); 1167 else 1168 return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl); 1169 } 1170 1171 static int do_flock(struct file *file, int cmd, struct file_lock *fl) 1172 { 1173 struct gfs2_file *fp = file->private_data; 1174 struct gfs2_holder *fl_gh = &fp->f_fl_gh; 1175 struct gfs2_inode *ip = GFS2_I(file_inode(file)); 1176 struct gfs2_glock *gl; 1177 unsigned int state; 1178 u16 flags; 1179 int error = 0; 1180 int sleeptime; 1181 1182 state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED; 1183 flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT; 1184 1185 mutex_lock(&fp->f_fl_mutex); 1186 1187 if (gfs2_holder_initialized(fl_gh)) { 1188 if (fl_gh->gh_state == state) 1189 goto out; 1190 locks_lock_file_wait(file, 1191 &(struct file_lock) { 1192 .fl_type = F_UNLCK, 1193 .fl_flags = FL_FLOCK 1194 }); 1195 gfs2_glock_dq(fl_gh); 1196 gfs2_holder_reinit(state, flags, fl_gh); 1197 } else { 1198 error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr, 1199 &gfs2_flock_glops, CREATE, &gl); 1200 if (error) 1201 goto out; 1202 gfs2_holder_init(gl, state, flags, fl_gh); 1203 gfs2_glock_put(gl); 1204 } 1205 for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) { 1206 error = gfs2_glock_nq(fl_gh); 1207 if (error != GLR_TRYFAILED) 1208 break; 1209 fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT; 1210 fl_gh->gh_error = 0; 1211 msleep(sleeptime); 1212 } 1213 if (error) { 1214 gfs2_holder_uninit(fl_gh); 1215 if (error == GLR_TRYFAILED) 1216 error = -EAGAIN; 1217 } else { 1218 error = locks_lock_file_wait(file, fl); 1219 gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error); 1220 } 1221 1222 out: 1223 mutex_unlock(&fp->f_fl_mutex); 1224 return error; 1225 } 1226 1227 static void do_unflock(struct file *file, struct file_lock *fl) 1228 { 1229 struct gfs2_file *fp = file->private_data; 1230 struct gfs2_holder *fl_gh = &fp->f_fl_gh; 1231 1232 mutex_lock(&fp->f_fl_mutex); 1233 locks_lock_file_wait(file, fl); 1234 if (gfs2_holder_initialized(fl_gh)) { 1235 gfs2_glock_dq(fl_gh); 1236 gfs2_holder_uninit(fl_gh); 1237 } 1238 mutex_unlock(&fp->f_fl_mutex); 1239 } 1240 1241 /** 1242 * gfs2_flock - acquire/release a flock lock on a file 1243 * @file: the file pointer 1244 * @cmd: either modify or retrieve lock state, possibly wait 1245 * @fl: type and range of lock 1246 * 1247 * Returns: errno 1248 */ 1249 1250 static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl) 1251 { 1252 if (!(fl->fl_flags & FL_FLOCK)) 1253 return -ENOLCK; 1254 if (fl->fl_type & LOCK_MAND) 1255 return -EOPNOTSUPP; 1256 1257 if (fl->fl_type == F_UNLCK) { 1258 do_unflock(file, fl); 1259 return 0; 1260 } else { 1261 return do_flock(file, cmd, fl); 1262 } 1263 } 1264 1265 const struct file_operations gfs2_file_fops = { 1266 .llseek = gfs2_llseek, 1267 .read_iter = gfs2_file_read_iter, 1268 .write_iter = gfs2_file_write_iter, 1269 .unlocked_ioctl = gfs2_ioctl, 1270 .mmap = gfs2_mmap, 1271 .open = gfs2_open, 1272 .release = gfs2_release, 1273 .fsync = gfs2_fsync, 1274 .lock = gfs2_lock, 1275 .flock = gfs2_flock, 1276 .splice_read = generic_file_splice_read, 1277 .splice_write = gfs2_file_splice_write, 1278 .setlease = simple_nosetlease, 1279 .fallocate = gfs2_fallocate, 1280 }; 1281 1282 const struct file_operations gfs2_dir_fops = { 1283 .iterate_shared = gfs2_readdir, 1284 .unlocked_ioctl = gfs2_ioctl, 1285 .open = gfs2_open, 1286 .release = gfs2_release, 1287 .fsync = gfs2_fsync, 1288 .lock = gfs2_lock, 1289 .flock = gfs2_flock, 1290 .llseek = default_llseek, 1291 }; 1292 1293 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */ 1294 1295 const struct file_operations gfs2_file_fops_nolock = { 1296 .llseek = gfs2_llseek, 1297 .read_iter = gfs2_file_read_iter, 1298 .write_iter = gfs2_file_write_iter, 1299 .unlocked_ioctl = gfs2_ioctl, 1300 .mmap = gfs2_mmap, 1301 .open = gfs2_open, 1302 .release = gfs2_release, 1303 .fsync = gfs2_fsync, 1304 .splice_read = generic_file_splice_read, 1305 .splice_write = gfs2_file_splice_write, 1306 .setlease = generic_setlease, 1307 .fallocate = gfs2_fallocate, 1308 }; 1309 1310 const struct file_operations gfs2_dir_fops_nolock = { 1311 .iterate_shared = gfs2_readdir, 1312 .unlocked_ioctl = gfs2_ioctl, 1313 .open = gfs2_open, 1314 .release = gfs2_release, 1315 .fsync = gfs2_fsync, 1316 .llseek = default_llseek, 1317 }; 1318 1319