1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/spinlock.h> 9 #include <linux/compat.h> 10 #include <linux/completion.h> 11 #include <linux/buffer_head.h> 12 #include <linux/pagemap.h> 13 #include <linux/uio.h> 14 #include <linux/blkdev.h> 15 #include <linux/mm.h> 16 #include <linux/mount.h> 17 #include <linux/fs.h> 18 #include <linux/gfs2_ondisk.h> 19 #include <linux/falloc.h> 20 #include <linux/swap.h> 21 #include <linux/crc32.h> 22 #include <linux/writeback.h> 23 #include <linux/uaccess.h> 24 #include <linux/dlm.h> 25 #include <linux/dlm_plock.h> 26 #include <linux/delay.h> 27 #include <linux/backing-dev.h> 28 #include <linux/fileattr.h> 29 30 #include "gfs2.h" 31 #include "incore.h" 32 #include "bmap.h" 33 #include "aops.h" 34 #include "dir.h" 35 #include "glock.h" 36 #include "glops.h" 37 #include "inode.h" 38 #include "log.h" 39 #include "meta_io.h" 40 #include "quota.h" 41 #include "rgrp.h" 42 #include "trans.h" 43 #include "util.h" 44 45 /** 46 * gfs2_llseek - seek to a location in a file 47 * @file: the file 48 * @offset: the offset 49 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END) 50 * 51 * SEEK_END requires the glock for the file because it references the 52 * file's size. 53 * 54 * Returns: The new offset, or errno 55 */ 56 57 static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence) 58 { 59 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 60 struct gfs2_holder i_gh; 61 loff_t error; 62 63 switch (whence) { 64 case SEEK_END: 65 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 66 &i_gh); 67 if (!error) { 68 error = generic_file_llseek(file, offset, whence); 69 gfs2_glock_dq_uninit(&i_gh); 70 } 71 break; 72 73 case SEEK_DATA: 74 error = gfs2_seek_data(file, offset); 75 break; 76 77 case SEEK_HOLE: 78 error = gfs2_seek_hole(file, offset); 79 break; 80 81 case SEEK_CUR: 82 case SEEK_SET: 83 /* 84 * These don't reference inode->i_size and don't depend on the 85 * block mapping, so we don't need the glock. 86 */ 87 error = generic_file_llseek(file, offset, whence); 88 break; 89 default: 90 error = -EINVAL; 91 } 92 93 return error; 94 } 95 96 /** 97 * gfs2_readdir - Iterator for a directory 98 * @file: The directory to read from 99 * @ctx: What to feed directory entries to 100 * 101 * Returns: errno 102 */ 103 104 static int gfs2_readdir(struct file *file, struct dir_context *ctx) 105 { 106 struct inode *dir = file->f_mapping->host; 107 struct gfs2_inode *dip = GFS2_I(dir); 108 struct gfs2_holder d_gh; 109 int error; 110 111 error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh); 112 if (error) 113 return error; 114 115 error = gfs2_dir_read(dir, ctx, &file->f_ra); 116 117 gfs2_glock_dq_uninit(&d_gh); 118 119 return error; 120 } 121 122 /* 123 * struct fsflag_gfs2flag 124 * 125 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories, 126 * and to GFS2_DIF_JDATA for non-directories. 127 */ 128 static struct { 129 u32 fsflag; 130 u32 gfsflag; 131 } fsflag_gfs2flag[] = { 132 {FS_SYNC_FL, GFS2_DIF_SYNC}, 133 {FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE}, 134 {FS_APPEND_FL, GFS2_DIF_APPENDONLY}, 135 {FS_NOATIME_FL, GFS2_DIF_NOATIME}, 136 {FS_INDEX_FL, GFS2_DIF_EXHASH}, 137 {FS_TOPDIR_FL, GFS2_DIF_TOPDIR}, 138 {FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA}, 139 }; 140 141 static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags) 142 { 143 int i; 144 u32 fsflags = 0; 145 146 if (S_ISDIR(inode->i_mode)) 147 gfsflags &= ~GFS2_DIF_JDATA; 148 else 149 gfsflags &= ~GFS2_DIF_INHERIT_JDATA; 150 151 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) 152 if (gfsflags & fsflag_gfs2flag[i].gfsflag) 153 fsflags |= fsflag_gfs2flag[i].fsflag; 154 return fsflags; 155 } 156 157 int gfs2_fileattr_get(struct dentry *dentry, struct fileattr *fa) 158 { 159 struct inode *inode = d_inode(dentry); 160 struct gfs2_inode *ip = GFS2_I(inode); 161 struct gfs2_holder gh; 162 int error; 163 u32 fsflags; 164 165 if (d_is_special(dentry)) 166 return -ENOTTY; 167 168 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 169 error = gfs2_glock_nq(&gh); 170 if (error) 171 goto out_uninit; 172 173 fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags); 174 175 fileattr_fill_flags(fa, fsflags); 176 177 gfs2_glock_dq(&gh); 178 out_uninit: 179 gfs2_holder_uninit(&gh); 180 return error; 181 } 182 183 void gfs2_set_inode_flags(struct inode *inode) 184 { 185 struct gfs2_inode *ip = GFS2_I(inode); 186 unsigned int flags = inode->i_flags; 187 188 flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC); 189 if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode)) 190 flags |= S_NOSEC; 191 if (ip->i_diskflags & GFS2_DIF_IMMUTABLE) 192 flags |= S_IMMUTABLE; 193 if (ip->i_diskflags & GFS2_DIF_APPENDONLY) 194 flags |= S_APPEND; 195 if (ip->i_diskflags & GFS2_DIF_NOATIME) 196 flags |= S_NOATIME; 197 if (ip->i_diskflags & GFS2_DIF_SYNC) 198 flags |= S_SYNC; 199 inode->i_flags = flags; 200 } 201 202 /* Flags that can be set by user space */ 203 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA| \ 204 GFS2_DIF_IMMUTABLE| \ 205 GFS2_DIF_APPENDONLY| \ 206 GFS2_DIF_NOATIME| \ 207 GFS2_DIF_SYNC| \ 208 GFS2_DIF_TOPDIR| \ 209 GFS2_DIF_INHERIT_JDATA) 210 211 /** 212 * do_gfs2_set_flags - set flags on an inode 213 * @filp: file pointer 214 * @reqflags: The flags to set 215 * @mask: Indicates which flags are valid 216 * @fsflags: The FS_* inode flags passed in 217 * 218 */ 219 static int do_gfs2_set_flags(struct inode *inode, u32 reqflags, u32 mask, 220 const u32 fsflags) 221 { 222 struct gfs2_inode *ip = GFS2_I(inode); 223 struct gfs2_sbd *sdp = GFS2_SB(inode); 224 struct buffer_head *bh; 225 struct gfs2_holder gh; 226 int error; 227 u32 new_flags, flags; 228 229 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 230 if (error) 231 return error; 232 233 error = 0; 234 flags = ip->i_diskflags; 235 new_flags = (flags & ~mask) | (reqflags & mask); 236 if ((new_flags ^ flags) == 0) 237 goto out; 238 239 error = -EPERM; 240 if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE)) 241 goto out; 242 if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY)) 243 goto out; 244 if (!IS_IMMUTABLE(inode)) { 245 error = gfs2_permission(&init_user_ns, inode, MAY_WRITE); 246 if (error) 247 goto out; 248 } 249 if ((flags ^ new_flags) & GFS2_DIF_JDATA) { 250 if (new_flags & GFS2_DIF_JDATA) 251 gfs2_log_flush(sdp, ip->i_gl, 252 GFS2_LOG_HEAD_FLUSH_NORMAL | 253 GFS2_LFC_SET_FLAGS); 254 error = filemap_fdatawrite(inode->i_mapping); 255 if (error) 256 goto out; 257 error = filemap_fdatawait(inode->i_mapping); 258 if (error) 259 goto out; 260 if (new_flags & GFS2_DIF_JDATA) 261 gfs2_ordered_del_inode(ip); 262 } 263 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 264 if (error) 265 goto out; 266 error = gfs2_meta_inode_buffer(ip, &bh); 267 if (error) 268 goto out_trans_end; 269 inode->i_ctime = current_time(inode); 270 gfs2_trans_add_meta(ip->i_gl, bh); 271 ip->i_diskflags = new_flags; 272 gfs2_dinode_out(ip, bh->b_data); 273 brelse(bh); 274 gfs2_set_inode_flags(inode); 275 gfs2_set_aops(inode); 276 out_trans_end: 277 gfs2_trans_end(sdp); 278 out: 279 gfs2_glock_dq_uninit(&gh); 280 return error; 281 } 282 283 int gfs2_fileattr_set(struct user_namespace *mnt_userns, 284 struct dentry *dentry, struct fileattr *fa) 285 { 286 struct inode *inode = d_inode(dentry); 287 u32 fsflags = fa->flags, gfsflags = 0; 288 u32 mask; 289 int i; 290 291 if (d_is_special(dentry)) 292 return -ENOTTY; 293 294 if (fileattr_has_fsx(fa)) 295 return -EOPNOTSUPP; 296 297 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) { 298 if (fsflags & fsflag_gfs2flag[i].fsflag) { 299 fsflags &= ~fsflag_gfs2flag[i].fsflag; 300 gfsflags |= fsflag_gfs2flag[i].gfsflag; 301 } 302 } 303 if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET) 304 return -EINVAL; 305 306 mask = GFS2_FLAGS_USER_SET; 307 if (S_ISDIR(inode->i_mode)) { 308 mask &= ~GFS2_DIF_JDATA; 309 } else { 310 /* The GFS2_DIF_TOPDIR flag is only valid for directories. */ 311 if (gfsflags & GFS2_DIF_TOPDIR) 312 return -EINVAL; 313 mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA); 314 } 315 316 return do_gfs2_set_flags(inode, gfsflags, mask, fsflags); 317 } 318 319 static int gfs2_getlabel(struct file *filp, char __user *label) 320 { 321 struct inode *inode = file_inode(filp); 322 struct gfs2_sbd *sdp = GFS2_SB(inode); 323 324 if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN)) 325 return -EFAULT; 326 327 return 0; 328 } 329 330 static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 331 { 332 switch(cmd) { 333 case FITRIM: 334 return gfs2_fitrim(filp, (void __user *)arg); 335 case FS_IOC_GETFSLABEL: 336 return gfs2_getlabel(filp, (char __user *)arg); 337 } 338 339 return -ENOTTY; 340 } 341 342 #ifdef CONFIG_COMPAT 343 static long gfs2_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 344 { 345 switch(cmd) { 346 /* Keep this list in sync with gfs2_ioctl */ 347 case FITRIM: 348 case FS_IOC_GETFSLABEL: 349 break; 350 default: 351 return -ENOIOCTLCMD; 352 } 353 354 return gfs2_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 355 } 356 #else 357 #define gfs2_compat_ioctl NULL 358 #endif 359 360 /** 361 * gfs2_size_hint - Give a hint to the size of a write request 362 * @filep: The struct file 363 * @offset: The file offset of the write 364 * @size: The length of the write 365 * 366 * When we are about to do a write, this function records the total 367 * write size in order to provide a suitable hint to the lower layers 368 * about how many blocks will be required. 369 * 370 */ 371 372 static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size) 373 { 374 struct inode *inode = file_inode(filep); 375 struct gfs2_sbd *sdp = GFS2_SB(inode); 376 struct gfs2_inode *ip = GFS2_I(inode); 377 size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift; 378 int hint = min_t(size_t, INT_MAX, blks); 379 380 if (hint > atomic_read(&ip->i_sizehint)) 381 atomic_set(&ip->i_sizehint, hint); 382 } 383 384 /** 385 * gfs2_allocate_page_backing - Allocate blocks for a write fault 386 * @page: The (locked) page to allocate backing for 387 * @length: Size of the allocation 388 * 389 * We try to allocate all the blocks required for the page in one go. This 390 * might fail for various reasons, so we keep trying until all the blocks to 391 * back this page are allocated. If some of the blocks are already allocated, 392 * that is ok too. 393 */ 394 static int gfs2_allocate_page_backing(struct page *page, unsigned int length) 395 { 396 u64 pos = page_offset(page); 397 398 do { 399 struct iomap iomap = { }; 400 401 if (gfs2_iomap_alloc(page->mapping->host, pos, length, &iomap)) 402 return -EIO; 403 404 if (length < iomap.length) 405 iomap.length = length; 406 length -= iomap.length; 407 pos += iomap.length; 408 } while (length > 0); 409 410 return 0; 411 } 412 413 /** 414 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable 415 * @vmf: The virtual memory fault containing the page to become writable 416 * 417 * When the page becomes writable, we need to ensure that we have 418 * blocks allocated on disk to back that page. 419 */ 420 421 static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf) 422 { 423 struct page *page = vmf->page; 424 struct inode *inode = file_inode(vmf->vma->vm_file); 425 struct gfs2_inode *ip = GFS2_I(inode); 426 struct gfs2_sbd *sdp = GFS2_SB(inode); 427 struct gfs2_alloc_parms ap = { .aflags = 0, }; 428 u64 offset = page_offset(page); 429 unsigned int data_blocks, ind_blocks, rblocks; 430 struct gfs2_holder gh; 431 unsigned int length; 432 loff_t size; 433 int ret; 434 435 sb_start_pagefault(inode->i_sb); 436 437 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 438 ret = gfs2_glock_nq(&gh); 439 if (ret) 440 goto out_uninit; 441 442 /* Check page index against inode size */ 443 size = i_size_read(inode); 444 if (offset >= size) { 445 ret = -EINVAL; 446 goto out_unlock; 447 } 448 449 /* Update file times before taking page lock */ 450 file_update_time(vmf->vma->vm_file); 451 452 /* page is wholly or partially inside EOF */ 453 if (offset > size - PAGE_SIZE) 454 length = offset_in_page(size); 455 else 456 length = PAGE_SIZE; 457 458 gfs2_size_hint(vmf->vma->vm_file, offset, length); 459 460 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags); 461 set_bit(GIF_SW_PAGED, &ip->i_flags); 462 463 /* 464 * iomap_writepage / iomap_writepages currently don't support inline 465 * files, so always unstuff here. 466 */ 467 468 if (!gfs2_is_stuffed(ip) && 469 !gfs2_write_alloc_required(ip, offset, length)) { 470 lock_page(page); 471 if (!PageUptodate(page) || page->mapping != inode->i_mapping) { 472 ret = -EAGAIN; 473 unlock_page(page); 474 } 475 goto out_unlock; 476 } 477 478 ret = gfs2_rindex_update(sdp); 479 if (ret) 480 goto out_unlock; 481 482 gfs2_write_calc_reserv(ip, length, &data_blocks, &ind_blocks); 483 ap.target = data_blocks + ind_blocks; 484 ret = gfs2_quota_lock_check(ip, &ap); 485 if (ret) 486 goto out_unlock; 487 ret = gfs2_inplace_reserve(ip, &ap); 488 if (ret) 489 goto out_quota_unlock; 490 491 rblocks = RES_DINODE + ind_blocks; 492 if (gfs2_is_jdata(ip)) 493 rblocks += data_blocks ? data_blocks : 1; 494 if (ind_blocks || data_blocks) { 495 rblocks += RES_STATFS + RES_QUOTA; 496 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 497 } 498 ret = gfs2_trans_begin(sdp, rblocks, 0); 499 if (ret) 500 goto out_trans_fail; 501 502 lock_page(page); 503 ret = -EAGAIN; 504 /* If truncated, we must retry the operation, we may have raced 505 * with the glock demotion code. 506 */ 507 if (!PageUptodate(page) || page->mapping != inode->i_mapping) 508 goto out_trans_end; 509 510 /* Unstuff, if required, and allocate backing blocks for page */ 511 ret = 0; 512 if (gfs2_is_stuffed(ip)) 513 ret = gfs2_unstuff_dinode(ip, page); 514 if (ret == 0) 515 ret = gfs2_allocate_page_backing(page, length); 516 517 out_trans_end: 518 if (ret) 519 unlock_page(page); 520 gfs2_trans_end(sdp); 521 out_trans_fail: 522 gfs2_inplace_release(ip); 523 out_quota_unlock: 524 gfs2_quota_unlock(ip); 525 out_unlock: 526 gfs2_glock_dq(&gh); 527 out_uninit: 528 gfs2_holder_uninit(&gh); 529 if (ret == 0) { 530 set_page_dirty(page); 531 wait_for_stable_page(page); 532 } 533 sb_end_pagefault(inode->i_sb); 534 return block_page_mkwrite_return(ret); 535 } 536 537 static vm_fault_t gfs2_fault(struct vm_fault *vmf) 538 { 539 struct inode *inode = file_inode(vmf->vma->vm_file); 540 struct gfs2_inode *ip = GFS2_I(inode); 541 struct gfs2_holder gh; 542 vm_fault_t ret; 543 int err; 544 545 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 546 err = gfs2_glock_nq(&gh); 547 if (err) { 548 ret = block_page_mkwrite_return(err); 549 goto out_uninit; 550 } 551 ret = filemap_fault(vmf); 552 gfs2_glock_dq(&gh); 553 out_uninit: 554 gfs2_holder_uninit(&gh); 555 return ret; 556 } 557 558 static const struct vm_operations_struct gfs2_vm_ops = { 559 .fault = gfs2_fault, 560 .map_pages = filemap_map_pages, 561 .page_mkwrite = gfs2_page_mkwrite, 562 }; 563 564 /** 565 * gfs2_mmap 566 * @file: The file to map 567 * @vma: The VMA which described the mapping 568 * 569 * There is no need to get a lock here unless we should be updating 570 * atime. We ignore any locking errors since the only consequence is 571 * a missed atime update (which will just be deferred until later). 572 * 573 * Returns: 0 574 */ 575 576 static int gfs2_mmap(struct file *file, struct vm_area_struct *vma) 577 { 578 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 579 580 if (!(file->f_flags & O_NOATIME) && 581 !IS_NOATIME(&ip->i_inode)) { 582 struct gfs2_holder i_gh; 583 int error; 584 585 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 586 &i_gh); 587 if (error) 588 return error; 589 /* grab lock to update inode */ 590 gfs2_glock_dq_uninit(&i_gh); 591 file_accessed(file); 592 } 593 vma->vm_ops = &gfs2_vm_ops; 594 595 return 0; 596 } 597 598 /** 599 * gfs2_open_common - This is common to open and atomic_open 600 * @inode: The inode being opened 601 * @file: The file being opened 602 * 603 * This maybe called under a glock or not depending upon how it has 604 * been called. We must always be called under a glock for regular 605 * files, however. For other file types, it does not matter whether 606 * we hold the glock or not. 607 * 608 * Returns: Error code or 0 for success 609 */ 610 611 int gfs2_open_common(struct inode *inode, struct file *file) 612 { 613 struct gfs2_file *fp; 614 int ret; 615 616 if (S_ISREG(inode->i_mode)) { 617 ret = generic_file_open(inode, file); 618 if (ret) 619 return ret; 620 } 621 622 fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS); 623 if (!fp) 624 return -ENOMEM; 625 626 mutex_init(&fp->f_fl_mutex); 627 628 gfs2_assert_warn(GFS2_SB(inode), !file->private_data); 629 file->private_data = fp; 630 if (file->f_mode & FMODE_WRITE) { 631 ret = gfs2_qa_get(GFS2_I(inode)); 632 if (ret) 633 goto fail; 634 } 635 return 0; 636 637 fail: 638 kfree(file->private_data); 639 file->private_data = NULL; 640 return ret; 641 } 642 643 /** 644 * gfs2_open - open a file 645 * @inode: the inode to open 646 * @file: the struct file for this opening 647 * 648 * After atomic_open, this function is only used for opening files 649 * which are already cached. We must still get the glock for regular 650 * files to ensure that we have the file size uptodate for the large 651 * file check which is in the common code. That is only an issue for 652 * regular files though. 653 * 654 * Returns: errno 655 */ 656 657 static int gfs2_open(struct inode *inode, struct file *file) 658 { 659 struct gfs2_inode *ip = GFS2_I(inode); 660 struct gfs2_holder i_gh; 661 int error; 662 bool need_unlock = false; 663 664 if (S_ISREG(ip->i_inode.i_mode)) { 665 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 666 &i_gh); 667 if (error) 668 return error; 669 need_unlock = true; 670 } 671 672 error = gfs2_open_common(inode, file); 673 674 if (need_unlock) 675 gfs2_glock_dq_uninit(&i_gh); 676 677 return error; 678 } 679 680 /** 681 * gfs2_release - called to close a struct file 682 * @inode: the inode the struct file belongs to 683 * @file: the struct file being closed 684 * 685 * Returns: errno 686 */ 687 688 static int gfs2_release(struct inode *inode, struct file *file) 689 { 690 struct gfs2_inode *ip = GFS2_I(inode); 691 692 kfree(file->private_data); 693 file->private_data = NULL; 694 695 if (gfs2_rs_active(&ip->i_res)) 696 gfs2_rs_delete(ip, &inode->i_writecount); 697 if (file->f_mode & FMODE_WRITE) 698 gfs2_qa_put(ip); 699 return 0; 700 } 701 702 /** 703 * gfs2_fsync - sync the dirty data for a file (across the cluster) 704 * @file: the file that points to the dentry 705 * @start: the start position in the file to sync 706 * @end: the end position in the file to sync 707 * @datasync: set if we can ignore timestamp changes 708 * 709 * We split the data flushing here so that we don't wait for the data 710 * until after we've also sent the metadata to disk. Note that for 711 * data=ordered, we will write & wait for the data at the log flush 712 * stage anyway, so this is unlikely to make much of a difference 713 * except in the data=writeback case. 714 * 715 * If the fdatawrite fails due to any reason except -EIO, we will 716 * continue the remainder of the fsync, although we'll still report 717 * the error at the end. This is to match filemap_write_and_wait_range() 718 * behaviour. 719 * 720 * Returns: errno 721 */ 722 723 static int gfs2_fsync(struct file *file, loff_t start, loff_t end, 724 int datasync) 725 { 726 struct address_space *mapping = file->f_mapping; 727 struct inode *inode = mapping->host; 728 int sync_state = inode->i_state & I_DIRTY; 729 struct gfs2_inode *ip = GFS2_I(inode); 730 int ret = 0, ret1 = 0; 731 732 if (mapping->nrpages) { 733 ret1 = filemap_fdatawrite_range(mapping, start, end); 734 if (ret1 == -EIO) 735 return ret1; 736 } 737 738 if (!gfs2_is_jdata(ip)) 739 sync_state &= ~I_DIRTY_PAGES; 740 if (datasync) 741 sync_state &= ~I_DIRTY_SYNC; 742 743 if (sync_state) { 744 ret = sync_inode_metadata(inode, 1); 745 if (ret) 746 return ret; 747 if (gfs2_is_jdata(ip)) 748 ret = file_write_and_wait(file); 749 if (ret) 750 return ret; 751 gfs2_ail_flush(ip->i_gl, 1); 752 } 753 754 if (mapping->nrpages) 755 ret = file_fdatawait_range(file, start, end); 756 757 return ret ? ret : ret1; 758 } 759 760 static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to, 761 struct gfs2_holder *gh) 762 { 763 struct file *file = iocb->ki_filp; 764 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 765 size_t count = iov_iter_count(to); 766 ssize_t ret; 767 768 if (!count) 769 return 0; /* skip atime */ 770 771 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh); 772 ret = gfs2_glock_nq(gh); 773 if (ret) 774 goto out_uninit; 775 776 ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL, 0); 777 gfs2_glock_dq(gh); 778 out_uninit: 779 gfs2_holder_uninit(gh); 780 return ret; 781 } 782 783 static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from, 784 struct gfs2_holder *gh) 785 { 786 struct file *file = iocb->ki_filp; 787 struct inode *inode = file->f_mapping->host; 788 struct gfs2_inode *ip = GFS2_I(inode); 789 size_t len = iov_iter_count(from); 790 loff_t offset = iocb->ki_pos; 791 ssize_t ret; 792 793 /* 794 * Deferred lock, even if its a write, since we do no allocation on 795 * this path. All we need to change is the atime, and this lock mode 796 * ensures that other nodes have flushed their buffered read caches 797 * (i.e. their page cache entries for this inode). We do not, 798 * unfortunately, have the option of only flushing a range like the 799 * VFS does. 800 */ 801 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh); 802 ret = gfs2_glock_nq(gh); 803 if (ret) 804 goto out_uninit; 805 806 /* Silently fall back to buffered I/O when writing beyond EOF */ 807 if (offset + len > i_size_read(&ip->i_inode)) 808 goto out; 809 810 ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL, 0); 811 if (ret == -ENOTBLK) 812 ret = 0; 813 out: 814 gfs2_glock_dq(gh); 815 out_uninit: 816 gfs2_holder_uninit(gh); 817 return ret; 818 } 819 820 static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 821 { 822 struct gfs2_inode *ip; 823 struct gfs2_holder gh; 824 size_t written = 0; 825 ssize_t ret; 826 827 if (iocb->ki_flags & IOCB_DIRECT) { 828 ret = gfs2_file_direct_read(iocb, to, &gh); 829 if (likely(ret != -ENOTBLK)) 830 return ret; 831 iocb->ki_flags &= ~IOCB_DIRECT; 832 } 833 iocb->ki_flags |= IOCB_NOIO; 834 ret = generic_file_read_iter(iocb, to); 835 iocb->ki_flags &= ~IOCB_NOIO; 836 if (ret >= 0) { 837 if (!iov_iter_count(to)) 838 return ret; 839 written = ret; 840 } else { 841 if (ret != -EAGAIN) 842 return ret; 843 if (iocb->ki_flags & IOCB_NOWAIT) 844 return ret; 845 } 846 ip = GFS2_I(iocb->ki_filp->f_mapping->host); 847 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 848 ret = gfs2_glock_nq(&gh); 849 if (ret) 850 goto out_uninit; 851 ret = generic_file_read_iter(iocb, to); 852 if (ret > 0) 853 written += ret; 854 gfs2_glock_dq(&gh); 855 out_uninit: 856 gfs2_holder_uninit(&gh); 857 return written ? written : ret; 858 } 859 860 /** 861 * gfs2_file_write_iter - Perform a write to a file 862 * @iocb: The io context 863 * @from: The data to write 864 * 865 * We have to do a lock/unlock here to refresh the inode size for 866 * O_APPEND writes, otherwise we can land up writing at the wrong 867 * offset. There is still a race, but provided the app is using its 868 * own file locking, this will make O_APPEND work as expected. 869 * 870 */ 871 872 static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 873 { 874 struct file *file = iocb->ki_filp; 875 struct inode *inode = file_inode(file); 876 struct gfs2_inode *ip = GFS2_I(inode); 877 struct gfs2_holder gh; 878 ssize_t ret; 879 880 gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from)); 881 882 if (iocb->ki_flags & IOCB_APPEND) { 883 ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 884 if (ret) 885 return ret; 886 gfs2_glock_dq_uninit(&gh); 887 } 888 889 inode_lock(inode); 890 ret = generic_write_checks(iocb, from); 891 if (ret <= 0) 892 goto out_unlock; 893 894 ret = file_remove_privs(file); 895 if (ret) 896 goto out_unlock; 897 898 ret = file_update_time(file); 899 if (ret) 900 goto out_unlock; 901 902 if (iocb->ki_flags & IOCB_DIRECT) { 903 struct address_space *mapping = file->f_mapping; 904 ssize_t buffered, ret2; 905 906 ret = gfs2_file_direct_write(iocb, from, &gh); 907 if (ret < 0 || !iov_iter_count(from)) 908 goto out_unlock; 909 910 iocb->ki_flags |= IOCB_DSYNC; 911 current->backing_dev_info = inode_to_bdi(inode); 912 buffered = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops); 913 current->backing_dev_info = NULL; 914 if (unlikely(buffered <= 0)) { 915 if (!ret) 916 ret = buffered; 917 goto out_unlock; 918 } 919 920 /* 921 * We need to ensure that the page cache pages are written to 922 * disk and invalidated to preserve the expected O_DIRECT 923 * semantics. If the writeback or invalidate fails, only report 924 * the direct I/O range as we don't know if the buffered pages 925 * made it to disk. 926 */ 927 iocb->ki_pos += buffered; 928 ret2 = generic_write_sync(iocb, buffered); 929 invalidate_mapping_pages(mapping, 930 (iocb->ki_pos - buffered) >> PAGE_SHIFT, 931 (iocb->ki_pos - 1) >> PAGE_SHIFT); 932 if (!ret || ret2 > 0) 933 ret += ret2; 934 } else { 935 current->backing_dev_info = inode_to_bdi(inode); 936 ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops); 937 current->backing_dev_info = NULL; 938 if (likely(ret > 0)) { 939 iocb->ki_pos += ret; 940 ret = generic_write_sync(iocb, ret); 941 } 942 } 943 944 out_unlock: 945 inode_unlock(inode); 946 return ret; 947 } 948 949 static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len, 950 int mode) 951 { 952 struct super_block *sb = inode->i_sb; 953 struct gfs2_inode *ip = GFS2_I(inode); 954 loff_t end = offset + len; 955 struct buffer_head *dibh; 956 int error; 957 958 error = gfs2_meta_inode_buffer(ip, &dibh); 959 if (unlikely(error)) 960 return error; 961 962 gfs2_trans_add_meta(ip->i_gl, dibh); 963 964 if (gfs2_is_stuffed(ip)) { 965 error = gfs2_unstuff_dinode(ip, NULL); 966 if (unlikely(error)) 967 goto out; 968 } 969 970 while (offset < end) { 971 struct iomap iomap = { }; 972 973 error = gfs2_iomap_alloc(inode, offset, end - offset, &iomap); 974 if (error) 975 goto out; 976 offset = iomap.offset + iomap.length; 977 if (!(iomap.flags & IOMAP_F_NEW)) 978 continue; 979 error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits, 980 iomap.length >> inode->i_blkbits, 981 GFP_NOFS); 982 if (error) { 983 fs_err(GFS2_SB(inode), "Failed to zero data buffers\n"); 984 goto out; 985 } 986 } 987 out: 988 brelse(dibh); 989 return error; 990 } 991 992 /** 993 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of 994 * blocks, determine how many bytes can be written. 995 * @ip: The inode in question. 996 * @len: Max cap of bytes. What we return in *len must be <= this. 997 * @data_blocks: Compute and return the number of data blocks needed 998 * @ind_blocks: Compute and return the number of indirect blocks needed 999 * @max_blocks: The total blocks available to work with. 1000 * 1001 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in. 1002 */ 1003 static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len, 1004 unsigned int *data_blocks, unsigned int *ind_blocks, 1005 unsigned int max_blocks) 1006 { 1007 loff_t max = *len; 1008 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1009 unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1); 1010 1011 for (tmp = max_data; tmp > sdp->sd_diptrs;) { 1012 tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs); 1013 max_data -= tmp; 1014 } 1015 1016 *data_blocks = max_data; 1017 *ind_blocks = max_blocks - max_data; 1018 *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift; 1019 if (*len > max) { 1020 *len = max; 1021 gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks); 1022 } 1023 } 1024 1025 static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 1026 { 1027 struct inode *inode = file_inode(file); 1028 struct gfs2_sbd *sdp = GFS2_SB(inode); 1029 struct gfs2_inode *ip = GFS2_I(inode); 1030 struct gfs2_alloc_parms ap = { .aflags = 0, }; 1031 unsigned int data_blocks = 0, ind_blocks = 0, rblocks; 1032 loff_t bytes, max_bytes, max_blks; 1033 int error; 1034 const loff_t pos = offset; 1035 const loff_t count = len; 1036 loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1); 1037 loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift; 1038 loff_t max_chunk_size = UINT_MAX & bsize_mask; 1039 1040 next = (next + 1) << sdp->sd_sb.sb_bsize_shift; 1041 1042 offset &= bsize_mask; 1043 1044 len = next - offset; 1045 bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2; 1046 if (!bytes) 1047 bytes = UINT_MAX; 1048 bytes &= bsize_mask; 1049 if (bytes == 0) 1050 bytes = sdp->sd_sb.sb_bsize; 1051 1052 gfs2_size_hint(file, offset, len); 1053 1054 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks); 1055 ap.min_target = data_blocks + ind_blocks; 1056 1057 while (len > 0) { 1058 if (len < bytes) 1059 bytes = len; 1060 if (!gfs2_write_alloc_required(ip, offset, bytes)) { 1061 len -= bytes; 1062 offset += bytes; 1063 continue; 1064 } 1065 1066 /* We need to determine how many bytes we can actually 1067 * fallocate without exceeding quota or going over the 1068 * end of the fs. We start off optimistically by assuming 1069 * we can write max_bytes */ 1070 max_bytes = (len > max_chunk_size) ? max_chunk_size : len; 1071 1072 /* Since max_bytes is most likely a theoretical max, we 1073 * calculate a more realistic 'bytes' to serve as a good 1074 * starting point for the number of bytes we may be able 1075 * to write */ 1076 gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks); 1077 ap.target = data_blocks + ind_blocks; 1078 1079 error = gfs2_quota_lock_check(ip, &ap); 1080 if (error) 1081 return error; 1082 /* ap.allowed tells us how many blocks quota will allow 1083 * us to write. Check if this reduces max_blks */ 1084 max_blks = UINT_MAX; 1085 if (ap.allowed) 1086 max_blks = ap.allowed; 1087 1088 error = gfs2_inplace_reserve(ip, &ap); 1089 if (error) 1090 goto out_qunlock; 1091 1092 /* check if the selected rgrp limits our max_blks further */ 1093 if (ip->i_res.rs_reserved < max_blks) 1094 max_blks = ip->i_res.rs_reserved; 1095 1096 /* Almost done. Calculate bytes that can be written using 1097 * max_blks. We also recompute max_bytes, data_blocks and 1098 * ind_blocks */ 1099 calc_max_reserv(ip, &max_bytes, &data_blocks, 1100 &ind_blocks, max_blks); 1101 1102 rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA + 1103 RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks); 1104 if (gfs2_is_jdata(ip)) 1105 rblocks += data_blocks ? data_blocks : 1; 1106 1107 error = gfs2_trans_begin(sdp, rblocks, 1108 PAGE_SIZE >> inode->i_blkbits); 1109 if (error) 1110 goto out_trans_fail; 1111 1112 error = fallocate_chunk(inode, offset, max_bytes, mode); 1113 gfs2_trans_end(sdp); 1114 1115 if (error) 1116 goto out_trans_fail; 1117 1118 len -= max_bytes; 1119 offset += max_bytes; 1120 gfs2_inplace_release(ip); 1121 gfs2_quota_unlock(ip); 1122 } 1123 1124 if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size) 1125 i_size_write(inode, pos + count); 1126 file_update_time(file); 1127 mark_inode_dirty(inode); 1128 1129 if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host)) 1130 return vfs_fsync_range(file, pos, pos + count - 1, 1131 (file->f_flags & __O_SYNC) ? 0 : 1); 1132 return 0; 1133 1134 out_trans_fail: 1135 gfs2_inplace_release(ip); 1136 out_qunlock: 1137 gfs2_quota_unlock(ip); 1138 return error; 1139 } 1140 1141 static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 1142 { 1143 struct inode *inode = file_inode(file); 1144 struct gfs2_sbd *sdp = GFS2_SB(inode); 1145 struct gfs2_inode *ip = GFS2_I(inode); 1146 struct gfs2_holder gh; 1147 int ret; 1148 1149 if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE)) 1150 return -EOPNOTSUPP; 1151 /* fallocate is needed by gfs2_grow to reserve space in the rindex */ 1152 if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex) 1153 return -EOPNOTSUPP; 1154 1155 inode_lock(inode); 1156 1157 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 1158 ret = gfs2_glock_nq(&gh); 1159 if (ret) 1160 goto out_uninit; 1161 1162 if (!(mode & FALLOC_FL_KEEP_SIZE) && 1163 (offset + len) > inode->i_size) { 1164 ret = inode_newsize_ok(inode, offset + len); 1165 if (ret) 1166 goto out_unlock; 1167 } 1168 1169 ret = get_write_access(inode); 1170 if (ret) 1171 goto out_unlock; 1172 1173 if (mode & FALLOC_FL_PUNCH_HOLE) { 1174 ret = __gfs2_punch_hole(file, offset, len); 1175 } else { 1176 ret = __gfs2_fallocate(file, mode, offset, len); 1177 if (ret) 1178 gfs2_rs_deltree(&ip->i_res); 1179 } 1180 1181 put_write_access(inode); 1182 out_unlock: 1183 gfs2_glock_dq(&gh); 1184 out_uninit: 1185 gfs2_holder_uninit(&gh); 1186 inode_unlock(inode); 1187 return ret; 1188 } 1189 1190 static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe, 1191 struct file *out, loff_t *ppos, 1192 size_t len, unsigned int flags) 1193 { 1194 ssize_t ret; 1195 1196 gfs2_size_hint(out, *ppos, len); 1197 1198 ret = iter_file_splice_write(pipe, out, ppos, len, flags); 1199 return ret; 1200 } 1201 1202 #ifdef CONFIG_GFS2_FS_LOCKING_DLM 1203 1204 /** 1205 * gfs2_lock - acquire/release a posix lock on a file 1206 * @file: the file pointer 1207 * @cmd: either modify or retrieve lock state, possibly wait 1208 * @fl: type and range of lock 1209 * 1210 * Returns: errno 1211 */ 1212 1213 static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl) 1214 { 1215 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 1216 struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host); 1217 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1218 1219 if (!(fl->fl_flags & FL_POSIX)) 1220 return -ENOLCK; 1221 if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK) 1222 return -ENOLCK; 1223 1224 if (cmd == F_CANCELLK) { 1225 /* Hack: */ 1226 cmd = F_SETLK; 1227 fl->fl_type = F_UNLCK; 1228 } 1229 if (unlikely(gfs2_withdrawn(sdp))) { 1230 if (fl->fl_type == F_UNLCK) 1231 locks_lock_file_wait(file, fl); 1232 return -EIO; 1233 } 1234 if (IS_GETLK(cmd)) 1235 return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl); 1236 else if (fl->fl_type == F_UNLCK) 1237 return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl); 1238 else 1239 return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl); 1240 } 1241 1242 static int do_flock(struct file *file, int cmd, struct file_lock *fl) 1243 { 1244 struct gfs2_file *fp = file->private_data; 1245 struct gfs2_holder *fl_gh = &fp->f_fl_gh; 1246 struct gfs2_inode *ip = GFS2_I(file_inode(file)); 1247 struct gfs2_glock *gl; 1248 unsigned int state; 1249 u16 flags; 1250 int error = 0; 1251 int sleeptime; 1252 1253 state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED; 1254 flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT; 1255 1256 mutex_lock(&fp->f_fl_mutex); 1257 1258 if (gfs2_holder_initialized(fl_gh)) { 1259 struct file_lock request; 1260 if (fl_gh->gh_state == state) 1261 goto out; 1262 locks_init_lock(&request); 1263 request.fl_type = F_UNLCK; 1264 request.fl_flags = FL_FLOCK; 1265 locks_lock_file_wait(file, &request); 1266 gfs2_glock_dq(fl_gh); 1267 gfs2_holder_reinit(state, flags, fl_gh); 1268 } else { 1269 error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr, 1270 &gfs2_flock_glops, CREATE, &gl); 1271 if (error) 1272 goto out; 1273 gfs2_holder_init(gl, state, flags, fl_gh); 1274 gfs2_glock_put(gl); 1275 } 1276 for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) { 1277 error = gfs2_glock_nq(fl_gh); 1278 if (error != GLR_TRYFAILED) 1279 break; 1280 fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT; 1281 fl_gh->gh_error = 0; 1282 msleep(sleeptime); 1283 } 1284 if (error) { 1285 gfs2_holder_uninit(fl_gh); 1286 if (error == GLR_TRYFAILED) 1287 error = -EAGAIN; 1288 } else { 1289 error = locks_lock_file_wait(file, fl); 1290 gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error); 1291 } 1292 1293 out: 1294 mutex_unlock(&fp->f_fl_mutex); 1295 return error; 1296 } 1297 1298 static void do_unflock(struct file *file, struct file_lock *fl) 1299 { 1300 struct gfs2_file *fp = file->private_data; 1301 struct gfs2_holder *fl_gh = &fp->f_fl_gh; 1302 1303 mutex_lock(&fp->f_fl_mutex); 1304 locks_lock_file_wait(file, fl); 1305 if (gfs2_holder_initialized(fl_gh)) { 1306 gfs2_glock_dq(fl_gh); 1307 gfs2_holder_uninit(fl_gh); 1308 } 1309 mutex_unlock(&fp->f_fl_mutex); 1310 } 1311 1312 /** 1313 * gfs2_flock - acquire/release a flock lock on a file 1314 * @file: the file pointer 1315 * @cmd: either modify or retrieve lock state, possibly wait 1316 * @fl: type and range of lock 1317 * 1318 * Returns: errno 1319 */ 1320 1321 static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl) 1322 { 1323 if (!(fl->fl_flags & FL_FLOCK)) 1324 return -ENOLCK; 1325 if (fl->fl_type & LOCK_MAND) 1326 return -EOPNOTSUPP; 1327 1328 if (fl->fl_type == F_UNLCK) { 1329 do_unflock(file, fl); 1330 return 0; 1331 } else { 1332 return do_flock(file, cmd, fl); 1333 } 1334 } 1335 1336 const struct file_operations gfs2_file_fops = { 1337 .llseek = gfs2_llseek, 1338 .read_iter = gfs2_file_read_iter, 1339 .write_iter = gfs2_file_write_iter, 1340 .iopoll = iomap_dio_iopoll, 1341 .unlocked_ioctl = gfs2_ioctl, 1342 .compat_ioctl = gfs2_compat_ioctl, 1343 .mmap = gfs2_mmap, 1344 .open = gfs2_open, 1345 .release = gfs2_release, 1346 .fsync = gfs2_fsync, 1347 .lock = gfs2_lock, 1348 .flock = gfs2_flock, 1349 .splice_read = generic_file_splice_read, 1350 .splice_write = gfs2_file_splice_write, 1351 .setlease = simple_nosetlease, 1352 .fallocate = gfs2_fallocate, 1353 }; 1354 1355 const struct file_operations gfs2_dir_fops = { 1356 .iterate_shared = gfs2_readdir, 1357 .unlocked_ioctl = gfs2_ioctl, 1358 .compat_ioctl = gfs2_compat_ioctl, 1359 .open = gfs2_open, 1360 .release = gfs2_release, 1361 .fsync = gfs2_fsync, 1362 .lock = gfs2_lock, 1363 .flock = gfs2_flock, 1364 .llseek = default_llseek, 1365 }; 1366 1367 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */ 1368 1369 const struct file_operations gfs2_file_fops_nolock = { 1370 .llseek = gfs2_llseek, 1371 .read_iter = gfs2_file_read_iter, 1372 .write_iter = gfs2_file_write_iter, 1373 .iopoll = iomap_dio_iopoll, 1374 .unlocked_ioctl = gfs2_ioctl, 1375 .compat_ioctl = gfs2_compat_ioctl, 1376 .mmap = gfs2_mmap, 1377 .open = gfs2_open, 1378 .release = gfs2_release, 1379 .fsync = gfs2_fsync, 1380 .splice_read = generic_file_splice_read, 1381 .splice_write = gfs2_file_splice_write, 1382 .setlease = generic_setlease, 1383 .fallocate = gfs2_fallocate, 1384 }; 1385 1386 const struct file_operations gfs2_dir_fops_nolock = { 1387 .iterate_shared = gfs2_readdir, 1388 .unlocked_ioctl = gfs2_ioctl, 1389 .compat_ioctl = gfs2_compat_ioctl, 1390 .open = gfs2_open, 1391 .release = gfs2_release, 1392 .fsync = gfs2_fsync, 1393 .llseek = default_llseek, 1394 }; 1395 1396