xref: /openbmc/linux/fs/gfs2/file.c (revision a20eefae)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/spinlock.h>
9 #include <linux/completion.h>
10 #include <linux/buffer_head.h>
11 #include <linux/pagemap.h>
12 #include <linux/uio.h>
13 #include <linux/blkdev.h>
14 #include <linux/mm.h>
15 #include <linux/mount.h>
16 #include <linux/fs.h>
17 #include <linux/gfs2_ondisk.h>
18 #include <linux/falloc.h>
19 #include <linux/swap.h>
20 #include <linux/crc32.h>
21 #include <linux/writeback.h>
22 #include <linux/uaccess.h>
23 #include <linux/dlm.h>
24 #include <linux/dlm_plock.h>
25 #include <linux/delay.h>
26 #include <linux/backing-dev.h>
27 
28 #include "gfs2.h"
29 #include "incore.h"
30 #include "bmap.h"
31 #include "aops.h"
32 #include "dir.h"
33 #include "glock.h"
34 #include "glops.h"
35 #include "inode.h"
36 #include "log.h"
37 #include "meta_io.h"
38 #include "quota.h"
39 #include "rgrp.h"
40 #include "trans.h"
41 #include "util.h"
42 
43 /**
44  * gfs2_llseek - seek to a location in a file
45  * @file: the file
46  * @offset: the offset
47  * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
48  *
49  * SEEK_END requires the glock for the file because it references the
50  * file's size.
51  *
52  * Returns: The new offset, or errno
53  */
54 
55 static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
56 {
57 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
58 	struct gfs2_holder i_gh;
59 	loff_t error;
60 
61 	switch (whence) {
62 	case SEEK_END:
63 		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
64 					   &i_gh);
65 		if (!error) {
66 			error = generic_file_llseek(file, offset, whence);
67 			gfs2_glock_dq_uninit(&i_gh);
68 		}
69 		break;
70 
71 	case SEEK_DATA:
72 		error = gfs2_seek_data(file, offset);
73 		break;
74 
75 	case SEEK_HOLE:
76 		error = gfs2_seek_hole(file, offset);
77 		break;
78 
79 	case SEEK_CUR:
80 	case SEEK_SET:
81 		/*
82 		 * These don't reference inode->i_size and don't depend on the
83 		 * block mapping, so we don't need the glock.
84 		 */
85 		error = generic_file_llseek(file, offset, whence);
86 		break;
87 	default:
88 		error = -EINVAL;
89 	}
90 
91 	return error;
92 }
93 
94 /**
95  * gfs2_readdir - Iterator for a directory
96  * @file: The directory to read from
97  * @ctx: What to feed directory entries to
98  *
99  * Returns: errno
100  */
101 
102 static int gfs2_readdir(struct file *file, struct dir_context *ctx)
103 {
104 	struct inode *dir = file->f_mapping->host;
105 	struct gfs2_inode *dip = GFS2_I(dir);
106 	struct gfs2_holder d_gh;
107 	int error;
108 
109 	error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
110 	if (error)
111 		return error;
112 
113 	error = gfs2_dir_read(dir, ctx, &file->f_ra);
114 
115 	gfs2_glock_dq_uninit(&d_gh);
116 
117 	return error;
118 }
119 
120 /**
121  * fsflag_gfs2flag
122  *
123  * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
124  * and to GFS2_DIF_JDATA for non-directories.
125  */
126 static struct {
127 	u32 fsflag;
128 	u32 gfsflag;
129 } fsflag_gfs2flag[] = {
130 	{FS_SYNC_FL, GFS2_DIF_SYNC},
131 	{FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
132 	{FS_APPEND_FL, GFS2_DIF_APPENDONLY},
133 	{FS_NOATIME_FL, GFS2_DIF_NOATIME},
134 	{FS_INDEX_FL, GFS2_DIF_EXHASH},
135 	{FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
136 	{FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
137 };
138 
139 static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags)
140 {
141 	int i;
142 	u32 fsflags = 0;
143 
144 	if (S_ISDIR(inode->i_mode))
145 		gfsflags &= ~GFS2_DIF_JDATA;
146 	else
147 		gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
148 
149 	for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
150 		if (gfsflags & fsflag_gfs2flag[i].gfsflag)
151 			fsflags |= fsflag_gfs2flag[i].fsflag;
152 	return fsflags;
153 }
154 
155 static int gfs2_get_flags(struct file *filp, u32 __user *ptr)
156 {
157 	struct inode *inode = file_inode(filp);
158 	struct gfs2_inode *ip = GFS2_I(inode);
159 	struct gfs2_holder gh;
160 	int error;
161 	u32 fsflags;
162 
163 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
164 	error = gfs2_glock_nq(&gh);
165 	if (error)
166 		goto out_uninit;
167 
168 	fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
169 
170 	if (put_user(fsflags, ptr))
171 		error = -EFAULT;
172 
173 	gfs2_glock_dq(&gh);
174 out_uninit:
175 	gfs2_holder_uninit(&gh);
176 	return error;
177 }
178 
179 void gfs2_set_inode_flags(struct inode *inode)
180 {
181 	struct gfs2_inode *ip = GFS2_I(inode);
182 	unsigned int flags = inode->i_flags;
183 
184 	flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
185 	if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
186 		flags |= S_NOSEC;
187 	if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
188 		flags |= S_IMMUTABLE;
189 	if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
190 		flags |= S_APPEND;
191 	if (ip->i_diskflags & GFS2_DIF_NOATIME)
192 		flags |= S_NOATIME;
193 	if (ip->i_diskflags & GFS2_DIF_SYNC)
194 		flags |= S_SYNC;
195 	inode->i_flags = flags;
196 }
197 
198 /* Flags that can be set by user space */
199 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA|			\
200 			     GFS2_DIF_IMMUTABLE|		\
201 			     GFS2_DIF_APPENDONLY|		\
202 			     GFS2_DIF_NOATIME|			\
203 			     GFS2_DIF_SYNC|			\
204 			     GFS2_DIF_TOPDIR|			\
205 			     GFS2_DIF_INHERIT_JDATA)
206 
207 /**
208  * do_gfs2_set_flags - set flags on an inode
209  * @filp: file pointer
210  * @reqflags: The flags to set
211  * @mask: Indicates which flags are valid
212  * @fsflags: The FS_* inode flags passed in
213  *
214  */
215 static int do_gfs2_set_flags(struct file *filp, u32 reqflags, u32 mask,
216 			     const u32 fsflags)
217 {
218 	struct inode *inode = file_inode(filp);
219 	struct gfs2_inode *ip = GFS2_I(inode);
220 	struct gfs2_sbd *sdp = GFS2_SB(inode);
221 	struct buffer_head *bh;
222 	struct gfs2_holder gh;
223 	int error;
224 	u32 new_flags, flags, oldflags;
225 
226 	error = mnt_want_write_file(filp);
227 	if (error)
228 		return error;
229 
230 	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
231 	if (error)
232 		goto out_drop_write;
233 
234 	oldflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
235 	error = vfs_ioc_setflags_prepare(inode, oldflags, fsflags);
236 	if (error)
237 		goto out;
238 
239 	error = -EACCES;
240 	if (!inode_owner_or_capable(inode))
241 		goto out;
242 
243 	error = 0;
244 	flags = ip->i_diskflags;
245 	new_flags = (flags & ~mask) | (reqflags & mask);
246 	if ((new_flags ^ flags) == 0)
247 		goto out;
248 
249 	error = -EPERM;
250 	if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE))
251 		goto out;
252 	if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY))
253 		goto out;
254 	if (((new_flags ^ flags) & GFS2_DIF_IMMUTABLE) &&
255 	    !capable(CAP_LINUX_IMMUTABLE))
256 		goto out;
257 	if (!IS_IMMUTABLE(inode)) {
258 		error = gfs2_permission(inode, MAY_WRITE);
259 		if (error)
260 			goto out;
261 	}
262 	if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
263 		if (new_flags & GFS2_DIF_JDATA)
264 			gfs2_log_flush(sdp, ip->i_gl,
265 				       GFS2_LOG_HEAD_FLUSH_NORMAL |
266 				       GFS2_LFC_SET_FLAGS);
267 		error = filemap_fdatawrite(inode->i_mapping);
268 		if (error)
269 			goto out;
270 		error = filemap_fdatawait(inode->i_mapping);
271 		if (error)
272 			goto out;
273 		if (new_flags & GFS2_DIF_JDATA)
274 			gfs2_ordered_del_inode(ip);
275 	}
276 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
277 	if (error)
278 		goto out;
279 	error = gfs2_meta_inode_buffer(ip, &bh);
280 	if (error)
281 		goto out_trans_end;
282 	inode->i_ctime = current_time(inode);
283 	gfs2_trans_add_meta(ip->i_gl, bh);
284 	ip->i_diskflags = new_flags;
285 	gfs2_dinode_out(ip, bh->b_data);
286 	brelse(bh);
287 	gfs2_set_inode_flags(inode);
288 	gfs2_set_aops(inode);
289 out_trans_end:
290 	gfs2_trans_end(sdp);
291 out:
292 	gfs2_glock_dq_uninit(&gh);
293 out_drop_write:
294 	mnt_drop_write_file(filp);
295 	return error;
296 }
297 
298 static int gfs2_set_flags(struct file *filp, u32 __user *ptr)
299 {
300 	struct inode *inode = file_inode(filp);
301 	u32 fsflags, gfsflags = 0;
302 	u32 mask;
303 	int i;
304 
305 	if (get_user(fsflags, ptr))
306 		return -EFAULT;
307 
308 	for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
309 		if (fsflags & fsflag_gfs2flag[i].fsflag) {
310 			fsflags &= ~fsflag_gfs2flag[i].fsflag;
311 			gfsflags |= fsflag_gfs2flag[i].gfsflag;
312 		}
313 	}
314 	if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
315 		return -EINVAL;
316 
317 	mask = GFS2_FLAGS_USER_SET;
318 	if (S_ISDIR(inode->i_mode)) {
319 		mask &= ~GFS2_DIF_JDATA;
320 	} else {
321 		/* The GFS2_DIF_TOPDIR flag is only valid for directories. */
322 		if (gfsflags & GFS2_DIF_TOPDIR)
323 			return -EINVAL;
324 		mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
325 	}
326 
327 	return do_gfs2_set_flags(filp, gfsflags, mask, fsflags);
328 }
329 
330 static int gfs2_getlabel(struct file *filp, char __user *label)
331 {
332 	struct inode *inode = file_inode(filp);
333 	struct gfs2_sbd *sdp = GFS2_SB(inode);
334 
335 	if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN))
336 		return -EFAULT;
337 
338 	return 0;
339 }
340 
341 static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
342 {
343 	switch(cmd) {
344 	case FS_IOC_GETFLAGS:
345 		return gfs2_get_flags(filp, (u32 __user *)arg);
346 	case FS_IOC_SETFLAGS:
347 		return gfs2_set_flags(filp, (u32 __user *)arg);
348 	case FITRIM:
349 		return gfs2_fitrim(filp, (void __user *)arg);
350 	case FS_IOC_GETFSLABEL:
351 		return gfs2_getlabel(filp, (char __user *)arg);
352 	}
353 
354 	return -ENOTTY;
355 }
356 
357 /**
358  * gfs2_size_hint - Give a hint to the size of a write request
359  * @filep: The struct file
360  * @offset: The file offset of the write
361  * @size: The length of the write
362  *
363  * When we are about to do a write, this function records the total
364  * write size in order to provide a suitable hint to the lower layers
365  * about how many blocks will be required.
366  *
367  */
368 
369 static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
370 {
371 	struct inode *inode = file_inode(filep);
372 	struct gfs2_sbd *sdp = GFS2_SB(inode);
373 	struct gfs2_inode *ip = GFS2_I(inode);
374 	size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
375 	int hint = min_t(size_t, INT_MAX, blks);
376 
377 	if (hint > atomic_read(&ip->i_sizehint))
378 		atomic_set(&ip->i_sizehint, hint);
379 }
380 
381 /**
382  * gfs2_allocate_page_backing - Allocate blocks for a write fault
383  * @page: The (locked) page to allocate backing for
384  *
385  * We try to allocate all the blocks required for the page in one go.  This
386  * might fail for various reasons, so we keep trying until all the blocks to
387  * back this page are allocated.  If some of the blocks are already allocated,
388  * that is ok too.
389  */
390 static int gfs2_allocate_page_backing(struct page *page)
391 {
392 	u64 pos = page_offset(page);
393 	u64 size = PAGE_SIZE;
394 
395 	do {
396 		struct iomap iomap = { };
397 
398 		if (gfs2_iomap_get_alloc(page->mapping->host, pos, 1, &iomap))
399 			return -EIO;
400 
401 		iomap.length = min(iomap.length, size);
402 		size -= iomap.length;
403 		pos += iomap.length;
404 	} while (size > 0);
405 
406 	return 0;
407 }
408 
409 /**
410  * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
411  * @vma: The virtual memory area
412  * @vmf: The virtual memory fault containing the page to become writable
413  *
414  * When the page becomes writable, we need to ensure that we have
415  * blocks allocated on disk to back that page.
416  */
417 
418 static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf)
419 {
420 	struct page *page = vmf->page;
421 	struct inode *inode = file_inode(vmf->vma->vm_file);
422 	struct gfs2_inode *ip = GFS2_I(inode);
423 	struct gfs2_sbd *sdp = GFS2_SB(inode);
424 	struct gfs2_alloc_parms ap = { .aflags = 0, };
425 	unsigned long last_index;
426 	u64 pos = page_offset(page);
427 	unsigned int data_blocks, ind_blocks, rblocks;
428 	struct gfs2_holder gh;
429 	loff_t size;
430 	int ret;
431 
432 	sb_start_pagefault(inode->i_sb);
433 
434 	ret = gfs2_rsqa_alloc(ip);
435 	if (ret)
436 		goto out;
437 
438 	gfs2_size_hint(vmf->vma->vm_file, pos, PAGE_SIZE);
439 
440 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
441 	ret = gfs2_glock_nq(&gh);
442 	if (ret)
443 		goto out_uninit;
444 
445 	/* Update file times before taking page lock */
446 	file_update_time(vmf->vma->vm_file);
447 
448 	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
449 	set_bit(GIF_SW_PAGED, &ip->i_flags);
450 
451 	if (!gfs2_write_alloc_required(ip, pos, PAGE_SIZE)) {
452 		lock_page(page);
453 		if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
454 			ret = -EAGAIN;
455 			unlock_page(page);
456 		}
457 		goto out_unlock;
458 	}
459 
460 	ret = gfs2_rindex_update(sdp);
461 	if (ret)
462 		goto out_unlock;
463 
464 	gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
465 	ap.target = data_blocks + ind_blocks;
466 	ret = gfs2_quota_lock_check(ip, &ap);
467 	if (ret)
468 		goto out_unlock;
469 	ret = gfs2_inplace_reserve(ip, &ap);
470 	if (ret)
471 		goto out_quota_unlock;
472 
473 	rblocks = RES_DINODE + ind_blocks;
474 	if (gfs2_is_jdata(ip))
475 		rblocks += data_blocks ? data_blocks : 1;
476 	if (ind_blocks || data_blocks) {
477 		rblocks += RES_STATFS + RES_QUOTA;
478 		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
479 	}
480 	ret = gfs2_trans_begin(sdp, rblocks, 0);
481 	if (ret)
482 		goto out_trans_fail;
483 
484 	lock_page(page);
485 	ret = -EINVAL;
486 	size = i_size_read(inode);
487 	last_index = (size - 1) >> PAGE_SHIFT;
488 	/* Check page index against inode size */
489 	if (size == 0 || (page->index > last_index))
490 		goto out_trans_end;
491 
492 	ret = -EAGAIN;
493 	/* If truncated, we must retry the operation, we may have raced
494 	 * with the glock demotion code.
495 	 */
496 	if (!PageUptodate(page) || page->mapping != inode->i_mapping)
497 		goto out_trans_end;
498 
499 	/* Unstuff, if required, and allocate backing blocks for page */
500 	ret = 0;
501 	if (gfs2_is_stuffed(ip))
502 		ret = gfs2_unstuff_dinode(ip, page);
503 	if (ret == 0)
504 		ret = gfs2_allocate_page_backing(page);
505 
506 out_trans_end:
507 	if (ret)
508 		unlock_page(page);
509 	gfs2_trans_end(sdp);
510 out_trans_fail:
511 	gfs2_inplace_release(ip);
512 out_quota_unlock:
513 	gfs2_quota_unlock(ip);
514 out_unlock:
515 	gfs2_glock_dq(&gh);
516 out_uninit:
517 	gfs2_holder_uninit(&gh);
518 	if (ret == 0) {
519 		set_page_dirty(page);
520 		wait_for_stable_page(page);
521 	}
522 out:
523 	sb_end_pagefault(inode->i_sb);
524 	return block_page_mkwrite_return(ret);
525 }
526 
527 static const struct vm_operations_struct gfs2_vm_ops = {
528 	.fault = filemap_fault,
529 	.map_pages = filemap_map_pages,
530 	.page_mkwrite = gfs2_page_mkwrite,
531 };
532 
533 /**
534  * gfs2_mmap -
535  * @file: The file to map
536  * @vma: The VMA which described the mapping
537  *
538  * There is no need to get a lock here unless we should be updating
539  * atime. We ignore any locking errors since the only consequence is
540  * a missed atime update (which will just be deferred until later).
541  *
542  * Returns: 0
543  */
544 
545 static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
546 {
547 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
548 
549 	if (!(file->f_flags & O_NOATIME) &&
550 	    !IS_NOATIME(&ip->i_inode)) {
551 		struct gfs2_holder i_gh;
552 		int error;
553 
554 		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
555 					   &i_gh);
556 		if (error)
557 			return error;
558 		/* grab lock to update inode */
559 		gfs2_glock_dq_uninit(&i_gh);
560 		file_accessed(file);
561 	}
562 	vma->vm_ops = &gfs2_vm_ops;
563 
564 	return 0;
565 }
566 
567 /**
568  * gfs2_open_common - This is common to open and atomic_open
569  * @inode: The inode being opened
570  * @file: The file being opened
571  *
572  * This maybe called under a glock or not depending upon how it has
573  * been called. We must always be called under a glock for regular
574  * files, however. For other file types, it does not matter whether
575  * we hold the glock or not.
576  *
577  * Returns: Error code or 0 for success
578  */
579 
580 int gfs2_open_common(struct inode *inode, struct file *file)
581 {
582 	struct gfs2_file *fp;
583 	int ret;
584 
585 	if (S_ISREG(inode->i_mode)) {
586 		ret = generic_file_open(inode, file);
587 		if (ret)
588 			return ret;
589 	}
590 
591 	fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
592 	if (!fp)
593 		return -ENOMEM;
594 
595 	mutex_init(&fp->f_fl_mutex);
596 
597 	gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
598 	file->private_data = fp;
599 	return 0;
600 }
601 
602 /**
603  * gfs2_open - open a file
604  * @inode: the inode to open
605  * @file: the struct file for this opening
606  *
607  * After atomic_open, this function is only used for opening files
608  * which are already cached. We must still get the glock for regular
609  * files to ensure that we have the file size uptodate for the large
610  * file check which is in the common code. That is only an issue for
611  * regular files though.
612  *
613  * Returns: errno
614  */
615 
616 static int gfs2_open(struct inode *inode, struct file *file)
617 {
618 	struct gfs2_inode *ip = GFS2_I(inode);
619 	struct gfs2_holder i_gh;
620 	int error;
621 	bool need_unlock = false;
622 
623 	if (S_ISREG(ip->i_inode.i_mode)) {
624 		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
625 					   &i_gh);
626 		if (error)
627 			return error;
628 		need_unlock = true;
629 	}
630 
631 	error = gfs2_open_common(inode, file);
632 
633 	if (need_unlock)
634 		gfs2_glock_dq_uninit(&i_gh);
635 
636 	return error;
637 }
638 
639 /**
640  * gfs2_release - called to close a struct file
641  * @inode: the inode the struct file belongs to
642  * @file: the struct file being closed
643  *
644  * Returns: errno
645  */
646 
647 static int gfs2_release(struct inode *inode, struct file *file)
648 {
649 	struct gfs2_inode *ip = GFS2_I(inode);
650 
651 	kfree(file->private_data);
652 	file->private_data = NULL;
653 
654 	if (!(file->f_mode & FMODE_WRITE))
655 		return 0;
656 
657 	gfs2_rsqa_delete(ip, &inode->i_writecount);
658 	return 0;
659 }
660 
661 /**
662  * gfs2_fsync - sync the dirty data for a file (across the cluster)
663  * @file: the file that points to the dentry
664  * @start: the start position in the file to sync
665  * @end: the end position in the file to sync
666  * @datasync: set if we can ignore timestamp changes
667  *
668  * We split the data flushing here so that we don't wait for the data
669  * until after we've also sent the metadata to disk. Note that for
670  * data=ordered, we will write & wait for the data at the log flush
671  * stage anyway, so this is unlikely to make much of a difference
672  * except in the data=writeback case.
673  *
674  * If the fdatawrite fails due to any reason except -EIO, we will
675  * continue the remainder of the fsync, although we'll still report
676  * the error at the end. This is to match filemap_write_and_wait_range()
677  * behaviour.
678  *
679  * Returns: errno
680  */
681 
682 static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
683 		      int datasync)
684 {
685 	struct address_space *mapping = file->f_mapping;
686 	struct inode *inode = mapping->host;
687 	int sync_state = inode->i_state & I_DIRTY_ALL;
688 	struct gfs2_inode *ip = GFS2_I(inode);
689 	int ret = 0, ret1 = 0;
690 
691 	if (mapping->nrpages) {
692 		ret1 = filemap_fdatawrite_range(mapping, start, end);
693 		if (ret1 == -EIO)
694 			return ret1;
695 	}
696 
697 	if (!gfs2_is_jdata(ip))
698 		sync_state &= ~I_DIRTY_PAGES;
699 	if (datasync)
700 		sync_state &= ~(I_DIRTY_SYNC | I_DIRTY_TIME);
701 
702 	if (sync_state) {
703 		ret = sync_inode_metadata(inode, 1);
704 		if (ret)
705 			return ret;
706 		if (gfs2_is_jdata(ip))
707 			ret = file_write_and_wait(file);
708 		if (ret)
709 			return ret;
710 		gfs2_ail_flush(ip->i_gl, 1);
711 	}
712 
713 	if (mapping->nrpages)
714 		ret = file_fdatawait_range(file, start, end);
715 
716 	return ret ? ret : ret1;
717 }
718 
719 static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to)
720 {
721 	struct file *file = iocb->ki_filp;
722 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
723 	size_t count = iov_iter_count(to);
724 	struct gfs2_holder gh;
725 	ssize_t ret;
726 
727 	if (!count)
728 		return 0; /* skip atime */
729 
730 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
731 	ret = gfs2_glock_nq(&gh);
732 	if (ret)
733 		goto out_uninit;
734 
735 	ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL);
736 
737 	gfs2_glock_dq(&gh);
738 out_uninit:
739 	gfs2_holder_uninit(&gh);
740 	return ret;
741 }
742 
743 static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
744 {
745 	struct file *file = iocb->ki_filp;
746 	struct inode *inode = file->f_mapping->host;
747 	struct gfs2_inode *ip = GFS2_I(inode);
748 	size_t len = iov_iter_count(from);
749 	loff_t offset = iocb->ki_pos;
750 	struct gfs2_holder gh;
751 	ssize_t ret;
752 
753 	/*
754 	 * Deferred lock, even if its a write, since we do no allocation on
755 	 * this path. All we need to change is the atime, and this lock mode
756 	 * ensures that other nodes have flushed their buffered read caches
757 	 * (i.e. their page cache entries for this inode). We do not,
758 	 * unfortunately, have the option of only flushing a range like the
759 	 * VFS does.
760 	 */
761 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
762 	ret = gfs2_glock_nq(&gh);
763 	if (ret)
764 		goto out_uninit;
765 
766 	/* Silently fall back to buffered I/O when writing beyond EOF */
767 	if (offset + len > i_size_read(&ip->i_inode))
768 		goto out;
769 
770 	ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL);
771 
772 out:
773 	gfs2_glock_dq(&gh);
774 out_uninit:
775 	gfs2_holder_uninit(&gh);
776 	return ret;
777 }
778 
779 static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
780 {
781 	ssize_t ret;
782 
783 	if (iocb->ki_flags & IOCB_DIRECT) {
784 		ret = gfs2_file_direct_read(iocb, to);
785 		if (likely(ret != -ENOTBLK))
786 			return ret;
787 		iocb->ki_flags &= ~IOCB_DIRECT;
788 	}
789 	return generic_file_read_iter(iocb, to);
790 }
791 
792 /**
793  * gfs2_file_write_iter - Perform a write to a file
794  * @iocb: The io context
795  * @from: The data to write
796  *
797  * We have to do a lock/unlock here to refresh the inode size for
798  * O_APPEND writes, otherwise we can land up writing at the wrong
799  * offset. There is still a race, but provided the app is using its
800  * own file locking, this will make O_APPEND work as expected.
801  *
802  */
803 
804 static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
805 {
806 	struct file *file = iocb->ki_filp;
807 	struct inode *inode = file_inode(file);
808 	struct gfs2_inode *ip = GFS2_I(inode);
809 	ssize_t written = 0, ret;
810 
811 	ret = gfs2_rsqa_alloc(ip);
812 	if (ret)
813 		return ret;
814 
815 	gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
816 
817 	if (iocb->ki_flags & IOCB_APPEND) {
818 		struct gfs2_holder gh;
819 
820 		ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
821 		if (ret)
822 			return ret;
823 		gfs2_glock_dq_uninit(&gh);
824 	}
825 
826 	inode_lock(inode);
827 	ret = generic_write_checks(iocb, from);
828 	if (ret <= 0)
829 		goto out;
830 
831 	/* We can write back this queue in page reclaim */
832 	current->backing_dev_info = inode_to_bdi(inode);
833 
834 	ret = file_remove_privs(file);
835 	if (ret)
836 		goto out2;
837 
838 	ret = file_update_time(file);
839 	if (ret)
840 		goto out2;
841 
842 	if (iocb->ki_flags & IOCB_DIRECT) {
843 		struct address_space *mapping = file->f_mapping;
844 		loff_t pos, endbyte;
845 		ssize_t buffered;
846 
847 		written = gfs2_file_direct_write(iocb, from);
848 		if (written < 0 || !iov_iter_count(from))
849 			goto out2;
850 
851 		ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
852 		if (unlikely(ret < 0))
853 			goto out2;
854 		buffered = ret;
855 
856 		/*
857 		 * We need to ensure that the page cache pages are written to
858 		 * disk and invalidated to preserve the expected O_DIRECT
859 		 * semantics.
860 		 */
861 		pos = iocb->ki_pos;
862 		endbyte = pos + buffered - 1;
863 		ret = filemap_write_and_wait_range(mapping, pos, endbyte);
864 		if (!ret) {
865 			iocb->ki_pos += buffered;
866 			written += buffered;
867 			invalidate_mapping_pages(mapping,
868 						 pos >> PAGE_SHIFT,
869 						 endbyte >> PAGE_SHIFT);
870 		} else {
871 			/*
872 			 * We don't know how much we wrote, so just return
873 			 * the number of bytes which were direct-written
874 			 */
875 		}
876 	} else {
877 		ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
878 		if (likely(ret > 0))
879 			iocb->ki_pos += ret;
880 	}
881 
882 out2:
883 	current->backing_dev_info = NULL;
884 out:
885 	inode_unlock(inode);
886 	if (likely(ret > 0)) {
887 		/* Handle various SYNC-type writes */
888 		ret = generic_write_sync(iocb, ret);
889 	}
890 	return written ? written : ret;
891 }
892 
893 static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
894 			   int mode)
895 {
896 	struct super_block *sb = inode->i_sb;
897 	struct gfs2_inode *ip = GFS2_I(inode);
898 	loff_t end = offset + len;
899 	struct buffer_head *dibh;
900 	int error;
901 
902 	error = gfs2_meta_inode_buffer(ip, &dibh);
903 	if (unlikely(error))
904 		return error;
905 
906 	gfs2_trans_add_meta(ip->i_gl, dibh);
907 
908 	if (gfs2_is_stuffed(ip)) {
909 		error = gfs2_unstuff_dinode(ip, NULL);
910 		if (unlikely(error))
911 			goto out;
912 	}
913 
914 	while (offset < end) {
915 		struct iomap iomap = { };
916 
917 		error = gfs2_iomap_get_alloc(inode, offset, end - offset,
918 					     &iomap);
919 		if (error)
920 			goto out;
921 		offset = iomap.offset + iomap.length;
922 		if (!(iomap.flags & IOMAP_F_NEW))
923 			continue;
924 		error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
925 					 iomap.length >> inode->i_blkbits,
926 					 GFP_NOFS);
927 		if (error) {
928 			fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
929 			goto out;
930 		}
931 	}
932 out:
933 	brelse(dibh);
934 	return error;
935 }
936 /**
937  * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
938  *                     blocks, determine how many bytes can be written.
939  * @ip:          The inode in question.
940  * @len:         Max cap of bytes. What we return in *len must be <= this.
941  * @data_blocks: Compute and return the number of data blocks needed
942  * @ind_blocks:  Compute and return the number of indirect blocks needed
943  * @max_blocks:  The total blocks available to work with.
944  *
945  * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
946  */
947 static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
948 			    unsigned int *data_blocks, unsigned int *ind_blocks,
949 			    unsigned int max_blocks)
950 {
951 	loff_t max = *len;
952 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
953 	unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
954 
955 	for (tmp = max_data; tmp > sdp->sd_diptrs;) {
956 		tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
957 		max_data -= tmp;
958 	}
959 
960 	*data_blocks = max_data;
961 	*ind_blocks = max_blocks - max_data;
962 	*len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
963 	if (*len > max) {
964 		*len = max;
965 		gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
966 	}
967 }
968 
969 static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
970 {
971 	struct inode *inode = file_inode(file);
972 	struct gfs2_sbd *sdp = GFS2_SB(inode);
973 	struct gfs2_inode *ip = GFS2_I(inode);
974 	struct gfs2_alloc_parms ap = { .aflags = 0, };
975 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
976 	loff_t bytes, max_bytes, max_blks;
977 	int error;
978 	const loff_t pos = offset;
979 	const loff_t count = len;
980 	loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
981 	loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
982 	loff_t max_chunk_size = UINT_MAX & bsize_mask;
983 
984 	next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
985 
986 	offset &= bsize_mask;
987 
988 	len = next - offset;
989 	bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
990 	if (!bytes)
991 		bytes = UINT_MAX;
992 	bytes &= bsize_mask;
993 	if (bytes == 0)
994 		bytes = sdp->sd_sb.sb_bsize;
995 
996 	gfs2_size_hint(file, offset, len);
997 
998 	gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
999 	ap.min_target = data_blocks + ind_blocks;
1000 
1001 	while (len > 0) {
1002 		if (len < bytes)
1003 			bytes = len;
1004 		if (!gfs2_write_alloc_required(ip, offset, bytes)) {
1005 			len -= bytes;
1006 			offset += bytes;
1007 			continue;
1008 		}
1009 
1010 		/* We need to determine how many bytes we can actually
1011 		 * fallocate without exceeding quota or going over the
1012 		 * end of the fs. We start off optimistically by assuming
1013 		 * we can write max_bytes */
1014 		max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
1015 
1016 		/* Since max_bytes is most likely a theoretical max, we
1017 		 * calculate a more realistic 'bytes' to serve as a good
1018 		 * starting point for the number of bytes we may be able
1019 		 * to write */
1020 		gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
1021 		ap.target = data_blocks + ind_blocks;
1022 
1023 		error = gfs2_quota_lock_check(ip, &ap);
1024 		if (error)
1025 			return error;
1026 		/* ap.allowed tells us how many blocks quota will allow
1027 		 * us to write. Check if this reduces max_blks */
1028 		max_blks = UINT_MAX;
1029 		if (ap.allowed)
1030 			max_blks = ap.allowed;
1031 
1032 		error = gfs2_inplace_reserve(ip, &ap);
1033 		if (error)
1034 			goto out_qunlock;
1035 
1036 		/* check if the selected rgrp limits our max_blks further */
1037 		if (ap.allowed && ap.allowed < max_blks)
1038 			max_blks = ap.allowed;
1039 
1040 		/* Almost done. Calculate bytes that can be written using
1041 		 * max_blks. We also recompute max_bytes, data_blocks and
1042 		 * ind_blocks */
1043 		calc_max_reserv(ip, &max_bytes, &data_blocks,
1044 				&ind_blocks, max_blks);
1045 
1046 		rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
1047 			  RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1048 		if (gfs2_is_jdata(ip))
1049 			rblocks += data_blocks ? data_blocks : 1;
1050 
1051 		error = gfs2_trans_begin(sdp, rblocks,
1052 					 PAGE_SIZE/sdp->sd_sb.sb_bsize);
1053 		if (error)
1054 			goto out_trans_fail;
1055 
1056 		error = fallocate_chunk(inode, offset, max_bytes, mode);
1057 		gfs2_trans_end(sdp);
1058 
1059 		if (error)
1060 			goto out_trans_fail;
1061 
1062 		len -= max_bytes;
1063 		offset += max_bytes;
1064 		gfs2_inplace_release(ip);
1065 		gfs2_quota_unlock(ip);
1066 	}
1067 
1068 	if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size) {
1069 		i_size_write(inode, pos + count);
1070 		file_update_time(file);
1071 		mark_inode_dirty(inode);
1072 	}
1073 
1074 	if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
1075 		return vfs_fsync_range(file, pos, pos + count - 1,
1076 			       (file->f_flags & __O_SYNC) ? 0 : 1);
1077 	return 0;
1078 
1079 out_trans_fail:
1080 	gfs2_inplace_release(ip);
1081 out_qunlock:
1082 	gfs2_quota_unlock(ip);
1083 	return error;
1084 }
1085 
1086 static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1087 {
1088 	struct inode *inode = file_inode(file);
1089 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1090 	struct gfs2_inode *ip = GFS2_I(inode);
1091 	struct gfs2_holder gh;
1092 	int ret;
1093 
1094 	if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
1095 		return -EOPNOTSUPP;
1096 	/* fallocate is needed by gfs2_grow to reserve space in the rindex */
1097 	if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
1098 		return -EOPNOTSUPP;
1099 
1100 	inode_lock(inode);
1101 
1102 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
1103 	ret = gfs2_glock_nq(&gh);
1104 	if (ret)
1105 		goto out_uninit;
1106 
1107 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1108 	    (offset + len) > inode->i_size) {
1109 		ret = inode_newsize_ok(inode, offset + len);
1110 		if (ret)
1111 			goto out_unlock;
1112 	}
1113 
1114 	ret = get_write_access(inode);
1115 	if (ret)
1116 		goto out_unlock;
1117 
1118 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1119 		ret = __gfs2_punch_hole(file, offset, len);
1120 	} else {
1121 		ret = gfs2_rsqa_alloc(ip);
1122 		if (ret)
1123 			goto out_putw;
1124 
1125 		ret = __gfs2_fallocate(file, mode, offset, len);
1126 
1127 		if (ret)
1128 			gfs2_rs_deltree(&ip->i_res);
1129 	}
1130 
1131 out_putw:
1132 	put_write_access(inode);
1133 out_unlock:
1134 	gfs2_glock_dq(&gh);
1135 out_uninit:
1136 	gfs2_holder_uninit(&gh);
1137 	inode_unlock(inode);
1138 	return ret;
1139 }
1140 
1141 static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
1142 				      struct file *out, loff_t *ppos,
1143 				      size_t len, unsigned int flags)
1144 {
1145 	int error;
1146 	struct gfs2_inode *ip = GFS2_I(out->f_mapping->host);
1147 
1148 	error = gfs2_rsqa_alloc(ip);
1149 	if (error)
1150 		return (ssize_t)error;
1151 
1152 	gfs2_size_hint(out, *ppos, len);
1153 
1154 	return iter_file_splice_write(pipe, out, ppos, len, flags);
1155 }
1156 
1157 #ifdef CONFIG_GFS2_FS_LOCKING_DLM
1158 
1159 /**
1160  * gfs2_lock - acquire/release a posix lock on a file
1161  * @file: the file pointer
1162  * @cmd: either modify or retrieve lock state, possibly wait
1163  * @fl: type and range of lock
1164  *
1165  * Returns: errno
1166  */
1167 
1168 static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
1169 {
1170 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
1171 	struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
1172 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1173 
1174 	if (!(fl->fl_flags & FL_POSIX))
1175 		return -ENOLCK;
1176 	if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK)
1177 		return -ENOLCK;
1178 
1179 	if (cmd == F_CANCELLK) {
1180 		/* Hack: */
1181 		cmd = F_SETLK;
1182 		fl->fl_type = F_UNLCK;
1183 	}
1184 	if (unlikely(test_bit(SDF_WITHDRAWN, &sdp->sd_flags))) {
1185 		if (fl->fl_type == F_UNLCK)
1186 			locks_lock_file_wait(file, fl);
1187 		return -EIO;
1188 	}
1189 	if (IS_GETLK(cmd))
1190 		return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
1191 	else if (fl->fl_type == F_UNLCK)
1192 		return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
1193 	else
1194 		return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
1195 }
1196 
1197 static int do_flock(struct file *file, int cmd, struct file_lock *fl)
1198 {
1199 	struct gfs2_file *fp = file->private_data;
1200 	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1201 	struct gfs2_inode *ip = GFS2_I(file_inode(file));
1202 	struct gfs2_glock *gl;
1203 	unsigned int state;
1204 	u16 flags;
1205 	int error = 0;
1206 	int sleeptime;
1207 
1208 	state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
1209 	flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT;
1210 
1211 	mutex_lock(&fp->f_fl_mutex);
1212 
1213 	if (gfs2_holder_initialized(fl_gh)) {
1214 		struct file_lock request;
1215 		if (fl_gh->gh_state == state)
1216 			goto out;
1217 		locks_init_lock(&request);
1218 		request.fl_type = F_UNLCK;
1219 		request.fl_flags = FL_FLOCK;
1220 		locks_lock_file_wait(file, &request);
1221 		gfs2_glock_dq(fl_gh);
1222 		gfs2_holder_reinit(state, flags, fl_gh);
1223 	} else {
1224 		error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1225 				       &gfs2_flock_glops, CREATE, &gl);
1226 		if (error)
1227 			goto out;
1228 		gfs2_holder_init(gl, state, flags, fl_gh);
1229 		gfs2_glock_put(gl);
1230 	}
1231 	for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
1232 		error = gfs2_glock_nq(fl_gh);
1233 		if (error != GLR_TRYFAILED)
1234 			break;
1235 		fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT;
1236 		fl_gh->gh_error = 0;
1237 		msleep(sleeptime);
1238 	}
1239 	if (error) {
1240 		gfs2_holder_uninit(fl_gh);
1241 		if (error == GLR_TRYFAILED)
1242 			error = -EAGAIN;
1243 	} else {
1244 		error = locks_lock_file_wait(file, fl);
1245 		gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
1246 	}
1247 
1248 out:
1249 	mutex_unlock(&fp->f_fl_mutex);
1250 	return error;
1251 }
1252 
1253 static void do_unflock(struct file *file, struct file_lock *fl)
1254 {
1255 	struct gfs2_file *fp = file->private_data;
1256 	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1257 
1258 	mutex_lock(&fp->f_fl_mutex);
1259 	locks_lock_file_wait(file, fl);
1260 	if (gfs2_holder_initialized(fl_gh)) {
1261 		gfs2_glock_dq(fl_gh);
1262 		gfs2_holder_uninit(fl_gh);
1263 	}
1264 	mutex_unlock(&fp->f_fl_mutex);
1265 }
1266 
1267 /**
1268  * gfs2_flock - acquire/release a flock lock on a file
1269  * @file: the file pointer
1270  * @cmd: either modify or retrieve lock state, possibly wait
1271  * @fl: type and range of lock
1272  *
1273  * Returns: errno
1274  */
1275 
1276 static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1277 {
1278 	if (!(fl->fl_flags & FL_FLOCK))
1279 		return -ENOLCK;
1280 	if (fl->fl_type & LOCK_MAND)
1281 		return -EOPNOTSUPP;
1282 
1283 	if (fl->fl_type == F_UNLCK) {
1284 		do_unflock(file, fl);
1285 		return 0;
1286 	} else {
1287 		return do_flock(file, cmd, fl);
1288 	}
1289 }
1290 
1291 const struct file_operations gfs2_file_fops = {
1292 	.llseek		= gfs2_llseek,
1293 	.read_iter	= gfs2_file_read_iter,
1294 	.write_iter	= gfs2_file_write_iter,
1295 	.iopoll		= iomap_dio_iopoll,
1296 	.unlocked_ioctl	= gfs2_ioctl,
1297 	.mmap		= gfs2_mmap,
1298 	.open		= gfs2_open,
1299 	.release	= gfs2_release,
1300 	.fsync		= gfs2_fsync,
1301 	.lock		= gfs2_lock,
1302 	.flock		= gfs2_flock,
1303 	.splice_read	= generic_file_splice_read,
1304 	.splice_write	= gfs2_file_splice_write,
1305 	.setlease	= simple_nosetlease,
1306 	.fallocate	= gfs2_fallocate,
1307 };
1308 
1309 const struct file_operations gfs2_dir_fops = {
1310 	.iterate_shared	= gfs2_readdir,
1311 	.unlocked_ioctl	= gfs2_ioctl,
1312 	.open		= gfs2_open,
1313 	.release	= gfs2_release,
1314 	.fsync		= gfs2_fsync,
1315 	.lock		= gfs2_lock,
1316 	.flock		= gfs2_flock,
1317 	.llseek		= default_llseek,
1318 };
1319 
1320 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1321 
1322 const struct file_operations gfs2_file_fops_nolock = {
1323 	.llseek		= gfs2_llseek,
1324 	.read_iter	= gfs2_file_read_iter,
1325 	.write_iter	= gfs2_file_write_iter,
1326 	.iopoll		= iomap_dio_iopoll,
1327 	.unlocked_ioctl	= gfs2_ioctl,
1328 	.mmap		= gfs2_mmap,
1329 	.open		= gfs2_open,
1330 	.release	= gfs2_release,
1331 	.fsync		= gfs2_fsync,
1332 	.splice_read	= generic_file_splice_read,
1333 	.splice_write	= gfs2_file_splice_write,
1334 	.setlease	= generic_setlease,
1335 	.fallocate	= gfs2_fallocate,
1336 };
1337 
1338 const struct file_operations gfs2_dir_fops_nolock = {
1339 	.iterate_shared	= gfs2_readdir,
1340 	.unlocked_ioctl	= gfs2_ioctl,
1341 	.open		= gfs2_open,
1342 	.release	= gfs2_release,
1343 	.fsync		= gfs2_fsync,
1344 	.llseek		= default_llseek,
1345 };
1346 
1347