1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #include <linux/slab.h> 11 #include <linux/spinlock.h> 12 #include <linux/completion.h> 13 #include <linux/buffer_head.h> 14 #include <linux/pagemap.h> 15 #include <linux/uio.h> 16 #include <linux/blkdev.h> 17 #include <linux/mm.h> 18 #include <linux/mount.h> 19 #include <linux/fs.h> 20 #include <linux/gfs2_ondisk.h> 21 #include <linux/falloc.h> 22 #include <linux/swap.h> 23 #include <linux/crc32.h> 24 #include <linux/writeback.h> 25 #include <linux/uaccess.h> 26 #include <linux/dlm.h> 27 #include <linux/dlm_plock.h> 28 #include <linux/delay.h> 29 #include <linux/backing-dev.h> 30 31 #include "gfs2.h" 32 #include "incore.h" 33 #include "bmap.h" 34 #include "aops.h" 35 #include "dir.h" 36 #include "glock.h" 37 #include "glops.h" 38 #include "inode.h" 39 #include "log.h" 40 #include "meta_io.h" 41 #include "quota.h" 42 #include "rgrp.h" 43 #include "trans.h" 44 #include "util.h" 45 46 /** 47 * gfs2_llseek - seek to a location in a file 48 * @file: the file 49 * @offset: the offset 50 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END) 51 * 52 * SEEK_END requires the glock for the file because it references the 53 * file's size. 54 * 55 * Returns: The new offset, or errno 56 */ 57 58 static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence) 59 { 60 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 61 struct gfs2_holder i_gh; 62 loff_t error; 63 64 switch (whence) { 65 case SEEK_END: 66 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 67 &i_gh); 68 if (!error) { 69 error = generic_file_llseek(file, offset, whence); 70 gfs2_glock_dq_uninit(&i_gh); 71 } 72 break; 73 74 case SEEK_DATA: 75 error = gfs2_seek_data(file, offset); 76 break; 77 78 case SEEK_HOLE: 79 error = gfs2_seek_hole(file, offset); 80 break; 81 82 case SEEK_CUR: 83 case SEEK_SET: 84 /* 85 * These don't reference inode->i_size and don't depend on the 86 * block mapping, so we don't need the glock. 87 */ 88 error = generic_file_llseek(file, offset, whence); 89 break; 90 default: 91 error = -EINVAL; 92 } 93 94 return error; 95 } 96 97 /** 98 * gfs2_readdir - Iterator for a directory 99 * @file: The directory to read from 100 * @ctx: What to feed directory entries to 101 * 102 * Returns: errno 103 */ 104 105 static int gfs2_readdir(struct file *file, struct dir_context *ctx) 106 { 107 struct inode *dir = file->f_mapping->host; 108 struct gfs2_inode *dip = GFS2_I(dir); 109 struct gfs2_holder d_gh; 110 int error; 111 112 error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh); 113 if (error) 114 return error; 115 116 error = gfs2_dir_read(dir, ctx, &file->f_ra); 117 118 gfs2_glock_dq_uninit(&d_gh); 119 120 return error; 121 } 122 123 /** 124 * fsflag_gfs2flag 125 * 126 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories, 127 * and to GFS2_DIF_JDATA for non-directories. 128 */ 129 static struct { 130 u32 fsflag; 131 u32 gfsflag; 132 } fsflag_gfs2flag[] = { 133 {FS_SYNC_FL, GFS2_DIF_SYNC}, 134 {FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE}, 135 {FS_APPEND_FL, GFS2_DIF_APPENDONLY}, 136 {FS_NOATIME_FL, GFS2_DIF_NOATIME}, 137 {FS_INDEX_FL, GFS2_DIF_EXHASH}, 138 {FS_TOPDIR_FL, GFS2_DIF_TOPDIR}, 139 {FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA}, 140 }; 141 142 static int gfs2_get_flags(struct file *filp, u32 __user *ptr) 143 { 144 struct inode *inode = file_inode(filp); 145 struct gfs2_inode *ip = GFS2_I(inode); 146 struct gfs2_holder gh; 147 int i, error; 148 u32 gfsflags, fsflags = 0; 149 150 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 151 error = gfs2_glock_nq(&gh); 152 if (error) 153 goto out_uninit; 154 155 gfsflags = ip->i_diskflags; 156 if (S_ISDIR(inode->i_mode)) 157 gfsflags &= ~GFS2_DIF_JDATA; 158 else 159 gfsflags &= ~GFS2_DIF_INHERIT_JDATA; 160 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) 161 if (gfsflags & fsflag_gfs2flag[i].gfsflag) 162 fsflags |= fsflag_gfs2flag[i].fsflag; 163 164 if (put_user(fsflags, ptr)) 165 error = -EFAULT; 166 167 gfs2_glock_dq(&gh); 168 out_uninit: 169 gfs2_holder_uninit(&gh); 170 return error; 171 } 172 173 void gfs2_set_inode_flags(struct inode *inode) 174 { 175 struct gfs2_inode *ip = GFS2_I(inode); 176 unsigned int flags = inode->i_flags; 177 178 flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC); 179 if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode)) 180 flags |= S_NOSEC; 181 if (ip->i_diskflags & GFS2_DIF_IMMUTABLE) 182 flags |= S_IMMUTABLE; 183 if (ip->i_diskflags & GFS2_DIF_APPENDONLY) 184 flags |= S_APPEND; 185 if (ip->i_diskflags & GFS2_DIF_NOATIME) 186 flags |= S_NOATIME; 187 if (ip->i_diskflags & GFS2_DIF_SYNC) 188 flags |= S_SYNC; 189 inode->i_flags = flags; 190 } 191 192 /* Flags that can be set by user space */ 193 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA| \ 194 GFS2_DIF_IMMUTABLE| \ 195 GFS2_DIF_APPENDONLY| \ 196 GFS2_DIF_NOATIME| \ 197 GFS2_DIF_SYNC| \ 198 GFS2_DIF_TOPDIR| \ 199 GFS2_DIF_INHERIT_JDATA) 200 201 /** 202 * do_gfs2_set_flags - set flags on an inode 203 * @filp: file pointer 204 * @reqflags: The flags to set 205 * @mask: Indicates which flags are valid 206 * 207 */ 208 static int do_gfs2_set_flags(struct file *filp, u32 reqflags, u32 mask) 209 { 210 struct inode *inode = file_inode(filp); 211 struct gfs2_inode *ip = GFS2_I(inode); 212 struct gfs2_sbd *sdp = GFS2_SB(inode); 213 struct buffer_head *bh; 214 struct gfs2_holder gh; 215 int error; 216 u32 new_flags, flags; 217 218 error = mnt_want_write_file(filp); 219 if (error) 220 return error; 221 222 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 223 if (error) 224 goto out_drop_write; 225 226 error = -EACCES; 227 if (!inode_owner_or_capable(inode)) 228 goto out; 229 230 error = 0; 231 flags = ip->i_diskflags; 232 new_flags = (flags & ~mask) | (reqflags & mask); 233 if ((new_flags ^ flags) == 0) 234 goto out; 235 236 error = -EPERM; 237 if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE)) 238 goto out; 239 if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY)) 240 goto out; 241 if (((new_flags ^ flags) & GFS2_DIF_IMMUTABLE) && 242 !capable(CAP_LINUX_IMMUTABLE)) 243 goto out; 244 if (!IS_IMMUTABLE(inode)) { 245 error = gfs2_permission(inode, MAY_WRITE); 246 if (error) 247 goto out; 248 } 249 if ((flags ^ new_flags) & GFS2_DIF_JDATA) { 250 if (new_flags & GFS2_DIF_JDATA) 251 gfs2_log_flush(sdp, ip->i_gl, 252 GFS2_LOG_HEAD_FLUSH_NORMAL | 253 GFS2_LFC_SET_FLAGS); 254 error = filemap_fdatawrite(inode->i_mapping); 255 if (error) 256 goto out; 257 error = filemap_fdatawait(inode->i_mapping); 258 if (error) 259 goto out; 260 if (new_flags & GFS2_DIF_JDATA) 261 gfs2_ordered_del_inode(ip); 262 } 263 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 264 if (error) 265 goto out; 266 error = gfs2_meta_inode_buffer(ip, &bh); 267 if (error) 268 goto out_trans_end; 269 inode->i_ctime = current_time(inode); 270 gfs2_trans_add_meta(ip->i_gl, bh); 271 ip->i_diskflags = new_flags; 272 gfs2_dinode_out(ip, bh->b_data); 273 brelse(bh); 274 gfs2_set_inode_flags(inode); 275 gfs2_set_aops(inode); 276 out_trans_end: 277 gfs2_trans_end(sdp); 278 out: 279 gfs2_glock_dq_uninit(&gh); 280 out_drop_write: 281 mnt_drop_write_file(filp); 282 return error; 283 } 284 285 static int gfs2_set_flags(struct file *filp, u32 __user *ptr) 286 { 287 struct inode *inode = file_inode(filp); 288 u32 fsflags, gfsflags = 0; 289 u32 mask; 290 int i; 291 292 if (get_user(fsflags, ptr)) 293 return -EFAULT; 294 295 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) { 296 if (fsflags & fsflag_gfs2flag[i].fsflag) { 297 fsflags &= ~fsflag_gfs2flag[i].fsflag; 298 gfsflags |= fsflag_gfs2flag[i].gfsflag; 299 } 300 } 301 if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET) 302 return -EINVAL; 303 304 mask = GFS2_FLAGS_USER_SET; 305 if (S_ISDIR(inode->i_mode)) { 306 mask &= ~GFS2_DIF_JDATA; 307 } else { 308 /* The GFS2_DIF_TOPDIR flag is only valid for directories. */ 309 if (gfsflags & GFS2_DIF_TOPDIR) 310 return -EINVAL; 311 mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA); 312 } 313 314 return do_gfs2_set_flags(filp, gfsflags, mask); 315 } 316 317 static int gfs2_getlabel(struct file *filp, char __user *label) 318 { 319 struct inode *inode = file_inode(filp); 320 struct gfs2_sbd *sdp = GFS2_SB(inode); 321 322 if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN)) 323 return -EFAULT; 324 325 return 0; 326 } 327 328 static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 329 { 330 switch(cmd) { 331 case FS_IOC_GETFLAGS: 332 return gfs2_get_flags(filp, (u32 __user *)arg); 333 case FS_IOC_SETFLAGS: 334 return gfs2_set_flags(filp, (u32 __user *)arg); 335 case FITRIM: 336 return gfs2_fitrim(filp, (void __user *)arg); 337 case FS_IOC_GETFSLABEL: 338 return gfs2_getlabel(filp, (char __user *)arg); 339 } 340 341 return -ENOTTY; 342 } 343 344 /** 345 * gfs2_size_hint - Give a hint to the size of a write request 346 * @filep: The struct file 347 * @offset: The file offset of the write 348 * @size: The length of the write 349 * 350 * When we are about to do a write, this function records the total 351 * write size in order to provide a suitable hint to the lower layers 352 * about how many blocks will be required. 353 * 354 */ 355 356 static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size) 357 { 358 struct inode *inode = file_inode(filep); 359 struct gfs2_sbd *sdp = GFS2_SB(inode); 360 struct gfs2_inode *ip = GFS2_I(inode); 361 size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift; 362 int hint = min_t(size_t, INT_MAX, blks); 363 364 if (hint > atomic_read(&ip->i_sizehint)) 365 atomic_set(&ip->i_sizehint, hint); 366 } 367 368 /** 369 * gfs2_allocate_page_backing - Use bmap to allocate blocks 370 * @page: The (locked) page to allocate backing for 371 * 372 * We try to allocate all the blocks required for the page in 373 * one go. This might fail for various reasons, so we keep 374 * trying until all the blocks to back this page are allocated. 375 * If some of the blocks are already allocated, thats ok too. 376 */ 377 378 static int gfs2_allocate_page_backing(struct page *page) 379 { 380 struct inode *inode = page->mapping->host; 381 struct buffer_head bh; 382 unsigned long size = PAGE_SIZE; 383 u64 lblock = page->index << (PAGE_SHIFT - inode->i_blkbits); 384 385 do { 386 bh.b_state = 0; 387 bh.b_size = size; 388 gfs2_block_map(inode, lblock, &bh, 1); 389 if (!buffer_mapped(&bh)) 390 return -EIO; 391 size -= bh.b_size; 392 lblock += (bh.b_size >> inode->i_blkbits); 393 } while(size > 0); 394 return 0; 395 } 396 397 /** 398 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable 399 * @vma: The virtual memory area 400 * @vmf: The virtual memory fault containing the page to become writable 401 * 402 * When the page becomes writable, we need to ensure that we have 403 * blocks allocated on disk to back that page. 404 */ 405 406 static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf) 407 { 408 struct page *page = vmf->page; 409 struct inode *inode = file_inode(vmf->vma->vm_file); 410 struct gfs2_inode *ip = GFS2_I(inode); 411 struct gfs2_sbd *sdp = GFS2_SB(inode); 412 struct gfs2_alloc_parms ap = { .aflags = 0, }; 413 unsigned long last_index; 414 u64 pos = page->index << PAGE_SHIFT; 415 unsigned int data_blocks, ind_blocks, rblocks; 416 struct gfs2_holder gh; 417 loff_t size; 418 int ret; 419 420 sb_start_pagefault(inode->i_sb); 421 422 ret = gfs2_rsqa_alloc(ip); 423 if (ret) 424 goto out; 425 426 gfs2_size_hint(vmf->vma->vm_file, pos, PAGE_SIZE); 427 428 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 429 ret = gfs2_glock_nq(&gh); 430 if (ret) 431 goto out_uninit; 432 433 /* Update file times before taking page lock */ 434 file_update_time(vmf->vma->vm_file); 435 436 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags); 437 set_bit(GIF_SW_PAGED, &ip->i_flags); 438 439 if (!gfs2_write_alloc_required(ip, pos, PAGE_SIZE)) { 440 lock_page(page); 441 if (!PageUptodate(page) || page->mapping != inode->i_mapping) { 442 ret = -EAGAIN; 443 unlock_page(page); 444 } 445 goto out_unlock; 446 } 447 448 ret = gfs2_rindex_update(sdp); 449 if (ret) 450 goto out_unlock; 451 452 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks); 453 ap.target = data_blocks + ind_blocks; 454 ret = gfs2_quota_lock_check(ip, &ap); 455 if (ret) 456 goto out_unlock; 457 ret = gfs2_inplace_reserve(ip, &ap); 458 if (ret) 459 goto out_quota_unlock; 460 461 rblocks = RES_DINODE + ind_blocks; 462 if (gfs2_is_jdata(ip)) 463 rblocks += data_blocks ? data_blocks : 1; 464 if (ind_blocks || data_blocks) { 465 rblocks += RES_STATFS + RES_QUOTA; 466 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 467 } 468 ret = gfs2_trans_begin(sdp, rblocks, 0); 469 if (ret) 470 goto out_trans_fail; 471 472 lock_page(page); 473 ret = -EINVAL; 474 size = i_size_read(inode); 475 last_index = (size - 1) >> PAGE_SHIFT; 476 /* Check page index against inode size */ 477 if (size == 0 || (page->index > last_index)) 478 goto out_trans_end; 479 480 ret = -EAGAIN; 481 /* If truncated, we must retry the operation, we may have raced 482 * with the glock demotion code. 483 */ 484 if (!PageUptodate(page) || page->mapping != inode->i_mapping) 485 goto out_trans_end; 486 487 /* Unstuff, if required, and allocate backing blocks for page */ 488 ret = 0; 489 if (gfs2_is_stuffed(ip)) 490 ret = gfs2_unstuff_dinode(ip, page); 491 if (ret == 0) 492 ret = gfs2_allocate_page_backing(page); 493 494 out_trans_end: 495 if (ret) 496 unlock_page(page); 497 gfs2_trans_end(sdp); 498 out_trans_fail: 499 gfs2_inplace_release(ip); 500 out_quota_unlock: 501 gfs2_quota_unlock(ip); 502 out_unlock: 503 gfs2_glock_dq(&gh); 504 out_uninit: 505 gfs2_holder_uninit(&gh); 506 if (ret == 0) { 507 set_page_dirty(page); 508 wait_for_stable_page(page); 509 } 510 out: 511 sb_end_pagefault(inode->i_sb); 512 return block_page_mkwrite_return(ret); 513 } 514 515 static const struct vm_operations_struct gfs2_vm_ops = { 516 .fault = filemap_fault, 517 .map_pages = filemap_map_pages, 518 .page_mkwrite = gfs2_page_mkwrite, 519 }; 520 521 /** 522 * gfs2_mmap - 523 * @file: The file to map 524 * @vma: The VMA which described the mapping 525 * 526 * There is no need to get a lock here unless we should be updating 527 * atime. We ignore any locking errors since the only consequence is 528 * a missed atime update (which will just be deferred until later). 529 * 530 * Returns: 0 531 */ 532 533 static int gfs2_mmap(struct file *file, struct vm_area_struct *vma) 534 { 535 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 536 537 if (!(file->f_flags & O_NOATIME) && 538 !IS_NOATIME(&ip->i_inode)) { 539 struct gfs2_holder i_gh; 540 int error; 541 542 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 543 &i_gh); 544 if (error) 545 return error; 546 /* grab lock to update inode */ 547 gfs2_glock_dq_uninit(&i_gh); 548 file_accessed(file); 549 } 550 vma->vm_ops = &gfs2_vm_ops; 551 552 return 0; 553 } 554 555 /** 556 * gfs2_open_common - This is common to open and atomic_open 557 * @inode: The inode being opened 558 * @file: The file being opened 559 * 560 * This maybe called under a glock or not depending upon how it has 561 * been called. We must always be called under a glock for regular 562 * files, however. For other file types, it does not matter whether 563 * we hold the glock or not. 564 * 565 * Returns: Error code or 0 for success 566 */ 567 568 int gfs2_open_common(struct inode *inode, struct file *file) 569 { 570 struct gfs2_file *fp; 571 int ret; 572 573 if (S_ISREG(inode->i_mode)) { 574 ret = generic_file_open(inode, file); 575 if (ret) 576 return ret; 577 } 578 579 fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS); 580 if (!fp) 581 return -ENOMEM; 582 583 mutex_init(&fp->f_fl_mutex); 584 585 gfs2_assert_warn(GFS2_SB(inode), !file->private_data); 586 file->private_data = fp; 587 return 0; 588 } 589 590 /** 591 * gfs2_open - open a file 592 * @inode: the inode to open 593 * @file: the struct file for this opening 594 * 595 * After atomic_open, this function is only used for opening files 596 * which are already cached. We must still get the glock for regular 597 * files to ensure that we have the file size uptodate for the large 598 * file check which is in the common code. That is only an issue for 599 * regular files though. 600 * 601 * Returns: errno 602 */ 603 604 static int gfs2_open(struct inode *inode, struct file *file) 605 { 606 struct gfs2_inode *ip = GFS2_I(inode); 607 struct gfs2_holder i_gh; 608 int error; 609 bool need_unlock = false; 610 611 if (S_ISREG(ip->i_inode.i_mode)) { 612 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 613 &i_gh); 614 if (error) 615 return error; 616 need_unlock = true; 617 } 618 619 error = gfs2_open_common(inode, file); 620 621 if (need_unlock) 622 gfs2_glock_dq_uninit(&i_gh); 623 624 return error; 625 } 626 627 /** 628 * gfs2_release - called to close a struct file 629 * @inode: the inode the struct file belongs to 630 * @file: the struct file being closed 631 * 632 * Returns: errno 633 */ 634 635 static int gfs2_release(struct inode *inode, struct file *file) 636 { 637 struct gfs2_inode *ip = GFS2_I(inode); 638 639 kfree(file->private_data); 640 file->private_data = NULL; 641 642 if (!(file->f_mode & FMODE_WRITE)) 643 return 0; 644 645 gfs2_rsqa_delete(ip, &inode->i_writecount); 646 return 0; 647 } 648 649 /** 650 * gfs2_fsync - sync the dirty data for a file (across the cluster) 651 * @file: the file that points to the dentry 652 * @start: the start position in the file to sync 653 * @end: the end position in the file to sync 654 * @datasync: set if we can ignore timestamp changes 655 * 656 * We split the data flushing here so that we don't wait for the data 657 * until after we've also sent the metadata to disk. Note that for 658 * data=ordered, we will write & wait for the data at the log flush 659 * stage anyway, so this is unlikely to make much of a difference 660 * except in the data=writeback case. 661 * 662 * If the fdatawrite fails due to any reason except -EIO, we will 663 * continue the remainder of the fsync, although we'll still report 664 * the error at the end. This is to match filemap_write_and_wait_range() 665 * behaviour. 666 * 667 * Returns: errno 668 */ 669 670 static int gfs2_fsync(struct file *file, loff_t start, loff_t end, 671 int datasync) 672 { 673 struct address_space *mapping = file->f_mapping; 674 struct inode *inode = mapping->host; 675 int sync_state = inode->i_state & I_DIRTY_ALL; 676 struct gfs2_inode *ip = GFS2_I(inode); 677 int ret = 0, ret1 = 0; 678 679 if (mapping->nrpages) { 680 ret1 = filemap_fdatawrite_range(mapping, start, end); 681 if (ret1 == -EIO) 682 return ret1; 683 } 684 685 if (!gfs2_is_jdata(ip)) 686 sync_state &= ~I_DIRTY_PAGES; 687 if (datasync) 688 sync_state &= ~(I_DIRTY_SYNC | I_DIRTY_TIME); 689 690 if (sync_state) { 691 ret = sync_inode_metadata(inode, 1); 692 if (ret) 693 return ret; 694 if (gfs2_is_jdata(ip)) 695 ret = file_write_and_wait(file); 696 if (ret) 697 return ret; 698 gfs2_ail_flush(ip->i_gl, 1); 699 } 700 701 if (mapping->nrpages) 702 ret = file_fdatawait_range(file, start, end); 703 704 return ret ? ret : ret1; 705 } 706 707 static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to) 708 { 709 struct file *file = iocb->ki_filp; 710 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 711 size_t count = iov_iter_count(to); 712 struct gfs2_holder gh; 713 ssize_t ret; 714 715 if (!count) 716 return 0; /* skip atime */ 717 718 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh); 719 ret = gfs2_glock_nq(&gh); 720 if (ret) 721 goto out_uninit; 722 723 ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL); 724 725 gfs2_glock_dq(&gh); 726 out_uninit: 727 gfs2_holder_uninit(&gh); 728 return ret; 729 } 730 731 static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 732 { 733 struct file *file = iocb->ki_filp; 734 struct inode *inode = file->f_mapping->host; 735 struct gfs2_inode *ip = GFS2_I(inode); 736 size_t len = iov_iter_count(from); 737 loff_t offset = iocb->ki_pos; 738 struct gfs2_holder gh; 739 ssize_t ret; 740 741 /* 742 * Deferred lock, even if its a write, since we do no allocation on 743 * this path. All we need to change is the atime, and this lock mode 744 * ensures that other nodes have flushed their buffered read caches 745 * (i.e. their page cache entries for this inode). We do not, 746 * unfortunately, have the option of only flushing a range like the 747 * VFS does. 748 */ 749 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh); 750 ret = gfs2_glock_nq(&gh); 751 if (ret) 752 goto out_uninit; 753 754 /* Silently fall back to buffered I/O when writing beyond EOF */ 755 if (offset + len > i_size_read(&ip->i_inode)) 756 goto out; 757 758 ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL); 759 760 out: 761 gfs2_glock_dq(&gh); 762 out_uninit: 763 gfs2_holder_uninit(&gh); 764 return ret; 765 } 766 767 static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 768 { 769 ssize_t ret; 770 771 if (iocb->ki_flags & IOCB_DIRECT) { 772 ret = gfs2_file_direct_read(iocb, to); 773 if (likely(ret != -ENOTBLK)) 774 return ret; 775 iocb->ki_flags &= ~IOCB_DIRECT; 776 } 777 return generic_file_read_iter(iocb, to); 778 } 779 780 /** 781 * gfs2_file_write_iter - Perform a write to a file 782 * @iocb: The io context 783 * @from: The data to write 784 * 785 * We have to do a lock/unlock here to refresh the inode size for 786 * O_APPEND writes, otherwise we can land up writing at the wrong 787 * offset. There is still a race, but provided the app is using its 788 * own file locking, this will make O_APPEND work as expected. 789 * 790 */ 791 792 static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 793 { 794 struct file *file = iocb->ki_filp; 795 struct inode *inode = file_inode(file); 796 struct gfs2_inode *ip = GFS2_I(inode); 797 ssize_t written = 0, ret; 798 799 ret = gfs2_rsqa_alloc(ip); 800 if (ret) 801 return ret; 802 803 gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from)); 804 805 if (iocb->ki_flags & IOCB_APPEND) { 806 struct gfs2_holder gh; 807 808 ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 809 if (ret) 810 return ret; 811 gfs2_glock_dq_uninit(&gh); 812 } 813 814 inode_lock(inode); 815 ret = generic_write_checks(iocb, from); 816 if (ret <= 0) 817 goto out; 818 819 /* We can write back this queue in page reclaim */ 820 current->backing_dev_info = inode_to_bdi(inode); 821 822 ret = file_remove_privs(file); 823 if (ret) 824 goto out2; 825 826 ret = file_update_time(file); 827 if (ret) 828 goto out2; 829 830 if (iocb->ki_flags & IOCB_DIRECT) { 831 struct address_space *mapping = file->f_mapping; 832 loff_t pos, endbyte; 833 ssize_t buffered; 834 835 written = gfs2_file_direct_write(iocb, from); 836 if (written < 0 || !iov_iter_count(from)) 837 goto out2; 838 839 ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops); 840 if (unlikely(ret < 0)) 841 goto out2; 842 buffered = ret; 843 844 /* 845 * We need to ensure that the page cache pages are written to 846 * disk and invalidated to preserve the expected O_DIRECT 847 * semantics. 848 */ 849 pos = iocb->ki_pos; 850 endbyte = pos + buffered - 1; 851 ret = filemap_write_and_wait_range(mapping, pos, endbyte); 852 if (!ret) { 853 iocb->ki_pos += buffered; 854 written += buffered; 855 invalidate_mapping_pages(mapping, 856 pos >> PAGE_SHIFT, 857 endbyte >> PAGE_SHIFT); 858 } else { 859 /* 860 * We don't know how much we wrote, so just return 861 * the number of bytes which were direct-written 862 */ 863 } 864 } else { 865 ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops); 866 if (likely(ret > 0)) 867 iocb->ki_pos += ret; 868 } 869 870 out2: 871 current->backing_dev_info = NULL; 872 out: 873 inode_unlock(inode); 874 if (likely(ret > 0)) { 875 /* Handle various SYNC-type writes */ 876 ret = generic_write_sync(iocb, ret); 877 } 878 return written ? written : ret; 879 } 880 881 static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len, 882 int mode) 883 { 884 struct super_block *sb = inode->i_sb; 885 struct gfs2_inode *ip = GFS2_I(inode); 886 loff_t end = offset + len; 887 struct buffer_head *dibh; 888 int error; 889 890 error = gfs2_meta_inode_buffer(ip, &dibh); 891 if (unlikely(error)) 892 return error; 893 894 gfs2_trans_add_meta(ip->i_gl, dibh); 895 896 if (gfs2_is_stuffed(ip)) { 897 error = gfs2_unstuff_dinode(ip, NULL); 898 if (unlikely(error)) 899 goto out; 900 } 901 902 while (offset < end) { 903 struct iomap iomap = { }; 904 905 error = gfs2_iomap_get_alloc(inode, offset, end - offset, 906 &iomap); 907 if (error) 908 goto out; 909 offset = iomap.offset + iomap.length; 910 if (!(iomap.flags & IOMAP_F_NEW)) 911 continue; 912 error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits, 913 iomap.length >> inode->i_blkbits, 914 GFP_NOFS); 915 if (error) { 916 fs_err(GFS2_SB(inode), "Failed to zero data buffers\n"); 917 goto out; 918 } 919 } 920 out: 921 brelse(dibh); 922 return error; 923 } 924 /** 925 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of 926 * blocks, determine how many bytes can be written. 927 * @ip: The inode in question. 928 * @len: Max cap of bytes. What we return in *len must be <= this. 929 * @data_blocks: Compute and return the number of data blocks needed 930 * @ind_blocks: Compute and return the number of indirect blocks needed 931 * @max_blocks: The total blocks available to work with. 932 * 933 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in. 934 */ 935 static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len, 936 unsigned int *data_blocks, unsigned int *ind_blocks, 937 unsigned int max_blocks) 938 { 939 loff_t max = *len; 940 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 941 unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1); 942 943 for (tmp = max_data; tmp > sdp->sd_diptrs;) { 944 tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs); 945 max_data -= tmp; 946 } 947 948 *data_blocks = max_data; 949 *ind_blocks = max_blocks - max_data; 950 *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift; 951 if (*len > max) { 952 *len = max; 953 gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks); 954 } 955 } 956 957 static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 958 { 959 struct inode *inode = file_inode(file); 960 struct gfs2_sbd *sdp = GFS2_SB(inode); 961 struct gfs2_inode *ip = GFS2_I(inode); 962 struct gfs2_alloc_parms ap = { .aflags = 0, }; 963 unsigned int data_blocks = 0, ind_blocks = 0, rblocks; 964 loff_t bytes, max_bytes, max_blks; 965 int error; 966 const loff_t pos = offset; 967 const loff_t count = len; 968 loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1); 969 loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift; 970 loff_t max_chunk_size = UINT_MAX & bsize_mask; 971 972 next = (next + 1) << sdp->sd_sb.sb_bsize_shift; 973 974 offset &= bsize_mask; 975 976 len = next - offset; 977 bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2; 978 if (!bytes) 979 bytes = UINT_MAX; 980 bytes &= bsize_mask; 981 if (bytes == 0) 982 bytes = sdp->sd_sb.sb_bsize; 983 984 gfs2_size_hint(file, offset, len); 985 986 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks); 987 ap.min_target = data_blocks + ind_blocks; 988 989 while (len > 0) { 990 if (len < bytes) 991 bytes = len; 992 if (!gfs2_write_alloc_required(ip, offset, bytes)) { 993 len -= bytes; 994 offset += bytes; 995 continue; 996 } 997 998 /* We need to determine how many bytes we can actually 999 * fallocate without exceeding quota or going over the 1000 * end of the fs. We start off optimistically by assuming 1001 * we can write max_bytes */ 1002 max_bytes = (len > max_chunk_size) ? max_chunk_size : len; 1003 1004 /* Since max_bytes is most likely a theoretical max, we 1005 * calculate a more realistic 'bytes' to serve as a good 1006 * starting point for the number of bytes we may be able 1007 * to write */ 1008 gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks); 1009 ap.target = data_blocks + ind_blocks; 1010 1011 error = gfs2_quota_lock_check(ip, &ap); 1012 if (error) 1013 return error; 1014 /* ap.allowed tells us how many blocks quota will allow 1015 * us to write. Check if this reduces max_blks */ 1016 max_blks = UINT_MAX; 1017 if (ap.allowed) 1018 max_blks = ap.allowed; 1019 1020 error = gfs2_inplace_reserve(ip, &ap); 1021 if (error) 1022 goto out_qunlock; 1023 1024 /* check if the selected rgrp limits our max_blks further */ 1025 if (ap.allowed && ap.allowed < max_blks) 1026 max_blks = ap.allowed; 1027 1028 /* Almost done. Calculate bytes that can be written using 1029 * max_blks. We also recompute max_bytes, data_blocks and 1030 * ind_blocks */ 1031 calc_max_reserv(ip, &max_bytes, &data_blocks, 1032 &ind_blocks, max_blks); 1033 1034 rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA + 1035 RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks); 1036 if (gfs2_is_jdata(ip)) 1037 rblocks += data_blocks ? data_blocks : 1; 1038 1039 error = gfs2_trans_begin(sdp, rblocks, 1040 PAGE_SIZE/sdp->sd_sb.sb_bsize); 1041 if (error) 1042 goto out_trans_fail; 1043 1044 error = fallocate_chunk(inode, offset, max_bytes, mode); 1045 gfs2_trans_end(sdp); 1046 1047 if (error) 1048 goto out_trans_fail; 1049 1050 len -= max_bytes; 1051 offset += max_bytes; 1052 gfs2_inplace_release(ip); 1053 gfs2_quota_unlock(ip); 1054 } 1055 1056 if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size) { 1057 i_size_write(inode, pos + count); 1058 file_update_time(file); 1059 mark_inode_dirty(inode); 1060 } 1061 1062 if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host)) 1063 return vfs_fsync_range(file, pos, pos + count - 1, 1064 (file->f_flags & __O_SYNC) ? 0 : 1); 1065 return 0; 1066 1067 out_trans_fail: 1068 gfs2_inplace_release(ip); 1069 out_qunlock: 1070 gfs2_quota_unlock(ip); 1071 return error; 1072 } 1073 1074 static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 1075 { 1076 struct inode *inode = file_inode(file); 1077 struct gfs2_sbd *sdp = GFS2_SB(inode); 1078 struct gfs2_inode *ip = GFS2_I(inode); 1079 struct gfs2_holder gh; 1080 int ret; 1081 1082 if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE)) 1083 return -EOPNOTSUPP; 1084 /* fallocate is needed by gfs2_grow to reserve space in the rindex */ 1085 if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex) 1086 return -EOPNOTSUPP; 1087 1088 inode_lock(inode); 1089 1090 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 1091 ret = gfs2_glock_nq(&gh); 1092 if (ret) 1093 goto out_uninit; 1094 1095 if (!(mode & FALLOC_FL_KEEP_SIZE) && 1096 (offset + len) > inode->i_size) { 1097 ret = inode_newsize_ok(inode, offset + len); 1098 if (ret) 1099 goto out_unlock; 1100 } 1101 1102 ret = get_write_access(inode); 1103 if (ret) 1104 goto out_unlock; 1105 1106 if (mode & FALLOC_FL_PUNCH_HOLE) { 1107 ret = __gfs2_punch_hole(file, offset, len); 1108 } else { 1109 ret = gfs2_rsqa_alloc(ip); 1110 if (ret) 1111 goto out_putw; 1112 1113 ret = __gfs2_fallocate(file, mode, offset, len); 1114 1115 if (ret) 1116 gfs2_rs_deltree(&ip->i_res); 1117 } 1118 1119 out_putw: 1120 put_write_access(inode); 1121 out_unlock: 1122 gfs2_glock_dq(&gh); 1123 out_uninit: 1124 gfs2_holder_uninit(&gh); 1125 inode_unlock(inode); 1126 return ret; 1127 } 1128 1129 static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe, 1130 struct file *out, loff_t *ppos, 1131 size_t len, unsigned int flags) 1132 { 1133 int error; 1134 struct gfs2_inode *ip = GFS2_I(out->f_mapping->host); 1135 1136 error = gfs2_rsqa_alloc(ip); 1137 if (error) 1138 return (ssize_t)error; 1139 1140 gfs2_size_hint(out, *ppos, len); 1141 1142 return iter_file_splice_write(pipe, out, ppos, len, flags); 1143 } 1144 1145 #ifdef CONFIG_GFS2_FS_LOCKING_DLM 1146 1147 /** 1148 * gfs2_lock - acquire/release a posix lock on a file 1149 * @file: the file pointer 1150 * @cmd: either modify or retrieve lock state, possibly wait 1151 * @fl: type and range of lock 1152 * 1153 * Returns: errno 1154 */ 1155 1156 static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl) 1157 { 1158 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 1159 struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host); 1160 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1161 1162 if (!(fl->fl_flags & FL_POSIX)) 1163 return -ENOLCK; 1164 if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK) 1165 return -ENOLCK; 1166 1167 if (cmd == F_CANCELLK) { 1168 /* Hack: */ 1169 cmd = F_SETLK; 1170 fl->fl_type = F_UNLCK; 1171 } 1172 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) { 1173 if (fl->fl_type == F_UNLCK) 1174 locks_lock_file_wait(file, fl); 1175 return -EIO; 1176 } 1177 if (IS_GETLK(cmd)) 1178 return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl); 1179 else if (fl->fl_type == F_UNLCK) 1180 return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl); 1181 else 1182 return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl); 1183 } 1184 1185 static int do_flock(struct file *file, int cmd, struct file_lock *fl) 1186 { 1187 struct gfs2_file *fp = file->private_data; 1188 struct gfs2_holder *fl_gh = &fp->f_fl_gh; 1189 struct gfs2_inode *ip = GFS2_I(file_inode(file)); 1190 struct gfs2_glock *gl; 1191 unsigned int state; 1192 u16 flags; 1193 int error = 0; 1194 int sleeptime; 1195 1196 state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED; 1197 flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT; 1198 1199 mutex_lock(&fp->f_fl_mutex); 1200 1201 if (gfs2_holder_initialized(fl_gh)) { 1202 struct file_lock request; 1203 if (fl_gh->gh_state == state) 1204 goto out; 1205 locks_init_lock(&request); 1206 request.fl_type = F_UNLCK; 1207 request.fl_flags = FL_FLOCK; 1208 locks_lock_file_wait(file, &request); 1209 gfs2_glock_dq(fl_gh); 1210 gfs2_holder_reinit(state, flags, fl_gh); 1211 } else { 1212 error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr, 1213 &gfs2_flock_glops, CREATE, &gl); 1214 if (error) 1215 goto out; 1216 gfs2_holder_init(gl, state, flags, fl_gh); 1217 gfs2_glock_put(gl); 1218 } 1219 for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) { 1220 error = gfs2_glock_nq(fl_gh); 1221 if (error != GLR_TRYFAILED) 1222 break; 1223 fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT; 1224 fl_gh->gh_error = 0; 1225 msleep(sleeptime); 1226 } 1227 if (error) { 1228 gfs2_holder_uninit(fl_gh); 1229 if (error == GLR_TRYFAILED) 1230 error = -EAGAIN; 1231 } else { 1232 error = locks_lock_file_wait(file, fl); 1233 gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error); 1234 } 1235 1236 out: 1237 mutex_unlock(&fp->f_fl_mutex); 1238 return error; 1239 } 1240 1241 static void do_unflock(struct file *file, struct file_lock *fl) 1242 { 1243 struct gfs2_file *fp = file->private_data; 1244 struct gfs2_holder *fl_gh = &fp->f_fl_gh; 1245 1246 mutex_lock(&fp->f_fl_mutex); 1247 locks_lock_file_wait(file, fl); 1248 if (gfs2_holder_initialized(fl_gh)) { 1249 gfs2_glock_dq(fl_gh); 1250 gfs2_holder_uninit(fl_gh); 1251 } 1252 mutex_unlock(&fp->f_fl_mutex); 1253 } 1254 1255 /** 1256 * gfs2_flock - acquire/release a flock lock on a file 1257 * @file: the file pointer 1258 * @cmd: either modify or retrieve lock state, possibly wait 1259 * @fl: type and range of lock 1260 * 1261 * Returns: errno 1262 */ 1263 1264 static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl) 1265 { 1266 if (!(fl->fl_flags & FL_FLOCK)) 1267 return -ENOLCK; 1268 if (fl->fl_type & LOCK_MAND) 1269 return -EOPNOTSUPP; 1270 1271 if (fl->fl_type == F_UNLCK) { 1272 do_unflock(file, fl); 1273 return 0; 1274 } else { 1275 return do_flock(file, cmd, fl); 1276 } 1277 } 1278 1279 const struct file_operations gfs2_file_fops = { 1280 .llseek = gfs2_llseek, 1281 .read_iter = gfs2_file_read_iter, 1282 .write_iter = gfs2_file_write_iter, 1283 .iopoll = iomap_dio_iopoll, 1284 .unlocked_ioctl = gfs2_ioctl, 1285 .mmap = gfs2_mmap, 1286 .open = gfs2_open, 1287 .release = gfs2_release, 1288 .fsync = gfs2_fsync, 1289 .lock = gfs2_lock, 1290 .flock = gfs2_flock, 1291 .splice_read = generic_file_splice_read, 1292 .splice_write = gfs2_file_splice_write, 1293 .setlease = simple_nosetlease, 1294 .fallocate = gfs2_fallocate, 1295 }; 1296 1297 const struct file_operations gfs2_dir_fops = { 1298 .iterate_shared = gfs2_readdir, 1299 .unlocked_ioctl = gfs2_ioctl, 1300 .open = gfs2_open, 1301 .release = gfs2_release, 1302 .fsync = gfs2_fsync, 1303 .lock = gfs2_lock, 1304 .flock = gfs2_flock, 1305 .llseek = default_llseek, 1306 }; 1307 1308 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */ 1309 1310 const struct file_operations gfs2_file_fops_nolock = { 1311 .llseek = gfs2_llseek, 1312 .read_iter = gfs2_file_read_iter, 1313 .write_iter = gfs2_file_write_iter, 1314 .iopoll = iomap_dio_iopoll, 1315 .unlocked_ioctl = gfs2_ioctl, 1316 .mmap = gfs2_mmap, 1317 .open = gfs2_open, 1318 .release = gfs2_release, 1319 .fsync = gfs2_fsync, 1320 .splice_read = generic_file_splice_read, 1321 .splice_write = gfs2_file_splice_write, 1322 .setlease = generic_setlease, 1323 .fallocate = gfs2_fallocate, 1324 }; 1325 1326 const struct file_operations gfs2_dir_fops_nolock = { 1327 .iterate_shared = gfs2_readdir, 1328 .unlocked_ioctl = gfs2_ioctl, 1329 .open = gfs2_open, 1330 .release = gfs2_release, 1331 .fsync = gfs2_fsync, 1332 .llseek = default_llseek, 1333 }; 1334 1335