xref: /openbmc/linux/fs/gfs2/file.c (revision 8c609698)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <linux/completion.h>
13 #include <linux/buffer_head.h>
14 #include <linux/pagemap.h>
15 #include <linux/uio.h>
16 #include <linux/blkdev.h>
17 #include <linux/mm.h>
18 #include <linux/mount.h>
19 #include <linux/fs.h>
20 #include <linux/gfs2_ondisk.h>
21 #include <linux/falloc.h>
22 #include <linux/swap.h>
23 #include <linux/crc32.h>
24 #include <linux/writeback.h>
25 #include <linux/uaccess.h>
26 #include <linux/dlm.h>
27 #include <linux/dlm_plock.h>
28 #include <linux/delay.h>
29 
30 #include "gfs2.h"
31 #include "incore.h"
32 #include "bmap.h"
33 #include "dir.h"
34 #include "glock.h"
35 #include "glops.h"
36 #include "inode.h"
37 #include "log.h"
38 #include "meta_io.h"
39 #include "quota.h"
40 #include "rgrp.h"
41 #include "trans.h"
42 #include "util.h"
43 
44 /**
45  * gfs2_llseek - seek to a location in a file
46  * @file: the file
47  * @offset: the offset
48  * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
49  *
50  * SEEK_END requires the glock for the file because it references the
51  * file's size.
52  *
53  * Returns: The new offset, or errno
54  */
55 
56 static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
57 {
58 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
59 	struct gfs2_holder i_gh;
60 	loff_t error;
61 
62 	switch (whence) {
63 	case SEEK_END:
64 		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
65 					   &i_gh);
66 		if (!error) {
67 			error = generic_file_llseek(file, offset, whence);
68 			gfs2_glock_dq_uninit(&i_gh);
69 		}
70 		break;
71 
72 	case SEEK_DATA:
73 		error = gfs2_seek_data(file, offset);
74 		break;
75 
76 	case SEEK_HOLE:
77 		error = gfs2_seek_hole(file, offset);
78 		break;
79 
80 	case SEEK_CUR:
81 	case SEEK_SET:
82 		/*
83 		 * These don't reference inode->i_size and don't depend on the
84 		 * block mapping, so we don't need the glock.
85 		 */
86 		error = generic_file_llseek(file, offset, whence);
87 		break;
88 	default:
89 		error = -EINVAL;
90 	}
91 
92 	return error;
93 }
94 
95 /**
96  * gfs2_readdir - Iterator for a directory
97  * @file: The directory to read from
98  * @ctx: What to feed directory entries to
99  *
100  * Returns: errno
101  */
102 
103 static int gfs2_readdir(struct file *file, struct dir_context *ctx)
104 {
105 	struct inode *dir = file->f_mapping->host;
106 	struct gfs2_inode *dip = GFS2_I(dir);
107 	struct gfs2_holder d_gh;
108 	int error;
109 
110 	error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
111 	if (error)
112 		return error;
113 
114 	error = gfs2_dir_read(dir, ctx, &file->f_ra);
115 
116 	gfs2_glock_dq_uninit(&d_gh);
117 
118 	return error;
119 }
120 
121 /**
122  * fsflag_gfs2flag
123  *
124  * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
125  * and to GFS2_DIF_JDATA for non-directories.
126  */
127 static struct {
128 	u32 fsflag;
129 	u32 gfsflag;
130 } fsflag_gfs2flag[] = {
131 	{FS_SYNC_FL, GFS2_DIF_SYNC},
132 	{FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
133 	{FS_APPEND_FL, GFS2_DIF_APPENDONLY},
134 	{FS_NOATIME_FL, GFS2_DIF_NOATIME},
135 	{FS_INDEX_FL, GFS2_DIF_EXHASH},
136 	{FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
137 	{FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
138 };
139 
140 static int gfs2_get_flags(struct file *filp, u32 __user *ptr)
141 {
142 	struct inode *inode = file_inode(filp);
143 	struct gfs2_inode *ip = GFS2_I(inode);
144 	struct gfs2_holder gh;
145 	int i, error;
146 	u32 gfsflags, fsflags = 0;
147 
148 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
149 	error = gfs2_glock_nq(&gh);
150 	if (error)
151 		goto out_uninit;
152 
153 	gfsflags = ip->i_diskflags;
154 	if (S_ISDIR(inode->i_mode))
155 		gfsflags &= ~GFS2_DIF_JDATA;
156 	else
157 		gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
158 	for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
159 		if (gfsflags & fsflag_gfs2flag[i].gfsflag)
160 			fsflags |= fsflag_gfs2flag[i].fsflag;
161 
162 	if (put_user(fsflags, ptr))
163 		error = -EFAULT;
164 
165 	gfs2_glock_dq(&gh);
166 out_uninit:
167 	gfs2_holder_uninit(&gh);
168 	return error;
169 }
170 
171 void gfs2_set_inode_flags(struct inode *inode)
172 {
173 	struct gfs2_inode *ip = GFS2_I(inode);
174 	unsigned int flags = inode->i_flags;
175 
176 	flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
177 	if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
178 		flags |= S_NOSEC;
179 	if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
180 		flags |= S_IMMUTABLE;
181 	if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
182 		flags |= S_APPEND;
183 	if (ip->i_diskflags & GFS2_DIF_NOATIME)
184 		flags |= S_NOATIME;
185 	if (ip->i_diskflags & GFS2_DIF_SYNC)
186 		flags |= S_SYNC;
187 	inode->i_flags = flags;
188 }
189 
190 /* Flags that can be set by user space */
191 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA|			\
192 			     GFS2_DIF_IMMUTABLE|		\
193 			     GFS2_DIF_APPENDONLY|		\
194 			     GFS2_DIF_NOATIME|			\
195 			     GFS2_DIF_SYNC|			\
196 			     GFS2_DIF_TOPDIR|			\
197 			     GFS2_DIF_INHERIT_JDATA)
198 
199 /**
200  * do_gfs2_set_flags - set flags on an inode
201  * @filp: file pointer
202  * @reqflags: The flags to set
203  * @mask: Indicates which flags are valid
204  *
205  */
206 static int do_gfs2_set_flags(struct file *filp, u32 reqflags, u32 mask)
207 {
208 	struct inode *inode = file_inode(filp);
209 	struct gfs2_inode *ip = GFS2_I(inode);
210 	struct gfs2_sbd *sdp = GFS2_SB(inode);
211 	struct buffer_head *bh;
212 	struct gfs2_holder gh;
213 	int error;
214 	u32 new_flags, flags;
215 
216 	error = mnt_want_write_file(filp);
217 	if (error)
218 		return error;
219 
220 	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
221 	if (error)
222 		goto out_drop_write;
223 
224 	error = -EACCES;
225 	if (!inode_owner_or_capable(inode))
226 		goto out;
227 
228 	error = 0;
229 	flags = ip->i_diskflags;
230 	new_flags = (flags & ~mask) | (reqflags & mask);
231 	if ((new_flags ^ flags) == 0)
232 		goto out;
233 
234 	error = -EPERM;
235 	if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE))
236 		goto out;
237 	if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY))
238 		goto out;
239 	if (((new_flags ^ flags) & GFS2_DIF_IMMUTABLE) &&
240 	    !capable(CAP_LINUX_IMMUTABLE))
241 		goto out;
242 	if (!IS_IMMUTABLE(inode)) {
243 		error = gfs2_permission(inode, MAY_WRITE);
244 		if (error)
245 			goto out;
246 	}
247 	if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
248 		if (new_flags & GFS2_DIF_JDATA)
249 			gfs2_log_flush(sdp, ip->i_gl, NORMAL_FLUSH);
250 		error = filemap_fdatawrite(inode->i_mapping);
251 		if (error)
252 			goto out;
253 		error = filemap_fdatawait(inode->i_mapping);
254 		if (error)
255 			goto out;
256 		if (new_flags & GFS2_DIF_JDATA)
257 			gfs2_ordered_del_inode(ip);
258 	}
259 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
260 	if (error)
261 		goto out;
262 	error = gfs2_meta_inode_buffer(ip, &bh);
263 	if (error)
264 		goto out_trans_end;
265 	inode->i_ctime = current_time(inode);
266 	gfs2_trans_add_meta(ip->i_gl, bh);
267 	ip->i_diskflags = new_flags;
268 	gfs2_dinode_out(ip, bh->b_data);
269 	brelse(bh);
270 	gfs2_set_inode_flags(inode);
271 	gfs2_set_aops(inode);
272 out_trans_end:
273 	gfs2_trans_end(sdp);
274 out:
275 	gfs2_glock_dq_uninit(&gh);
276 out_drop_write:
277 	mnt_drop_write_file(filp);
278 	return error;
279 }
280 
281 static int gfs2_set_flags(struct file *filp, u32 __user *ptr)
282 {
283 	struct inode *inode = file_inode(filp);
284 	u32 fsflags, gfsflags = 0;
285 	u32 mask;
286 	int i;
287 
288 	if (get_user(fsflags, ptr))
289 		return -EFAULT;
290 
291 	for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
292 		if (fsflags & fsflag_gfs2flag[i].fsflag) {
293 			fsflags &= ~fsflag_gfs2flag[i].fsflag;
294 			gfsflags |= fsflag_gfs2flag[i].gfsflag;
295 		}
296 	}
297 	if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
298 		return -EINVAL;
299 
300 	mask = GFS2_FLAGS_USER_SET;
301 	if (S_ISDIR(inode->i_mode)) {
302 		mask &= ~GFS2_DIF_JDATA;
303 	} else {
304 		/* The GFS2_DIF_TOPDIR flag is only valid for directories. */
305 		if (gfsflags & GFS2_DIF_TOPDIR)
306 			return -EINVAL;
307 		mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
308 	}
309 
310 	return do_gfs2_set_flags(filp, gfsflags, mask);
311 }
312 
313 static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
314 {
315 	switch(cmd) {
316 	case FS_IOC_GETFLAGS:
317 		return gfs2_get_flags(filp, (u32 __user *)arg);
318 	case FS_IOC_SETFLAGS:
319 		return gfs2_set_flags(filp, (u32 __user *)arg);
320 	case FITRIM:
321 		return gfs2_fitrim(filp, (void __user *)arg);
322 	}
323 	return -ENOTTY;
324 }
325 
326 /**
327  * gfs2_size_hint - Give a hint to the size of a write request
328  * @filep: The struct file
329  * @offset: The file offset of the write
330  * @size: The length of the write
331  *
332  * When we are about to do a write, this function records the total
333  * write size in order to provide a suitable hint to the lower layers
334  * about how many blocks will be required.
335  *
336  */
337 
338 static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
339 {
340 	struct inode *inode = file_inode(filep);
341 	struct gfs2_sbd *sdp = GFS2_SB(inode);
342 	struct gfs2_inode *ip = GFS2_I(inode);
343 	size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
344 	int hint = min_t(size_t, INT_MAX, blks);
345 
346 	if (hint > atomic_read(&ip->i_res.rs_sizehint))
347 		atomic_set(&ip->i_res.rs_sizehint, hint);
348 }
349 
350 /**
351  * gfs2_allocate_page_backing - Use bmap to allocate blocks
352  * @page: The (locked) page to allocate backing for
353  *
354  * We try to allocate all the blocks required for the page in
355  * one go. This might fail for various reasons, so we keep
356  * trying until all the blocks to back this page are allocated.
357  * If some of the blocks are already allocated, thats ok too.
358  */
359 
360 static int gfs2_allocate_page_backing(struct page *page)
361 {
362 	struct inode *inode = page->mapping->host;
363 	struct buffer_head bh;
364 	unsigned long size = PAGE_SIZE;
365 	u64 lblock = page->index << (PAGE_SHIFT - inode->i_blkbits);
366 
367 	do {
368 		bh.b_state = 0;
369 		bh.b_size = size;
370 		gfs2_block_map(inode, lblock, &bh, 1);
371 		if (!buffer_mapped(&bh))
372 			return -EIO;
373 		size -= bh.b_size;
374 		lblock += (bh.b_size >> inode->i_blkbits);
375 	} while(size > 0);
376 	return 0;
377 }
378 
379 /**
380  * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
381  * @vma: The virtual memory area
382  * @vmf: The virtual memory fault containing the page to become writable
383  *
384  * When the page becomes writable, we need to ensure that we have
385  * blocks allocated on disk to back that page.
386  */
387 
388 static int gfs2_page_mkwrite(struct vm_fault *vmf)
389 {
390 	struct page *page = vmf->page;
391 	struct inode *inode = file_inode(vmf->vma->vm_file);
392 	struct gfs2_inode *ip = GFS2_I(inode);
393 	struct gfs2_sbd *sdp = GFS2_SB(inode);
394 	struct gfs2_alloc_parms ap = { .aflags = 0, };
395 	unsigned long last_index;
396 	u64 pos = page->index << PAGE_SHIFT;
397 	unsigned int data_blocks, ind_blocks, rblocks;
398 	struct gfs2_holder gh;
399 	loff_t size;
400 	int ret;
401 
402 	sb_start_pagefault(inode->i_sb);
403 
404 	ret = gfs2_rsqa_alloc(ip);
405 	if (ret)
406 		goto out;
407 
408 	gfs2_size_hint(vmf->vma->vm_file, pos, PAGE_SIZE);
409 
410 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
411 	ret = gfs2_glock_nq(&gh);
412 	if (ret)
413 		goto out_uninit;
414 
415 	/* Update file times before taking page lock */
416 	file_update_time(vmf->vma->vm_file);
417 
418 	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
419 	set_bit(GIF_SW_PAGED, &ip->i_flags);
420 
421 	if (!gfs2_write_alloc_required(ip, pos, PAGE_SIZE)) {
422 		lock_page(page);
423 		if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
424 			ret = -EAGAIN;
425 			unlock_page(page);
426 		}
427 		goto out_unlock;
428 	}
429 
430 	ret = gfs2_rindex_update(sdp);
431 	if (ret)
432 		goto out_unlock;
433 
434 	gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
435 	ap.target = data_blocks + ind_blocks;
436 	ret = gfs2_quota_lock_check(ip, &ap);
437 	if (ret)
438 		goto out_unlock;
439 	ret = gfs2_inplace_reserve(ip, &ap);
440 	if (ret)
441 		goto out_quota_unlock;
442 
443 	rblocks = RES_DINODE + ind_blocks;
444 	if (gfs2_is_jdata(ip))
445 		rblocks += data_blocks ? data_blocks : 1;
446 	if (ind_blocks || data_blocks) {
447 		rblocks += RES_STATFS + RES_QUOTA;
448 		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
449 	}
450 	ret = gfs2_trans_begin(sdp, rblocks, 0);
451 	if (ret)
452 		goto out_trans_fail;
453 
454 	lock_page(page);
455 	ret = -EINVAL;
456 	size = i_size_read(inode);
457 	last_index = (size - 1) >> PAGE_SHIFT;
458 	/* Check page index against inode size */
459 	if (size == 0 || (page->index > last_index))
460 		goto out_trans_end;
461 
462 	ret = -EAGAIN;
463 	/* If truncated, we must retry the operation, we may have raced
464 	 * with the glock demotion code.
465 	 */
466 	if (!PageUptodate(page) || page->mapping != inode->i_mapping)
467 		goto out_trans_end;
468 
469 	/* Unstuff, if required, and allocate backing blocks for page */
470 	ret = 0;
471 	if (gfs2_is_stuffed(ip))
472 		ret = gfs2_unstuff_dinode(ip, page);
473 	if (ret == 0)
474 		ret = gfs2_allocate_page_backing(page);
475 
476 out_trans_end:
477 	if (ret)
478 		unlock_page(page);
479 	gfs2_trans_end(sdp);
480 out_trans_fail:
481 	gfs2_inplace_release(ip);
482 out_quota_unlock:
483 	gfs2_quota_unlock(ip);
484 out_unlock:
485 	gfs2_glock_dq(&gh);
486 out_uninit:
487 	gfs2_holder_uninit(&gh);
488 	if (ret == 0) {
489 		set_page_dirty(page);
490 		wait_for_stable_page(page);
491 	}
492 out:
493 	sb_end_pagefault(inode->i_sb);
494 	return block_page_mkwrite_return(ret);
495 }
496 
497 static const struct vm_operations_struct gfs2_vm_ops = {
498 	.fault = filemap_fault,
499 	.map_pages = filemap_map_pages,
500 	.page_mkwrite = gfs2_page_mkwrite,
501 };
502 
503 /**
504  * gfs2_mmap -
505  * @file: The file to map
506  * @vma: The VMA which described the mapping
507  *
508  * There is no need to get a lock here unless we should be updating
509  * atime. We ignore any locking errors since the only consequence is
510  * a missed atime update (which will just be deferred until later).
511  *
512  * Returns: 0
513  */
514 
515 static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
516 {
517 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
518 
519 	if (!(file->f_flags & O_NOATIME) &&
520 	    !IS_NOATIME(&ip->i_inode)) {
521 		struct gfs2_holder i_gh;
522 		int error;
523 
524 		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
525 					   &i_gh);
526 		if (error)
527 			return error;
528 		/* grab lock to update inode */
529 		gfs2_glock_dq_uninit(&i_gh);
530 		file_accessed(file);
531 	}
532 	vma->vm_ops = &gfs2_vm_ops;
533 
534 	return 0;
535 }
536 
537 /**
538  * gfs2_open_common - This is common to open and atomic_open
539  * @inode: The inode being opened
540  * @file: The file being opened
541  *
542  * This maybe called under a glock or not depending upon how it has
543  * been called. We must always be called under a glock for regular
544  * files, however. For other file types, it does not matter whether
545  * we hold the glock or not.
546  *
547  * Returns: Error code or 0 for success
548  */
549 
550 int gfs2_open_common(struct inode *inode, struct file *file)
551 {
552 	struct gfs2_file *fp;
553 	int ret;
554 
555 	if (S_ISREG(inode->i_mode)) {
556 		ret = generic_file_open(inode, file);
557 		if (ret)
558 			return ret;
559 	}
560 
561 	fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
562 	if (!fp)
563 		return -ENOMEM;
564 
565 	mutex_init(&fp->f_fl_mutex);
566 
567 	gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
568 	file->private_data = fp;
569 	return 0;
570 }
571 
572 /**
573  * gfs2_open - open a file
574  * @inode: the inode to open
575  * @file: the struct file for this opening
576  *
577  * After atomic_open, this function is only used for opening files
578  * which are already cached. We must still get the glock for regular
579  * files to ensure that we have the file size uptodate for the large
580  * file check which is in the common code. That is only an issue for
581  * regular files though.
582  *
583  * Returns: errno
584  */
585 
586 static int gfs2_open(struct inode *inode, struct file *file)
587 {
588 	struct gfs2_inode *ip = GFS2_I(inode);
589 	struct gfs2_holder i_gh;
590 	int error;
591 	bool need_unlock = false;
592 
593 	if (S_ISREG(ip->i_inode.i_mode)) {
594 		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
595 					   &i_gh);
596 		if (error)
597 			return error;
598 		need_unlock = true;
599 	}
600 
601 	error = gfs2_open_common(inode, file);
602 
603 	if (need_unlock)
604 		gfs2_glock_dq_uninit(&i_gh);
605 
606 	return error;
607 }
608 
609 /**
610  * gfs2_release - called to close a struct file
611  * @inode: the inode the struct file belongs to
612  * @file: the struct file being closed
613  *
614  * Returns: errno
615  */
616 
617 static int gfs2_release(struct inode *inode, struct file *file)
618 {
619 	struct gfs2_inode *ip = GFS2_I(inode);
620 
621 	kfree(file->private_data);
622 	file->private_data = NULL;
623 
624 	if (!(file->f_mode & FMODE_WRITE))
625 		return 0;
626 
627 	gfs2_rsqa_delete(ip, &inode->i_writecount);
628 	return 0;
629 }
630 
631 /**
632  * gfs2_fsync - sync the dirty data for a file (across the cluster)
633  * @file: the file that points to the dentry
634  * @start: the start position in the file to sync
635  * @end: the end position in the file to sync
636  * @datasync: set if we can ignore timestamp changes
637  *
638  * We split the data flushing here so that we don't wait for the data
639  * until after we've also sent the metadata to disk. Note that for
640  * data=ordered, we will write & wait for the data at the log flush
641  * stage anyway, so this is unlikely to make much of a difference
642  * except in the data=writeback case.
643  *
644  * If the fdatawrite fails due to any reason except -EIO, we will
645  * continue the remainder of the fsync, although we'll still report
646  * the error at the end. This is to match filemap_write_and_wait_range()
647  * behaviour.
648  *
649  * Returns: errno
650  */
651 
652 static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
653 		      int datasync)
654 {
655 	struct address_space *mapping = file->f_mapping;
656 	struct inode *inode = mapping->host;
657 	int sync_state = inode->i_state & I_DIRTY_ALL;
658 	struct gfs2_inode *ip = GFS2_I(inode);
659 	int ret = 0, ret1 = 0;
660 
661 	if (mapping->nrpages) {
662 		ret1 = filemap_fdatawrite_range(mapping, start, end);
663 		if (ret1 == -EIO)
664 			return ret1;
665 	}
666 
667 	if (!gfs2_is_jdata(ip))
668 		sync_state &= ~I_DIRTY_PAGES;
669 	if (datasync)
670 		sync_state &= ~(I_DIRTY_SYNC | I_DIRTY_TIME);
671 
672 	if (sync_state) {
673 		ret = sync_inode_metadata(inode, 1);
674 		if (ret)
675 			return ret;
676 		if (gfs2_is_jdata(ip))
677 			ret = file_write_and_wait(file);
678 		if (ret)
679 			return ret;
680 		gfs2_ail_flush(ip->i_gl, 1);
681 	}
682 
683 	if (mapping->nrpages)
684 		ret = file_fdatawait_range(file, start, end);
685 
686 	return ret ? ret : ret1;
687 }
688 
689 /**
690  * gfs2_file_write_iter - Perform a write to a file
691  * @iocb: The io context
692  * @iov: The data to write
693  * @nr_segs: Number of @iov segments
694  * @pos: The file position
695  *
696  * We have to do a lock/unlock here to refresh the inode size for
697  * O_APPEND writes, otherwise we can land up writing at the wrong
698  * offset. There is still a race, but provided the app is using its
699  * own file locking, this will make O_APPEND work as expected.
700  *
701  */
702 
703 static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
704 {
705 	struct file *file = iocb->ki_filp;
706 	struct gfs2_inode *ip = GFS2_I(file_inode(file));
707 	int ret;
708 
709 	ret = gfs2_rsqa_alloc(ip);
710 	if (ret)
711 		return ret;
712 
713 	gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
714 
715 	if (iocb->ki_flags & IOCB_APPEND) {
716 		struct gfs2_holder gh;
717 
718 		ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
719 		if (ret)
720 			return ret;
721 		gfs2_glock_dq_uninit(&gh);
722 	}
723 
724 	return generic_file_write_iter(iocb, from);
725 }
726 
727 static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
728 			   int mode)
729 {
730 	struct gfs2_inode *ip = GFS2_I(inode);
731 	struct buffer_head *dibh;
732 	int error;
733 	unsigned int nr_blks;
734 	sector_t lblock = offset >> inode->i_blkbits;
735 
736 	error = gfs2_meta_inode_buffer(ip, &dibh);
737 	if (unlikely(error))
738 		return error;
739 
740 	gfs2_trans_add_meta(ip->i_gl, dibh);
741 
742 	if (gfs2_is_stuffed(ip)) {
743 		error = gfs2_unstuff_dinode(ip, NULL);
744 		if (unlikely(error))
745 			goto out;
746 	}
747 
748 	while (len) {
749 		struct buffer_head bh_map = { .b_state = 0, .b_blocknr = 0 };
750 		bh_map.b_size = len;
751 		set_buffer_zeronew(&bh_map);
752 
753 		error = gfs2_block_map(inode, lblock, &bh_map, 1);
754 		if (unlikely(error))
755 			goto out;
756 		len -= bh_map.b_size;
757 		nr_blks = bh_map.b_size >> inode->i_blkbits;
758 		lblock += nr_blks;
759 		if (!buffer_new(&bh_map))
760 			continue;
761 		if (unlikely(!buffer_zeronew(&bh_map))) {
762 			error = -EIO;
763 			goto out;
764 		}
765 	}
766 out:
767 	brelse(dibh);
768 	return error;
769 }
770 /**
771  * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
772  *                     blocks, determine how many bytes can be written.
773  * @ip:          The inode in question.
774  * @len:         Max cap of bytes. What we return in *len must be <= this.
775  * @data_blocks: Compute and return the number of data blocks needed
776  * @ind_blocks:  Compute and return the number of indirect blocks needed
777  * @max_blocks:  The total blocks available to work with.
778  *
779  * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
780  */
781 static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
782 			    unsigned int *data_blocks, unsigned int *ind_blocks,
783 			    unsigned int max_blocks)
784 {
785 	loff_t max = *len;
786 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
787 	unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
788 
789 	for (tmp = max_data; tmp > sdp->sd_diptrs;) {
790 		tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
791 		max_data -= tmp;
792 	}
793 
794 	*data_blocks = max_data;
795 	*ind_blocks = max_blocks - max_data;
796 	*len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
797 	if (*len > max) {
798 		*len = max;
799 		gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
800 	}
801 }
802 
803 static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
804 {
805 	struct inode *inode = file_inode(file);
806 	struct gfs2_sbd *sdp = GFS2_SB(inode);
807 	struct gfs2_inode *ip = GFS2_I(inode);
808 	struct gfs2_alloc_parms ap = { .aflags = 0, };
809 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
810 	loff_t bytes, max_bytes, max_blks = UINT_MAX;
811 	int error;
812 	const loff_t pos = offset;
813 	const loff_t count = len;
814 	loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
815 	loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
816 	loff_t max_chunk_size = UINT_MAX & bsize_mask;
817 
818 	next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
819 
820 	offset &= bsize_mask;
821 
822 	len = next - offset;
823 	bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
824 	if (!bytes)
825 		bytes = UINT_MAX;
826 	bytes &= bsize_mask;
827 	if (bytes == 0)
828 		bytes = sdp->sd_sb.sb_bsize;
829 
830 	gfs2_size_hint(file, offset, len);
831 
832 	gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
833 	ap.min_target = data_blocks + ind_blocks;
834 
835 	while (len > 0) {
836 		if (len < bytes)
837 			bytes = len;
838 		if (!gfs2_write_alloc_required(ip, offset, bytes)) {
839 			len -= bytes;
840 			offset += bytes;
841 			continue;
842 		}
843 
844 		/* We need to determine how many bytes we can actually
845 		 * fallocate without exceeding quota or going over the
846 		 * end of the fs. We start off optimistically by assuming
847 		 * we can write max_bytes */
848 		max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
849 
850 		/* Since max_bytes is most likely a theoretical max, we
851 		 * calculate a more realistic 'bytes' to serve as a good
852 		 * starting point for the number of bytes we may be able
853 		 * to write */
854 		gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
855 		ap.target = data_blocks + ind_blocks;
856 
857 		error = gfs2_quota_lock_check(ip, &ap);
858 		if (error)
859 			return error;
860 		/* ap.allowed tells us how many blocks quota will allow
861 		 * us to write. Check if this reduces max_blks */
862 		if (ap.allowed && ap.allowed < max_blks)
863 			max_blks = ap.allowed;
864 
865 		error = gfs2_inplace_reserve(ip, &ap);
866 		if (error)
867 			goto out_qunlock;
868 
869 		/* check if the selected rgrp limits our max_blks further */
870 		if (ap.allowed && ap.allowed < max_blks)
871 			max_blks = ap.allowed;
872 
873 		/* Almost done. Calculate bytes that can be written using
874 		 * max_blks. We also recompute max_bytes, data_blocks and
875 		 * ind_blocks */
876 		calc_max_reserv(ip, &max_bytes, &data_blocks,
877 				&ind_blocks, max_blks);
878 
879 		rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
880 			  RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
881 		if (gfs2_is_jdata(ip))
882 			rblocks += data_blocks ? data_blocks : 1;
883 
884 		error = gfs2_trans_begin(sdp, rblocks,
885 					 PAGE_SIZE/sdp->sd_sb.sb_bsize);
886 		if (error)
887 			goto out_trans_fail;
888 
889 		error = fallocate_chunk(inode, offset, max_bytes, mode);
890 		gfs2_trans_end(sdp);
891 
892 		if (error)
893 			goto out_trans_fail;
894 
895 		len -= max_bytes;
896 		offset += max_bytes;
897 		gfs2_inplace_release(ip);
898 		gfs2_quota_unlock(ip);
899 	}
900 
901 	if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size) {
902 		i_size_write(inode, pos + count);
903 		file_update_time(file);
904 		mark_inode_dirty(inode);
905 	}
906 
907 	if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
908 		return vfs_fsync_range(file, pos, pos + count - 1,
909 			       (file->f_flags & __O_SYNC) ? 0 : 1);
910 	return 0;
911 
912 out_trans_fail:
913 	gfs2_inplace_release(ip);
914 out_qunlock:
915 	gfs2_quota_unlock(ip);
916 	return error;
917 }
918 
919 static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
920 {
921 	struct inode *inode = file_inode(file);
922 	struct gfs2_sbd *sdp = GFS2_SB(inode);
923 	struct gfs2_inode *ip = GFS2_I(inode);
924 	struct gfs2_holder gh;
925 	int ret;
926 
927 	if (mode & ~FALLOC_FL_KEEP_SIZE)
928 		return -EOPNOTSUPP;
929 	/* fallocate is needed by gfs2_grow to reserve space in the rindex */
930 	if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
931 		return -EOPNOTSUPP;
932 
933 	inode_lock(inode);
934 
935 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
936 	ret = gfs2_glock_nq(&gh);
937 	if (ret)
938 		goto out_uninit;
939 
940 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
941 	    (offset + len) > inode->i_size) {
942 		ret = inode_newsize_ok(inode, offset + len);
943 		if (ret)
944 			goto out_unlock;
945 	}
946 
947 	ret = get_write_access(inode);
948 	if (ret)
949 		goto out_unlock;
950 
951 	ret = gfs2_rsqa_alloc(ip);
952 	if (ret)
953 		goto out_putw;
954 
955 	ret = __gfs2_fallocate(file, mode, offset, len);
956 	if (ret)
957 		gfs2_rs_deltree(&ip->i_res);
958 
959 out_putw:
960 	put_write_access(inode);
961 out_unlock:
962 	gfs2_glock_dq(&gh);
963 out_uninit:
964 	gfs2_holder_uninit(&gh);
965 	inode_unlock(inode);
966 	return ret;
967 }
968 
969 static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
970 				      struct file *out, loff_t *ppos,
971 				      size_t len, unsigned int flags)
972 {
973 	int error;
974 	struct gfs2_inode *ip = GFS2_I(out->f_mapping->host);
975 
976 	error = gfs2_rsqa_alloc(ip);
977 	if (error)
978 		return (ssize_t)error;
979 
980 	gfs2_size_hint(out, *ppos, len);
981 
982 	return iter_file_splice_write(pipe, out, ppos, len, flags);
983 }
984 
985 #ifdef CONFIG_GFS2_FS_LOCKING_DLM
986 
987 /**
988  * gfs2_lock - acquire/release a posix lock on a file
989  * @file: the file pointer
990  * @cmd: either modify or retrieve lock state, possibly wait
991  * @fl: type and range of lock
992  *
993  * Returns: errno
994  */
995 
996 static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
997 {
998 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
999 	struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
1000 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1001 
1002 	if (!(fl->fl_flags & FL_POSIX))
1003 		return -ENOLCK;
1004 	if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK)
1005 		return -ENOLCK;
1006 
1007 	if (cmd == F_CANCELLK) {
1008 		/* Hack: */
1009 		cmd = F_SETLK;
1010 		fl->fl_type = F_UNLCK;
1011 	}
1012 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) {
1013 		if (fl->fl_type == F_UNLCK)
1014 			locks_lock_file_wait(file, fl);
1015 		return -EIO;
1016 	}
1017 	if (IS_GETLK(cmd))
1018 		return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
1019 	else if (fl->fl_type == F_UNLCK)
1020 		return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
1021 	else
1022 		return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
1023 }
1024 
1025 static int do_flock(struct file *file, int cmd, struct file_lock *fl)
1026 {
1027 	struct gfs2_file *fp = file->private_data;
1028 	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1029 	struct gfs2_inode *ip = GFS2_I(file_inode(file));
1030 	struct gfs2_glock *gl;
1031 	unsigned int state;
1032 	u16 flags;
1033 	int error = 0;
1034 	int sleeptime;
1035 
1036 	state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
1037 	flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT;
1038 
1039 	mutex_lock(&fp->f_fl_mutex);
1040 
1041 	if (gfs2_holder_initialized(fl_gh)) {
1042 		if (fl_gh->gh_state == state)
1043 			goto out;
1044 		locks_lock_file_wait(file,
1045 				     &(struct file_lock) {
1046 					     .fl_type = F_UNLCK,
1047 					     .fl_flags = FL_FLOCK
1048 				     });
1049 		gfs2_glock_dq(fl_gh);
1050 		gfs2_holder_reinit(state, flags, fl_gh);
1051 	} else {
1052 		error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1053 				       &gfs2_flock_glops, CREATE, &gl);
1054 		if (error)
1055 			goto out;
1056 		gfs2_holder_init(gl, state, flags, fl_gh);
1057 		gfs2_glock_put(gl);
1058 	}
1059 	for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
1060 		error = gfs2_glock_nq(fl_gh);
1061 		if (error != GLR_TRYFAILED)
1062 			break;
1063 		fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT;
1064 		fl_gh->gh_error = 0;
1065 		msleep(sleeptime);
1066 	}
1067 	if (error) {
1068 		gfs2_holder_uninit(fl_gh);
1069 		if (error == GLR_TRYFAILED)
1070 			error = -EAGAIN;
1071 	} else {
1072 		error = locks_lock_file_wait(file, fl);
1073 		gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
1074 	}
1075 
1076 out:
1077 	mutex_unlock(&fp->f_fl_mutex);
1078 	return error;
1079 }
1080 
1081 static void do_unflock(struct file *file, struct file_lock *fl)
1082 {
1083 	struct gfs2_file *fp = file->private_data;
1084 	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1085 
1086 	mutex_lock(&fp->f_fl_mutex);
1087 	locks_lock_file_wait(file, fl);
1088 	if (gfs2_holder_initialized(fl_gh)) {
1089 		gfs2_glock_dq(fl_gh);
1090 		gfs2_holder_uninit(fl_gh);
1091 	}
1092 	mutex_unlock(&fp->f_fl_mutex);
1093 }
1094 
1095 /**
1096  * gfs2_flock - acquire/release a flock lock on a file
1097  * @file: the file pointer
1098  * @cmd: either modify or retrieve lock state, possibly wait
1099  * @fl: type and range of lock
1100  *
1101  * Returns: errno
1102  */
1103 
1104 static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1105 {
1106 	if (!(fl->fl_flags & FL_FLOCK))
1107 		return -ENOLCK;
1108 	if (fl->fl_type & LOCK_MAND)
1109 		return -EOPNOTSUPP;
1110 
1111 	if (fl->fl_type == F_UNLCK) {
1112 		do_unflock(file, fl);
1113 		return 0;
1114 	} else {
1115 		return do_flock(file, cmd, fl);
1116 	}
1117 }
1118 
1119 const struct file_operations gfs2_file_fops = {
1120 	.llseek		= gfs2_llseek,
1121 	.read_iter	= generic_file_read_iter,
1122 	.write_iter	= gfs2_file_write_iter,
1123 	.unlocked_ioctl	= gfs2_ioctl,
1124 	.mmap		= gfs2_mmap,
1125 	.open		= gfs2_open,
1126 	.release	= gfs2_release,
1127 	.fsync		= gfs2_fsync,
1128 	.lock		= gfs2_lock,
1129 	.flock		= gfs2_flock,
1130 	.splice_read	= generic_file_splice_read,
1131 	.splice_write	= gfs2_file_splice_write,
1132 	.setlease	= simple_nosetlease,
1133 	.fallocate	= gfs2_fallocate,
1134 };
1135 
1136 const struct file_operations gfs2_dir_fops = {
1137 	.iterate_shared	= gfs2_readdir,
1138 	.unlocked_ioctl	= gfs2_ioctl,
1139 	.open		= gfs2_open,
1140 	.release	= gfs2_release,
1141 	.fsync		= gfs2_fsync,
1142 	.lock		= gfs2_lock,
1143 	.flock		= gfs2_flock,
1144 	.llseek		= default_llseek,
1145 };
1146 
1147 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1148 
1149 const struct file_operations gfs2_file_fops_nolock = {
1150 	.llseek		= gfs2_llseek,
1151 	.read_iter	= generic_file_read_iter,
1152 	.write_iter	= gfs2_file_write_iter,
1153 	.unlocked_ioctl	= gfs2_ioctl,
1154 	.mmap		= gfs2_mmap,
1155 	.open		= gfs2_open,
1156 	.release	= gfs2_release,
1157 	.fsync		= gfs2_fsync,
1158 	.splice_read	= generic_file_splice_read,
1159 	.splice_write	= gfs2_file_splice_write,
1160 	.setlease	= generic_setlease,
1161 	.fallocate	= gfs2_fallocate,
1162 };
1163 
1164 const struct file_operations gfs2_dir_fops_nolock = {
1165 	.iterate_shared	= gfs2_readdir,
1166 	.unlocked_ioctl	= gfs2_ioctl,
1167 	.open		= gfs2_open,
1168 	.release	= gfs2_release,
1169 	.fsync		= gfs2_fsync,
1170 	.llseek		= default_llseek,
1171 };
1172 
1173