xref: /openbmc/linux/fs/gfs2/file.c (revision 6d99a79c)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <linux/completion.h>
13 #include <linux/buffer_head.h>
14 #include <linux/pagemap.h>
15 #include <linux/uio.h>
16 #include <linux/blkdev.h>
17 #include <linux/mm.h>
18 #include <linux/mount.h>
19 #include <linux/fs.h>
20 #include <linux/gfs2_ondisk.h>
21 #include <linux/falloc.h>
22 #include <linux/swap.h>
23 #include <linux/crc32.h>
24 #include <linux/writeback.h>
25 #include <linux/uaccess.h>
26 #include <linux/dlm.h>
27 #include <linux/dlm_plock.h>
28 #include <linux/delay.h>
29 #include <linux/backing-dev.h>
30 
31 #include "gfs2.h"
32 #include "incore.h"
33 #include "bmap.h"
34 #include "aops.h"
35 #include "dir.h"
36 #include "glock.h"
37 #include "glops.h"
38 #include "inode.h"
39 #include "log.h"
40 #include "meta_io.h"
41 #include "quota.h"
42 #include "rgrp.h"
43 #include "trans.h"
44 #include "util.h"
45 
46 /**
47  * gfs2_llseek - seek to a location in a file
48  * @file: the file
49  * @offset: the offset
50  * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
51  *
52  * SEEK_END requires the glock for the file because it references the
53  * file's size.
54  *
55  * Returns: The new offset, or errno
56  */
57 
58 static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
59 {
60 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
61 	struct gfs2_holder i_gh;
62 	loff_t error;
63 
64 	switch (whence) {
65 	case SEEK_END:
66 		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
67 					   &i_gh);
68 		if (!error) {
69 			error = generic_file_llseek(file, offset, whence);
70 			gfs2_glock_dq_uninit(&i_gh);
71 		}
72 		break;
73 
74 	case SEEK_DATA:
75 		error = gfs2_seek_data(file, offset);
76 		break;
77 
78 	case SEEK_HOLE:
79 		error = gfs2_seek_hole(file, offset);
80 		break;
81 
82 	case SEEK_CUR:
83 	case SEEK_SET:
84 		/*
85 		 * These don't reference inode->i_size and don't depend on the
86 		 * block mapping, so we don't need the glock.
87 		 */
88 		error = generic_file_llseek(file, offset, whence);
89 		break;
90 	default:
91 		error = -EINVAL;
92 	}
93 
94 	return error;
95 }
96 
97 /**
98  * gfs2_readdir - Iterator for a directory
99  * @file: The directory to read from
100  * @ctx: What to feed directory entries to
101  *
102  * Returns: errno
103  */
104 
105 static int gfs2_readdir(struct file *file, struct dir_context *ctx)
106 {
107 	struct inode *dir = file->f_mapping->host;
108 	struct gfs2_inode *dip = GFS2_I(dir);
109 	struct gfs2_holder d_gh;
110 	int error;
111 
112 	error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
113 	if (error)
114 		return error;
115 
116 	error = gfs2_dir_read(dir, ctx, &file->f_ra);
117 
118 	gfs2_glock_dq_uninit(&d_gh);
119 
120 	return error;
121 }
122 
123 /**
124  * fsflag_gfs2flag
125  *
126  * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
127  * and to GFS2_DIF_JDATA for non-directories.
128  */
129 static struct {
130 	u32 fsflag;
131 	u32 gfsflag;
132 } fsflag_gfs2flag[] = {
133 	{FS_SYNC_FL, GFS2_DIF_SYNC},
134 	{FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
135 	{FS_APPEND_FL, GFS2_DIF_APPENDONLY},
136 	{FS_NOATIME_FL, GFS2_DIF_NOATIME},
137 	{FS_INDEX_FL, GFS2_DIF_EXHASH},
138 	{FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
139 	{FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
140 };
141 
142 static int gfs2_get_flags(struct file *filp, u32 __user *ptr)
143 {
144 	struct inode *inode = file_inode(filp);
145 	struct gfs2_inode *ip = GFS2_I(inode);
146 	struct gfs2_holder gh;
147 	int i, error;
148 	u32 gfsflags, fsflags = 0;
149 
150 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
151 	error = gfs2_glock_nq(&gh);
152 	if (error)
153 		goto out_uninit;
154 
155 	gfsflags = ip->i_diskflags;
156 	if (S_ISDIR(inode->i_mode))
157 		gfsflags &= ~GFS2_DIF_JDATA;
158 	else
159 		gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
160 	for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
161 		if (gfsflags & fsflag_gfs2flag[i].gfsflag)
162 			fsflags |= fsflag_gfs2flag[i].fsflag;
163 
164 	if (put_user(fsflags, ptr))
165 		error = -EFAULT;
166 
167 	gfs2_glock_dq(&gh);
168 out_uninit:
169 	gfs2_holder_uninit(&gh);
170 	return error;
171 }
172 
173 void gfs2_set_inode_flags(struct inode *inode)
174 {
175 	struct gfs2_inode *ip = GFS2_I(inode);
176 	unsigned int flags = inode->i_flags;
177 
178 	flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
179 	if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
180 		flags |= S_NOSEC;
181 	if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
182 		flags |= S_IMMUTABLE;
183 	if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
184 		flags |= S_APPEND;
185 	if (ip->i_diskflags & GFS2_DIF_NOATIME)
186 		flags |= S_NOATIME;
187 	if (ip->i_diskflags & GFS2_DIF_SYNC)
188 		flags |= S_SYNC;
189 	inode->i_flags = flags;
190 }
191 
192 /* Flags that can be set by user space */
193 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA|			\
194 			     GFS2_DIF_IMMUTABLE|		\
195 			     GFS2_DIF_APPENDONLY|		\
196 			     GFS2_DIF_NOATIME|			\
197 			     GFS2_DIF_SYNC|			\
198 			     GFS2_DIF_TOPDIR|			\
199 			     GFS2_DIF_INHERIT_JDATA)
200 
201 /**
202  * do_gfs2_set_flags - set flags on an inode
203  * @filp: file pointer
204  * @reqflags: The flags to set
205  * @mask: Indicates which flags are valid
206  *
207  */
208 static int do_gfs2_set_flags(struct file *filp, u32 reqflags, u32 mask)
209 {
210 	struct inode *inode = file_inode(filp);
211 	struct gfs2_inode *ip = GFS2_I(inode);
212 	struct gfs2_sbd *sdp = GFS2_SB(inode);
213 	struct buffer_head *bh;
214 	struct gfs2_holder gh;
215 	int error;
216 	u32 new_flags, flags;
217 
218 	error = mnt_want_write_file(filp);
219 	if (error)
220 		return error;
221 
222 	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
223 	if (error)
224 		goto out_drop_write;
225 
226 	error = -EACCES;
227 	if (!inode_owner_or_capable(inode))
228 		goto out;
229 
230 	error = 0;
231 	flags = ip->i_diskflags;
232 	new_flags = (flags & ~mask) | (reqflags & mask);
233 	if ((new_flags ^ flags) == 0)
234 		goto out;
235 
236 	error = -EPERM;
237 	if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE))
238 		goto out;
239 	if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY))
240 		goto out;
241 	if (((new_flags ^ flags) & GFS2_DIF_IMMUTABLE) &&
242 	    !capable(CAP_LINUX_IMMUTABLE))
243 		goto out;
244 	if (!IS_IMMUTABLE(inode)) {
245 		error = gfs2_permission(inode, MAY_WRITE);
246 		if (error)
247 			goto out;
248 	}
249 	if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
250 		if (new_flags & GFS2_DIF_JDATA)
251 			gfs2_log_flush(sdp, ip->i_gl,
252 				       GFS2_LOG_HEAD_FLUSH_NORMAL |
253 				       GFS2_LFC_SET_FLAGS);
254 		error = filemap_fdatawrite(inode->i_mapping);
255 		if (error)
256 			goto out;
257 		error = filemap_fdatawait(inode->i_mapping);
258 		if (error)
259 			goto out;
260 		if (new_flags & GFS2_DIF_JDATA)
261 			gfs2_ordered_del_inode(ip);
262 	}
263 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
264 	if (error)
265 		goto out;
266 	error = gfs2_meta_inode_buffer(ip, &bh);
267 	if (error)
268 		goto out_trans_end;
269 	inode->i_ctime = current_time(inode);
270 	gfs2_trans_add_meta(ip->i_gl, bh);
271 	ip->i_diskflags = new_flags;
272 	gfs2_dinode_out(ip, bh->b_data);
273 	brelse(bh);
274 	gfs2_set_inode_flags(inode);
275 	gfs2_set_aops(inode);
276 out_trans_end:
277 	gfs2_trans_end(sdp);
278 out:
279 	gfs2_glock_dq_uninit(&gh);
280 out_drop_write:
281 	mnt_drop_write_file(filp);
282 	return error;
283 }
284 
285 static int gfs2_set_flags(struct file *filp, u32 __user *ptr)
286 {
287 	struct inode *inode = file_inode(filp);
288 	u32 fsflags, gfsflags = 0;
289 	u32 mask;
290 	int i;
291 
292 	if (get_user(fsflags, ptr))
293 		return -EFAULT;
294 
295 	for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
296 		if (fsflags & fsflag_gfs2flag[i].fsflag) {
297 			fsflags &= ~fsflag_gfs2flag[i].fsflag;
298 			gfsflags |= fsflag_gfs2flag[i].gfsflag;
299 		}
300 	}
301 	if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
302 		return -EINVAL;
303 
304 	mask = GFS2_FLAGS_USER_SET;
305 	if (S_ISDIR(inode->i_mode)) {
306 		mask &= ~GFS2_DIF_JDATA;
307 	} else {
308 		/* The GFS2_DIF_TOPDIR flag is only valid for directories. */
309 		if (gfsflags & GFS2_DIF_TOPDIR)
310 			return -EINVAL;
311 		mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
312 	}
313 
314 	return do_gfs2_set_flags(filp, gfsflags, mask);
315 }
316 
317 static int gfs2_getlabel(struct file *filp, char __user *label)
318 {
319 	struct inode *inode = file_inode(filp);
320 	struct gfs2_sbd *sdp = GFS2_SB(inode);
321 
322 	if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN))
323 		return -EFAULT;
324 
325 	return 0;
326 }
327 
328 static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
329 {
330 	switch(cmd) {
331 	case FS_IOC_GETFLAGS:
332 		return gfs2_get_flags(filp, (u32 __user *)arg);
333 	case FS_IOC_SETFLAGS:
334 		return gfs2_set_flags(filp, (u32 __user *)arg);
335 	case FITRIM:
336 		return gfs2_fitrim(filp, (void __user *)arg);
337 	case FS_IOC_GETFSLABEL:
338 		return gfs2_getlabel(filp, (char __user *)arg);
339 	}
340 
341 	return -ENOTTY;
342 }
343 
344 /**
345  * gfs2_size_hint - Give a hint to the size of a write request
346  * @filep: The struct file
347  * @offset: The file offset of the write
348  * @size: The length of the write
349  *
350  * When we are about to do a write, this function records the total
351  * write size in order to provide a suitable hint to the lower layers
352  * about how many blocks will be required.
353  *
354  */
355 
356 static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
357 {
358 	struct inode *inode = file_inode(filep);
359 	struct gfs2_sbd *sdp = GFS2_SB(inode);
360 	struct gfs2_inode *ip = GFS2_I(inode);
361 	size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
362 	int hint = min_t(size_t, INT_MAX, blks);
363 
364 	if (hint > atomic_read(&ip->i_sizehint))
365 		atomic_set(&ip->i_sizehint, hint);
366 }
367 
368 /**
369  * gfs2_allocate_page_backing - Use bmap to allocate blocks
370  * @page: The (locked) page to allocate backing for
371  *
372  * We try to allocate all the blocks required for the page in
373  * one go. This might fail for various reasons, so we keep
374  * trying until all the blocks to back this page are allocated.
375  * If some of the blocks are already allocated, thats ok too.
376  */
377 
378 static int gfs2_allocate_page_backing(struct page *page)
379 {
380 	struct inode *inode = page->mapping->host;
381 	struct buffer_head bh;
382 	unsigned long size = PAGE_SIZE;
383 	u64 lblock = page->index << (PAGE_SHIFT - inode->i_blkbits);
384 
385 	do {
386 		bh.b_state = 0;
387 		bh.b_size = size;
388 		gfs2_block_map(inode, lblock, &bh, 1);
389 		if (!buffer_mapped(&bh))
390 			return -EIO;
391 		size -= bh.b_size;
392 		lblock += (bh.b_size >> inode->i_blkbits);
393 	} while(size > 0);
394 	return 0;
395 }
396 
397 /**
398  * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
399  * @vma: The virtual memory area
400  * @vmf: The virtual memory fault containing the page to become writable
401  *
402  * When the page becomes writable, we need to ensure that we have
403  * blocks allocated on disk to back that page.
404  */
405 
406 static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf)
407 {
408 	struct page *page = vmf->page;
409 	struct inode *inode = file_inode(vmf->vma->vm_file);
410 	struct gfs2_inode *ip = GFS2_I(inode);
411 	struct gfs2_sbd *sdp = GFS2_SB(inode);
412 	struct gfs2_alloc_parms ap = { .aflags = 0, };
413 	unsigned long last_index;
414 	u64 pos = page->index << PAGE_SHIFT;
415 	unsigned int data_blocks, ind_blocks, rblocks;
416 	struct gfs2_holder gh;
417 	loff_t size;
418 	int ret;
419 
420 	sb_start_pagefault(inode->i_sb);
421 
422 	ret = gfs2_rsqa_alloc(ip);
423 	if (ret)
424 		goto out;
425 
426 	gfs2_size_hint(vmf->vma->vm_file, pos, PAGE_SIZE);
427 
428 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
429 	ret = gfs2_glock_nq(&gh);
430 	if (ret)
431 		goto out_uninit;
432 
433 	/* Update file times before taking page lock */
434 	file_update_time(vmf->vma->vm_file);
435 
436 	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
437 	set_bit(GIF_SW_PAGED, &ip->i_flags);
438 
439 	if (!gfs2_write_alloc_required(ip, pos, PAGE_SIZE)) {
440 		lock_page(page);
441 		if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
442 			ret = -EAGAIN;
443 			unlock_page(page);
444 		}
445 		goto out_unlock;
446 	}
447 
448 	ret = gfs2_rindex_update(sdp);
449 	if (ret)
450 		goto out_unlock;
451 
452 	gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
453 	ap.target = data_blocks + ind_blocks;
454 	ret = gfs2_quota_lock_check(ip, &ap);
455 	if (ret)
456 		goto out_unlock;
457 	ret = gfs2_inplace_reserve(ip, &ap);
458 	if (ret)
459 		goto out_quota_unlock;
460 
461 	rblocks = RES_DINODE + ind_blocks;
462 	if (gfs2_is_jdata(ip))
463 		rblocks += data_blocks ? data_blocks : 1;
464 	if (ind_blocks || data_blocks) {
465 		rblocks += RES_STATFS + RES_QUOTA;
466 		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
467 	}
468 	ret = gfs2_trans_begin(sdp, rblocks, 0);
469 	if (ret)
470 		goto out_trans_fail;
471 
472 	lock_page(page);
473 	ret = -EINVAL;
474 	size = i_size_read(inode);
475 	last_index = (size - 1) >> PAGE_SHIFT;
476 	/* Check page index against inode size */
477 	if (size == 0 || (page->index > last_index))
478 		goto out_trans_end;
479 
480 	ret = -EAGAIN;
481 	/* If truncated, we must retry the operation, we may have raced
482 	 * with the glock demotion code.
483 	 */
484 	if (!PageUptodate(page) || page->mapping != inode->i_mapping)
485 		goto out_trans_end;
486 
487 	/* Unstuff, if required, and allocate backing blocks for page */
488 	ret = 0;
489 	if (gfs2_is_stuffed(ip))
490 		ret = gfs2_unstuff_dinode(ip, page);
491 	if (ret == 0)
492 		ret = gfs2_allocate_page_backing(page);
493 
494 out_trans_end:
495 	if (ret)
496 		unlock_page(page);
497 	gfs2_trans_end(sdp);
498 out_trans_fail:
499 	gfs2_inplace_release(ip);
500 out_quota_unlock:
501 	gfs2_quota_unlock(ip);
502 out_unlock:
503 	gfs2_glock_dq(&gh);
504 out_uninit:
505 	gfs2_holder_uninit(&gh);
506 	if (ret == 0) {
507 		set_page_dirty(page);
508 		wait_for_stable_page(page);
509 	}
510 out:
511 	sb_end_pagefault(inode->i_sb);
512 	return block_page_mkwrite_return(ret);
513 }
514 
515 static const struct vm_operations_struct gfs2_vm_ops = {
516 	.fault = filemap_fault,
517 	.map_pages = filemap_map_pages,
518 	.page_mkwrite = gfs2_page_mkwrite,
519 };
520 
521 /**
522  * gfs2_mmap -
523  * @file: The file to map
524  * @vma: The VMA which described the mapping
525  *
526  * There is no need to get a lock here unless we should be updating
527  * atime. We ignore any locking errors since the only consequence is
528  * a missed atime update (which will just be deferred until later).
529  *
530  * Returns: 0
531  */
532 
533 static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
534 {
535 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
536 
537 	if (!(file->f_flags & O_NOATIME) &&
538 	    !IS_NOATIME(&ip->i_inode)) {
539 		struct gfs2_holder i_gh;
540 		int error;
541 
542 		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
543 					   &i_gh);
544 		if (error)
545 			return error;
546 		/* grab lock to update inode */
547 		gfs2_glock_dq_uninit(&i_gh);
548 		file_accessed(file);
549 	}
550 	vma->vm_ops = &gfs2_vm_ops;
551 
552 	return 0;
553 }
554 
555 /**
556  * gfs2_open_common - This is common to open and atomic_open
557  * @inode: The inode being opened
558  * @file: The file being opened
559  *
560  * This maybe called under a glock or not depending upon how it has
561  * been called. We must always be called under a glock for regular
562  * files, however. For other file types, it does not matter whether
563  * we hold the glock or not.
564  *
565  * Returns: Error code or 0 for success
566  */
567 
568 int gfs2_open_common(struct inode *inode, struct file *file)
569 {
570 	struct gfs2_file *fp;
571 	int ret;
572 
573 	if (S_ISREG(inode->i_mode)) {
574 		ret = generic_file_open(inode, file);
575 		if (ret)
576 			return ret;
577 	}
578 
579 	fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
580 	if (!fp)
581 		return -ENOMEM;
582 
583 	mutex_init(&fp->f_fl_mutex);
584 
585 	gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
586 	file->private_data = fp;
587 	return 0;
588 }
589 
590 /**
591  * gfs2_open - open a file
592  * @inode: the inode to open
593  * @file: the struct file for this opening
594  *
595  * After atomic_open, this function is only used for opening files
596  * which are already cached. We must still get the glock for regular
597  * files to ensure that we have the file size uptodate for the large
598  * file check which is in the common code. That is only an issue for
599  * regular files though.
600  *
601  * Returns: errno
602  */
603 
604 static int gfs2_open(struct inode *inode, struct file *file)
605 {
606 	struct gfs2_inode *ip = GFS2_I(inode);
607 	struct gfs2_holder i_gh;
608 	int error;
609 	bool need_unlock = false;
610 
611 	if (S_ISREG(ip->i_inode.i_mode)) {
612 		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
613 					   &i_gh);
614 		if (error)
615 			return error;
616 		need_unlock = true;
617 	}
618 
619 	error = gfs2_open_common(inode, file);
620 
621 	if (need_unlock)
622 		gfs2_glock_dq_uninit(&i_gh);
623 
624 	return error;
625 }
626 
627 /**
628  * gfs2_release - called to close a struct file
629  * @inode: the inode the struct file belongs to
630  * @file: the struct file being closed
631  *
632  * Returns: errno
633  */
634 
635 static int gfs2_release(struct inode *inode, struct file *file)
636 {
637 	struct gfs2_inode *ip = GFS2_I(inode);
638 
639 	kfree(file->private_data);
640 	file->private_data = NULL;
641 
642 	if (!(file->f_mode & FMODE_WRITE))
643 		return 0;
644 
645 	gfs2_rsqa_delete(ip, &inode->i_writecount);
646 	return 0;
647 }
648 
649 /**
650  * gfs2_fsync - sync the dirty data for a file (across the cluster)
651  * @file: the file that points to the dentry
652  * @start: the start position in the file to sync
653  * @end: the end position in the file to sync
654  * @datasync: set if we can ignore timestamp changes
655  *
656  * We split the data flushing here so that we don't wait for the data
657  * until after we've also sent the metadata to disk. Note that for
658  * data=ordered, we will write & wait for the data at the log flush
659  * stage anyway, so this is unlikely to make much of a difference
660  * except in the data=writeback case.
661  *
662  * If the fdatawrite fails due to any reason except -EIO, we will
663  * continue the remainder of the fsync, although we'll still report
664  * the error at the end. This is to match filemap_write_and_wait_range()
665  * behaviour.
666  *
667  * Returns: errno
668  */
669 
670 static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
671 		      int datasync)
672 {
673 	struct address_space *mapping = file->f_mapping;
674 	struct inode *inode = mapping->host;
675 	int sync_state = inode->i_state & I_DIRTY_ALL;
676 	struct gfs2_inode *ip = GFS2_I(inode);
677 	int ret = 0, ret1 = 0;
678 
679 	if (mapping->nrpages) {
680 		ret1 = filemap_fdatawrite_range(mapping, start, end);
681 		if (ret1 == -EIO)
682 			return ret1;
683 	}
684 
685 	if (!gfs2_is_jdata(ip))
686 		sync_state &= ~I_DIRTY_PAGES;
687 	if (datasync)
688 		sync_state &= ~(I_DIRTY_SYNC | I_DIRTY_TIME);
689 
690 	if (sync_state) {
691 		ret = sync_inode_metadata(inode, 1);
692 		if (ret)
693 			return ret;
694 		if (gfs2_is_jdata(ip))
695 			ret = file_write_and_wait(file);
696 		if (ret)
697 			return ret;
698 		gfs2_ail_flush(ip->i_gl, 1);
699 	}
700 
701 	if (mapping->nrpages)
702 		ret = file_fdatawait_range(file, start, end);
703 
704 	return ret ? ret : ret1;
705 }
706 
707 static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to)
708 {
709 	struct file *file = iocb->ki_filp;
710 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
711 	size_t count = iov_iter_count(to);
712 	struct gfs2_holder gh;
713 	ssize_t ret;
714 
715 	if (!count)
716 		return 0; /* skip atime */
717 
718 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
719 	ret = gfs2_glock_nq(&gh);
720 	if (ret)
721 		goto out_uninit;
722 
723 	ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL);
724 
725 	gfs2_glock_dq(&gh);
726 out_uninit:
727 	gfs2_holder_uninit(&gh);
728 	return ret;
729 }
730 
731 static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
732 {
733 	struct file *file = iocb->ki_filp;
734 	struct inode *inode = file->f_mapping->host;
735 	struct gfs2_inode *ip = GFS2_I(inode);
736 	size_t len = iov_iter_count(from);
737 	loff_t offset = iocb->ki_pos;
738 	struct gfs2_holder gh;
739 	ssize_t ret;
740 
741 	/*
742 	 * Deferred lock, even if its a write, since we do no allocation on
743 	 * this path. All we need to change is the atime, and this lock mode
744 	 * ensures that other nodes have flushed their buffered read caches
745 	 * (i.e. their page cache entries for this inode). We do not,
746 	 * unfortunately, have the option of only flushing a range like the
747 	 * VFS does.
748 	 */
749 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
750 	ret = gfs2_glock_nq(&gh);
751 	if (ret)
752 		goto out_uninit;
753 
754 	/* Silently fall back to buffered I/O when writing beyond EOF */
755 	if (offset + len > i_size_read(&ip->i_inode))
756 		goto out;
757 
758 	ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL);
759 
760 out:
761 	gfs2_glock_dq(&gh);
762 out_uninit:
763 	gfs2_holder_uninit(&gh);
764 	return ret;
765 }
766 
767 static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
768 {
769 	ssize_t ret;
770 
771 	if (iocb->ki_flags & IOCB_DIRECT) {
772 		ret = gfs2_file_direct_read(iocb, to);
773 		if (likely(ret != -ENOTBLK))
774 			return ret;
775 		iocb->ki_flags &= ~IOCB_DIRECT;
776 	}
777 	return generic_file_read_iter(iocb, to);
778 }
779 
780 /**
781  * gfs2_file_write_iter - Perform a write to a file
782  * @iocb: The io context
783  * @from: The data to write
784  *
785  * We have to do a lock/unlock here to refresh the inode size for
786  * O_APPEND writes, otherwise we can land up writing at the wrong
787  * offset. There is still a race, but provided the app is using its
788  * own file locking, this will make O_APPEND work as expected.
789  *
790  */
791 
792 static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
793 {
794 	struct file *file = iocb->ki_filp;
795 	struct inode *inode = file_inode(file);
796 	struct gfs2_inode *ip = GFS2_I(inode);
797 	ssize_t written = 0, ret;
798 
799 	ret = gfs2_rsqa_alloc(ip);
800 	if (ret)
801 		return ret;
802 
803 	gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
804 
805 	if (iocb->ki_flags & IOCB_APPEND) {
806 		struct gfs2_holder gh;
807 
808 		ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
809 		if (ret)
810 			return ret;
811 		gfs2_glock_dq_uninit(&gh);
812 	}
813 
814 	inode_lock(inode);
815 	ret = generic_write_checks(iocb, from);
816 	if (ret <= 0)
817 		goto out;
818 
819 	/* We can write back this queue in page reclaim */
820 	current->backing_dev_info = inode_to_bdi(inode);
821 
822 	ret = file_remove_privs(file);
823 	if (ret)
824 		goto out2;
825 
826 	ret = file_update_time(file);
827 	if (ret)
828 		goto out2;
829 
830 	if (iocb->ki_flags & IOCB_DIRECT) {
831 		struct address_space *mapping = file->f_mapping;
832 		loff_t pos, endbyte;
833 		ssize_t buffered;
834 
835 		written = gfs2_file_direct_write(iocb, from);
836 		if (written < 0 || !iov_iter_count(from))
837 			goto out2;
838 
839 		ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
840 		if (unlikely(ret < 0))
841 			goto out2;
842 		buffered = ret;
843 
844 		/*
845 		 * We need to ensure that the page cache pages are written to
846 		 * disk and invalidated to preserve the expected O_DIRECT
847 		 * semantics.
848 		 */
849 		pos = iocb->ki_pos;
850 		endbyte = pos + buffered - 1;
851 		ret = filemap_write_and_wait_range(mapping, pos, endbyte);
852 		if (!ret) {
853 			iocb->ki_pos += buffered;
854 			written += buffered;
855 			invalidate_mapping_pages(mapping,
856 						 pos >> PAGE_SHIFT,
857 						 endbyte >> PAGE_SHIFT);
858 		} else {
859 			/*
860 			 * We don't know how much we wrote, so just return
861 			 * the number of bytes which were direct-written
862 			 */
863 		}
864 	} else {
865 		ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
866 		if (likely(ret > 0))
867 			iocb->ki_pos += ret;
868 	}
869 
870 out2:
871 	current->backing_dev_info = NULL;
872 out:
873 	inode_unlock(inode);
874 	if (likely(ret > 0)) {
875 		/* Handle various SYNC-type writes */
876 		ret = generic_write_sync(iocb, ret);
877 	}
878 	return written ? written : ret;
879 }
880 
881 static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
882 			   int mode)
883 {
884 	struct super_block *sb = inode->i_sb;
885 	struct gfs2_inode *ip = GFS2_I(inode);
886 	loff_t end = offset + len;
887 	struct buffer_head *dibh;
888 	int error;
889 
890 	error = gfs2_meta_inode_buffer(ip, &dibh);
891 	if (unlikely(error))
892 		return error;
893 
894 	gfs2_trans_add_meta(ip->i_gl, dibh);
895 
896 	if (gfs2_is_stuffed(ip)) {
897 		error = gfs2_unstuff_dinode(ip, NULL);
898 		if (unlikely(error))
899 			goto out;
900 	}
901 
902 	while (offset < end) {
903 		struct iomap iomap = { };
904 
905 		error = gfs2_iomap_get_alloc(inode, offset, end - offset,
906 					     &iomap);
907 		if (error)
908 			goto out;
909 		offset = iomap.offset + iomap.length;
910 		if (!(iomap.flags & IOMAP_F_NEW))
911 			continue;
912 		error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
913 					 iomap.length >> inode->i_blkbits,
914 					 GFP_NOFS);
915 		if (error) {
916 			fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
917 			goto out;
918 		}
919 	}
920 out:
921 	brelse(dibh);
922 	return error;
923 }
924 /**
925  * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
926  *                     blocks, determine how many bytes can be written.
927  * @ip:          The inode in question.
928  * @len:         Max cap of bytes. What we return in *len must be <= this.
929  * @data_blocks: Compute and return the number of data blocks needed
930  * @ind_blocks:  Compute and return the number of indirect blocks needed
931  * @max_blocks:  The total blocks available to work with.
932  *
933  * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
934  */
935 static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
936 			    unsigned int *data_blocks, unsigned int *ind_blocks,
937 			    unsigned int max_blocks)
938 {
939 	loff_t max = *len;
940 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
941 	unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
942 
943 	for (tmp = max_data; tmp > sdp->sd_diptrs;) {
944 		tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
945 		max_data -= tmp;
946 	}
947 
948 	*data_blocks = max_data;
949 	*ind_blocks = max_blocks - max_data;
950 	*len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
951 	if (*len > max) {
952 		*len = max;
953 		gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
954 	}
955 }
956 
957 static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
958 {
959 	struct inode *inode = file_inode(file);
960 	struct gfs2_sbd *sdp = GFS2_SB(inode);
961 	struct gfs2_inode *ip = GFS2_I(inode);
962 	struct gfs2_alloc_parms ap = { .aflags = 0, };
963 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
964 	loff_t bytes, max_bytes, max_blks;
965 	int error;
966 	const loff_t pos = offset;
967 	const loff_t count = len;
968 	loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
969 	loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
970 	loff_t max_chunk_size = UINT_MAX & bsize_mask;
971 
972 	next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
973 
974 	offset &= bsize_mask;
975 
976 	len = next - offset;
977 	bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
978 	if (!bytes)
979 		bytes = UINT_MAX;
980 	bytes &= bsize_mask;
981 	if (bytes == 0)
982 		bytes = sdp->sd_sb.sb_bsize;
983 
984 	gfs2_size_hint(file, offset, len);
985 
986 	gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
987 	ap.min_target = data_blocks + ind_blocks;
988 
989 	while (len > 0) {
990 		if (len < bytes)
991 			bytes = len;
992 		if (!gfs2_write_alloc_required(ip, offset, bytes)) {
993 			len -= bytes;
994 			offset += bytes;
995 			continue;
996 		}
997 
998 		/* We need to determine how many bytes we can actually
999 		 * fallocate without exceeding quota or going over the
1000 		 * end of the fs. We start off optimistically by assuming
1001 		 * we can write max_bytes */
1002 		max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
1003 
1004 		/* Since max_bytes is most likely a theoretical max, we
1005 		 * calculate a more realistic 'bytes' to serve as a good
1006 		 * starting point for the number of bytes we may be able
1007 		 * to write */
1008 		gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
1009 		ap.target = data_blocks + ind_blocks;
1010 
1011 		error = gfs2_quota_lock_check(ip, &ap);
1012 		if (error)
1013 			return error;
1014 		/* ap.allowed tells us how many blocks quota will allow
1015 		 * us to write. Check if this reduces max_blks */
1016 		max_blks = UINT_MAX;
1017 		if (ap.allowed)
1018 			max_blks = ap.allowed;
1019 
1020 		error = gfs2_inplace_reserve(ip, &ap);
1021 		if (error)
1022 			goto out_qunlock;
1023 
1024 		/* check if the selected rgrp limits our max_blks further */
1025 		if (ap.allowed && ap.allowed < max_blks)
1026 			max_blks = ap.allowed;
1027 
1028 		/* Almost done. Calculate bytes that can be written using
1029 		 * max_blks. We also recompute max_bytes, data_blocks and
1030 		 * ind_blocks */
1031 		calc_max_reserv(ip, &max_bytes, &data_blocks,
1032 				&ind_blocks, max_blks);
1033 
1034 		rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
1035 			  RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1036 		if (gfs2_is_jdata(ip))
1037 			rblocks += data_blocks ? data_blocks : 1;
1038 
1039 		error = gfs2_trans_begin(sdp, rblocks,
1040 					 PAGE_SIZE/sdp->sd_sb.sb_bsize);
1041 		if (error)
1042 			goto out_trans_fail;
1043 
1044 		error = fallocate_chunk(inode, offset, max_bytes, mode);
1045 		gfs2_trans_end(sdp);
1046 
1047 		if (error)
1048 			goto out_trans_fail;
1049 
1050 		len -= max_bytes;
1051 		offset += max_bytes;
1052 		gfs2_inplace_release(ip);
1053 		gfs2_quota_unlock(ip);
1054 	}
1055 
1056 	if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size) {
1057 		i_size_write(inode, pos + count);
1058 		file_update_time(file);
1059 		mark_inode_dirty(inode);
1060 	}
1061 
1062 	if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
1063 		return vfs_fsync_range(file, pos, pos + count - 1,
1064 			       (file->f_flags & __O_SYNC) ? 0 : 1);
1065 	return 0;
1066 
1067 out_trans_fail:
1068 	gfs2_inplace_release(ip);
1069 out_qunlock:
1070 	gfs2_quota_unlock(ip);
1071 	return error;
1072 }
1073 
1074 static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1075 {
1076 	struct inode *inode = file_inode(file);
1077 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1078 	struct gfs2_inode *ip = GFS2_I(inode);
1079 	struct gfs2_holder gh;
1080 	int ret;
1081 
1082 	if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
1083 		return -EOPNOTSUPP;
1084 	/* fallocate is needed by gfs2_grow to reserve space in the rindex */
1085 	if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
1086 		return -EOPNOTSUPP;
1087 
1088 	inode_lock(inode);
1089 
1090 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
1091 	ret = gfs2_glock_nq(&gh);
1092 	if (ret)
1093 		goto out_uninit;
1094 
1095 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1096 	    (offset + len) > inode->i_size) {
1097 		ret = inode_newsize_ok(inode, offset + len);
1098 		if (ret)
1099 			goto out_unlock;
1100 	}
1101 
1102 	ret = get_write_access(inode);
1103 	if (ret)
1104 		goto out_unlock;
1105 
1106 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1107 		ret = __gfs2_punch_hole(file, offset, len);
1108 	} else {
1109 		ret = gfs2_rsqa_alloc(ip);
1110 		if (ret)
1111 			goto out_putw;
1112 
1113 		ret = __gfs2_fallocate(file, mode, offset, len);
1114 
1115 		if (ret)
1116 			gfs2_rs_deltree(&ip->i_res);
1117 	}
1118 
1119 out_putw:
1120 	put_write_access(inode);
1121 out_unlock:
1122 	gfs2_glock_dq(&gh);
1123 out_uninit:
1124 	gfs2_holder_uninit(&gh);
1125 	inode_unlock(inode);
1126 	return ret;
1127 }
1128 
1129 static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
1130 				      struct file *out, loff_t *ppos,
1131 				      size_t len, unsigned int flags)
1132 {
1133 	int error;
1134 	struct gfs2_inode *ip = GFS2_I(out->f_mapping->host);
1135 
1136 	error = gfs2_rsqa_alloc(ip);
1137 	if (error)
1138 		return (ssize_t)error;
1139 
1140 	gfs2_size_hint(out, *ppos, len);
1141 
1142 	return iter_file_splice_write(pipe, out, ppos, len, flags);
1143 }
1144 
1145 #ifdef CONFIG_GFS2_FS_LOCKING_DLM
1146 
1147 /**
1148  * gfs2_lock - acquire/release a posix lock on a file
1149  * @file: the file pointer
1150  * @cmd: either modify or retrieve lock state, possibly wait
1151  * @fl: type and range of lock
1152  *
1153  * Returns: errno
1154  */
1155 
1156 static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
1157 {
1158 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
1159 	struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
1160 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1161 
1162 	if (!(fl->fl_flags & FL_POSIX))
1163 		return -ENOLCK;
1164 	if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK)
1165 		return -ENOLCK;
1166 
1167 	if (cmd == F_CANCELLK) {
1168 		/* Hack: */
1169 		cmd = F_SETLK;
1170 		fl->fl_type = F_UNLCK;
1171 	}
1172 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) {
1173 		if (fl->fl_type == F_UNLCK)
1174 			locks_lock_file_wait(file, fl);
1175 		return -EIO;
1176 	}
1177 	if (IS_GETLK(cmd))
1178 		return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
1179 	else if (fl->fl_type == F_UNLCK)
1180 		return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
1181 	else
1182 		return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
1183 }
1184 
1185 static int do_flock(struct file *file, int cmd, struct file_lock *fl)
1186 {
1187 	struct gfs2_file *fp = file->private_data;
1188 	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1189 	struct gfs2_inode *ip = GFS2_I(file_inode(file));
1190 	struct gfs2_glock *gl;
1191 	unsigned int state;
1192 	u16 flags;
1193 	int error = 0;
1194 	int sleeptime;
1195 
1196 	state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
1197 	flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT;
1198 
1199 	mutex_lock(&fp->f_fl_mutex);
1200 
1201 	if (gfs2_holder_initialized(fl_gh)) {
1202 		if (fl_gh->gh_state == state)
1203 			goto out;
1204 		locks_lock_file_wait(file,
1205 				     &(struct file_lock) {
1206 					     .fl_type = F_UNLCK,
1207 					     .fl_flags = FL_FLOCK
1208 				     });
1209 		gfs2_glock_dq(fl_gh);
1210 		gfs2_holder_reinit(state, flags, fl_gh);
1211 	} else {
1212 		error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1213 				       &gfs2_flock_glops, CREATE, &gl);
1214 		if (error)
1215 			goto out;
1216 		gfs2_holder_init(gl, state, flags, fl_gh);
1217 		gfs2_glock_put(gl);
1218 	}
1219 	for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
1220 		error = gfs2_glock_nq(fl_gh);
1221 		if (error != GLR_TRYFAILED)
1222 			break;
1223 		fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT;
1224 		fl_gh->gh_error = 0;
1225 		msleep(sleeptime);
1226 	}
1227 	if (error) {
1228 		gfs2_holder_uninit(fl_gh);
1229 		if (error == GLR_TRYFAILED)
1230 			error = -EAGAIN;
1231 	} else {
1232 		error = locks_lock_file_wait(file, fl);
1233 		gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
1234 	}
1235 
1236 out:
1237 	mutex_unlock(&fp->f_fl_mutex);
1238 	return error;
1239 }
1240 
1241 static void do_unflock(struct file *file, struct file_lock *fl)
1242 {
1243 	struct gfs2_file *fp = file->private_data;
1244 	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1245 
1246 	mutex_lock(&fp->f_fl_mutex);
1247 	locks_lock_file_wait(file, fl);
1248 	if (gfs2_holder_initialized(fl_gh)) {
1249 		gfs2_glock_dq(fl_gh);
1250 		gfs2_holder_uninit(fl_gh);
1251 	}
1252 	mutex_unlock(&fp->f_fl_mutex);
1253 }
1254 
1255 /**
1256  * gfs2_flock - acquire/release a flock lock on a file
1257  * @file: the file pointer
1258  * @cmd: either modify or retrieve lock state, possibly wait
1259  * @fl: type and range of lock
1260  *
1261  * Returns: errno
1262  */
1263 
1264 static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1265 {
1266 	if (!(fl->fl_flags & FL_FLOCK))
1267 		return -ENOLCK;
1268 	if (fl->fl_type & LOCK_MAND)
1269 		return -EOPNOTSUPP;
1270 
1271 	if (fl->fl_type == F_UNLCK) {
1272 		do_unflock(file, fl);
1273 		return 0;
1274 	} else {
1275 		return do_flock(file, cmd, fl);
1276 	}
1277 }
1278 
1279 const struct file_operations gfs2_file_fops = {
1280 	.llseek		= gfs2_llseek,
1281 	.read_iter	= gfs2_file_read_iter,
1282 	.write_iter	= gfs2_file_write_iter,
1283 	.unlocked_ioctl	= gfs2_ioctl,
1284 	.mmap		= gfs2_mmap,
1285 	.open		= gfs2_open,
1286 	.release	= gfs2_release,
1287 	.fsync		= gfs2_fsync,
1288 	.lock		= gfs2_lock,
1289 	.flock		= gfs2_flock,
1290 	.splice_read	= generic_file_splice_read,
1291 	.splice_write	= gfs2_file_splice_write,
1292 	.setlease	= simple_nosetlease,
1293 	.fallocate	= gfs2_fallocate,
1294 };
1295 
1296 const struct file_operations gfs2_dir_fops = {
1297 	.iterate_shared	= gfs2_readdir,
1298 	.unlocked_ioctl	= gfs2_ioctl,
1299 	.open		= gfs2_open,
1300 	.release	= gfs2_release,
1301 	.fsync		= gfs2_fsync,
1302 	.lock		= gfs2_lock,
1303 	.flock		= gfs2_flock,
1304 	.llseek		= default_llseek,
1305 };
1306 
1307 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1308 
1309 const struct file_operations gfs2_file_fops_nolock = {
1310 	.llseek		= gfs2_llseek,
1311 	.read_iter	= gfs2_file_read_iter,
1312 	.write_iter	= gfs2_file_write_iter,
1313 	.unlocked_ioctl	= gfs2_ioctl,
1314 	.mmap		= gfs2_mmap,
1315 	.open		= gfs2_open,
1316 	.release	= gfs2_release,
1317 	.fsync		= gfs2_fsync,
1318 	.splice_read	= generic_file_splice_read,
1319 	.splice_write	= gfs2_file_splice_write,
1320 	.setlease	= generic_setlease,
1321 	.fallocate	= gfs2_fallocate,
1322 };
1323 
1324 const struct file_operations gfs2_dir_fops_nolock = {
1325 	.iterate_shared	= gfs2_readdir,
1326 	.unlocked_ioctl	= gfs2_ioctl,
1327 	.open		= gfs2_open,
1328 	.release	= gfs2_release,
1329 	.fsync		= gfs2_fsync,
1330 	.llseek		= default_llseek,
1331 };
1332 
1333