xref: /openbmc/linux/fs/gfs2/file.c (revision 4e95bc26)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/spinlock.h>
9 #include <linux/completion.h>
10 #include <linux/buffer_head.h>
11 #include <linux/pagemap.h>
12 #include <linux/uio.h>
13 #include <linux/blkdev.h>
14 #include <linux/mm.h>
15 #include <linux/mount.h>
16 #include <linux/fs.h>
17 #include <linux/gfs2_ondisk.h>
18 #include <linux/falloc.h>
19 #include <linux/swap.h>
20 #include <linux/crc32.h>
21 #include <linux/writeback.h>
22 #include <linux/uaccess.h>
23 #include <linux/dlm.h>
24 #include <linux/dlm_plock.h>
25 #include <linux/delay.h>
26 #include <linux/backing-dev.h>
27 
28 #include "gfs2.h"
29 #include "incore.h"
30 #include "bmap.h"
31 #include "aops.h"
32 #include "dir.h"
33 #include "glock.h"
34 #include "glops.h"
35 #include "inode.h"
36 #include "log.h"
37 #include "meta_io.h"
38 #include "quota.h"
39 #include "rgrp.h"
40 #include "trans.h"
41 #include "util.h"
42 
43 /**
44  * gfs2_llseek - seek to a location in a file
45  * @file: the file
46  * @offset: the offset
47  * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
48  *
49  * SEEK_END requires the glock for the file because it references the
50  * file's size.
51  *
52  * Returns: The new offset, or errno
53  */
54 
55 static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
56 {
57 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
58 	struct gfs2_holder i_gh;
59 	loff_t error;
60 
61 	switch (whence) {
62 	case SEEK_END:
63 		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
64 					   &i_gh);
65 		if (!error) {
66 			error = generic_file_llseek(file, offset, whence);
67 			gfs2_glock_dq_uninit(&i_gh);
68 		}
69 		break;
70 
71 	case SEEK_DATA:
72 		error = gfs2_seek_data(file, offset);
73 		break;
74 
75 	case SEEK_HOLE:
76 		error = gfs2_seek_hole(file, offset);
77 		break;
78 
79 	case SEEK_CUR:
80 	case SEEK_SET:
81 		/*
82 		 * These don't reference inode->i_size and don't depend on the
83 		 * block mapping, so we don't need the glock.
84 		 */
85 		error = generic_file_llseek(file, offset, whence);
86 		break;
87 	default:
88 		error = -EINVAL;
89 	}
90 
91 	return error;
92 }
93 
94 /**
95  * gfs2_readdir - Iterator for a directory
96  * @file: The directory to read from
97  * @ctx: What to feed directory entries to
98  *
99  * Returns: errno
100  */
101 
102 static int gfs2_readdir(struct file *file, struct dir_context *ctx)
103 {
104 	struct inode *dir = file->f_mapping->host;
105 	struct gfs2_inode *dip = GFS2_I(dir);
106 	struct gfs2_holder d_gh;
107 	int error;
108 
109 	error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
110 	if (error)
111 		return error;
112 
113 	error = gfs2_dir_read(dir, ctx, &file->f_ra);
114 
115 	gfs2_glock_dq_uninit(&d_gh);
116 
117 	return error;
118 }
119 
120 /**
121  * fsflag_gfs2flag
122  *
123  * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
124  * and to GFS2_DIF_JDATA for non-directories.
125  */
126 static struct {
127 	u32 fsflag;
128 	u32 gfsflag;
129 } fsflag_gfs2flag[] = {
130 	{FS_SYNC_FL, GFS2_DIF_SYNC},
131 	{FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
132 	{FS_APPEND_FL, GFS2_DIF_APPENDONLY},
133 	{FS_NOATIME_FL, GFS2_DIF_NOATIME},
134 	{FS_INDEX_FL, GFS2_DIF_EXHASH},
135 	{FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
136 	{FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
137 };
138 
139 static int gfs2_get_flags(struct file *filp, u32 __user *ptr)
140 {
141 	struct inode *inode = file_inode(filp);
142 	struct gfs2_inode *ip = GFS2_I(inode);
143 	struct gfs2_holder gh;
144 	int i, error;
145 	u32 gfsflags, fsflags = 0;
146 
147 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
148 	error = gfs2_glock_nq(&gh);
149 	if (error)
150 		goto out_uninit;
151 
152 	gfsflags = ip->i_diskflags;
153 	if (S_ISDIR(inode->i_mode))
154 		gfsflags &= ~GFS2_DIF_JDATA;
155 	else
156 		gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
157 	for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
158 		if (gfsflags & fsflag_gfs2flag[i].gfsflag)
159 			fsflags |= fsflag_gfs2flag[i].fsflag;
160 
161 	if (put_user(fsflags, ptr))
162 		error = -EFAULT;
163 
164 	gfs2_glock_dq(&gh);
165 out_uninit:
166 	gfs2_holder_uninit(&gh);
167 	return error;
168 }
169 
170 void gfs2_set_inode_flags(struct inode *inode)
171 {
172 	struct gfs2_inode *ip = GFS2_I(inode);
173 	unsigned int flags = inode->i_flags;
174 
175 	flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
176 	if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
177 		flags |= S_NOSEC;
178 	if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
179 		flags |= S_IMMUTABLE;
180 	if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
181 		flags |= S_APPEND;
182 	if (ip->i_diskflags & GFS2_DIF_NOATIME)
183 		flags |= S_NOATIME;
184 	if (ip->i_diskflags & GFS2_DIF_SYNC)
185 		flags |= S_SYNC;
186 	inode->i_flags = flags;
187 }
188 
189 /* Flags that can be set by user space */
190 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA|			\
191 			     GFS2_DIF_IMMUTABLE|		\
192 			     GFS2_DIF_APPENDONLY|		\
193 			     GFS2_DIF_NOATIME|			\
194 			     GFS2_DIF_SYNC|			\
195 			     GFS2_DIF_TOPDIR|			\
196 			     GFS2_DIF_INHERIT_JDATA)
197 
198 /**
199  * do_gfs2_set_flags - set flags on an inode
200  * @filp: file pointer
201  * @reqflags: The flags to set
202  * @mask: Indicates which flags are valid
203  *
204  */
205 static int do_gfs2_set_flags(struct file *filp, u32 reqflags, u32 mask)
206 {
207 	struct inode *inode = file_inode(filp);
208 	struct gfs2_inode *ip = GFS2_I(inode);
209 	struct gfs2_sbd *sdp = GFS2_SB(inode);
210 	struct buffer_head *bh;
211 	struct gfs2_holder gh;
212 	int error;
213 	u32 new_flags, flags;
214 
215 	error = mnt_want_write_file(filp);
216 	if (error)
217 		return error;
218 
219 	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
220 	if (error)
221 		goto out_drop_write;
222 
223 	error = -EACCES;
224 	if (!inode_owner_or_capable(inode))
225 		goto out;
226 
227 	error = 0;
228 	flags = ip->i_diskflags;
229 	new_flags = (flags & ~mask) | (reqflags & mask);
230 	if ((new_flags ^ flags) == 0)
231 		goto out;
232 
233 	error = -EPERM;
234 	if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE))
235 		goto out;
236 	if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY))
237 		goto out;
238 	if (((new_flags ^ flags) & GFS2_DIF_IMMUTABLE) &&
239 	    !capable(CAP_LINUX_IMMUTABLE))
240 		goto out;
241 	if (!IS_IMMUTABLE(inode)) {
242 		error = gfs2_permission(inode, MAY_WRITE);
243 		if (error)
244 			goto out;
245 	}
246 	if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
247 		if (new_flags & GFS2_DIF_JDATA)
248 			gfs2_log_flush(sdp, ip->i_gl,
249 				       GFS2_LOG_HEAD_FLUSH_NORMAL |
250 				       GFS2_LFC_SET_FLAGS);
251 		error = filemap_fdatawrite(inode->i_mapping);
252 		if (error)
253 			goto out;
254 		error = filemap_fdatawait(inode->i_mapping);
255 		if (error)
256 			goto out;
257 		if (new_flags & GFS2_DIF_JDATA)
258 			gfs2_ordered_del_inode(ip);
259 	}
260 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
261 	if (error)
262 		goto out;
263 	error = gfs2_meta_inode_buffer(ip, &bh);
264 	if (error)
265 		goto out_trans_end;
266 	inode->i_ctime = current_time(inode);
267 	gfs2_trans_add_meta(ip->i_gl, bh);
268 	ip->i_diskflags = new_flags;
269 	gfs2_dinode_out(ip, bh->b_data);
270 	brelse(bh);
271 	gfs2_set_inode_flags(inode);
272 	gfs2_set_aops(inode);
273 out_trans_end:
274 	gfs2_trans_end(sdp);
275 out:
276 	gfs2_glock_dq_uninit(&gh);
277 out_drop_write:
278 	mnt_drop_write_file(filp);
279 	return error;
280 }
281 
282 static int gfs2_set_flags(struct file *filp, u32 __user *ptr)
283 {
284 	struct inode *inode = file_inode(filp);
285 	u32 fsflags, gfsflags = 0;
286 	u32 mask;
287 	int i;
288 
289 	if (get_user(fsflags, ptr))
290 		return -EFAULT;
291 
292 	for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
293 		if (fsflags & fsflag_gfs2flag[i].fsflag) {
294 			fsflags &= ~fsflag_gfs2flag[i].fsflag;
295 			gfsflags |= fsflag_gfs2flag[i].gfsflag;
296 		}
297 	}
298 	if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
299 		return -EINVAL;
300 
301 	mask = GFS2_FLAGS_USER_SET;
302 	if (S_ISDIR(inode->i_mode)) {
303 		mask &= ~GFS2_DIF_JDATA;
304 	} else {
305 		/* The GFS2_DIF_TOPDIR flag is only valid for directories. */
306 		if (gfsflags & GFS2_DIF_TOPDIR)
307 			return -EINVAL;
308 		mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
309 	}
310 
311 	return do_gfs2_set_flags(filp, gfsflags, mask);
312 }
313 
314 static int gfs2_getlabel(struct file *filp, char __user *label)
315 {
316 	struct inode *inode = file_inode(filp);
317 	struct gfs2_sbd *sdp = GFS2_SB(inode);
318 
319 	if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN))
320 		return -EFAULT;
321 
322 	return 0;
323 }
324 
325 static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
326 {
327 	switch(cmd) {
328 	case FS_IOC_GETFLAGS:
329 		return gfs2_get_flags(filp, (u32 __user *)arg);
330 	case FS_IOC_SETFLAGS:
331 		return gfs2_set_flags(filp, (u32 __user *)arg);
332 	case FITRIM:
333 		return gfs2_fitrim(filp, (void __user *)arg);
334 	case FS_IOC_GETFSLABEL:
335 		return gfs2_getlabel(filp, (char __user *)arg);
336 	}
337 
338 	return -ENOTTY;
339 }
340 
341 /**
342  * gfs2_size_hint - Give a hint to the size of a write request
343  * @filep: The struct file
344  * @offset: The file offset of the write
345  * @size: The length of the write
346  *
347  * When we are about to do a write, this function records the total
348  * write size in order to provide a suitable hint to the lower layers
349  * about how many blocks will be required.
350  *
351  */
352 
353 static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
354 {
355 	struct inode *inode = file_inode(filep);
356 	struct gfs2_sbd *sdp = GFS2_SB(inode);
357 	struct gfs2_inode *ip = GFS2_I(inode);
358 	size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
359 	int hint = min_t(size_t, INT_MAX, blks);
360 
361 	if (hint > atomic_read(&ip->i_sizehint))
362 		atomic_set(&ip->i_sizehint, hint);
363 }
364 
365 /**
366  * gfs2_allocate_page_backing - Use bmap to allocate blocks
367  * @page: The (locked) page to allocate backing for
368  *
369  * We try to allocate all the blocks required for the page in
370  * one go. This might fail for various reasons, so we keep
371  * trying until all the blocks to back this page are allocated.
372  * If some of the blocks are already allocated, thats ok too.
373  */
374 
375 static int gfs2_allocate_page_backing(struct page *page)
376 {
377 	struct inode *inode = page->mapping->host;
378 	struct buffer_head bh;
379 	unsigned long size = PAGE_SIZE;
380 	u64 lblock = page->index << (PAGE_SHIFT - inode->i_blkbits);
381 
382 	do {
383 		bh.b_state = 0;
384 		bh.b_size = size;
385 		gfs2_block_map(inode, lblock, &bh, 1);
386 		if (!buffer_mapped(&bh))
387 			return -EIO;
388 		size -= bh.b_size;
389 		lblock += (bh.b_size >> inode->i_blkbits);
390 	} while(size > 0);
391 	return 0;
392 }
393 
394 /**
395  * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
396  * @vma: The virtual memory area
397  * @vmf: The virtual memory fault containing the page to become writable
398  *
399  * When the page becomes writable, we need to ensure that we have
400  * blocks allocated on disk to back that page.
401  */
402 
403 static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf)
404 {
405 	struct page *page = vmf->page;
406 	struct inode *inode = file_inode(vmf->vma->vm_file);
407 	struct gfs2_inode *ip = GFS2_I(inode);
408 	struct gfs2_sbd *sdp = GFS2_SB(inode);
409 	struct gfs2_alloc_parms ap = { .aflags = 0, };
410 	unsigned long last_index;
411 	u64 pos = page->index << PAGE_SHIFT;
412 	unsigned int data_blocks, ind_blocks, rblocks;
413 	struct gfs2_holder gh;
414 	loff_t size;
415 	int ret;
416 
417 	sb_start_pagefault(inode->i_sb);
418 
419 	ret = gfs2_rsqa_alloc(ip);
420 	if (ret)
421 		goto out;
422 
423 	gfs2_size_hint(vmf->vma->vm_file, pos, PAGE_SIZE);
424 
425 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
426 	ret = gfs2_glock_nq(&gh);
427 	if (ret)
428 		goto out_uninit;
429 
430 	/* Update file times before taking page lock */
431 	file_update_time(vmf->vma->vm_file);
432 
433 	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
434 	set_bit(GIF_SW_PAGED, &ip->i_flags);
435 
436 	if (!gfs2_write_alloc_required(ip, pos, PAGE_SIZE)) {
437 		lock_page(page);
438 		if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
439 			ret = -EAGAIN;
440 			unlock_page(page);
441 		}
442 		goto out_unlock;
443 	}
444 
445 	ret = gfs2_rindex_update(sdp);
446 	if (ret)
447 		goto out_unlock;
448 
449 	gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
450 	ap.target = data_blocks + ind_blocks;
451 	ret = gfs2_quota_lock_check(ip, &ap);
452 	if (ret)
453 		goto out_unlock;
454 	ret = gfs2_inplace_reserve(ip, &ap);
455 	if (ret)
456 		goto out_quota_unlock;
457 
458 	rblocks = RES_DINODE + ind_blocks;
459 	if (gfs2_is_jdata(ip))
460 		rblocks += data_blocks ? data_blocks : 1;
461 	if (ind_blocks || data_blocks) {
462 		rblocks += RES_STATFS + RES_QUOTA;
463 		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
464 	}
465 	ret = gfs2_trans_begin(sdp, rblocks, 0);
466 	if (ret)
467 		goto out_trans_fail;
468 
469 	lock_page(page);
470 	ret = -EINVAL;
471 	size = i_size_read(inode);
472 	last_index = (size - 1) >> PAGE_SHIFT;
473 	/* Check page index against inode size */
474 	if (size == 0 || (page->index > last_index))
475 		goto out_trans_end;
476 
477 	ret = -EAGAIN;
478 	/* If truncated, we must retry the operation, we may have raced
479 	 * with the glock demotion code.
480 	 */
481 	if (!PageUptodate(page) || page->mapping != inode->i_mapping)
482 		goto out_trans_end;
483 
484 	/* Unstuff, if required, and allocate backing blocks for page */
485 	ret = 0;
486 	if (gfs2_is_stuffed(ip))
487 		ret = gfs2_unstuff_dinode(ip, page);
488 	if (ret == 0)
489 		ret = gfs2_allocate_page_backing(page);
490 
491 out_trans_end:
492 	if (ret)
493 		unlock_page(page);
494 	gfs2_trans_end(sdp);
495 out_trans_fail:
496 	gfs2_inplace_release(ip);
497 out_quota_unlock:
498 	gfs2_quota_unlock(ip);
499 out_unlock:
500 	gfs2_glock_dq(&gh);
501 out_uninit:
502 	gfs2_holder_uninit(&gh);
503 	if (ret == 0) {
504 		set_page_dirty(page);
505 		wait_for_stable_page(page);
506 	}
507 out:
508 	sb_end_pagefault(inode->i_sb);
509 	return block_page_mkwrite_return(ret);
510 }
511 
512 static const struct vm_operations_struct gfs2_vm_ops = {
513 	.fault = filemap_fault,
514 	.map_pages = filemap_map_pages,
515 	.page_mkwrite = gfs2_page_mkwrite,
516 };
517 
518 /**
519  * gfs2_mmap -
520  * @file: The file to map
521  * @vma: The VMA which described the mapping
522  *
523  * There is no need to get a lock here unless we should be updating
524  * atime. We ignore any locking errors since the only consequence is
525  * a missed atime update (which will just be deferred until later).
526  *
527  * Returns: 0
528  */
529 
530 static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
531 {
532 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
533 
534 	if (!(file->f_flags & O_NOATIME) &&
535 	    !IS_NOATIME(&ip->i_inode)) {
536 		struct gfs2_holder i_gh;
537 		int error;
538 
539 		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
540 					   &i_gh);
541 		if (error)
542 			return error;
543 		/* grab lock to update inode */
544 		gfs2_glock_dq_uninit(&i_gh);
545 		file_accessed(file);
546 	}
547 	vma->vm_ops = &gfs2_vm_ops;
548 
549 	return 0;
550 }
551 
552 /**
553  * gfs2_open_common - This is common to open and atomic_open
554  * @inode: The inode being opened
555  * @file: The file being opened
556  *
557  * This maybe called under a glock or not depending upon how it has
558  * been called. We must always be called under a glock for regular
559  * files, however. For other file types, it does not matter whether
560  * we hold the glock or not.
561  *
562  * Returns: Error code or 0 for success
563  */
564 
565 int gfs2_open_common(struct inode *inode, struct file *file)
566 {
567 	struct gfs2_file *fp;
568 	int ret;
569 
570 	if (S_ISREG(inode->i_mode)) {
571 		ret = generic_file_open(inode, file);
572 		if (ret)
573 			return ret;
574 	}
575 
576 	fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
577 	if (!fp)
578 		return -ENOMEM;
579 
580 	mutex_init(&fp->f_fl_mutex);
581 
582 	gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
583 	file->private_data = fp;
584 	return 0;
585 }
586 
587 /**
588  * gfs2_open - open a file
589  * @inode: the inode to open
590  * @file: the struct file for this opening
591  *
592  * After atomic_open, this function is only used for opening files
593  * which are already cached. We must still get the glock for regular
594  * files to ensure that we have the file size uptodate for the large
595  * file check which is in the common code. That is only an issue for
596  * regular files though.
597  *
598  * Returns: errno
599  */
600 
601 static int gfs2_open(struct inode *inode, struct file *file)
602 {
603 	struct gfs2_inode *ip = GFS2_I(inode);
604 	struct gfs2_holder i_gh;
605 	int error;
606 	bool need_unlock = false;
607 
608 	if (S_ISREG(ip->i_inode.i_mode)) {
609 		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
610 					   &i_gh);
611 		if (error)
612 			return error;
613 		need_unlock = true;
614 	}
615 
616 	error = gfs2_open_common(inode, file);
617 
618 	if (need_unlock)
619 		gfs2_glock_dq_uninit(&i_gh);
620 
621 	return error;
622 }
623 
624 /**
625  * gfs2_release - called to close a struct file
626  * @inode: the inode the struct file belongs to
627  * @file: the struct file being closed
628  *
629  * Returns: errno
630  */
631 
632 static int gfs2_release(struct inode *inode, struct file *file)
633 {
634 	struct gfs2_inode *ip = GFS2_I(inode);
635 
636 	kfree(file->private_data);
637 	file->private_data = NULL;
638 
639 	if (!(file->f_mode & FMODE_WRITE))
640 		return 0;
641 
642 	gfs2_rsqa_delete(ip, &inode->i_writecount);
643 	return 0;
644 }
645 
646 /**
647  * gfs2_fsync - sync the dirty data for a file (across the cluster)
648  * @file: the file that points to the dentry
649  * @start: the start position in the file to sync
650  * @end: the end position in the file to sync
651  * @datasync: set if we can ignore timestamp changes
652  *
653  * We split the data flushing here so that we don't wait for the data
654  * until after we've also sent the metadata to disk. Note that for
655  * data=ordered, we will write & wait for the data at the log flush
656  * stage anyway, so this is unlikely to make much of a difference
657  * except in the data=writeback case.
658  *
659  * If the fdatawrite fails due to any reason except -EIO, we will
660  * continue the remainder of the fsync, although we'll still report
661  * the error at the end. This is to match filemap_write_and_wait_range()
662  * behaviour.
663  *
664  * Returns: errno
665  */
666 
667 static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
668 		      int datasync)
669 {
670 	struct address_space *mapping = file->f_mapping;
671 	struct inode *inode = mapping->host;
672 	int sync_state = inode->i_state & I_DIRTY_ALL;
673 	struct gfs2_inode *ip = GFS2_I(inode);
674 	int ret = 0, ret1 = 0;
675 
676 	if (mapping->nrpages) {
677 		ret1 = filemap_fdatawrite_range(mapping, start, end);
678 		if (ret1 == -EIO)
679 			return ret1;
680 	}
681 
682 	if (!gfs2_is_jdata(ip))
683 		sync_state &= ~I_DIRTY_PAGES;
684 	if (datasync)
685 		sync_state &= ~(I_DIRTY_SYNC | I_DIRTY_TIME);
686 
687 	if (sync_state) {
688 		ret = sync_inode_metadata(inode, 1);
689 		if (ret)
690 			return ret;
691 		if (gfs2_is_jdata(ip))
692 			ret = file_write_and_wait(file);
693 		if (ret)
694 			return ret;
695 		gfs2_ail_flush(ip->i_gl, 1);
696 	}
697 
698 	if (mapping->nrpages)
699 		ret = file_fdatawait_range(file, start, end);
700 
701 	return ret ? ret : ret1;
702 }
703 
704 static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to)
705 {
706 	struct file *file = iocb->ki_filp;
707 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
708 	size_t count = iov_iter_count(to);
709 	struct gfs2_holder gh;
710 	ssize_t ret;
711 
712 	if (!count)
713 		return 0; /* skip atime */
714 
715 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
716 	ret = gfs2_glock_nq(&gh);
717 	if (ret)
718 		goto out_uninit;
719 
720 	ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL);
721 
722 	gfs2_glock_dq(&gh);
723 out_uninit:
724 	gfs2_holder_uninit(&gh);
725 	return ret;
726 }
727 
728 static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
729 {
730 	struct file *file = iocb->ki_filp;
731 	struct inode *inode = file->f_mapping->host;
732 	struct gfs2_inode *ip = GFS2_I(inode);
733 	size_t len = iov_iter_count(from);
734 	loff_t offset = iocb->ki_pos;
735 	struct gfs2_holder gh;
736 	ssize_t ret;
737 
738 	/*
739 	 * Deferred lock, even if its a write, since we do no allocation on
740 	 * this path. All we need to change is the atime, and this lock mode
741 	 * ensures that other nodes have flushed their buffered read caches
742 	 * (i.e. their page cache entries for this inode). We do not,
743 	 * unfortunately, have the option of only flushing a range like the
744 	 * VFS does.
745 	 */
746 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
747 	ret = gfs2_glock_nq(&gh);
748 	if (ret)
749 		goto out_uninit;
750 
751 	/* Silently fall back to buffered I/O when writing beyond EOF */
752 	if (offset + len > i_size_read(&ip->i_inode))
753 		goto out;
754 
755 	ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL);
756 
757 out:
758 	gfs2_glock_dq(&gh);
759 out_uninit:
760 	gfs2_holder_uninit(&gh);
761 	return ret;
762 }
763 
764 static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
765 {
766 	ssize_t ret;
767 
768 	if (iocb->ki_flags & IOCB_DIRECT) {
769 		ret = gfs2_file_direct_read(iocb, to);
770 		if (likely(ret != -ENOTBLK))
771 			return ret;
772 		iocb->ki_flags &= ~IOCB_DIRECT;
773 	}
774 	return generic_file_read_iter(iocb, to);
775 }
776 
777 /**
778  * gfs2_file_write_iter - Perform a write to a file
779  * @iocb: The io context
780  * @from: The data to write
781  *
782  * We have to do a lock/unlock here to refresh the inode size for
783  * O_APPEND writes, otherwise we can land up writing at the wrong
784  * offset. There is still a race, but provided the app is using its
785  * own file locking, this will make O_APPEND work as expected.
786  *
787  */
788 
789 static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
790 {
791 	struct file *file = iocb->ki_filp;
792 	struct inode *inode = file_inode(file);
793 	struct gfs2_inode *ip = GFS2_I(inode);
794 	ssize_t written = 0, ret;
795 
796 	ret = gfs2_rsqa_alloc(ip);
797 	if (ret)
798 		return ret;
799 
800 	gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
801 
802 	if (iocb->ki_flags & IOCB_APPEND) {
803 		struct gfs2_holder gh;
804 
805 		ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
806 		if (ret)
807 			return ret;
808 		gfs2_glock_dq_uninit(&gh);
809 	}
810 
811 	inode_lock(inode);
812 	ret = generic_write_checks(iocb, from);
813 	if (ret <= 0)
814 		goto out;
815 
816 	/* We can write back this queue in page reclaim */
817 	current->backing_dev_info = inode_to_bdi(inode);
818 
819 	ret = file_remove_privs(file);
820 	if (ret)
821 		goto out2;
822 
823 	ret = file_update_time(file);
824 	if (ret)
825 		goto out2;
826 
827 	if (iocb->ki_flags & IOCB_DIRECT) {
828 		struct address_space *mapping = file->f_mapping;
829 		loff_t pos, endbyte;
830 		ssize_t buffered;
831 
832 		written = gfs2_file_direct_write(iocb, from);
833 		if (written < 0 || !iov_iter_count(from))
834 			goto out2;
835 
836 		ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
837 		if (unlikely(ret < 0))
838 			goto out2;
839 		buffered = ret;
840 
841 		/*
842 		 * We need to ensure that the page cache pages are written to
843 		 * disk and invalidated to preserve the expected O_DIRECT
844 		 * semantics.
845 		 */
846 		pos = iocb->ki_pos;
847 		endbyte = pos + buffered - 1;
848 		ret = filemap_write_and_wait_range(mapping, pos, endbyte);
849 		if (!ret) {
850 			iocb->ki_pos += buffered;
851 			written += buffered;
852 			invalidate_mapping_pages(mapping,
853 						 pos >> PAGE_SHIFT,
854 						 endbyte >> PAGE_SHIFT);
855 		} else {
856 			/*
857 			 * We don't know how much we wrote, so just return
858 			 * the number of bytes which were direct-written
859 			 */
860 		}
861 	} else {
862 		ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
863 		if (likely(ret > 0))
864 			iocb->ki_pos += ret;
865 	}
866 
867 out2:
868 	current->backing_dev_info = NULL;
869 out:
870 	inode_unlock(inode);
871 	if (likely(ret > 0)) {
872 		/* Handle various SYNC-type writes */
873 		ret = generic_write_sync(iocb, ret);
874 	}
875 	return written ? written : ret;
876 }
877 
878 static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
879 			   int mode)
880 {
881 	struct super_block *sb = inode->i_sb;
882 	struct gfs2_inode *ip = GFS2_I(inode);
883 	loff_t end = offset + len;
884 	struct buffer_head *dibh;
885 	int error;
886 
887 	error = gfs2_meta_inode_buffer(ip, &dibh);
888 	if (unlikely(error))
889 		return error;
890 
891 	gfs2_trans_add_meta(ip->i_gl, dibh);
892 
893 	if (gfs2_is_stuffed(ip)) {
894 		error = gfs2_unstuff_dinode(ip, NULL);
895 		if (unlikely(error))
896 			goto out;
897 	}
898 
899 	while (offset < end) {
900 		struct iomap iomap = { };
901 
902 		error = gfs2_iomap_get_alloc(inode, offset, end - offset,
903 					     &iomap);
904 		if (error)
905 			goto out;
906 		offset = iomap.offset + iomap.length;
907 		if (!(iomap.flags & IOMAP_F_NEW))
908 			continue;
909 		error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
910 					 iomap.length >> inode->i_blkbits,
911 					 GFP_NOFS);
912 		if (error) {
913 			fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
914 			goto out;
915 		}
916 	}
917 out:
918 	brelse(dibh);
919 	return error;
920 }
921 /**
922  * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
923  *                     blocks, determine how many bytes can be written.
924  * @ip:          The inode in question.
925  * @len:         Max cap of bytes. What we return in *len must be <= this.
926  * @data_blocks: Compute and return the number of data blocks needed
927  * @ind_blocks:  Compute and return the number of indirect blocks needed
928  * @max_blocks:  The total blocks available to work with.
929  *
930  * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
931  */
932 static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
933 			    unsigned int *data_blocks, unsigned int *ind_blocks,
934 			    unsigned int max_blocks)
935 {
936 	loff_t max = *len;
937 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
938 	unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
939 
940 	for (tmp = max_data; tmp > sdp->sd_diptrs;) {
941 		tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
942 		max_data -= tmp;
943 	}
944 
945 	*data_blocks = max_data;
946 	*ind_blocks = max_blocks - max_data;
947 	*len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
948 	if (*len > max) {
949 		*len = max;
950 		gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
951 	}
952 }
953 
954 static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
955 {
956 	struct inode *inode = file_inode(file);
957 	struct gfs2_sbd *sdp = GFS2_SB(inode);
958 	struct gfs2_inode *ip = GFS2_I(inode);
959 	struct gfs2_alloc_parms ap = { .aflags = 0, };
960 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
961 	loff_t bytes, max_bytes, max_blks;
962 	int error;
963 	const loff_t pos = offset;
964 	const loff_t count = len;
965 	loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
966 	loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
967 	loff_t max_chunk_size = UINT_MAX & bsize_mask;
968 
969 	next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
970 
971 	offset &= bsize_mask;
972 
973 	len = next - offset;
974 	bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
975 	if (!bytes)
976 		bytes = UINT_MAX;
977 	bytes &= bsize_mask;
978 	if (bytes == 0)
979 		bytes = sdp->sd_sb.sb_bsize;
980 
981 	gfs2_size_hint(file, offset, len);
982 
983 	gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
984 	ap.min_target = data_blocks + ind_blocks;
985 
986 	while (len > 0) {
987 		if (len < bytes)
988 			bytes = len;
989 		if (!gfs2_write_alloc_required(ip, offset, bytes)) {
990 			len -= bytes;
991 			offset += bytes;
992 			continue;
993 		}
994 
995 		/* We need to determine how many bytes we can actually
996 		 * fallocate without exceeding quota or going over the
997 		 * end of the fs. We start off optimistically by assuming
998 		 * we can write max_bytes */
999 		max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
1000 
1001 		/* Since max_bytes is most likely a theoretical max, we
1002 		 * calculate a more realistic 'bytes' to serve as a good
1003 		 * starting point for the number of bytes we may be able
1004 		 * to write */
1005 		gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
1006 		ap.target = data_blocks + ind_blocks;
1007 
1008 		error = gfs2_quota_lock_check(ip, &ap);
1009 		if (error)
1010 			return error;
1011 		/* ap.allowed tells us how many blocks quota will allow
1012 		 * us to write. Check if this reduces max_blks */
1013 		max_blks = UINT_MAX;
1014 		if (ap.allowed)
1015 			max_blks = ap.allowed;
1016 
1017 		error = gfs2_inplace_reserve(ip, &ap);
1018 		if (error)
1019 			goto out_qunlock;
1020 
1021 		/* check if the selected rgrp limits our max_blks further */
1022 		if (ap.allowed && ap.allowed < max_blks)
1023 			max_blks = ap.allowed;
1024 
1025 		/* Almost done. Calculate bytes that can be written using
1026 		 * max_blks. We also recompute max_bytes, data_blocks and
1027 		 * ind_blocks */
1028 		calc_max_reserv(ip, &max_bytes, &data_blocks,
1029 				&ind_blocks, max_blks);
1030 
1031 		rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
1032 			  RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1033 		if (gfs2_is_jdata(ip))
1034 			rblocks += data_blocks ? data_blocks : 1;
1035 
1036 		error = gfs2_trans_begin(sdp, rblocks,
1037 					 PAGE_SIZE/sdp->sd_sb.sb_bsize);
1038 		if (error)
1039 			goto out_trans_fail;
1040 
1041 		error = fallocate_chunk(inode, offset, max_bytes, mode);
1042 		gfs2_trans_end(sdp);
1043 
1044 		if (error)
1045 			goto out_trans_fail;
1046 
1047 		len -= max_bytes;
1048 		offset += max_bytes;
1049 		gfs2_inplace_release(ip);
1050 		gfs2_quota_unlock(ip);
1051 	}
1052 
1053 	if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size) {
1054 		i_size_write(inode, pos + count);
1055 		file_update_time(file);
1056 		mark_inode_dirty(inode);
1057 	}
1058 
1059 	if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
1060 		return vfs_fsync_range(file, pos, pos + count - 1,
1061 			       (file->f_flags & __O_SYNC) ? 0 : 1);
1062 	return 0;
1063 
1064 out_trans_fail:
1065 	gfs2_inplace_release(ip);
1066 out_qunlock:
1067 	gfs2_quota_unlock(ip);
1068 	return error;
1069 }
1070 
1071 static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1072 {
1073 	struct inode *inode = file_inode(file);
1074 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1075 	struct gfs2_inode *ip = GFS2_I(inode);
1076 	struct gfs2_holder gh;
1077 	int ret;
1078 
1079 	if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
1080 		return -EOPNOTSUPP;
1081 	/* fallocate is needed by gfs2_grow to reserve space in the rindex */
1082 	if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
1083 		return -EOPNOTSUPP;
1084 
1085 	inode_lock(inode);
1086 
1087 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
1088 	ret = gfs2_glock_nq(&gh);
1089 	if (ret)
1090 		goto out_uninit;
1091 
1092 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1093 	    (offset + len) > inode->i_size) {
1094 		ret = inode_newsize_ok(inode, offset + len);
1095 		if (ret)
1096 			goto out_unlock;
1097 	}
1098 
1099 	ret = get_write_access(inode);
1100 	if (ret)
1101 		goto out_unlock;
1102 
1103 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1104 		ret = __gfs2_punch_hole(file, offset, len);
1105 	} else {
1106 		ret = gfs2_rsqa_alloc(ip);
1107 		if (ret)
1108 			goto out_putw;
1109 
1110 		ret = __gfs2_fallocate(file, mode, offset, len);
1111 
1112 		if (ret)
1113 			gfs2_rs_deltree(&ip->i_res);
1114 	}
1115 
1116 out_putw:
1117 	put_write_access(inode);
1118 out_unlock:
1119 	gfs2_glock_dq(&gh);
1120 out_uninit:
1121 	gfs2_holder_uninit(&gh);
1122 	inode_unlock(inode);
1123 	return ret;
1124 }
1125 
1126 static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
1127 				      struct file *out, loff_t *ppos,
1128 				      size_t len, unsigned int flags)
1129 {
1130 	int error;
1131 	struct gfs2_inode *ip = GFS2_I(out->f_mapping->host);
1132 
1133 	error = gfs2_rsqa_alloc(ip);
1134 	if (error)
1135 		return (ssize_t)error;
1136 
1137 	gfs2_size_hint(out, *ppos, len);
1138 
1139 	return iter_file_splice_write(pipe, out, ppos, len, flags);
1140 }
1141 
1142 #ifdef CONFIG_GFS2_FS_LOCKING_DLM
1143 
1144 /**
1145  * gfs2_lock - acquire/release a posix lock on a file
1146  * @file: the file pointer
1147  * @cmd: either modify or retrieve lock state, possibly wait
1148  * @fl: type and range of lock
1149  *
1150  * Returns: errno
1151  */
1152 
1153 static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
1154 {
1155 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
1156 	struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
1157 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1158 
1159 	if (!(fl->fl_flags & FL_POSIX))
1160 		return -ENOLCK;
1161 	if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK)
1162 		return -ENOLCK;
1163 
1164 	if (cmd == F_CANCELLK) {
1165 		/* Hack: */
1166 		cmd = F_SETLK;
1167 		fl->fl_type = F_UNLCK;
1168 	}
1169 	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) {
1170 		if (fl->fl_type == F_UNLCK)
1171 			locks_lock_file_wait(file, fl);
1172 		return -EIO;
1173 	}
1174 	if (IS_GETLK(cmd))
1175 		return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
1176 	else if (fl->fl_type == F_UNLCK)
1177 		return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
1178 	else
1179 		return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
1180 }
1181 
1182 static int do_flock(struct file *file, int cmd, struct file_lock *fl)
1183 {
1184 	struct gfs2_file *fp = file->private_data;
1185 	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1186 	struct gfs2_inode *ip = GFS2_I(file_inode(file));
1187 	struct gfs2_glock *gl;
1188 	unsigned int state;
1189 	u16 flags;
1190 	int error = 0;
1191 	int sleeptime;
1192 
1193 	state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
1194 	flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT;
1195 
1196 	mutex_lock(&fp->f_fl_mutex);
1197 
1198 	if (gfs2_holder_initialized(fl_gh)) {
1199 		struct file_lock request;
1200 		if (fl_gh->gh_state == state)
1201 			goto out;
1202 		locks_init_lock(&request);
1203 		request.fl_type = F_UNLCK;
1204 		request.fl_flags = FL_FLOCK;
1205 		locks_lock_file_wait(file, &request);
1206 		gfs2_glock_dq(fl_gh);
1207 		gfs2_holder_reinit(state, flags, fl_gh);
1208 	} else {
1209 		error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1210 				       &gfs2_flock_glops, CREATE, &gl);
1211 		if (error)
1212 			goto out;
1213 		gfs2_holder_init(gl, state, flags, fl_gh);
1214 		gfs2_glock_put(gl);
1215 	}
1216 	for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
1217 		error = gfs2_glock_nq(fl_gh);
1218 		if (error != GLR_TRYFAILED)
1219 			break;
1220 		fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT;
1221 		fl_gh->gh_error = 0;
1222 		msleep(sleeptime);
1223 	}
1224 	if (error) {
1225 		gfs2_holder_uninit(fl_gh);
1226 		if (error == GLR_TRYFAILED)
1227 			error = -EAGAIN;
1228 	} else {
1229 		error = locks_lock_file_wait(file, fl);
1230 		gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
1231 	}
1232 
1233 out:
1234 	mutex_unlock(&fp->f_fl_mutex);
1235 	return error;
1236 }
1237 
1238 static void do_unflock(struct file *file, struct file_lock *fl)
1239 {
1240 	struct gfs2_file *fp = file->private_data;
1241 	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1242 
1243 	mutex_lock(&fp->f_fl_mutex);
1244 	locks_lock_file_wait(file, fl);
1245 	if (gfs2_holder_initialized(fl_gh)) {
1246 		gfs2_glock_dq(fl_gh);
1247 		gfs2_holder_uninit(fl_gh);
1248 	}
1249 	mutex_unlock(&fp->f_fl_mutex);
1250 }
1251 
1252 /**
1253  * gfs2_flock - acquire/release a flock lock on a file
1254  * @file: the file pointer
1255  * @cmd: either modify or retrieve lock state, possibly wait
1256  * @fl: type and range of lock
1257  *
1258  * Returns: errno
1259  */
1260 
1261 static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1262 {
1263 	if (!(fl->fl_flags & FL_FLOCK))
1264 		return -ENOLCK;
1265 	if (fl->fl_type & LOCK_MAND)
1266 		return -EOPNOTSUPP;
1267 
1268 	if (fl->fl_type == F_UNLCK) {
1269 		do_unflock(file, fl);
1270 		return 0;
1271 	} else {
1272 		return do_flock(file, cmd, fl);
1273 	}
1274 }
1275 
1276 const struct file_operations gfs2_file_fops = {
1277 	.llseek		= gfs2_llseek,
1278 	.read_iter	= gfs2_file_read_iter,
1279 	.write_iter	= gfs2_file_write_iter,
1280 	.iopoll		= iomap_dio_iopoll,
1281 	.unlocked_ioctl	= gfs2_ioctl,
1282 	.mmap		= gfs2_mmap,
1283 	.open		= gfs2_open,
1284 	.release	= gfs2_release,
1285 	.fsync		= gfs2_fsync,
1286 	.lock		= gfs2_lock,
1287 	.flock		= gfs2_flock,
1288 	.splice_read	= generic_file_splice_read,
1289 	.splice_write	= gfs2_file_splice_write,
1290 	.setlease	= simple_nosetlease,
1291 	.fallocate	= gfs2_fallocate,
1292 };
1293 
1294 const struct file_operations gfs2_dir_fops = {
1295 	.iterate_shared	= gfs2_readdir,
1296 	.unlocked_ioctl	= gfs2_ioctl,
1297 	.open		= gfs2_open,
1298 	.release	= gfs2_release,
1299 	.fsync		= gfs2_fsync,
1300 	.lock		= gfs2_lock,
1301 	.flock		= gfs2_flock,
1302 	.llseek		= default_llseek,
1303 };
1304 
1305 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1306 
1307 const struct file_operations gfs2_file_fops_nolock = {
1308 	.llseek		= gfs2_llseek,
1309 	.read_iter	= gfs2_file_read_iter,
1310 	.write_iter	= gfs2_file_write_iter,
1311 	.iopoll		= iomap_dio_iopoll,
1312 	.unlocked_ioctl	= gfs2_ioctl,
1313 	.mmap		= gfs2_mmap,
1314 	.open		= gfs2_open,
1315 	.release	= gfs2_release,
1316 	.fsync		= gfs2_fsync,
1317 	.splice_read	= generic_file_splice_read,
1318 	.splice_write	= gfs2_file_splice_write,
1319 	.setlease	= generic_setlease,
1320 	.fallocate	= gfs2_fallocate,
1321 };
1322 
1323 const struct file_operations gfs2_dir_fops_nolock = {
1324 	.iterate_shared	= gfs2_readdir,
1325 	.unlocked_ioctl	= gfs2_ioctl,
1326 	.open		= gfs2_open,
1327 	.release	= gfs2_release,
1328 	.fsync		= gfs2_fsync,
1329 	.llseek		= default_llseek,
1330 };
1331 
1332