1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #include <linux/slab.h> 11 #include <linux/spinlock.h> 12 #include <linux/completion.h> 13 #include <linux/buffer_head.h> 14 #include <linux/pagemap.h> 15 #include <linux/uio.h> 16 #include <linux/blkdev.h> 17 #include <linux/mm.h> 18 #include <linux/mount.h> 19 #include <linux/fs.h> 20 #include <linux/gfs2_ondisk.h> 21 #include <linux/falloc.h> 22 #include <linux/swap.h> 23 #include <linux/crc32.h> 24 #include <linux/writeback.h> 25 #include <linux/uaccess.h> 26 #include <linux/dlm.h> 27 #include <linux/dlm_plock.h> 28 #include <linux/delay.h> 29 30 #include "gfs2.h" 31 #include "incore.h" 32 #include "bmap.h" 33 #include "dir.h" 34 #include "glock.h" 35 #include "glops.h" 36 #include "inode.h" 37 #include "log.h" 38 #include "meta_io.h" 39 #include "quota.h" 40 #include "rgrp.h" 41 #include "trans.h" 42 #include "util.h" 43 44 /** 45 * gfs2_llseek - seek to a location in a file 46 * @file: the file 47 * @offset: the offset 48 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END) 49 * 50 * SEEK_END requires the glock for the file because it references the 51 * file's size. 52 * 53 * Returns: The new offset, or errno 54 */ 55 56 static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence) 57 { 58 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 59 struct gfs2_holder i_gh; 60 loff_t error; 61 62 switch (whence) { 63 case SEEK_END: 64 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 65 &i_gh); 66 if (!error) { 67 error = generic_file_llseek(file, offset, whence); 68 gfs2_glock_dq_uninit(&i_gh); 69 } 70 break; 71 72 case SEEK_DATA: 73 error = gfs2_seek_data(file, offset); 74 break; 75 76 case SEEK_HOLE: 77 error = gfs2_seek_hole(file, offset); 78 break; 79 80 case SEEK_CUR: 81 case SEEK_SET: 82 /* 83 * These don't reference inode->i_size and don't depend on the 84 * block mapping, so we don't need the glock. 85 */ 86 error = generic_file_llseek(file, offset, whence); 87 break; 88 default: 89 error = -EINVAL; 90 } 91 92 return error; 93 } 94 95 /** 96 * gfs2_readdir - Iterator for a directory 97 * @file: The directory to read from 98 * @ctx: What to feed directory entries to 99 * 100 * Returns: errno 101 */ 102 103 static int gfs2_readdir(struct file *file, struct dir_context *ctx) 104 { 105 struct inode *dir = file->f_mapping->host; 106 struct gfs2_inode *dip = GFS2_I(dir); 107 struct gfs2_holder d_gh; 108 int error; 109 110 error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh); 111 if (error) 112 return error; 113 114 error = gfs2_dir_read(dir, ctx, &file->f_ra); 115 116 gfs2_glock_dq_uninit(&d_gh); 117 118 return error; 119 } 120 121 /** 122 * fsflag_gfs2flag 123 * 124 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories, 125 * and to GFS2_DIF_JDATA for non-directories. 126 */ 127 static struct { 128 u32 fsflag; 129 u32 gfsflag; 130 } fsflag_gfs2flag[] = { 131 {FS_SYNC_FL, GFS2_DIF_SYNC}, 132 {FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE}, 133 {FS_APPEND_FL, GFS2_DIF_APPENDONLY}, 134 {FS_NOATIME_FL, GFS2_DIF_NOATIME}, 135 {FS_INDEX_FL, GFS2_DIF_EXHASH}, 136 {FS_TOPDIR_FL, GFS2_DIF_TOPDIR}, 137 {FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA}, 138 }; 139 140 static int gfs2_get_flags(struct file *filp, u32 __user *ptr) 141 { 142 struct inode *inode = file_inode(filp); 143 struct gfs2_inode *ip = GFS2_I(inode); 144 struct gfs2_holder gh; 145 int i, error; 146 u32 gfsflags, fsflags = 0; 147 148 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 149 error = gfs2_glock_nq(&gh); 150 if (error) 151 goto out_uninit; 152 153 gfsflags = ip->i_diskflags; 154 if (S_ISDIR(inode->i_mode)) 155 gfsflags &= ~GFS2_DIF_JDATA; 156 else 157 gfsflags &= ~GFS2_DIF_INHERIT_JDATA; 158 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) 159 if (gfsflags & fsflag_gfs2flag[i].gfsflag) 160 fsflags |= fsflag_gfs2flag[i].fsflag; 161 162 if (put_user(fsflags, ptr)) 163 error = -EFAULT; 164 165 gfs2_glock_dq(&gh); 166 out_uninit: 167 gfs2_holder_uninit(&gh); 168 return error; 169 } 170 171 void gfs2_set_inode_flags(struct inode *inode) 172 { 173 struct gfs2_inode *ip = GFS2_I(inode); 174 unsigned int flags = inode->i_flags; 175 176 flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC); 177 if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode)) 178 flags |= S_NOSEC; 179 if (ip->i_diskflags & GFS2_DIF_IMMUTABLE) 180 flags |= S_IMMUTABLE; 181 if (ip->i_diskflags & GFS2_DIF_APPENDONLY) 182 flags |= S_APPEND; 183 if (ip->i_diskflags & GFS2_DIF_NOATIME) 184 flags |= S_NOATIME; 185 if (ip->i_diskflags & GFS2_DIF_SYNC) 186 flags |= S_SYNC; 187 inode->i_flags = flags; 188 } 189 190 /* Flags that can be set by user space */ 191 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA| \ 192 GFS2_DIF_IMMUTABLE| \ 193 GFS2_DIF_APPENDONLY| \ 194 GFS2_DIF_NOATIME| \ 195 GFS2_DIF_SYNC| \ 196 GFS2_DIF_TOPDIR| \ 197 GFS2_DIF_INHERIT_JDATA) 198 199 /** 200 * do_gfs2_set_flags - set flags on an inode 201 * @filp: file pointer 202 * @reqflags: The flags to set 203 * @mask: Indicates which flags are valid 204 * 205 */ 206 static int do_gfs2_set_flags(struct file *filp, u32 reqflags, u32 mask) 207 { 208 struct inode *inode = file_inode(filp); 209 struct gfs2_inode *ip = GFS2_I(inode); 210 struct gfs2_sbd *sdp = GFS2_SB(inode); 211 struct buffer_head *bh; 212 struct gfs2_holder gh; 213 int error; 214 u32 new_flags, flags; 215 216 error = mnt_want_write_file(filp); 217 if (error) 218 return error; 219 220 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 221 if (error) 222 goto out_drop_write; 223 224 error = -EACCES; 225 if (!inode_owner_or_capable(inode)) 226 goto out; 227 228 error = 0; 229 flags = ip->i_diskflags; 230 new_flags = (flags & ~mask) | (reqflags & mask); 231 if ((new_flags ^ flags) == 0) 232 goto out; 233 234 error = -EPERM; 235 if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE)) 236 goto out; 237 if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY)) 238 goto out; 239 if (((new_flags ^ flags) & GFS2_DIF_IMMUTABLE) && 240 !capable(CAP_LINUX_IMMUTABLE)) 241 goto out; 242 if (!IS_IMMUTABLE(inode)) { 243 error = gfs2_permission(inode, MAY_WRITE); 244 if (error) 245 goto out; 246 } 247 if ((flags ^ new_flags) & GFS2_DIF_JDATA) { 248 if (new_flags & GFS2_DIF_JDATA) 249 gfs2_log_flush(sdp, ip->i_gl, 250 GFS2_LOG_HEAD_FLUSH_NORMAL | 251 GFS2_LFC_SET_FLAGS); 252 error = filemap_fdatawrite(inode->i_mapping); 253 if (error) 254 goto out; 255 error = filemap_fdatawait(inode->i_mapping); 256 if (error) 257 goto out; 258 if (new_flags & GFS2_DIF_JDATA) 259 gfs2_ordered_del_inode(ip); 260 } 261 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 262 if (error) 263 goto out; 264 error = gfs2_meta_inode_buffer(ip, &bh); 265 if (error) 266 goto out_trans_end; 267 inode->i_ctime = current_time(inode); 268 gfs2_trans_add_meta(ip->i_gl, bh); 269 ip->i_diskflags = new_flags; 270 gfs2_dinode_out(ip, bh->b_data); 271 brelse(bh); 272 gfs2_set_inode_flags(inode); 273 gfs2_set_aops(inode); 274 out_trans_end: 275 gfs2_trans_end(sdp); 276 out: 277 gfs2_glock_dq_uninit(&gh); 278 out_drop_write: 279 mnt_drop_write_file(filp); 280 return error; 281 } 282 283 static int gfs2_set_flags(struct file *filp, u32 __user *ptr) 284 { 285 struct inode *inode = file_inode(filp); 286 u32 fsflags, gfsflags = 0; 287 u32 mask; 288 int i; 289 290 if (get_user(fsflags, ptr)) 291 return -EFAULT; 292 293 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) { 294 if (fsflags & fsflag_gfs2flag[i].fsflag) { 295 fsflags &= ~fsflag_gfs2flag[i].fsflag; 296 gfsflags |= fsflag_gfs2flag[i].gfsflag; 297 } 298 } 299 if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET) 300 return -EINVAL; 301 302 mask = GFS2_FLAGS_USER_SET; 303 if (S_ISDIR(inode->i_mode)) { 304 mask &= ~GFS2_DIF_JDATA; 305 } else { 306 /* The GFS2_DIF_TOPDIR flag is only valid for directories. */ 307 if (gfsflags & GFS2_DIF_TOPDIR) 308 return -EINVAL; 309 mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA); 310 } 311 312 return do_gfs2_set_flags(filp, gfsflags, mask); 313 } 314 315 static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 316 { 317 switch(cmd) { 318 case FS_IOC_GETFLAGS: 319 return gfs2_get_flags(filp, (u32 __user *)arg); 320 case FS_IOC_SETFLAGS: 321 return gfs2_set_flags(filp, (u32 __user *)arg); 322 case FITRIM: 323 return gfs2_fitrim(filp, (void __user *)arg); 324 } 325 return -ENOTTY; 326 } 327 328 /** 329 * gfs2_size_hint - Give a hint to the size of a write request 330 * @filep: The struct file 331 * @offset: The file offset of the write 332 * @size: The length of the write 333 * 334 * When we are about to do a write, this function records the total 335 * write size in order to provide a suitable hint to the lower layers 336 * about how many blocks will be required. 337 * 338 */ 339 340 static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size) 341 { 342 struct inode *inode = file_inode(filep); 343 struct gfs2_sbd *sdp = GFS2_SB(inode); 344 struct gfs2_inode *ip = GFS2_I(inode); 345 size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift; 346 int hint = min_t(size_t, INT_MAX, blks); 347 348 if (hint > atomic_read(&ip->i_res.rs_sizehint)) 349 atomic_set(&ip->i_res.rs_sizehint, hint); 350 } 351 352 /** 353 * gfs2_allocate_page_backing - Use bmap to allocate blocks 354 * @page: The (locked) page to allocate backing for 355 * 356 * We try to allocate all the blocks required for the page in 357 * one go. This might fail for various reasons, so we keep 358 * trying until all the blocks to back this page are allocated. 359 * If some of the blocks are already allocated, thats ok too. 360 */ 361 362 static int gfs2_allocate_page_backing(struct page *page) 363 { 364 struct inode *inode = page->mapping->host; 365 struct buffer_head bh; 366 unsigned long size = PAGE_SIZE; 367 u64 lblock = page->index << (PAGE_SHIFT - inode->i_blkbits); 368 369 do { 370 bh.b_state = 0; 371 bh.b_size = size; 372 gfs2_block_map(inode, lblock, &bh, 1); 373 if (!buffer_mapped(&bh)) 374 return -EIO; 375 size -= bh.b_size; 376 lblock += (bh.b_size >> inode->i_blkbits); 377 } while(size > 0); 378 return 0; 379 } 380 381 /** 382 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable 383 * @vma: The virtual memory area 384 * @vmf: The virtual memory fault containing the page to become writable 385 * 386 * When the page becomes writable, we need to ensure that we have 387 * blocks allocated on disk to back that page. 388 */ 389 390 static int gfs2_page_mkwrite(struct vm_fault *vmf) 391 { 392 struct page *page = vmf->page; 393 struct inode *inode = file_inode(vmf->vma->vm_file); 394 struct gfs2_inode *ip = GFS2_I(inode); 395 struct gfs2_sbd *sdp = GFS2_SB(inode); 396 struct gfs2_alloc_parms ap = { .aflags = 0, }; 397 unsigned long last_index; 398 u64 pos = page->index << PAGE_SHIFT; 399 unsigned int data_blocks, ind_blocks, rblocks; 400 struct gfs2_holder gh; 401 loff_t size; 402 int ret; 403 404 sb_start_pagefault(inode->i_sb); 405 406 ret = gfs2_rsqa_alloc(ip); 407 if (ret) 408 goto out; 409 410 gfs2_size_hint(vmf->vma->vm_file, pos, PAGE_SIZE); 411 412 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 413 ret = gfs2_glock_nq(&gh); 414 if (ret) 415 goto out_uninit; 416 417 /* Update file times before taking page lock */ 418 file_update_time(vmf->vma->vm_file); 419 420 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags); 421 set_bit(GIF_SW_PAGED, &ip->i_flags); 422 423 if (!gfs2_write_alloc_required(ip, pos, PAGE_SIZE)) { 424 lock_page(page); 425 if (!PageUptodate(page) || page->mapping != inode->i_mapping) { 426 ret = -EAGAIN; 427 unlock_page(page); 428 } 429 goto out_unlock; 430 } 431 432 ret = gfs2_rindex_update(sdp); 433 if (ret) 434 goto out_unlock; 435 436 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks); 437 ap.target = data_blocks + ind_blocks; 438 ret = gfs2_quota_lock_check(ip, &ap); 439 if (ret) 440 goto out_unlock; 441 ret = gfs2_inplace_reserve(ip, &ap); 442 if (ret) 443 goto out_quota_unlock; 444 445 rblocks = RES_DINODE + ind_blocks; 446 if (gfs2_is_jdata(ip)) 447 rblocks += data_blocks ? data_blocks : 1; 448 if (ind_blocks || data_blocks) { 449 rblocks += RES_STATFS + RES_QUOTA; 450 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 451 } 452 ret = gfs2_trans_begin(sdp, rblocks, 0); 453 if (ret) 454 goto out_trans_fail; 455 456 lock_page(page); 457 ret = -EINVAL; 458 size = i_size_read(inode); 459 last_index = (size - 1) >> PAGE_SHIFT; 460 /* Check page index against inode size */ 461 if (size == 0 || (page->index > last_index)) 462 goto out_trans_end; 463 464 ret = -EAGAIN; 465 /* If truncated, we must retry the operation, we may have raced 466 * with the glock demotion code. 467 */ 468 if (!PageUptodate(page) || page->mapping != inode->i_mapping) 469 goto out_trans_end; 470 471 /* Unstuff, if required, and allocate backing blocks for page */ 472 ret = 0; 473 if (gfs2_is_stuffed(ip)) 474 ret = gfs2_unstuff_dinode(ip, page); 475 if (ret == 0) 476 ret = gfs2_allocate_page_backing(page); 477 478 out_trans_end: 479 if (ret) 480 unlock_page(page); 481 gfs2_trans_end(sdp); 482 out_trans_fail: 483 gfs2_inplace_release(ip); 484 out_quota_unlock: 485 gfs2_quota_unlock(ip); 486 out_unlock: 487 gfs2_glock_dq(&gh); 488 out_uninit: 489 gfs2_holder_uninit(&gh); 490 if (ret == 0) { 491 set_page_dirty(page); 492 wait_for_stable_page(page); 493 } 494 out: 495 sb_end_pagefault(inode->i_sb); 496 return block_page_mkwrite_return(ret); 497 } 498 499 static const struct vm_operations_struct gfs2_vm_ops = { 500 .fault = filemap_fault, 501 .map_pages = filemap_map_pages, 502 .page_mkwrite = gfs2_page_mkwrite, 503 }; 504 505 /** 506 * gfs2_mmap - 507 * @file: The file to map 508 * @vma: The VMA which described the mapping 509 * 510 * There is no need to get a lock here unless we should be updating 511 * atime. We ignore any locking errors since the only consequence is 512 * a missed atime update (which will just be deferred until later). 513 * 514 * Returns: 0 515 */ 516 517 static int gfs2_mmap(struct file *file, struct vm_area_struct *vma) 518 { 519 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 520 521 if (!(file->f_flags & O_NOATIME) && 522 !IS_NOATIME(&ip->i_inode)) { 523 struct gfs2_holder i_gh; 524 int error; 525 526 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 527 &i_gh); 528 if (error) 529 return error; 530 /* grab lock to update inode */ 531 gfs2_glock_dq_uninit(&i_gh); 532 file_accessed(file); 533 } 534 vma->vm_ops = &gfs2_vm_ops; 535 536 return 0; 537 } 538 539 /** 540 * gfs2_open_common - This is common to open and atomic_open 541 * @inode: The inode being opened 542 * @file: The file being opened 543 * 544 * This maybe called under a glock or not depending upon how it has 545 * been called. We must always be called under a glock for regular 546 * files, however. For other file types, it does not matter whether 547 * we hold the glock or not. 548 * 549 * Returns: Error code or 0 for success 550 */ 551 552 int gfs2_open_common(struct inode *inode, struct file *file) 553 { 554 struct gfs2_file *fp; 555 int ret; 556 557 if (S_ISREG(inode->i_mode)) { 558 ret = generic_file_open(inode, file); 559 if (ret) 560 return ret; 561 } 562 563 fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS); 564 if (!fp) 565 return -ENOMEM; 566 567 mutex_init(&fp->f_fl_mutex); 568 569 gfs2_assert_warn(GFS2_SB(inode), !file->private_data); 570 file->private_data = fp; 571 return 0; 572 } 573 574 /** 575 * gfs2_open - open a file 576 * @inode: the inode to open 577 * @file: the struct file for this opening 578 * 579 * After atomic_open, this function is only used for opening files 580 * which are already cached. We must still get the glock for regular 581 * files to ensure that we have the file size uptodate for the large 582 * file check which is in the common code. That is only an issue for 583 * regular files though. 584 * 585 * Returns: errno 586 */ 587 588 static int gfs2_open(struct inode *inode, struct file *file) 589 { 590 struct gfs2_inode *ip = GFS2_I(inode); 591 struct gfs2_holder i_gh; 592 int error; 593 bool need_unlock = false; 594 595 if (S_ISREG(ip->i_inode.i_mode)) { 596 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 597 &i_gh); 598 if (error) 599 return error; 600 need_unlock = true; 601 } 602 603 error = gfs2_open_common(inode, file); 604 605 if (need_unlock) 606 gfs2_glock_dq_uninit(&i_gh); 607 608 return error; 609 } 610 611 /** 612 * gfs2_release - called to close a struct file 613 * @inode: the inode the struct file belongs to 614 * @file: the struct file being closed 615 * 616 * Returns: errno 617 */ 618 619 static int gfs2_release(struct inode *inode, struct file *file) 620 { 621 struct gfs2_inode *ip = GFS2_I(inode); 622 623 kfree(file->private_data); 624 file->private_data = NULL; 625 626 if (!(file->f_mode & FMODE_WRITE)) 627 return 0; 628 629 gfs2_rsqa_delete(ip, &inode->i_writecount); 630 return 0; 631 } 632 633 /** 634 * gfs2_fsync - sync the dirty data for a file (across the cluster) 635 * @file: the file that points to the dentry 636 * @start: the start position in the file to sync 637 * @end: the end position in the file to sync 638 * @datasync: set if we can ignore timestamp changes 639 * 640 * We split the data flushing here so that we don't wait for the data 641 * until after we've also sent the metadata to disk. Note that for 642 * data=ordered, we will write & wait for the data at the log flush 643 * stage anyway, so this is unlikely to make much of a difference 644 * except in the data=writeback case. 645 * 646 * If the fdatawrite fails due to any reason except -EIO, we will 647 * continue the remainder of the fsync, although we'll still report 648 * the error at the end. This is to match filemap_write_and_wait_range() 649 * behaviour. 650 * 651 * Returns: errno 652 */ 653 654 static int gfs2_fsync(struct file *file, loff_t start, loff_t end, 655 int datasync) 656 { 657 struct address_space *mapping = file->f_mapping; 658 struct inode *inode = mapping->host; 659 int sync_state = inode->i_state & I_DIRTY_ALL; 660 struct gfs2_inode *ip = GFS2_I(inode); 661 int ret = 0, ret1 = 0; 662 663 if (mapping->nrpages) { 664 ret1 = filemap_fdatawrite_range(mapping, start, end); 665 if (ret1 == -EIO) 666 return ret1; 667 } 668 669 if (!gfs2_is_jdata(ip)) 670 sync_state &= ~I_DIRTY_PAGES; 671 if (datasync) 672 sync_state &= ~(I_DIRTY_SYNC | I_DIRTY_TIME); 673 674 if (sync_state) { 675 ret = sync_inode_metadata(inode, 1); 676 if (ret) 677 return ret; 678 if (gfs2_is_jdata(ip)) 679 ret = file_write_and_wait(file); 680 if (ret) 681 return ret; 682 gfs2_ail_flush(ip->i_gl, 1); 683 } 684 685 if (mapping->nrpages) 686 ret = file_fdatawait_range(file, start, end); 687 688 return ret ? ret : ret1; 689 } 690 691 /** 692 * gfs2_file_write_iter - Perform a write to a file 693 * @iocb: The io context 694 * @iov: The data to write 695 * @nr_segs: Number of @iov segments 696 * @pos: The file position 697 * 698 * We have to do a lock/unlock here to refresh the inode size for 699 * O_APPEND writes, otherwise we can land up writing at the wrong 700 * offset. There is still a race, but provided the app is using its 701 * own file locking, this will make O_APPEND work as expected. 702 * 703 */ 704 705 static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 706 { 707 struct file *file = iocb->ki_filp; 708 struct gfs2_inode *ip = GFS2_I(file_inode(file)); 709 int ret; 710 711 ret = gfs2_rsqa_alloc(ip); 712 if (ret) 713 return ret; 714 715 gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from)); 716 717 if (iocb->ki_flags & IOCB_APPEND) { 718 struct gfs2_holder gh; 719 720 ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 721 if (ret) 722 return ret; 723 gfs2_glock_dq_uninit(&gh); 724 } 725 726 return generic_file_write_iter(iocb, from); 727 } 728 729 static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len, 730 int mode) 731 { 732 struct super_block *sb = inode->i_sb; 733 struct gfs2_inode *ip = GFS2_I(inode); 734 loff_t end = offset + len; 735 struct buffer_head *dibh; 736 struct iomap iomap = { }; 737 int error; 738 739 error = gfs2_meta_inode_buffer(ip, &dibh); 740 if (unlikely(error)) 741 return error; 742 743 gfs2_trans_add_meta(ip->i_gl, dibh); 744 745 if (gfs2_is_stuffed(ip)) { 746 error = gfs2_unstuff_dinode(ip, NULL); 747 if (unlikely(error)) 748 goto out; 749 } 750 751 while (offset < end) { 752 error = gfs2_iomap_get_alloc(inode, offset, end - offset, 753 &iomap); 754 if (error) 755 goto out; 756 offset = iomap.offset + iomap.length; 757 if (iomap.type != IOMAP_HOLE) 758 continue; 759 error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits, 760 iomap.length >> inode->i_blkbits, 761 GFP_NOFS); 762 if (error) { 763 fs_err(GFS2_SB(inode), "Failed to zero data buffers\n"); 764 goto out; 765 } 766 } 767 out: 768 brelse(dibh); 769 return error; 770 } 771 /** 772 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of 773 * blocks, determine how many bytes can be written. 774 * @ip: The inode in question. 775 * @len: Max cap of bytes. What we return in *len must be <= this. 776 * @data_blocks: Compute and return the number of data blocks needed 777 * @ind_blocks: Compute and return the number of indirect blocks needed 778 * @max_blocks: The total blocks available to work with. 779 * 780 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in. 781 */ 782 static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len, 783 unsigned int *data_blocks, unsigned int *ind_blocks, 784 unsigned int max_blocks) 785 { 786 loff_t max = *len; 787 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 788 unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1); 789 790 for (tmp = max_data; tmp > sdp->sd_diptrs;) { 791 tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs); 792 max_data -= tmp; 793 } 794 795 *data_blocks = max_data; 796 *ind_blocks = max_blocks - max_data; 797 *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift; 798 if (*len > max) { 799 *len = max; 800 gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks); 801 } 802 } 803 804 static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 805 { 806 struct inode *inode = file_inode(file); 807 struct gfs2_sbd *sdp = GFS2_SB(inode); 808 struct gfs2_inode *ip = GFS2_I(inode); 809 struct gfs2_alloc_parms ap = { .aflags = 0, }; 810 unsigned int data_blocks = 0, ind_blocks = 0, rblocks; 811 loff_t bytes, max_bytes, max_blks; 812 int error; 813 const loff_t pos = offset; 814 const loff_t count = len; 815 loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1); 816 loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift; 817 loff_t max_chunk_size = UINT_MAX & bsize_mask; 818 819 next = (next + 1) << sdp->sd_sb.sb_bsize_shift; 820 821 offset &= bsize_mask; 822 823 len = next - offset; 824 bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2; 825 if (!bytes) 826 bytes = UINT_MAX; 827 bytes &= bsize_mask; 828 if (bytes == 0) 829 bytes = sdp->sd_sb.sb_bsize; 830 831 gfs2_size_hint(file, offset, len); 832 833 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks); 834 ap.min_target = data_blocks + ind_blocks; 835 836 while (len > 0) { 837 if (len < bytes) 838 bytes = len; 839 if (!gfs2_write_alloc_required(ip, offset, bytes)) { 840 len -= bytes; 841 offset += bytes; 842 continue; 843 } 844 845 /* We need to determine how many bytes we can actually 846 * fallocate without exceeding quota or going over the 847 * end of the fs. We start off optimistically by assuming 848 * we can write max_bytes */ 849 max_bytes = (len > max_chunk_size) ? max_chunk_size : len; 850 851 /* Since max_bytes is most likely a theoretical max, we 852 * calculate a more realistic 'bytes' to serve as a good 853 * starting point for the number of bytes we may be able 854 * to write */ 855 gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks); 856 ap.target = data_blocks + ind_blocks; 857 858 error = gfs2_quota_lock_check(ip, &ap); 859 if (error) 860 return error; 861 /* ap.allowed tells us how many blocks quota will allow 862 * us to write. Check if this reduces max_blks */ 863 max_blks = UINT_MAX; 864 if (ap.allowed) 865 max_blks = ap.allowed; 866 867 error = gfs2_inplace_reserve(ip, &ap); 868 if (error) 869 goto out_qunlock; 870 871 /* check if the selected rgrp limits our max_blks further */ 872 if (ap.allowed && ap.allowed < max_blks) 873 max_blks = ap.allowed; 874 875 /* Almost done. Calculate bytes that can be written using 876 * max_blks. We also recompute max_bytes, data_blocks and 877 * ind_blocks */ 878 calc_max_reserv(ip, &max_bytes, &data_blocks, 879 &ind_blocks, max_blks); 880 881 rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA + 882 RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks); 883 if (gfs2_is_jdata(ip)) 884 rblocks += data_blocks ? data_blocks : 1; 885 886 error = gfs2_trans_begin(sdp, rblocks, 887 PAGE_SIZE/sdp->sd_sb.sb_bsize); 888 if (error) 889 goto out_trans_fail; 890 891 error = fallocate_chunk(inode, offset, max_bytes, mode); 892 gfs2_trans_end(sdp); 893 894 if (error) 895 goto out_trans_fail; 896 897 len -= max_bytes; 898 offset += max_bytes; 899 gfs2_inplace_release(ip); 900 gfs2_quota_unlock(ip); 901 } 902 903 if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size) { 904 i_size_write(inode, pos + count); 905 file_update_time(file); 906 mark_inode_dirty(inode); 907 } 908 909 if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host)) 910 return vfs_fsync_range(file, pos, pos + count - 1, 911 (file->f_flags & __O_SYNC) ? 0 : 1); 912 return 0; 913 914 out_trans_fail: 915 gfs2_inplace_release(ip); 916 out_qunlock: 917 gfs2_quota_unlock(ip); 918 return error; 919 } 920 921 static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 922 { 923 struct inode *inode = file_inode(file); 924 struct gfs2_sbd *sdp = GFS2_SB(inode); 925 struct gfs2_inode *ip = GFS2_I(inode); 926 struct gfs2_holder gh; 927 int ret; 928 929 if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE)) 930 return -EOPNOTSUPP; 931 /* fallocate is needed by gfs2_grow to reserve space in the rindex */ 932 if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex) 933 return -EOPNOTSUPP; 934 935 inode_lock(inode); 936 937 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 938 ret = gfs2_glock_nq(&gh); 939 if (ret) 940 goto out_uninit; 941 942 if (!(mode & FALLOC_FL_KEEP_SIZE) && 943 (offset + len) > inode->i_size) { 944 ret = inode_newsize_ok(inode, offset + len); 945 if (ret) 946 goto out_unlock; 947 } 948 949 ret = get_write_access(inode); 950 if (ret) 951 goto out_unlock; 952 953 if (mode & FALLOC_FL_PUNCH_HOLE) { 954 ret = __gfs2_punch_hole(file, offset, len); 955 } else { 956 ret = gfs2_rsqa_alloc(ip); 957 if (ret) 958 goto out_putw; 959 960 ret = __gfs2_fallocate(file, mode, offset, len); 961 962 if (ret) 963 gfs2_rs_deltree(&ip->i_res); 964 } 965 966 out_putw: 967 put_write_access(inode); 968 out_unlock: 969 gfs2_glock_dq(&gh); 970 out_uninit: 971 gfs2_holder_uninit(&gh); 972 inode_unlock(inode); 973 return ret; 974 } 975 976 static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe, 977 struct file *out, loff_t *ppos, 978 size_t len, unsigned int flags) 979 { 980 int error; 981 struct gfs2_inode *ip = GFS2_I(out->f_mapping->host); 982 983 error = gfs2_rsqa_alloc(ip); 984 if (error) 985 return (ssize_t)error; 986 987 gfs2_size_hint(out, *ppos, len); 988 989 return iter_file_splice_write(pipe, out, ppos, len, flags); 990 } 991 992 #ifdef CONFIG_GFS2_FS_LOCKING_DLM 993 994 /** 995 * gfs2_lock - acquire/release a posix lock on a file 996 * @file: the file pointer 997 * @cmd: either modify or retrieve lock state, possibly wait 998 * @fl: type and range of lock 999 * 1000 * Returns: errno 1001 */ 1002 1003 static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl) 1004 { 1005 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 1006 struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host); 1007 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1008 1009 if (!(fl->fl_flags & FL_POSIX)) 1010 return -ENOLCK; 1011 if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK) 1012 return -ENOLCK; 1013 1014 if (cmd == F_CANCELLK) { 1015 /* Hack: */ 1016 cmd = F_SETLK; 1017 fl->fl_type = F_UNLCK; 1018 } 1019 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) { 1020 if (fl->fl_type == F_UNLCK) 1021 locks_lock_file_wait(file, fl); 1022 return -EIO; 1023 } 1024 if (IS_GETLK(cmd)) 1025 return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl); 1026 else if (fl->fl_type == F_UNLCK) 1027 return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl); 1028 else 1029 return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl); 1030 } 1031 1032 static int do_flock(struct file *file, int cmd, struct file_lock *fl) 1033 { 1034 struct gfs2_file *fp = file->private_data; 1035 struct gfs2_holder *fl_gh = &fp->f_fl_gh; 1036 struct gfs2_inode *ip = GFS2_I(file_inode(file)); 1037 struct gfs2_glock *gl; 1038 unsigned int state; 1039 u16 flags; 1040 int error = 0; 1041 int sleeptime; 1042 1043 state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED; 1044 flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT; 1045 1046 mutex_lock(&fp->f_fl_mutex); 1047 1048 if (gfs2_holder_initialized(fl_gh)) { 1049 if (fl_gh->gh_state == state) 1050 goto out; 1051 locks_lock_file_wait(file, 1052 &(struct file_lock) { 1053 .fl_type = F_UNLCK, 1054 .fl_flags = FL_FLOCK 1055 }); 1056 gfs2_glock_dq(fl_gh); 1057 gfs2_holder_reinit(state, flags, fl_gh); 1058 } else { 1059 error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr, 1060 &gfs2_flock_glops, CREATE, &gl); 1061 if (error) 1062 goto out; 1063 gfs2_holder_init(gl, state, flags, fl_gh); 1064 gfs2_glock_put(gl); 1065 } 1066 for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) { 1067 error = gfs2_glock_nq(fl_gh); 1068 if (error != GLR_TRYFAILED) 1069 break; 1070 fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT; 1071 fl_gh->gh_error = 0; 1072 msleep(sleeptime); 1073 } 1074 if (error) { 1075 gfs2_holder_uninit(fl_gh); 1076 if (error == GLR_TRYFAILED) 1077 error = -EAGAIN; 1078 } else { 1079 error = locks_lock_file_wait(file, fl); 1080 gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error); 1081 } 1082 1083 out: 1084 mutex_unlock(&fp->f_fl_mutex); 1085 return error; 1086 } 1087 1088 static void do_unflock(struct file *file, struct file_lock *fl) 1089 { 1090 struct gfs2_file *fp = file->private_data; 1091 struct gfs2_holder *fl_gh = &fp->f_fl_gh; 1092 1093 mutex_lock(&fp->f_fl_mutex); 1094 locks_lock_file_wait(file, fl); 1095 if (gfs2_holder_initialized(fl_gh)) { 1096 gfs2_glock_dq(fl_gh); 1097 gfs2_holder_uninit(fl_gh); 1098 } 1099 mutex_unlock(&fp->f_fl_mutex); 1100 } 1101 1102 /** 1103 * gfs2_flock - acquire/release a flock lock on a file 1104 * @file: the file pointer 1105 * @cmd: either modify or retrieve lock state, possibly wait 1106 * @fl: type and range of lock 1107 * 1108 * Returns: errno 1109 */ 1110 1111 static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl) 1112 { 1113 if (!(fl->fl_flags & FL_FLOCK)) 1114 return -ENOLCK; 1115 if (fl->fl_type & LOCK_MAND) 1116 return -EOPNOTSUPP; 1117 1118 if (fl->fl_type == F_UNLCK) { 1119 do_unflock(file, fl); 1120 return 0; 1121 } else { 1122 return do_flock(file, cmd, fl); 1123 } 1124 } 1125 1126 const struct file_operations gfs2_file_fops = { 1127 .llseek = gfs2_llseek, 1128 .read_iter = generic_file_read_iter, 1129 .write_iter = gfs2_file_write_iter, 1130 .unlocked_ioctl = gfs2_ioctl, 1131 .mmap = gfs2_mmap, 1132 .open = gfs2_open, 1133 .release = gfs2_release, 1134 .fsync = gfs2_fsync, 1135 .lock = gfs2_lock, 1136 .flock = gfs2_flock, 1137 .splice_read = generic_file_splice_read, 1138 .splice_write = gfs2_file_splice_write, 1139 .setlease = simple_nosetlease, 1140 .fallocate = gfs2_fallocate, 1141 }; 1142 1143 const struct file_operations gfs2_dir_fops = { 1144 .iterate_shared = gfs2_readdir, 1145 .unlocked_ioctl = gfs2_ioctl, 1146 .open = gfs2_open, 1147 .release = gfs2_release, 1148 .fsync = gfs2_fsync, 1149 .lock = gfs2_lock, 1150 .flock = gfs2_flock, 1151 .llseek = default_llseek, 1152 }; 1153 1154 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */ 1155 1156 const struct file_operations gfs2_file_fops_nolock = { 1157 .llseek = gfs2_llseek, 1158 .read_iter = generic_file_read_iter, 1159 .write_iter = gfs2_file_write_iter, 1160 .unlocked_ioctl = gfs2_ioctl, 1161 .mmap = gfs2_mmap, 1162 .open = gfs2_open, 1163 .release = gfs2_release, 1164 .fsync = gfs2_fsync, 1165 .splice_read = generic_file_splice_read, 1166 .splice_write = gfs2_file_splice_write, 1167 .setlease = generic_setlease, 1168 .fallocate = gfs2_fallocate, 1169 }; 1170 1171 const struct file_operations gfs2_dir_fops_nolock = { 1172 .iterate_shared = gfs2_readdir, 1173 .unlocked_ioctl = gfs2_ioctl, 1174 .open = gfs2_open, 1175 .release = gfs2_release, 1176 .fsync = gfs2_fsync, 1177 .llseek = default_llseek, 1178 }; 1179 1180