1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/spinlock.h> 9 #include <linux/compat.h> 10 #include <linux/completion.h> 11 #include <linux/buffer_head.h> 12 #include <linux/pagemap.h> 13 #include <linux/uio.h> 14 #include <linux/blkdev.h> 15 #include <linux/mm.h> 16 #include <linux/mount.h> 17 #include <linux/fs.h> 18 #include <linux/gfs2_ondisk.h> 19 #include <linux/falloc.h> 20 #include <linux/swap.h> 21 #include <linux/crc32.h> 22 #include <linux/writeback.h> 23 #include <linux/uaccess.h> 24 #include <linux/dlm.h> 25 #include <linux/dlm_plock.h> 26 #include <linux/delay.h> 27 #include <linux/backing-dev.h> 28 29 #include "gfs2.h" 30 #include "incore.h" 31 #include "bmap.h" 32 #include "aops.h" 33 #include "dir.h" 34 #include "glock.h" 35 #include "glops.h" 36 #include "inode.h" 37 #include "log.h" 38 #include "meta_io.h" 39 #include "quota.h" 40 #include "rgrp.h" 41 #include "trans.h" 42 #include "util.h" 43 44 /** 45 * gfs2_llseek - seek to a location in a file 46 * @file: the file 47 * @offset: the offset 48 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END) 49 * 50 * SEEK_END requires the glock for the file because it references the 51 * file's size. 52 * 53 * Returns: The new offset, or errno 54 */ 55 56 static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence) 57 { 58 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 59 struct gfs2_holder i_gh; 60 loff_t error; 61 62 switch (whence) { 63 case SEEK_END: 64 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 65 &i_gh); 66 if (!error) { 67 error = generic_file_llseek(file, offset, whence); 68 gfs2_glock_dq_uninit(&i_gh); 69 } 70 break; 71 72 case SEEK_DATA: 73 error = gfs2_seek_data(file, offset); 74 break; 75 76 case SEEK_HOLE: 77 error = gfs2_seek_hole(file, offset); 78 break; 79 80 case SEEK_CUR: 81 case SEEK_SET: 82 /* 83 * These don't reference inode->i_size and don't depend on the 84 * block mapping, so we don't need the glock. 85 */ 86 error = generic_file_llseek(file, offset, whence); 87 break; 88 default: 89 error = -EINVAL; 90 } 91 92 return error; 93 } 94 95 /** 96 * gfs2_readdir - Iterator for a directory 97 * @file: The directory to read from 98 * @ctx: What to feed directory entries to 99 * 100 * Returns: errno 101 */ 102 103 static int gfs2_readdir(struct file *file, struct dir_context *ctx) 104 { 105 struct inode *dir = file->f_mapping->host; 106 struct gfs2_inode *dip = GFS2_I(dir); 107 struct gfs2_holder d_gh; 108 int error; 109 110 error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh); 111 if (error) 112 return error; 113 114 error = gfs2_dir_read(dir, ctx, &file->f_ra); 115 116 gfs2_glock_dq_uninit(&d_gh); 117 118 return error; 119 } 120 121 /** 122 * fsflag_gfs2flag 123 * 124 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories, 125 * and to GFS2_DIF_JDATA for non-directories. 126 */ 127 static struct { 128 u32 fsflag; 129 u32 gfsflag; 130 } fsflag_gfs2flag[] = { 131 {FS_SYNC_FL, GFS2_DIF_SYNC}, 132 {FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE}, 133 {FS_APPEND_FL, GFS2_DIF_APPENDONLY}, 134 {FS_NOATIME_FL, GFS2_DIF_NOATIME}, 135 {FS_INDEX_FL, GFS2_DIF_EXHASH}, 136 {FS_TOPDIR_FL, GFS2_DIF_TOPDIR}, 137 {FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA}, 138 }; 139 140 static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags) 141 { 142 int i; 143 u32 fsflags = 0; 144 145 if (S_ISDIR(inode->i_mode)) 146 gfsflags &= ~GFS2_DIF_JDATA; 147 else 148 gfsflags &= ~GFS2_DIF_INHERIT_JDATA; 149 150 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) 151 if (gfsflags & fsflag_gfs2flag[i].gfsflag) 152 fsflags |= fsflag_gfs2flag[i].fsflag; 153 return fsflags; 154 } 155 156 static int gfs2_get_flags(struct file *filp, u32 __user *ptr) 157 { 158 struct inode *inode = file_inode(filp); 159 struct gfs2_inode *ip = GFS2_I(inode); 160 struct gfs2_holder gh; 161 int error; 162 u32 fsflags; 163 164 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 165 error = gfs2_glock_nq(&gh); 166 if (error) 167 goto out_uninit; 168 169 fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags); 170 171 if (put_user(fsflags, ptr)) 172 error = -EFAULT; 173 174 gfs2_glock_dq(&gh); 175 out_uninit: 176 gfs2_holder_uninit(&gh); 177 return error; 178 } 179 180 void gfs2_set_inode_flags(struct inode *inode) 181 { 182 struct gfs2_inode *ip = GFS2_I(inode); 183 unsigned int flags = inode->i_flags; 184 185 flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC); 186 if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode)) 187 flags |= S_NOSEC; 188 if (ip->i_diskflags & GFS2_DIF_IMMUTABLE) 189 flags |= S_IMMUTABLE; 190 if (ip->i_diskflags & GFS2_DIF_APPENDONLY) 191 flags |= S_APPEND; 192 if (ip->i_diskflags & GFS2_DIF_NOATIME) 193 flags |= S_NOATIME; 194 if (ip->i_diskflags & GFS2_DIF_SYNC) 195 flags |= S_SYNC; 196 inode->i_flags = flags; 197 } 198 199 /* Flags that can be set by user space */ 200 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA| \ 201 GFS2_DIF_IMMUTABLE| \ 202 GFS2_DIF_APPENDONLY| \ 203 GFS2_DIF_NOATIME| \ 204 GFS2_DIF_SYNC| \ 205 GFS2_DIF_TOPDIR| \ 206 GFS2_DIF_INHERIT_JDATA) 207 208 /** 209 * do_gfs2_set_flags - set flags on an inode 210 * @filp: file pointer 211 * @reqflags: The flags to set 212 * @mask: Indicates which flags are valid 213 * @fsflags: The FS_* inode flags passed in 214 * 215 */ 216 static int do_gfs2_set_flags(struct file *filp, u32 reqflags, u32 mask, 217 const u32 fsflags) 218 { 219 struct inode *inode = file_inode(filp); 220 struct gfs2_inode *ip = GFS2_I(inode); 221 struct gfs2_sbd *sdp = GFS2_SB(inode); 222 struct buffer_head *bh; 223 struct gfs2_holder gh; 224 int error; 225 u32 new_flags, flags, oldflags; 226 227 error = mnt_want_write_file(filp); 228 if (error) 229 return error; 230 231 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 232 if (error) 233 goto out_drop_write; 234 235 oldflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags); 236 error = vfs_ioc_setflags_prepare(inode, oldflags, fsflags); 237 if (error) 238 goto out; 239 240 error = -EACCES; 241 if (!inode_owner_or_capable(inode)) 242 goto out; 243 244 error = 0; 245 flags = ip->i_diskflags; 246 new_flags = (flags & ~mask) | (reqflags & mask); 247 if ((new_flags ^ flags) == 0) 248 goto out; 249 250 error = -EPERM; 251 if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE)) 252 goto out; 253 if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY)) 254 goto out; 255 if (((new_flags ^ flags) & GFS2_DIF_IMMUTABLE) && 256 !capable(CAP_LINUX_IMMUTABLE)) 257 goto out; 258 if (!IS_IMMUTABLE(inode)) { 259 error = gfs2_permission(inode, MAY_WRITE); 260 if (error) 261 goto out; 262 } 263 if ((flags ^ new_flags) & GFS2_DIF_JDATA) { 264 if (new_flags & GFS2_DIF_JDATA) 265 gfs2_log_flush(sdp, ip->i_gl, 266 GFS2_LOG_HEAD_FLUSH_NORMAL | 267 GFS2_LFC_SET_FLAGS); 268 error = filemap_fdatawrite(inode->i_mapping); 269 if (error) 270 goto out; 271 error = filemap_fdatawait(inode->i_mapping); 272 if (error) 273 goto out; 274 if (new_flags & GFS2_DIF_JDATA) 275 gfs2_ordered_del_inode(ip); 276 } 277 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 278 if (error) 279 goto out; 280 error = gfs2_meta_inode_buffer(ip, &bh); 281 if (error) 282 goto out_trans_end; 283 inode->i_ctime = current_time(inode); 284 gfs2_trans_add_meta(ip->i_gl, bh); 285 ip->i_diskflags = new_flags; 286 gfs2_dinode_out(ip, bh->b_data); 287 brelse(bh); 288 gfs2_set_inode_flags(inode); 289 gfs2_set_aops(inode); 290 out_trans_end: 291 gfs2_trans_end(sdp); 292 out: 293 gfs2_glock_dq_uninit(&gh); 294 out_drop_write: 295 mnt_drop_write_file(filp); 296 return error; 297 } 298 299 static int gfs2_set_flags(struct file *filp, u32 __user *ptr) 300 { 301 struct inode *inode = file_inode(filp); 302 u32 fsflags, gfsflags = 0; 303 u32 mask; 304 int i; 305 306 if (get_user(fsflags, ptr)) 307 return -EFAULT; 308 309 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) { 310 if (fsflags & fsflag_gfs2flag[i].fsflag) { 311 fsflags &= ~fsflag_gfs2flag[i].fsflag; 312 gfsflags |= fsflag_gfs2flag[i].gfsflag; 313 } 314 } 315 if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET) 316 return -EINVAL; 317 318 mask = GFS2_FLAGS_USER_SET; 319 if (S_ISDIR(inode->i_mode)) { 320 mask &= ~GFS2_DIF_JDATA; 321 } else { 322 /* The GFS2_DIF_TOPDIR flag is only valid for directories. */ 323 if (gfsflags & GFS2_DIF_TOPDIR) 324 return -EINVAL; 325 mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA); 326 } 327 328 return do_gfs2_set_flags(filp, gfsflags, mask, fsflags); 329 } 330 331 static int gfs2_getlabel(struct file *filp, char __user *label) 332 { 333 struct inode *inode = file_inode(filp); 334 struct gfs2_sbd *sdp = GFS2_SB(inode); 335 336 if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN)) 337 return -EFAULT; 338 339 return 0; 340 } 341 342 static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 343 { 344 switch(cmd) { 345 case FS_IOC_GETFLAGS: 346 return gfs2_get_flags(filp, (u32 __user *)arg); 347 case FS_IOC_SETFLAGS: 348 return gfs2_set_flags(filp, (u32 __user *)arg); 349 case FITRIM: 350 return gfs2_fitrim(filp, (void __user *)arg); 351 case FS_IOC_GETFSLABEL: 352 return gfs2_getlabel(filp, (char __user *)arg); 353 } 354 355 return -ENOTTY; 356 } 357 358 #ifdef CONFIG_COMPAT 359 static long gfs2_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 360 { 361 switch(cmd) { 362 /* These are just misnamed, they actually get/put from/to user an int */ 363 case FS_IOC32_GETFLAGS: 364 cmd = FS_IOC_GETFLAGS; 365 break; 366 case FS_IOC32_SETFLAGS: 367 cmd = FS_IOC_SETFLAGS; 368 break; 369 /* Keep this list in sync with gfs2_ioctl */ 370 case FITRIM: 371 case FS_IOC_GETFSLABEL: 372 break; 373 default: 374 return -ENOIOCTLCMD; 375 } 376 377 return gfs2_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 378 } 379 #else 380 #define gfs2_compat_ioctl NULL 381 #endif 382 383 /** 384 * gfs2_size_hint - Give a hint to the size of a write request 385 * @filep: The struct file 386 * @offset: The file offset of the write 387 * @size: The length of the write 388 * 389 * When we are about to do a write, this function records the total 390 * write size in order to provide a suitable hint to the lower layers 391 * about how many blocks will be required. 392 * 393 */ 394 395 static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size) 396 { 397 struct inode *inode = file_inode(filep); 398 struct gfs2_sbd *sdp = GFS2_SB(inode); 399 struct gfs2_inode *ip = GFS2_I(inode); 400 size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift; 401 int hint = min_t(size_t, INT_MAX, blks); 402 403 if (hint > atomic_read(&ip->i_sizehint)) 404 atomic_set(&ip->i_sizehint, hint); 405 } 406 407 /** 408 * gfs2_allocate_page_backing - Allocate blocks for a write fault 409 * @page: The (locked) page to allocate backing for 410 * 411 * We try to allocate all the blocks required for the page in one go. This 412 * might fail for various reasons, so we keep trying until all the blocks to 413 * back this page are allocated. If some of the blocks are already allocated, 414 * that is ok too. 415 */ 416 static int gfs2_allocate_page_backing(struct page *page) 417 { 418 u64 pos = page_offset(page); 419 u64 size = PAGE_SIZE; 420 421 do { 422 struct iomap iomap = { }; 423 424 if (gfs2_iomap_get_alloc(page->mapping->host, pos, 1, &iomap)) 425 return -EIO; 426 427 iomap.length = min(iomap.length, size); 428 size -= iomap.length; 429 pos += iomap.length; 430 } while (size > 0); 431 432 return 0; 433 } 434 435 /** 436 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable 437 * @vma: The virtual memory area 438 * @vmf: The virtual memory fault containing the page to become writable 439 * 440 * When the page becomes writable, we need to ensure that we have 441 * blocks allocated on disk to back that page. 442 */ 443 444 static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf) 445 { 446 struct page *page = vmf->page; 447 struct inode *inode = file_inode(vmf->vma->vm_file); 448 struct gfs2_inode *ip = GFS2_I(inode); 449 struct gfs2_sbd *sdp = GFS2_SB(inode); 450 struct gfs2_alloc_parms ap = { .aflags = 0, }; 451 unsigned long last_index; 452 u64 pos = page_offset(page); 453 unsigned int data_blocks, ind_blocks, rblocks; 454 struct gfs2_holder gh; 455 loff_t size; 456 int ret; 457 458 sb_start_pagefault(inode->i_sb); 459 460 ret = gfs2_rsqa_alloc(ip); 461 if (ret) 462 goto out; 463 464 gfs2_size_hint(vmf->vma->vm_file, pos, PAGE_SIZE); 465 466 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 467 ret = gfs2_glock_nq(&gh); 468 if (ret) 469 goto out_uninit; 470 471 /* Update file times before taking page lock */ 472 file_update_time(vmf->vma->vm_file); 473 474 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags); 475 set_bit(GIF_SW_PAGED, &ip->i_flags); 476 477 if (!gfs2_write_alloc_required(ip, pos, PAGE_SIZE)) { 478 lock_page(page); 479 if (!PageUptodate(page) || page->mapping != inode->i_mapping) { 480 ret = -EAGAIN; 481 unlock_page(page); 482 } 483 goto out_unlock; 484 } 485 486 ret = gfs2_rindex_update(sdp); 487 if (ret) 488 goto out_unlock; 489 490 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks); 491 ap.target = data_blocks + ind_blocks; 492 ret = gfs2_quota_lock_check(ip, &ap); 493 if (ret) 494 goto out_unlock; 495 ret = gfs2_inplace_reserve(ip, &ap); 496 if (ret) 497 goto out_quota_unlock; 498 499 rblocks = RES_DINODE + ind_blocks; 500 if (gfs2_is_jdata(ip)) 501 rblocks += data_blocks ? data_blocks : 1; 502 if (ind_blocks || data_blocks) { 503 rblocks += RES_STATFS + RES_QUOTA; 504 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 505 } 506 ret = gfs2_trans_begin(sdp, rblocks, 0); 507 if (ret) 508 goto out_trans_fail; 509 510 lock_page(page); 511 ret = -EINVAL; 512 size = i_size_read(inode); 513 last_index = (size - 1) >> PAGE_SHIFT; 514 /* Check page index against inode size */ 515 if (size == 0 || (page->index > last_index)) 516 goto out_trans_end; 517 518 ret = -EAGAIN; 519 /* If truncated, we must retry the operation, we may have raced 520 * with the glock demotion code. 521 */ 522 if (!PageUptodate(page) || page->mapping != inode->i_mapping) 523 goto out_trans_end; 524 525 /* Unstuff, if required, and allocate backing blocks for page */ 526 ret = 0; 527 if (gfs2_is_stuffed(ip)) 528 ret = gfs2_unstuff_dinode(ip, page); 529 if (ret == 0) 530 ret = gfs2_allocate_page_backing(page); 531 532 out_trans_end: 533 if (ret) 534 unlock_page(page); 535 gfs2_trans_end(sdp); 536 out_trans_fail: 537 gfs2_inplace_release(ip); 538 out_quota_unlock: 539 gfs2_quota_unlock(ip); 540 out_unlock: 541 gfs2_glock_dq(&gh); 542 out_uninit: 543 gfs2_holder_uninit(&gh); 544 if (ret == 0) { 545 set_page_dirty(page); 546 wait_for_stable_page(page); 547 } 548 out: 549 sb_end_pagefault(inode->i_sb); 550 return block_page_mkwrite_return(ret); 551 } 552 553 static const struct vm_operations_struct gfs2_vm_ops = { 554 .fault = filemap_fault, 555 .map_pages = filemap_map_pages, 556 .page_mkwrite = gfs2_page_mkwrite, 557 }; 558 559 /** 560 * gfs2_mmap - 561 * @file: The file to map 562 * @vma: The VMA which described the mapping 563 * 564 * There is no need to get a lock here unless we should be updating 565 * atime. We ignore any locking errors since the only consequence is 566 * a missed atime update (which will just be deferred until later). 567 * 568 * Returns: 0 569 */ 570 571 static int gfs2_mmap(struct file *file, struct vm_area_struct *vma) 572 { 573 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 574 575 if (!(file->f_flags & O_NOATIME) && 576 !IS_NOATIME(&ip->i_inode)) { 577 struct gfs2_holder i_gh; 578 int error; 579 580 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 581 &i_gh); 582 if (error) 583 return error; 584 /* grab lock to update inode */ 585 gfs2_glock_dq_uninit(&i_gh); 586 file_accessed(file); 587 } 588 vma->vm_ops = &gfs2_vm_ops; 589 590 return 0; 591 } 592 593 /** 594 * gfs2_open_common - This is common to open and atomic_open 595 * @inode: The inode being opened 596 * @file: The file being opened 597 * 598 * This maybe called under a glock or not depending upon how it has 599 * been called. We must always be called under a glock for regular 600 * files, however. For other file types, it does not matter whether 601 * we hold the glock or not. 602 * 603 * Returns: Error code or 0 for success 604 */ 605 606 int gfs2_open_common(struct inode *inode, struct file *file) 607 { 608 struct gfs2_file *fp; 609 int ret; 610 611 if (S_ISREG(inode->i_mode)) { 612 ret = generic_file_open(inode, file); 613 if (ret) 614 return ret; 615 } 616 617 fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS); 618 if (!fp) 619 return -ENOMEM; 620 621 mutex_init(&fp->f_fl_mutex); 622 623 gfs2_assert_warn(GFS2_SB(inode), !file->private_data); 624 file->private_data = fp; 625 return 0; 626 } 627 628 /** 629 * gfs2_open - open a file 630 * @inode: the inode to open 631 * @file: the struct file for this opening 632 * 633 * After atomic_open, this function is only used for opening files 634 * which are already cached. We must still get the glock for regular 635 * files to ensure that we have the file size uptodate for the large 636 * file check which is in the common code. That is only an issue for 637 * regular files though. 638 * 639 * Returns: errno 640 */ 641 642 static int gfs2_open(struct inode *inode, struct file *file) 643 { 644 struct gfs2_inode *ip = GFS2_I(inode); 645 struct gfs2_holder i_gh; 646 int error; 647 bool need_unlock = false; 648 649 if (S_ISREG(ip->i_inode.i_mode)) { 650 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 651 &i_gh); 652 if (error) 653 return error; 654 need_unlock = true; 655 } 656 657 error = gfs2_open_common(inode, file); 658 659 if (need_unlock) 660 gfs2_glock_dq_uninit(&i_gh); 661 662 return error; 663 } 664 665 /** 666 * gfs2_release - called to close a struct file 667 * @inode: the inode the struct file belongs to 668 * @file: the struct file being closed 669 * 670 * Returns: errno 671 */ 672 673 static int gfs2_release(struct inode *inode, struct file *file) 674 { 675 struct gfs2_inode *ip = GFS2_I(inode); 676 677 kfree(file->private_data); 678 file->private_data = NULL; 679 680 if (!(file->f_mode & FMODE_WRITE)) 681 return 0; 682 683 gfs2_rsqa_delete(ip, &inode->i_writecount); 684 return 0; 685 } 686 687 /** 688 * gfs2_fsync - sync the dirty data for a file (across the cluster) 689 * @file: the file that points to the dentry 690 * @start: the start position in the file to sync 691 * @end: the end position in the file to sync 692 * @datasync: set if we can ignore timestamp changes 693 * 694 * We split the data flushing here so that we don't wait for the data 695 * until after we've also sent the metadata to disk. Note that for 696 * data=ordered, we will write & wait for the data at the log flush 697 * stage anyway, so this is unlikely to make much of a difference 698 * except in the data=writeback case. 699 * 700 * If the fdatawrite fails due to any reason except -EIO, we will 701 * continue the remainder of the fsync, although we'll still report 702 * the error at the end. This is to match filemap_write_and_wait_range() 703 * behaviour. 704 * 705 * Returns: errno 706 */ 707 708 static int gfs2_fsync(struct file *file, loff_t start, loff_t end, 709 int datasync) 710 { 711 struct address_space *mapping = file->f_mapping; 712 struct inode *inode = mapping->host; 713 int sync_state = inode->i_state & I_DIRTY_ALL; 714 struct gfs2_inode *ip = GFS2_I(inode); 715 int ret = 0, ret1 = 0; 716 717 if (mapping->nrpages) { 718 ret1 = filemap_fdatawrite_range(mapping, start, end); 719 if (ret1 == -EIO) 720 return ret1; 721 } 722 723 if (!gfs2_is_jdata(ip)) 724 sync_state &= ~I_DIRTY_PAGES; 725 if (datasync) 726 sync_state &= ~(I_DIRTY_SYNC | I_DIRTY_TIME); 727 728 if (sync_state) { 729 ret = sync_inode_metadata(inode, 1); 730 if (ret) 731 return ret; 732 if (gfs2_is_jdata(ip)) 733 ret = file_write_and_wait(file); 734 if (ret) 735 return ret; 736 gfs2_ail_flush(ip->i_gl, 1); 737 } 738 739 if (mapping->nrpages) 740 ret = file_fdatawait_range(file, start, end); 741 742 return ret ? ret : ret1; 743 } 744 745 static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to) 746 { 747 struct file *file = iocb->ki_filp; 748 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 749 size_t count = iov_iter_count(to); 750 struct gfs2_holder gh; 751 ssize_t ret; 752 753 if (!count) 754 return 0; /* skip atime */ 755 756 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh); 757 ret = gfs2_glock_nq(&gh); 758 if (ret) 759 goto out_uninit; 760 761 ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL, 762 is_sync_kiocb(iocb)); 763 764 gfs2_glock_dq(&gh); 765 out_uninit: 766 gfs2_holder_uninit(&gh); 767 return ret; 768 } 769 770 static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 771 { 772 struct file *file = iocb->ki_filp; 773 struct inode *inode = file->f_mapping->host; 774 struct gfs2_inode *ip = GFS2_I(inode); 775 size_t len = iov_iter_count(from); 776 loff_t offset = iocb->ki_pos; 777 struct gfs2_holder gh; 778 ssize_t ret; 779 780 /* 781 * Deferred lock, even if its a write, since we do no allocation on 782 * this path. All we need to change is the atime, and this lock mode 783 * ensures that other nodes have flushed their buffered read caches 784 * (i.e. their page cache entries for this inode). We do not, 785 * unfortunately, have the option of only flushing a range like the 786 * VFS does. 787 */ 788 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh); 789 ret = gfs2_glock_nq(&gh); 790 if (ret) 791 goto out_uninit; 792 793 /* Silently fall back to buffered I/O when writing beyond EOF */ 794 if (offset + len > i_size_read(&ip->i_inode)) 795 goto out; 796 797 ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL, 798 is_sync_kiocb(iocb)); 799 800 out: 801 gfs2_glock_dq(&gh); 802 out_uninit: 803 gfs2_holder_uninit(&gh); 804 return ret; 805 } 806 807 static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 808 { 809 ssize_t ret; 810 811 if (iocb->ki_flags & IOCB_DIRECT) { 812 ret = gfs2_file_direct_read(iocb, to); 813 if (likely(ret != -ENOTBLK)) 814 return ret; 815 iocb->ki_flags &= ~IOCB_DIRECT; 816 } 817 return generic_file_read_iter(iocb, to); 818 } 819 820 /** 821 * gfs2_file_write_iter - Perform a write to a file 822 * @iocb: The io context 823 * @from: The data to write 824 * 825 * We have to do a lock/unlock here to refresh the inode size for 826 * O_APPEND writes, otherwise we can land up writing at the wrong 827 * offset. There is still a race, but provided the app is using its 828 * own file locking, this will make O_APPEND work as expected. 829 * 830 */ 831 832 static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 833 { 834 struct file *file = iocb->ki_filp; 835 struct inode *inode = file_inode(file); 836 struct gfs2_inode *ip = GFS2_I(inode); 837 ssize_t written = 0, ret; 838 839 ret = gfs2_rsqa_alloc(ip); 840 if (ret) 841 return ret; 842 843 gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from)); 844 845 if (iocb->ki_flags & IOCB_APPEND) { 846 struct gfs2_holder gh; 847 848 ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 849 if (ret) 850 return ret; 851 gfs2_glock_dq_uninit(&gh); 852 } 853 854 inode_lock(inode); 855 ret = generic_write_checks(iocb, from); 856 if (ret <= 0) 857 goto out; 858 859 /* We can write back this queue in page reclaim */ 860 current->backing_dev_info = inode_to_bdi(inode); 861 862 ret = file_remove_privs(file); 863 if (ret) 864 goto out2; 865 866 ret = file_update_time(file); 867 if (ret) 868 goto out2; 869 870 if (iocb->ki_flags & IOCB_DIRECT) { 871 struct address_space *mapping = file->f_mapping; 872 loff_t pos, endbyte; 873 ssize_t buffered; 874 875 written = gfs2_file_direct_write(iocb, from); 876 if (written < 0 || !iov_iter_count(from)) 877 goto out2; 878 879 ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops); 880 if (unlikely(ret < 0)) 881 goto out2; 882 buffered = ret; 883 884 /* 885 * We need to ensure that the page cache pages are written to 886 * disk and invalidated to preserve the expected O_DIRECT 887 * semantics. 888 */ 889 pos = iocb->ki_pos; 890 endbyte = pos + buffered - 1; 891 ret = filemap_write_and_wait_range(mapping, pos, endbyte); 892 if (!ret) { 893 iocb->ki_pos += buffered; 894 written += buffered; 895 invalidate_mapping_pages(mapping, 896 pos >> PAGE_SHIFT, 897 endbyte >> PAGE_SHIFT); 898 } else { 899 /* 900 * We don't know how much we wrote, so just return 901 * the number of bytes which were direct-written 902 */ 903 } 904 } else { 905 ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops); 906 if (likely(ret > 0)) 907 iocb->ki_pos += ret; 908 } 909 910 out2: 911 current->backing_dev_info = NULL; 912 out: 913 inode_unlock(inode); 914 if (likely(ret > 0)) { 915 /* Handle various SYNC-type writes */ 916 ret = generic_write_sync(iocb, ret); 917 } 918 return written ? written : ret; 919 } 920 921 static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len, 922 int mode) 923 { 924 struct super_block *sb = inode->i_sb; 925 struct gfs2_inode *ip = GFS2_I(inode); 926 loff_t end = offset + len; 927 struct buffer_head *dibh; 928 int error; 929 930 error = gfs2_meta_inode_buffer(ip, &dibh); 931 if (unlikely(error)) 932 return error; 933 934 gfs2_trans_add_meta(ip->i_gl, dibh); 935 936 if (gfs2_is_stuffed(ip)) { 937 error = gfs2_unstuff_dinode(ip, NULL); 938 if (unlikely(error)) 939 goto out; 940 } 941 942 while (offset < end) { 943 struct iomap iomap = { }; 944 945 error = gfs2_iomap_get_alloc(inode, offset, end - offset, 946 &iomap); 947 if (error) 948 goto out; 949 offset = iomap.offset + iomap.length; 950 if (!(iomap.flags & IOMAP_F_NEW)) 951 continue; 952 error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits, 953 iomap.length >> inode->i_blkbits, 954 GFP_NOFS); 955 if (error) { 956 fs_err(GFS2_SB(inode), "Failed to zero data buffers\n"); 957 goto out; 958 } 959 } 960 out: 961 brelse(dibh); 962 return error; 963 } 964 /** 965 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of 966 * blocks, determine how many bytes can be written. 967 * @ip: The inode in question. 968 * @len: Max cap of bytes. What we return in *len must be <= this. 969 * @data_blocks: Compute and return the number of data blocks needed 970 * @ind_blocks: Compute and return the number of indirect blocks needed 971 * @max_blocks: The total blocks available to work with. 972 * 973 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in. 974 */ 975 static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len, 976 unsigned int *data_blocks, unsigned int *ind_blocks, 977 unsigned int max_blocks) 978 { 979 loff_t max = *len; 980 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 981 unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1); 982 983 for (tmp = max_data; tmp > sdp->sd_diptrs;) { 984 tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs); 985 max_data -= tmp; 986 } 987 988 *data_blocks = max_data; 989 *ind_blocks = max_blocks - max_data; 990 *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift; 991 if (*len > max) { 992 *len = max; 993 gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks); 994 } 995 } 996 997 static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 998 { 999 struct inode *inode = file_inode(file); 1000 struct gfs2_sbd *sdp = GFS2_SB(inode); 1001 struct gfs2_inode *ip = GFS2_I(inode); 1002 struct gfs2_alloc_parms ap = { .aflags = 0, }; 1003 unsigned int data_blocks = 0, ind_blocks = 0, rblocks; 1004 loff_t bytes, max_bytes, max_blks; 1005 int error; 1006 const loff_t pos = offset; 1007 const loff_t count = len; 1008 loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1); 1009 loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift; 1010 loff_t max_chunk_size = UINT_MAX & bsize_mask; 1011 1012 next = (next + 1) << sdp->sd_sb.sb_bsize_shift; 1013 1014 offset &= bsize_mask; 1015 1016 len = next - offset; 1017 bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2; 1018 if (!bytes) 1019 bytes = UINT_MAX; 1020 bytes &= bsize_mask; 1021 if (bytes == 0) 1022 bytes = sdp->sd_sb.sb_bsize; 1023 1024 gfs2_size_hint(file, offset, len); 1025 1026 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks); 1027 ap.min_target = data_blocks + ind_blocks; 1028 1029 while (len > 0) { 1030 if (len < bytes) 1031 bytes = len; 1032 if (!gfs2_write_alloc_required(ip, offset, bytes)) { 1033 len -= bytes; 1034 offset += bytes; 1035 continue; 1036 } 1037 1038 /* We need to determine how many bytes we can actually 1039 * fallocate without exceeding quota or going over the 1040 * end of the fs. We start off optimistically by assuming 1041 * we can write max_bytes */ 1042 max_bytes = (len > max_chunk_size) ? max_chunk_size : len; 1043 1044 /* Since max_bytes is most likely a theoretical max, we 1045 * calculate a more realistic 'bytes' to serve as a good 1046 * starting point for the number of bytes we may be able 1047 * to write */ 1048 gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks); 1049 ap.target = data_blocks + ind_blocks; 1050 1051 error = gfs2_quota_lock_check(ip, &ap); 1052 if (error) 1053 return error; 1054 /* ap.allowed tells us how many blocks quota will allow 1055 * us to write. Check if this reduces max_blks */ 1056 max_blks = UINT_MAX; 1057 if (ap.allowed) 1058 max_blks = ap.allowed; 1059 1060 error = gfs2_inplace_reserve(ip, &ap); 1061 if (error) 1062 goto out_qunlock; 1063 1064 /* check if the selected rgrp limits our max_blks further */ 1065 if (ap.allowed && ap.allowed < max_blks) 1066 max_blks = ap.allowed; 1067 1068 /* Almost done. Calculate bytes that can be written using 1069 * max_blks. We also recompute max_bytes, data_blocks and 1070 * ind_blocks */ 1071 calc_max_reserv(ip, &max_bytes, &data_blocks, 1072 &ind_blocks, max_blks); 1073 1074 rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA + 1075 RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks); 1076 if (gfs2_is_jdata(ip)) 1077 rblocks += data_blocks ? data_blocks : 1; 1078 1079 error = gfs2_trans_begin(sdp, rblocks, 1080 PAGE_SIZE >> inode->i_blkbits); 1081 if (error) 1082 goto out_trans_fail; 1083 1084 error = fallocate_chunk(inode, offset, max_bytes, mode); 1085 gfs2_trans_end(sdp); 1086 1087 if (error) 1088 goto out_trans_fail; 1089 1090 len -= max_bytes; 1091 offset += max_bytes; 1092 gfs2_inplace_release(ip); 1093 gfs2_quota_unlock(ip); 1094 } 1095 1096 if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size) 1097 i_size_write(inode, pos + count); 1098 file_update_time(file); 1099 mark_inode_dirty(inode); 1100 1101 if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host)) 1102 return vfs_fsync_range(file, pos, pos + count - 1, 1103 (file->f_flags & __O_SYNC) ? 0 : 1); 1104 return 0; 1105 1106 out_trans_fail: 1107 gfs2_inplace_release(ip); 1108 out_qunlock: 1109 gfs2_quota_unlock(ip); 1110 return error; 1111 } 1112 1113 static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 1114 { 1115 struct inode *inode = file_inode(file); 1116 struct gfs2_sbd *sdp = GFS2_SB(inode); 1117 struct gfs2_inode *ip = GFS2_I(inode); 1118 struct gfs2_holder gh; 1119 int ret; 1120 1121 if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE)) 1122 return -EOPNOTSUPP; 1123 /* fallocate is needed by gfs2_grow to reserve space in the rindex */ 1124 if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex) 1125 return -EOPNOTSUPP; 1126 1127 inode_lock(inode); 1128 1129 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 1130 ret = gfs2_glock_nq(&gh); 1131 if (ret) 1132 goto out_uninit; 1133 1134 if (!(mode & FALLOC_FL_KEEP_SIZE) && 1135 (offset + len) > inode->i_size) { 1136 ret = inode_newsize_ok(inode, offset + len); 1137 if (ret) 1138 goto out_unlock; 1139 } 1140 1141 ret = get_write_access(inode); 1142 if (ret) 1143 goto out_unlock; 1144 1145 if (mode & FALLOC_FL_PUNCH_HOLE) { 1146 ret = __gfs2_punch_hole(file, offset, len); 1147 } else { 1148 ret = gfs2_rsqa_alloc(ip); 1149 if (ret) 1150 goto out_putw; 1151 1152 ret = __gfs2_fallocate(file, mode, offset, len); 1153 1154 if (ret) 1155 gfs2_rs_deltree(&ip->i_res); 1156 } 1157 1158 out_putw: 1159 put_write_access(inode); 1160 out_unlock: 1161 gfs2_glock_dq(&gh); 1162 out_uninit: 1163 gfs2_holder_uninit(&gh); 1164 inode_unlock(inode); 1165 return ret; 1166 } 1167 1168 static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe, 1169 struct file *out, loff_t *ppos, 1170 size_t len, unsigned int flags) 1171 { 1172 int error; 1173 struct gfs2_inode *ip = GFS2_I(out->f_mapping->host); 1174 1175 error = gfs2_rsqa_alloc(ip); 1176 if (error) 1177 return (ssize_t)error; 1178 1179 gfs2_size_hint(out, *ppos, len); 1180 1181 return iter_file_splice_write(pipe, out, ppos, len, flags); 1182 } 1183 1184 #ifdef CONFIG_GFS2_FS_LOCKING_DLM 1185 1186 /** 1187 * gfs2_lock - acquire/release a posix lock on a file 1188 * @file: the file pointer 1189 * @cmd: either modify or retrieve lock state, possibly wait 1190 * @fl: type and range of lock 1191 * 1192 * Returns: errno 1193 */ 1194 1195 static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl) 1196 { 1197 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 1198 struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host); 1199 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1200 1201 if (!(fl->fl_flags & FL_POSIX)) 1202 return -ENOLCK; 1203 if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK) 1204 return -ENOLCK; 1205 1206 if (cmd == F_CANCELLK) { 1207 /* Hack: */ 1208 cmd = F_SETLK; 1209 fl->fl_type = F_UNLCK; 1210 } 1211 if (unlikely(test_bit(SDF_WITHDRAWN, &sdp->sd_flags))) { 1212 if (fl->fl_type == F_UNLCK) 1213 locks_lock_file_wait(file, fl); 1214 return -EIO; 1215 } 1216 if (IS_GETLK(cmd)) 1217 return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl); 1218 else if (fl->fl_type == F_UNLCK) 1219 return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl); 1220 else 1221 return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl); 1222 } 1223 1224 static int do_flock(struct file *file, int cmd, struct file_lock *fl) 1225 { 1226 struct gfs2_file *fp = file->private_data; 1227 struct gfs2_holder *fl_gh = &fp->f_fl_gh; 1228 struct gfs2_inode *ip = GFS2_I(file_inode(file)); 1229 struct gfs2_glock *gl; 1230 unsigned int state; 1231 u16 flags; 1232 int error = 0; 1233 int sleeptime; 1234 1235 state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED; 1236 flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT; 1237 1238 mutex_lock(&fp->f_fl_mutex); 1239 1240 if (gfs2_holder_initialized(fl_gh)) { 1241 struct file_lock request; 1242 if (fl_gh->gh_state == state) 1243 goto out; 1244 locks_init_lock(&request); 1245 request.fl_type = F_UNLCK; 1246 request.fl_flags = FL_FLOCK; 1247 locks_lock_file_wait(file, &request); 1248 gfs2_glock_dq(fl_gh); 1249 gfs2_holder_reinit(state, flags, fl_gh); 1250 } else { 1251 error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr, 1252 &gfs2_flock_glops, CREATE, &gl); 1253 if (error) 1254 goto out; 1255 gfs2_holder_init(gl, state, flags, fl_gh); 1256 gfs2_glock_put(gl); 1257 } 1258 for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) { 1259 error = gfs2_glock_nq(fl_gh); 1260 if (error != GLR_TRYFAILED) 1261 break; 1262 fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT; 1263 fl_gh->gh_error = 0; 1264 msleep(sleeptime); 1265 } 1266 if (error) { 1267 gfs2_holder_uninit(fl_gh); 1268 if (error == GLR_TRYFAILED) 1269 error = -EAGAIN; 1270 } else { 1271 error = locks_lock_file_wait(file, fl); 1272 gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error); 1273 } 1274 1275 out: 1276 mutex_unlock(&fp->f_fl_mutex); 1277 return error; 1278 } 1279 1280 static void do_unflock(struct file *file, struct file_lock *fl) 1281 { 1282 struct gfs2_file *fp = file->private_data; 1283 struct gfs2_holder *fl_gh = &fp->f_fl_gh; 1284 1285 mutex_lock(&fp->f_fl_mutex); 1286 locks_lock_file_wait(file, fl); 1287 if (gfs2_holder_initialized(fl_gh)) { 1288 gfs2_glock_dq(fl_gh); 1289 gfs2_holder_uninit(fl_gh); 1290 } 1291 mutex_unlock(&fp->f_fl_mutex); 1292 } 1293 1294 /** 1295 * gfs2_flock - acquire/release a flock lock on a file 1296 * @file: the file pointer 1297 * @cmd: either modify or retrieve lock state, possibly wait 1298 * @fl: type and range of lock 1299 * 1300 * Returns: errno 1301 */ 1302 1303 static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl) 1304 { 1305 if (!(fl->fl_flags & FL_FLOCK)) 1306 return -ENOLCK; 1307 if (fl->fl_type & LOCK_MAND) 1308 return -EOPNOTSUPP; 1309 1310 if (fl->fl_type == F_UNLCK) { 1311 do_unflock(file, fl); 1312 return 0; 1313 } else { 1314 return do_flock(file, cmd, fl); 1315 } 1316 } 1317 1318 const struct file_operations gfs2_file_fops = { 1319 .llseek = gfs2_llseek, 1320 .read_iter = gfs2_file_read_iter, 1321 .write_iter = gfs2_file_write_iter, 1322 .iopoll = iomap_dio_iopoll, 1323 .unlocked_ioctl = gfs2_ioctl, 1324 .compat_ioctl = gfs2_compat_ioctl, 1325 .mmap = gfs2_mmap, 1326 .open = gfs2_open, 1327 .release = gfs2_release, 1328 .fsync = gfs2_fsync, 1329 .lock = gfs2_lock, 1330 .flock = gfs2_flock, 1331 .splice_read = generic_file_splice_read, 1332 .splice_write = gfs2_file_splice_write, 1333 .setlease = simple_nosetlease, 1334 .fallocate = gfs2_fallocate, 1335 }; 1336 1337 const struct file_operations gfs2_dir_fops = { 1338 .iterate_shared = gfs2_readdir, 1339 .unlocked_ioctl = gfs2_ioctl, 1340 .compat_ioctl = gfs2_compat_ioctl, 1341 .open = gfs2_open, 1342 .release = gfs2_release, 1343 .fsync = gfs2_fsync, 1344 .lock = gfs2_lock, 1345 .flock = gfs2_flock, 1346 .llseek = default_llseek, 1347 }; 1348 1349 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */ 1350 1351 const struct file_operations gfs2_file_fops_nolock = { 1352 .llseek = gfs2_llseek, 1353 .read_iter = gfs2_file_read_iter, 1354 .write_iter = gfs2_file_write_iter, 1355 .iopoll = iomap_dio_iopoll, 1356 .unlocked_ioctl = gfs2_ioctl, 1357 .compat_ioctl = gfs2_compat_ioctl, 1358 .mmap = gfs2_mmap, 1359 .open = gfs2_open, 1360 .release = gfs2_release, 1361 .fsync = gfs2_fsync, 1362 .splice_read = generic_file_splice_read, 1363 .splice_write = gfs2_file_splice_write, 1364 .setlease = generic_setlease, 1365 .fallocate = gfs2_fallocate, 1366 }; 1367 1368 const struct file_operations gfs2_dir_fops_nolock = { 1369 .iterate_shared = gfs2_readdir, 1370 .unlocked_ioctl = gfs2_ioctl, 1371 .compat_ioctl = gfs2_compat_ioctl, 1372 .open = gfs2_open, 1373 .release = gfs2_release, 1374 .fsync = gfs2_fsync, 1375 .llseek = default_llseek, 1376 }; 1377 1378