xref: /openbmc/linux/fs/gfs2/bmap.c (revision ed1666f6)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/spinlock.h>
11 #include <linux/completion.h>
12 #include <linux/buffer_head.h>
13 #include <linux/blkdev.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/crc32.h>
16 #include <linux/iomap.h>
17 #include <linux/ktime.h>
18 
19 #include "gfs2.h"
20 #include "incore.h"
21 #include "bmap.h"
22 #include "glock.h"
23 #include "inode.h"
24 #include "meta_io.h"
25 #include "quota.h"
26 #include "rgrp.h"
27 #include "log.h"
28 #include "super.h"
29 #include "trans.h"
30 #include "dir.h"
31 #include "util.h"
32 #include "aops.h"
33 #include "trace_gfs2.h"
34 
35 /* This doesn't need to be that large as max 64 bit pointers in a 4k
36  * block is 512, so __u16 is fine for that. It saves stack space to
37  * keep it small.
38  */
39 struct metapath {
40 	struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT];
41 	__u16 mp_list[GFS2_MAX_META_HEIGHT];
42 	int mp_fheight; /* find_metapath height */
43 	int mp_aheight; /* actual height (lookup height) */
44 };
45 
46 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length);
47 
48 /**
49  * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page
50  * @ip: the inode
51  * @dibh: the dinode buffer
52  * @block: the block number that was allocated
53  * @page: The (optional) page. This is looked up if @page is NULL
54  *
55  * Returns: errno
56  */
57 
58 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh,
59 			       u64 block, struct page *page)
60 {
61 	struct inode *inode = &ip->i_inode;
62 	struct buffer_head *bh;
63 	int release = 0;
64 
65 	if (!page || page->index) {
66 		page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
67 		if (!page)
68 			return -ENOMEM;
69 		release = 1;
70 	}
71 
72 	if (!PageUptodate(page)) {
73 		void *kaddr = kmap(page);
74 		u64 dsize = i_size_read(inode);
75 
76 		if (dsize > gfs2_max_stuffed_size(ip))
77 			dsize = gfs2_max_stuffed_size(ip);
78 
79 		memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
80 		memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
81 		kunmap(page);
82 
83 		SetPageUptodate(page);
84 	}
85 
86 	if (!page_has_buffers(page))
87 		create_empty_buffers(page, BIT(inode->i_blkbits),
88 				     BIT(BH_Uptodate));
89 
90 	bh = page_buffers(page);
91 
92 	if (!buffer_mapped(bh))
93 		map_bh(bh, inode->i_sb, block);
94 
95 	set_buffer_uptodate(bh);
96 	if (gfs2_is_jdata(ip))
97 		gfs2_trans_add_data(ip->i_gl, bh);
98 	else {
99 		mark_buffer_dirty(bh);
100 		gfs2_ordered_add_inode(ip);
101 	}
102 
103 	if (release) {
104 		unlock_page(page);
105 		put_page(page);
106 	}
107 
108 	return 0;
109 }
110 
111 /**
112  * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big
113  * @ip: The GFS2 inode to unstuff
114  * @page: The (optional) page. This is looked up if the @page is NULL
115  *
116  * This routine unstuffs a dinode and returns it to a "normal" state such
117  * that the height can be grown in the traditional way.
118  *
119  * Returns: errno
120  */
121 
122 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page)
123 {
124 	struct buffer_head *bh, *dibh;
125 	struct gfs2_dinode *di;
126 	u64 block = 0;
127 	int isdir = gfs2_is_dir(ip);
128 	int error;
129 
130 	down_write(&ip->i_rw_mutex);
131 
132 	error = gfs2_meta_inode_buffer(ip, &dibh);
133 	if (error)
134 		goto out;
135 
136 	if (i_size_read(&ip->i_inode)) {
137 		/* Get a free block, fill it with the stuffed data,
138 		   and write it out to disk */
139 
140 		unsigned int n = 1;
141 		error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL);
142 		if (error)
143 			goto out_brelse;
144 		if (isdir) {
145 			gfs2_trans_add_unrevoke(GFS2_SB(&ip->i_inode), block, 1);
146 			error = gfs2_dir_get_new_buffer(ip, block, &bh);
147 			if (error)
148 				goto out_brelse;
149 			gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header),
150 					      dibh, sizeof(struct gfs2_dinode));
151 			brelse(bh);
152 		} else {
153 			error = gfs2_unstuffer_page(ip, dibh, block, page);
154 			if (error)
155 				goto out_brelse;
156 		}
157 	}
158 
159 	/*  Set up the pointer to the new block  */
160 
161 	gfs2_trans_add_meta(ip->i_gl, dibh);
162 	di = (struct gfs2_dinode *)dibh->b_data;
163 	gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
164 
165 	if (i_size_read(&ip->i_inode)) {
166 		*(__be64 *)(di + 1) = cpu_to_be64(block);
167 		gfs2_add_inode_blocks(&ip->i_inode, 1);
168 		di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode));
169 	}
170 
171 	ip->i_height = 1;
172 	di->di_height = cpu_to_be16(1);
173 
174 out_brelse:
175 	brelse(dibh);
176 out:
177 	up_write(&ip->i_rw_mutex);
178 	return error;
179 }
180 
181 
182 /**
183  * find_metapath - Find path through the metadata tree
184  * @sdp: The superblock
185  * @block: The disk block to look up
186  * @mp: The metapath to return the result in
187  * @height: The pre-calculated height of the metadata tree
188  *
189  *   This routine returns a struct metapath structure that defines a path
190  *   through the metadata of inode "ip" to get to block "block".
191  *
192  *   Example:
193  *   Given:  "ip" is a height 3 file, "offset" is 101342453, and this is a
194  *   filesystem with a blocksize of 4096.
195  *
196  *   find_metapath() would return a struct metapath structure set to:
197  *   mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165.
198  *
199  *   That means that in order to get to the block containing the byte at
200  *   offset 101342453, we would load the indirect block pointed to by pointer
201  *   0 in the dinode.  We would then load the indirect block pointed to by
202  *   pointer 48 in that indirect block.  We would then load the data block
203  *   pointed to by pointer 165 in that indirect block.
204  *
205  *             ----------------------------------------
206  *             | Dinode |                             |
207  *             |        |                            4|
208  *             |        |0 1 2 3 4 5                 9|
209  *             |        |                            6|
210  *             ----------------------------------------
211  *                       |
212  *                       |
213  *                       V
214  *             ----------------------------------------
215  *             | Indirect Block                       |
216  *             |                                     5|
217  *             |            4 4 4 4 4 5 5            1|
218  *             |0           5 6 7 8 9 0 1            2|
219  *             ----------------------------------------
220  *                                |
221  *                                |
222  *                                V
223  *             ----------------------------------------
224  *             | Indirect Block                       |
225  *             |                         1 1 1 1 1   5|
226  *             |                         6 6 6 6 6   1|
227  *             |0                        3 4 5 6 7   2|
228  *             ----------------------------------------
229  *                                           |
230  *                                           |
231  *                                           V
232  *             ----------------------------------------
233  *             | Data block containing offset         |
234  *             |            101342453                 |
235  *             |                                      |
236  *             |                                      |
237  *             ----------------------------------------
238  *
239  */
240 
241 static void find_metapath(const struct gfs2_sbd *sdp, u64 block,
242 			  struct metapath *mp, unsigned int height)
243 {
244 	unsigned int i;
245 
246 	mp->mp_fheight = height;
247 	for (i = height; i--;)
248 		mp->mp_list[i] = do_div(block, sdp->sd_inptrs);
249 }
250 
251 static inline unsigned int metapath_branch_start(const struct metapath *mp)
252 {
253 	if (mp->mp_list[0] == 0)
254 		return 2;
255 	return 1;
256 }
257 
258 /**
259  * metaptr1 - Return the first possible metadata pointer in a metapath buffer
260  * @height: The metadata height (0 = dinode)
261  * @mp: The metapath
262  */
263 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp)
264 {
265 	struct buffer_head *bh = mp->mp_bh[height];
266 	if (height == 0)
267 		return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)));
268 	return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header)));
269 }
270 
271 /**
272  * metapointer - Return pointer to start of metadata in a buffer
273  * @height: The metadata height (0 = dinode)
274  * @mp: The metapath
275  *
276  * Return a pointer to the block number of the next height of the metadata
277  * tree given a buffer containing the pointer to the current height of the
278  * metadata tree.
279  */
280 
281 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp)
282 {
283 	__be64 *p = metaptr1(height, mp);
284 	return p + mp->mp_list[height];
285 }
286 
287 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp)
288 {
289 	const struct buffer_head *bh = mp->mp_bh[height];
290 	return (const __be64 *)(bh->b_data + bh->b_size);
291 }
292 
293 static void clone_metapath(struct metapath *clone, struct metapath *mp)
294 {
295 	unsigned int hgt;
296 
297 	*clone = *mp;
298 	for (hgt = 0; hgt < mp->mp_aheight; hgt++)
299 		get_bh(clone->mp_bh[hgt]);
300 }
301 
302 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end)
303 {
304 	const __be64 *t;
305 
306 	for (t = start; t < end; t++) {
307 		struct buffer_head *rabh;
308 
309 		if (!*t)
310 			continue;
311 
312 		rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE);
313 		if (trylock_buffer(rabh)) {
314 			if (!buffer_uptodate(rabh)) {
315 				rabh->b_end_io = end_buffer_read_sync;
316 				submit_bh(REQ_OP_READ,
317 					  REQ_RAHEAD | REQ_META | REQ_PRIO,
318 					  rabh);
319 				continue;
320 			}
321 			unlock_buffer(rabh);
322 		}
323 		brelse(rabh);
324 	}
325 }
326 
327 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp,
328 			     unsigned int x, unsigned int h)
329 {
330 	for (; x < h; x++) {
331 		__be64 *ptr = metapointer(x, mp);
332 		u64 dblock = be64_to_cpu(*ptr);
333 		int ret;
334 
335 		if (!dblock)
336 			break;
337 		ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]);
338 		if (ret)
339 			return ret;
340 	}
341 	mp->mp_aheight = x + 1;
342 	return 0;
343 }
344 
345 /**
346  * lookup_metapath - Walk the metadata tree to a specific point
347  * @ip: The inode
348  * @mp: The metapath
349  *
350  * Assumes that the inode's buffer has already been looked up and
351  * hooked onto mp->mp_bh[0] and that the metapath has been initialised
352  * by find_metapath().
353  *
354  * If this function encounters part of the tree which has not been
355  * allocated, it returns the current height of the tree at the point
356  * at which it found the unallocated block. Blocks which are found are
357  * added to the mp->mp_bh[] list.
358  *
359  * Returns: error
360  */
361 
362 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp)
363 {
364 	return __fillup_metapath(ip, mp, 0, ip->i_height - 1);
365 }
366 
367 /**
368  * fillup_metapath - fill up buffers for the metadata path to a specific height
369  * @ip: The inode
370  * @mp: The metapath
371  * @h: The height to which it should be mapped
372  *
373  * Similar to lookup_metapath, but does lookups for a range of heights
374  *
375  * Returns: error or the number of buffers filled
376  */
377 
378 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h)
379 {
380 	unsigned int x = 0;
381 	int ret;
382 
383 	if (h) {
384 		/* find the first buffer we need to look up. */
385 		for (x = h - 1; x > 0; x--) {
386 			if (mp->mp_bh[x])
387 				break;
388 		}
389 	}
390 	ret = __fillup_metapath(ip, mp, x, h);
391 	if (ret)
392 		return ret;
393 	return mp->mp_aheight - x - 1;
394 }
395 
396 static void release_metapath(struct metapath *mp)
397 {
398 	int i;
399 
400 	for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) {
401 		if (mp->mp_bh[i] == NULL)
402 			break;
403 		brelse(mp->mp_bh[i]);
404 		mp->mp_bh[i] = NULL;
405 	}
406 }
407 
408 /**
409  * gfs2_extent_length - Returns length of an extent of blocks
410  * @bh: The metadata block
411  * @ptr: Current position in @bh
412  * @limit: Max extent length to return
413  * @eob: Set to 1 if we hit "end of block"
414  *
415  * Returns: The length of the extent (minimum of one block)
416  */
417 
418 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob)
419 {
420 	const __be64 *end = (__be64 *)(bh->b_data + bh->b_size);
421 	const __be64 *first = ptr;
422 	u64 d = be64_to_cpu(*ptr);
423 
424 	*eob = 0;
425 	do {
426 		ptr++;
427 		if (ptr >= end)
428 			break;
429 		d++;
430 	} while(be64_to_cpu(*ptr) == d);
431 	if (ptr >= end)
432 		*eob = 1;
433 	return ptr - first;
434 }
435 
436 typedef const __be64 *(*gfs2_metadata_walker)(
437 		struct metapath *mp,
438 		const __be64 *start, const __be64 *end,
439 		u64 factor, void *data);
440 
441 #define WALK_STOP ((__be64 *)0)
442 #define WALK_NEXT ((__be64 *)1)
443 
444 static int gfs2_walk_metadata(struct inode *inode, sector_t lblock,
445 		u64 len, struct metapath *mp, gfs2_metadata_walker walker,
446 		void *data)
447 {
448 	struct metapath clone;
449 	struct gfs2_inode *ip = GFS2_I(inode);
450 	struct gfs2_sbd *sdp = GFS2_SB(inode);
451 	const __be64 *start, *end, *ptr;
452 	u64 factor = 1;
453 	unsigned int hgt;
454 	int ret = 0;
455 
456 	for (hgt = ip->i_height - 1; hgt >= mp->mp_aheight; hgt--)
457 		factor *= sdp->sd_inptrs;
458 
459 	for (;;) {
460 		u64 step;
461 
462 		/* Walk indirect block. */
463 		start = metapointer(hgt, mp);
464 		end = metaend(hgt, mp);
465 
466 		step = (end - start) * factor;
467 		if (step > len)
468 			end = start + DIV_ROUND_UP_ULL(len, factor);
469 
470 		ptr = walker(mp, start, end, factor, data);
471 		if (ptr == WALK_STOP)
472 			break;
473 		if (step >= len)
474 			break;
475 		len -= step;
476 		if (ptr != WALK_NEXT) {
477 			BUG_ON(!*ptr);
478 			mp->mp_list[hgt] += ptr - start;
479 			goto fill_up_metapath;
480 		}
481 
482 lower_metapath:
483 		/* Decrease height of metapath. */
484 		if (mp != &clone) {
485 			clone_metapath(&clone, mp);
486 			mp = &clone;
487 		}
488 		brelse(mp->mp_bh[hgt]);
489 		mp->mp_bh[hgt] = NULL;
490 		if (!hgt)
491 			break;
492 		hgt--;
493 		factor *= sdp->sd_inptrs;
494 
495 		/* Advance in metadata tree. */
496 		(mp->mp_list[hgt])++;
497 		start = metapointer(hgt, mp);
498 		end = metaend(hgt, mp);
499 		if (start >= end) {
500 			mp->mp_list[hgt] = 0;
501 			if (!hgt)
502 				break;
503 			goto lower_metapath;
504 		}
505 
506 fill_up_metapath:
507 		/* Increase height of metapath. */
508 		if (mp != &clone) {
509 			clone_metapath(&clone, mp);
510 			mp = &clone;
511 		}
512 		ret = fillup_metapath(ip, mp, ip->i_height - 1);
513 		if (ret < 0)
514 			break;
515 		hgt += ret;
516 		for (; ret; ret--)
517 			do_div(factor, sdp->sd_inptrs);
518 		mp->mp_aheight = hgt + 1;
519 	}
520 	if (mp == &clone)
521 		release_metapath(mp);
522 	return ret;
523 }
524 
525 struct gfs2_hole_walker_args {
526 	u64 blocks;
527 };
528 
529 static const __be64 *gfs2_hole_walker(struct metapath *mp,
530 		const __be64 *start, const __be64 *end,
531 		u64 factor, void *data)
532 {
533 	struct gfs2_hole_walker_args *args = data;
534 	const __be64 *ptr;
535 
536 	for (ptr = start; ptr < end; ptr++) {
537 		if (*ptr) {
538 			args->blocks += (ptr - start) * factor;
539 			if (mp->mp_aheight == mp->mp_fheight)
540 				return WALK_STOP;
541 			return ptr;  /* increase height */
542 		}
543 	}
544 	args->blocks += (end - start) * factor;
545 	return WALK_NEXT;
546 }
547 
548 /**
549  * gfs2_hole_size - figure out the size of a hole
550  * @inode: The inode
551  * @lblock: The logical starting block number
552  * @len: How far to look (in blocks)
553  * @mp: The metapath at lblock
554  * @iomap: The iomap to store the hole size in
555  *
556  * This function modifies @mp.
557  *
558  * Returns: errno on error
559  */
560 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len,
561 			  struct metapath *mp, struct iomap *iomap)
562 {
563 	struct gfs2_hole_walker_args args = { };
564 	int ret = 0;
565 
566 	ret = gfs2_walk_metadata(inode, lblock, len, mp, gfs2_hole_walker, &args);
567 	if (!ret)
568 		iomap->length = args.blocks << inode->i_blkbits;
569 	return ret;
570 }
571 
572 static inline __be64 *gfs2_indirect_init(struct metapath *mp,
573 					 struct gfs2_glock *gl, unsigned int i,
574 					 unsigned offset, u64 bn)
575 {
576 	__be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data +
577 		       ((i > 1) ? sizeof(struct gfs2_meta_header) :
578 				 sizeof(struct gfs2_dinode)));
579 	BUG_ON(i < 1);
580 	BUG_ON(mp->mp_bh[i] != NULL);
581 	mp->mp_bh[i] = gfs2_meta_new(gl, bn);
582 	gfs2_trans_add_meta(gl, mp->mp_bh[i]);
583 	gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN);
584 	gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header));
585 	ptr += offset;
586 	*ptr = cpu_to_be64(bn);
587 	return ptr;
588 }
589 
590 enum alloc_state {
591 	ALLOC_DATA = 0,
592 	ALLOC_GROW_DEPTH = 1,
593 	ALLOC_GROW_HEIGHT = 2,
594 	/* ALLOC_UNSTUFF = 3,   TBD and rather complicated */
595 };
596 
597 /**
598  * gfs2_iomap_alloc - Build a metadata tree of the requested height
599  * @inode: The GFS2 inode
600  * @iomap: The iomap structure
601  * @flags: iomap flags
602  * @mp: The metapath, with proper height information calculated
603  *
604  * In this routine we may have to alloc:
605  *   i) Indirect blocks to grow the metadata tree height
606  *  ii) Indirect blocks to fill in lower part of the metadata tree
607  * iii) Data blocks
608  *
609  * This function is called after gfs2_iomap_get, which works out the
610  * total number of blocks which we need via gfs2_alloc_size.
611  *
612  * We then do the actual allocation asking for an extent at a time (if
613  * enough contiguous free blocks are available, there will only be one
614  * allocation request per call) and uses the state machine to initialise
615  * the blocks in order.
616  *
617  * Right now, this function will allocate at most one indirect block
618  * worth of data -- with a default block size of 4K, that's slightly
619  * less than 2M.  If this limitation is ever removed to allow huge
620  * allocations, we would probably still want to limit the iomap size we
621  * return to avoid stalling other tasks during huge writes; the next
622  * iomap iteration would then find the blocks already allocated.
623  *
624  * Returns: errno on error
625  */
626 
627 static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap,
628 			    unsigned flags, struct metapath *mp)
629 {
630 	struct gfs2_inode *ip = GFS2_I(inode);
631 	struct gfs2_sbd *sdp = GFS2_SB(inode);
632 	struct buffer_head *dibh = mp->mp_bh[0];
633 	u64 bn;
634 	unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0;
635 	size_t dblks = iomap->length >> inode->i_blkbits;
636 	const unsigned end_of_metadata = mp->mp_fheight - 1;
637 	int ret;
638 	enum alloc_state state;
639 	__be64 *ptr;
640 	__be64 zero_bn = 0;
641 
642 	BUG_ON(mp->mp_aheight < 1);
643 	BUG_ON(dibh == NULL);
644 	BUG_ON(dblks < 1);
645 
646 	gfs2_trans_add_meta(ip->i_gl, dibh);
647 
648 	down_write(&ip->i_rw_mutex);
649 
650 	if (mp->mp_fheight == mp->mp_aheight) {
651 		/* Bottom indirect block exists */
652 		state = ALLOC_DATA;
653 	} else {
654 		/* Need to allocate indirect blocks */
655 		if (mp->mp_fheight == ip->i_height) {
656 			/* Writing into existing tree, extend tree down */
657 			iblks = mp->mp_fheight - mp->mp_aheight;
658 			state = ALLOC_GROW_DEPTH;
659 		} else {
660 			/* Building up tree height */
661 			state = ALLOC_GROW_HEIGHT;
662 			iblks = mp->mp_fheight - ip->i_height;
663 			branch_start = metapath_branch_start(mp);
664 			iblks += (mp->mp_fheight - branch_start);
665 		}
666 	}
667 
668 	/* start of the second part of the function (state machine) */
669 
670 	blks = dblks + iblks;
671 	i = mp->mp_aheight;
672 	do {
673 		n = blks - alloced;
674 		ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL);
675 		if (ret)
676 			goto out;
677 		alloced += n;
678 		if (state != ALLOC_DATA || gfs2_is_jdata(ip))
679 			gfs2_trans_add_unrevoke(sdp, bn, n);
680 		switch (state) {
681 		/* Growing height of tree */
682 		case ALLOC_GROW_HEIGHT:
683 			if (i == 1) {
684 				ptr = (__be64 *)(dibh->b_data +
685 						 sizeof(struct gfs2_dinode));
686 				zero_bn = *ptr;
687 			}
688 			for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0;
689 			     i++, n--)
690 				gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++);
691 			if (i - 1 == mp->mp_fheight - ip->i_height) {
692 				i--;
693 				gfs2_buffer_copy_tail(mp->mp_bh[i],
694 						sizeof(struct gfs2_meta_header),
695 						dibh, sizeof(struct gfs2_dinode));
696 				gfs2_buffer_clear_tail(dibh,
697 						sizeof(struct gfs2_dinode) +
698 						sizeof(__be64));
699 				ptr = (__be64 *)(mp->mp_bh[i]->b_data +
700 					sizeof(struct gfs2_meta_header));
701 				*ptr = zero_bn;
702 				state = ALLOC_GROW_DEPTH;
703 				for(i = branch_start; i < mp->mp_fheight; i++) {
704 					if (mp->mp_bh[i] == NULL)
705 						break;
706 					brelse(mp->mp_bh[i]);
707 					mp->mp_bh[i] = NULL;
708 				}
709 				i = branch_start;
710 			}
711 			if (n == 0)
712 				break;
713 		/* Branching from existing tree */
714 		case ALLOC_GROW_DEPTH:
715 			if (i > 1 && i < mp->mp_fheight)
716 				gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]);
717 			for (; i < mp->mp_fheight && n > 0; i++, n--)
718 				gfs2_indirect_init(mp, ip->i_gl, i,
719 						   mp->mp_list[i-1], bn++);
720 			if (i == mp->mp_fheight)
721 				state = ALLOC_DATA;
722 			if (n == 0)
723 				break;
724 		/* Tree complete, adding data blocks */
725 		case ALLOC_DATA:
726 			BUG_ON(n > dblks);
727 			BUG_ON(mp->mp_bh[end_of_metadata] == NULL);
728 			gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]);
729 			dblks = n;
730 			ptr = metapointer(end_of_metadata, mp);
731 			iomap->addr = bn << inode->i_blkbits;
732 			iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW;
733 			while (n-- > 0)
734 				*ptr++ = cpu_to_be64(bn++);
735 			break;
736 		}
737 	} while (iomap->addr == IOMAP_NULL_ADDR);
738 
739 	iomap->type = IOMAP_MAPPED;
740 	iomap->length = (u64)dblks << inode->i_blkbits;
741 	ip->i_height = mp->mp_fheight;
742 	gfs2_add_inode_blocks(&ip->i_inode, alloced);
743 	gfs2_dinode_out(ip, dibh->b_data);
744 out:
745 	up_write(&ip->i_rw_mutex);
746 	return ret;
747 }
748 
749 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE
750 
751 /**
752  * gfs2_alloc_size - Compute the maximum allocation size
753  * @inode: The inode
754  * @mp: The metapath
755  * @size: Requested size in blocks
756  *
757  * Compute the maximum size of the next allocation at @mp.
758  *
759  * Returns: size in blocks
760  */
761 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size)
762 {
763 	struct gfs2_inode *ip = GFS2_I(inode);
764 	struct gfs2_sbd *sdp = GFS2_SB(inode);
765 	const __be64 *first, *ptr, *end;
766 
767 	/*
768 	 * For writes to stuffed files, this function is called twice via
769 	 * gfs2_iomap_get, before and after unstuffing. The size we return the
770 	 * first time needs to be large enough to get the reservation and
771 	 * allocation sizes right.  The size we return the second time must
772 	 * be exact or else gfs2_iomap_alloc won't do the right thing.
773 	 */
774 
775 	if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) {
776 		unsigned int maxsize = mp->mp_fheight > 1 ?
777 			sdp->sd_inptrs : sdp->sd_diptrs;
778 		maxsize -= mp->mp_list[mp->mp_fheight - 1];
779 		if (size > maxsize)
780 			size = maxsize;
781 		return size;
782 	}
783 
784 	first = metapointer(ip->i_height - 1, mp);
785 	end = metaend(ip->i_height - 1, mp);
786 	if (end - first > size)
787 		end = first + size;
788 	for (ptr = first; ptr < end; ptr++) {
789 		if (*ptr)
790 			break;
791 	}
792 	return ptr - first;
793 }
794 
795 /**
796  * gfs2_iomap_get - Map blocks from an inode to disk blocks
797  * @inode: The inode
798  * @pos: Starting position in bytes
799  * @length: Length to map, in bytes
800  * @flags: iomap flags
801  * @iomap: The iomap structure
802  * @mp: The metapath
803  *
804  * Returns: errno
805  */
806 static int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
807 			  unsigned flags, struct iomap *iomap,
808 			  struct metapath *mp)
809 {
810 	struct gfs2_inode *ip = GFS2_I(inode);
811 	struct gfs2_sbd *sdp = GFS2_SB(inode);
812 	loff_t size = i_size_read(inode);
813 	__be64 *ptr;
814 	sector_t lblock;
815 	sector_t lblock_stop;
816 	int ret;
817 	int eob;
818 	u64 len;
819 	struct buffer_head *dibh = NULL, *bh;
820 	u8 height;
821 
822 	if (!length)
823 		return -EINVAL;
824 
825 	down_read(&ip->i_rw_mutex);
826 
827 	ret = gfs2_meta_inode_buffer(ip, &dibh);
828 	if (ret)
829 		goto unlock;
830 	mp->mp_bh[0] = dibh;
831 
832 	if (gfs2_is_stuffed(ip)) {
833 		if (flags & IOMAP_WRITE) {
834 			loff_t max_size = gfs2_max_stuffed_size(ip);
835 
836 			if (pos + length > max_size)
837 				goto unstuff;
838 			iomap->length = max_size;
839 		} else {
840 			if (pos >= size) {
841 				if (flags & IOMAP_REPORT) {
842 					ret = -ENOENT;
843 					goto unlock;
844 				} else {
845 					/* report a hole */
846 					iomap->offset = pos;
847 					iomap->length = length;
848 					goto do_alloc;
849 				}
850 			}
851 			iomap->length = size;
852 		}
853 		iomap->addr = (ip->i_no_addr << inode->i_blkbits) +
854 			      sizeof(struct gfs2_dinode);
855 		iomap->type = IOMAP_INLINE;
856 		iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode);
857 		goto out;
858 	}
859 
860 unstuff:
861 	lblock = pos >> inode->i_blkbits;
862 	iomap->offset = lblock << inode->i_blkbits;
863 	lblock_stop = (pos + length - 1) >> inode->i_blkbits;
864 	len = lblock_stop - lblock + 1;
865 	iomap->length = len << inode->i_blkbits;
866 
867 	height = ip->i_height;
868 	while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height])
869 		height++;
870 	find_metapath(sdp, lblock, mp, height);
871 	if (height > ip->i_height || gfs2_is_stuffed(ip))
872 		goto do_alloc;
873 
874 	ret = lookup_metapath(ip, mp);
875 	if (ret)
876 		goto unlock;
877 
878 	if (mp->mp_aheight != ip->i_height)
879 		goto do_alloc;
880 
881 	ptr = metapointer(ip->i_height - 1, mp);
882 	if (*ptr == 0)
883 		goto do_alloc;
884 
885 	bh = mp->mp_bh[ip->i_height - 1];
886 	len = gfs2_extent_length(bh, ptr, len, &eob);
887 
888 	iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits;
889 	iomap->length = len << inode->i_blkbits;
890 	iomap->type = IOMAP_MAPPED;
891 	iomap->flags |= IOMAP_F_MERGED;
892 	if (eob)
893 		iomap->flags |= IOMAP_F_GFS2_BOUNDARY;
894 
895 out:
896 	iomap->bdev = inode->i_sb->s_bdev;
897 unlock:
898 	up_read(&ip->i_rw_mutex);
899 	return ret;
900 
901 do_alloc:
902 	iomap->addr = IOMAP_NULL_ADDR;
903 	iomap->type = IOMAP_HOLE;
904 	if (flags & IOMAP_REPORT) {
905 		if (pos >= size)
906 			ret = -ENOENT;
907 		else if (height == ip->i_height)
908 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
909 		else
910 			iomap->length = size - pos;
911 	} else if (flags & IOMAP_WRITE) {
912 		u64 alloc_size;
913 
914 		if (flags & IOMAP_DIRECT)
915 			goto out;  /* (see gfs2_file_direct_write) */
916 
917 		len = gfs2_alloc_size(inode, mp, len);
918 		alloc_size = len << inode->i_blkbits;
919 		if (alloc_size < iomap->length)
920 			iomap->length = alloc_size;
921 	} else {
922 		if (pos < size && height == ip->i_height)
923 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
924 	}
925 	goto out;
926 }
927 
928 static int gfs2_write_lock(struct inode *inode)
929 {
930 	struct gfs2_inode *ip = GFS2_I(inode);
931 	struct gfs2_sbd *sdp = GFS2_SB(inode);
932 	int error;
933 
934 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
935 	error = gfs2_glock_nq(&ip->i_gh);
936 	if (error)
937 		goto out_uninit;
938 	if (&ip->i_inode == sdp->sd_rindex) {
939 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
940 
941 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
942 					   GL_NOCACHE, &m_ip->i_gh);
943 		if (error)
944 			goto out_unlock;
945 	}
946 	return 0;
947 
948 out_unlock:
949 	gfs2_glock_dq(&ip->i_gh);
950 out_uninit:
951 	gfs2_holder_uninit(&ip->i_gh);
952 	return error;
953 }
954 
955 static void gfs2_write_unlock(struct inode *inode)
956 {
957 	struct gfs2_inode *ip = GFS2_I(inode);
958 	struct gfs2_sbd *sdp = GFS2_SB(inode);
959 
960 	if (&ip->i_inode == sdp->sd_rindex) {
961 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
962 
963 		gfs2_glock_dq_uninit(&m_ip->i_gh);
964 	}
965 	gfs2_glock_dq_uninit(&ip->i_gh);
966 }
967 
968 static void gfs2_iomap_journaled_page_done(struct inode *inode, loff_t pos,
969 				unsigned copied, struct page *page,
970 				struct iomap *iomap)
971 {
972 	struct gfs2_inode *ip = GFS2_I(inode);
973 
974 	gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied);
975 }
976 
977 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos,
978 				  loff_t length, unsigned flags,
979 				  struct iomap *iomap,
980 				  struct metapath *mp)
981 {
982 	struct gfs2_inode *ip = GFS2_I(inode);
983 	struct gfs2_sbd *sdp = GFS2_SB(inode);
984 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
985 	bool unstuff, alloc_required;
986 	int ret;
987 
988 	ret = gfs2_write_lock(inode);
989 	if (ret)
990 		return ret;
991 
992 	unstuff = gfs2_is_stuffed(ip) &&
993 		  pos + length > gfs2_max_stuffed_size(ip);
994 
995 	ret = gfs2_iomap_get(inode, pos, length, flags, iomap, mp);
996 	if (ret)
997 		goto out_unlock;
998 
999 	alloc_required = unstuff || iomap->type == IOMAP_HOLE;
1000 
1001 	if (alloc_required || gfs2_is_jdata(ip))
1002 		gfs2_write_calc_reserv(ip, iomap->length, &data_blocks,
1003 				       &ind_blocks);
1004 
1005 	if (alloc_required) {
1006 		struct gfs2_alloc_parms ap = {
1007 			.target = data_blocks + ind_blocks
1008 		};
1009 
1010 		ret = gfs2_quota_lock_check(ip, &ap);
1011 		if (ret)
1012 			goto out_unlock;
1013 
1014 		ret = gfs2_inplace_reserve(ip, &ap);
1015 		if (ret)
1016 			goto out_qunlock;
1017 	}
1018 
1019 	rblocks = RES_DINODE + ind_blocks;
1020 	if (gfs2_is_jdata(ip))
1021 		rblocks += data_blocks;
1022 	if (ind_blocks || data_blocks)
1023 		rblocks += RES_STATFS + RES_QUOTA;
1024 	if (inode == sdp->sd_rindex)
1025 		rblocks += 2 * RES_STATFS;
1026 	if (alloc_required)
1027 		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1028 
1029 	ret = gfs2_trans_begin(sdp, rblocks, iomap->length >> inode->i_blkbits);
1030 	if (ret)
1031 		goto out_trans_fail;
1032 
1033 	if (unstuff) {
1034 		ret = gfs2_unstuff_dinode(ip, NULL);
1035 		if (ret)
1036 			goto out_trans_end;
1037 		release_metapath(mp);
1038 		ret = gfs2_iomap_get(inode, iomap->offset, iomap->length,
1039 				     flags, iomap, mp);
1040 		if (ret)
1041 			goto out_trans_end;
1042 	}
1043 
1044 	if (iomap->type == IOMAP_HOLE) {
1045 		ret = gfs2_iomap_alloc(inode, iomap, flags, mp);
1046 		if (ret) {
1047 			gfs2_trans_end(sdp);
1048 			gfs2_inplace_release(ip);
1049 			punch_hole(ip, iomap->offset, iomap->length);
1050 			goto out_qunlock;
1051 		}
1052 	}
1053 	if (!gfs2_is_stuffed(ip) && gfs2_is_jdata(ip))
1054 		iomap->page_done = gfs2_iomap_journaled_page_done;
1055 	return 0;
1056 
1057 out_trans_end:
1058 	gfs2_trans_end(sdp);
1059 out_trans_fail:
1060 	if (alloc_required)
1061 		gfs2_inplace_release(ip);
1062 out_qunlock:
1063 	if (alloc_required)
1064 		gfs2_quota_unlock(ip);
1065 out_unlock:
1066 	gfs2_write_unlock(inode);
1067 	return ret;
1068 }
1069 
1070 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
1071 			    unsigned flags, struct iomap *iomap)
1072 {
1073 	struct gfs2_inode *ip = GFS2_I(inode);
1074 	struct metapath mp = { .mp_aheight = 1, };
1075 	int ret;
1076 
1077 	iomap->flags |= IOMAP_F_BUFFER_HEAD;
1078 
1079 	trace_gfs2_iomap_start(ip, pos, length, flags);
1080 	if ((flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT)) {
1081 		ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp);
1082 	} else {
1083 		ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp);
1084 
1085 		/*
1086 		 * Silently fall back to buffered I/O for stuffed files or if
1087 		 * we've hot a hole (see gfs2_file_direct_write).
1088 		 */
1089 		if ((flags & IOMAP_WRITE) && (flags & IOMAP_DIRECT) &&
1090 		    iomap->type != IOMAP_MAPPED)
1091 			ret = -ENOTBLK;
1092 	}
1093 	if (!ret) {
1094 		get_bh(mp.mp_bh[0]);
1095 		iomap->private = mp.mp_bh[0];
1096 	}
1097 	release_metapath(&mp);
1098 	trace_gfs2_iomap_end(ip, iomap, ret);
1099 	return ret;
1100 }
1101 
1102 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length,
1103 			  ssize_t written, unsigned flags, struct iomap *iomap)
1104 {
1105 	struct gfs2_inode *ip = GFS2_I(inode);
1106 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1107 	struct gfs2_trans *tr = current->journal_info;
1108 	struct buffer_head *dibh = iomap->private;
1109 
1110 	if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) != IOMAP_WRITE)
1111 		goto out;
1112 
1113 	if (iomap->type != IOMAP_INLINE) {
1114 		gfs2_ordered_add_inode(ip);
1115 
1116 		if (tr->tr_num_buf_new)
1117 			__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1118 		else
1119 			gfs2_trans_add_meta(ip->i_gl, dibh);
1120 	}
1121 
1122 	if (inode == sdp->sd_rindex) {
1123 		adjust_fs_space(inode);
1124 		sdp->sd_rindex_uptodate = 0;
1125 	}
1126 
1127 	gfs2_trans_end(sdp);
1128 	gfs2_inplace_release(ip);
1129 
1130 	if (length != written && (iomap->flags & IOMAP_F_NEW)) {
1131 		/* Deallocate blocks that were just allocated. */
1132 		loff_t blockmask = i_blocksize(inode) - 1;
1133 		loff_t end = (pos + length) & ~blockmask;
1134 
1135 		pos = (pos + written + blockmask) & ~blockmask;
1136 		if (pos < end) {
1137 			truncate_pagecache_range(inode, pos, end - 1);
1138 			punch_hole(ip, pos, end - pos);
1139 		}
1140 	}
1141 
1142 	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
1143 		gfs2_quota_unlock(ip);
1144 	gfs2_write_unlock(inode);
1145 
1146 out:
1147 	if (dibh)
1148 		brelse(dibh);
1149 	return 0;
1150 }
1151 
1152 const struct iomap_ops gfs2_iomap_ops = {
1153 	.iomap_begin = gfs2_iomap_begin,
1154 	.iomap_end = gfs2_iomap_end,
1155 };
1156 
1157 /**
1158  * gfs2_block_map - Map one or more blocks of an inode to a disk block
1159  * @inode: The inode
1160  * @lblock: The logical block number
1161  * @bh_map: The bh to be mapped
1162  * @create: True if its ok to alloc blocks to satify the request
1163  *
1164  * The size of the requested mapping is defined in bh_map->b_size.
1165  *
1166  * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged
1167  * when @lblock is not mapped.  Sets buffer_mapped(bh_map) and
1168  * bh_map->b_size to indicate the size of the mapping when @lblock and
1169  * successive blocks are mapped, up to the requested size.
1170  *
1171  * Sets buffer_boundary() if a read of metadata will be required
1172  * before the next block can be mapped. Sets buffer_new() if new
1173  * blocks were allocated.
1174  *
1175  * Returns: errno
1176  */
1177 
1178 int gfs2_block_map(struct inode *inode, sector_t lblock,
1179 		   struct buffer_head *bh_map, int create)
1180 {
1181 	struct gfs2_inode *ip = GFS2_I(inode);
1182 	loff_t pos = (loff_t)lblock << inode->i_blkbits;
1183 	loff_t length = bh_map->b_size;
1184 	struct metapath mp = { .mp_aheight = 1, };
1185 	struct iomap iomap = { };
1186 	int ret;
1187 
1188 	clear_buffer_mapped(bh_map);
1189 	clear_buffer_new(bh_map);
1190 	clear_buffer_boundary(bh_map);
1191 	trace_gfs2_bmap(ip, bh_map, lblock, create, 1);
1192 
1193 	if (create) {
1194 		ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, &iomap, &mp);
1195 		if (!ret && iomap.type == IOMAP_HOLE)
1196 			ret = gfs2_iomap_alloc(inode, &iomap, IOMAP_WRITE, &mp);
1197 		release_metapath(&mp);
1198 	} else {
1199 		ret = gfs2_iomap_get(inode, pos, length, 0, &iomap, &mp);
1200 		release_metapath(&mp);
1201 	}
1202 	if (ret)
1203 		goto out;
1204 
1205 	if (iomap.length > bh_map->b_size) {
1206 		iomap.length = bh_map->b_size;
1207 		iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY;
1208 	}
1209 	if (iomap.addr != IOMAP_NULL_ADDR)
1210 		map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits);
1211 	bh_map->b_size = iomap.length;
1212 	if (iomap.flags & IOMAP_F_GFS2_BOUNDARY)
1213 		set_buffer_boundary(bh_map);
1214 	if (iomap.flags & IOMAP_F_NEW)
1215 		set_buffer_new(bh_map);
1216 
1217 out:
1218 	trace_gfs2_bmap(ip, bh_map, lblock, create, ret);
1219 	return ret;
1220 }
1221 
1222 /*
1223  * Deprecated: do not use in new code
1224  */
1225 int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen)
1226 {
1227 	struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 };
1228 	int ret;
1229 	int create = *new;
1230 
1231 	BUG_ON(!extlen);
1232 	BUG_ON(!dblock);
1233 	BUG_ON(!new);
1234 
1235 	bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5));
1236 	ret = gfs2_block_map(inode, lblock, &bh, create);
1237 	*extlen = bh.b_size >> inode->i_blkbits;
1238 	*dblock = bh.b_blocknr;
1239 	if (buffer_new(&bh))
1240 		*new = 1;
1241 	else
1242 		*new = 0;
1243 	return ret;
1244 }
1245 
1246 /**
1247  * gfs2_block_zero_range - Deal with zeroing out data
1248  *
1249  * This is partly borrowed from ext3.
1250  */
1251 static int gfs2_block_zero_range(struct inode *inode, loff_t from,
1252 				 unsigned int length)
1253 {
1254 	struct address_space *mapping = inode->i_mapping;
1255 	struct gfs2_inode *ip = GFS2_I(inode);
1256 	unsigned long index = from >> PAGE_SHIFT;
1257 	unsigned offset = from & (PAGE_SIZE-1);
1258 	unsigned blocksize, iblock, pos;
1259 	struct buffer_head *bh;
1260 	struct page *page;
1261 	int err;
1262 
1263 	page = find_or_create_page(mapping, index, GFP_NOFS);
1264 	if (!page)
1265 		return 0;
1266 
1267 	blocksize = inode->i_sb->s_blocksize;
1268 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
1269 
1270 	if (!page_has_buffers(page))
1271 		create_empty_buffers(page, blocksize, 0);
1272 
1273 	/* Find the buffer that contains "offset" */
1274 	bh = page_buffers(page);
1275 	pos = blocksize;
1276 	while (offset >= pos) {
1277 		bh = bh->b_this_page;
1278 		iblock++;
1279 		pos += blocksize;
1280 	}
1281 
1282 	err = 0;
1283 
1284 	if (!buffer_mapped(bh)) {
1285 		gfs2_block_map(inode, iblock, bh, 0);
1286 		/* unmapped? It's a hole - nothing to do */
1287 		if (!buffer_mapped(bh))
1288 			goto unlock;
1289 	}
1290 
1291 	/* Ok, it's mapped. Make sure it's up-to-date */
1292 	if (PageUptodate(page))
1293 		set_buffer_uptodate(bh);
1294 
1295 	if (!buffer_uptodate(bh)) {
1296 		err = -EIO;
1297 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1298 		wait_on_buffer(bh);
1299 		/* Uhhuh. Read error. Complain and punt. */
1300 		if (!buffer_uptodate(bh))
1301 			goto unlock;
1302 		err = 0;
1303 	}
1304 
1305 	if (gfs2_is_jdata(ip))
1306 		gfs2_trans_add_data(ip->i_gl, bh);
1307 	else
1308 		gfs2_ordered_add_inode(ip);
1309 
1310 	zero_user(page, offset, length);
1311 	mark_buffer_dirty(bh);
1312 unlock:
1313 	unlock_page(page);
1314 	put_page(page);
1315 	return err;
1316 }
1317 
1318 #define GFS2_JTRUNC_REVOKES 8192
1319 
1320 /**
1321  * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files
1322  * @inode: The inode being truncated
1323  * @oldsize: The original (larger) size
1324  * @newsize: The new smaller size
1325  *
1326  * With jdata files, we have to journal a revoke for each block which is
1327  * truncated. As a result, we need to split this into separate transactions
1328  * if the number of pages being truncated gets too large.
1329  */
1330 
1331 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize)
1332 {
1333 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1334 	u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
1335 	u64 chunk;
1336 	int error;
1337 
1338 	while (oldsize != newsize) {
1339 		struct gfs2_trans *tr;
1340 		unsigned int offs;
1341 
1342 		chunk = oldsize - newsize;
1343 		if (chunk > max_chunk)
1344 			chunk = max_chunk;
1345 
1346 		offs = oldsize & ~PAGE_MASK;
1347 		if (offs && chunk > PAGE_SIZE)
1348 			chunk = offs + ((chunk - offs) & PAGE_MASK);
1349 
1350 		truncate_pagecache(inode, oldsize - chunk);
1351 		oldsize -= chunk;
1352 
1353 		tr = current->journal_info;
1354 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
1355 			continue;
1356 
1357 		gfs2_trans_end(sdp);
1358 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
1359 		if (error)
1360 			return error;
1361 	}
1362 
1363 	return 0;
1364 }
1365 
1366 static int trunc_start(struct inode *inode, u64 newsize)
1367 {
1368 	struct gfs2_inode *ip = GFS2_I(inode);
1369 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1370 	struct buffer_head *dibh = NULL;
1371 	int journaled = gfs2_is_jdata(ip);
1372 	u64 oldsize = inode->i_size;
1373 	int error;
1374 
1375 	if (journaled)
1376 		error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES);
1377 	else
1378 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1379 	if (error)
1380 		return error;
1381 
1382 	error = gfs2_meta_inode_buffer(ip, &dibh);
1383 	if (error)
1384 		goto out;
1385 
1386 	gfs2_trans_add_meta(ip->i_gl, dibh);
1387 
1388 	if (gfs2_is_stuffed(ip)) {
1389 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize);
1390 	} else {
1391 		unsigned int blocksize = i_blocksize(inode);
1392 		unsigned int offs = newsize & (blocksize - 1);
1393 		if (offs) {
1394 			error = gfs2_block_zero_range(inode, newsize,
1395 						      blocksize - offs);
1396 			if (error)
1397 				goto out;
1398 		}
1399 		ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG;
1400 	}
1401 
1402 	i_size_write(inode, newsize);
1403 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1404 	gfs2_dinode_out(ip, dibh->b_data);
1405 
1406 	if (journaled)
1407 		error = gfs2_journaled_truncate(inode, oldsize, newsize);
1408 	else
1409 		truncate_pagecache(inode, newsize);
1410 
1411 out:
1412 	brelse(dibh);
1413 	if (current->journal_info)
1414 		gfs2_trans_end(sdp);
1415 	return error;
1416 }
1417 
1418 int gfs2_iomap_get_alloc(struct inode *inode, loff_t pos, loff_t length,
1419 			 struct iomap *iomap)
1420 {
1421 	struct metapath mp = { .mp_aheight = 1, };
1422 	int ret;
1423 
1424 	ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp);
1425 	if (!ret && iomap->type == IOMAP_HOLE)
1426 		ret = gfs2_iomap_alloc(inode, iomap, IOMAP_WRITE, &mp);
1427 	release_metapath(&mp);
1428 	return ret;
1429 }
1430 
1431 /**
1432  * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein
1433  * @ip: inode
1434  * @rg_gh: holder of resource group glock
1435  * @bh: buffer head to sweep
1436  * @start: starting point in bh
1437  * @end: end point in bh
1438  * @meta: true if bh points to metadata (rather than data)
1439  * @btotal: place to keep count of total blocks freed
1440  *
1441  * We sweep a metadata buffer (provided by the metapath) for blocks we need to
1442  * free, and free them all. However, we do it one rgrp at a time. If this
1443  * block has references to multiple rgrps, we break it into individual
1444  * transactions. This allows other processes to use the rgrps while we're
1445  * focused on a single one, for better concurrency / performance.
1446  * At every transaction boundary, we rewrite the inode into the journal.
1447  * That way the bitmaps are kept consistent with the inode and we can recover
1448  * if we're interrupted by power-outages.
1449  *
1450  * Returns: 0, or return code if an error occurred.
1451  *          *btotal has the total number of blocks freed
1452  */
1453 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh,
1454 			      struct buffer_head *bh, __be64 *start, __be64 *end,
1455 			      bool meta, u32 *btotal)
1456 {
1457 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1458 	struct gfs2_rgrpd *rgd;
1459 	struct gfs2_trans *tr;
1460 	__be64 *p;
1461 	int blks_outside_rgrp;
1462 	u64 bn, bstart, isize_blks;
1463 	s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */
1464 	int ret = 0;
1465 	bool buf_in_tr = false; /* buffer was added to transaction */
1466 
1467 more_rgrps:
1468 	rgd = NULL;
1469 	if (gfs2_holder_initialized(rd_gh)) {
1470 		rgd = gfs2_glock2rgrp(rd_gh->gh_gl);
1471 		gfs2_assert_withdraw(sdp,
1472 			     gfs2_glock_is_locked_by_me(rd_gh->gh_gl));
1473 	}
1474 	blks_outside_rgrp = 0;
1475 	bstart = 0;
1476 	blen = 0;
1477 
1478 	for (p = start; p < end; p++) {
1479 		if (!*p)
1480 			continue;
1481 		bn = be64_to_cpu(*p);
1482 
1483 		if (rgd) {
1484 			if (!rgrp_contains_block(rgd, bn)) {
1485 				blks_outside_rgrp++;
1486 				continue;
1487 			}
1488 		} else {
1489 			rgd = gfs2_blk2rgrpd(sdp, bn, true);
1490 			if (unlikely(!rgd)) {
1491 				ret = -EIO;
1492 				goto out;
1493 			}
1494 			ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1495 						 0, rd_gh);
1496 			if (ret)
1497 				goto out;
1498 
1499 			/* Must be done with the rgrp glock held: */
1500 			if (gfs2_rs_active(&ip->i_res) &&
1501 			    rgd == ip->i_res.rs_rbm.rgd)
1502 				gfs2_rs_deltree(&ip->i_res);
1503 		}
1504 
1505 		/* The size of our transactions will be unknown until we
1506 		   actually process all the metadata blocks that relate to
1507 		   the rgrp. So we estimate. We know it can't be more than
1508 		   the dinode's i_blocks and we don't want to exceed the
1509 		   journal flush threshold, sd_log_thresh2. */
1510 		if (current->journal_info == NULL) {
1511 			unsigned int jblocks_rqsted, revokes;
1512 
1513 			jblocks_rqsted = rgd->rd_length + RES_DINODE +
1514 				RES_INDIRECT;
1515 			isize_blks = gfs2_get_inode_blocks(&ip->i_inode);
1516 			if (isize_blks > atomic_read(&sdp->sd_log_thresh2))
1517 				jblocks_rqsted +=
1518 					atomic_read(&sdp->sd_log_thresh2);
1519 			else
1520 				jblocks_rqsted += isize_blks;
1521 			revokes = jblocks_rqsted;
1522 			if (meta)
1523 				revokes += end - start;
1524 			else if (ip->i_depth)
1525 				revokes += sdp->sd_inptrs;
1526 			ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes);
1527 			if (ret)
1528 				goto out_unlock;
1529 			down_write(&ip->i_rw_mutex);
1530 		}
1531 		/* check if we will exceed the transaction blocks requested */
1532 		tr = current->journal_info;
1533 		if (tr->tr_num_buf_new + RES_STATFS +
1534 		    RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) {
1535 			/* We set blks_outside_rgrp to ensure the loop will
1536 			   be repeated for the same rgrp, but with a new
1537 			   transaction. */
1538 			blks_outside_rgrp++;
1539 			/* This next part is tricky. If the buffer was added
1540 			   to the transaction, we've already set some block
1541 			   pointers to 0, so we better follow through and free
1542 			   them, or we will introduce corruption (so break).
1543 			   This may be impossible, or at least rare, but I
1544 			   decided to cover the case regardless.
1545 
1546 			   If the buffer was not added to the transaction
1547 			   (this call), doing so would exceed our transaction
1548 			   size, so we need to end the transaction and start a
1549 			   new one (so goto). */
1550 
1551 			if (buf_in_tr)
1552 				break;
1553 			goto out_unlock;
1554 		}
1555 
1556 		gfs2_trans_add_meta(ip->i_gl, bh);
1557 		buf_in_tr = true;
1558 		*p = 0;
1559 		if (bstart + blen == bn) {
1560 			blen++;
1561 			continue;
1562 		}
1563 		if (bstart) {
1564 			__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1565 			(*btotal) += blen;
1566 			gfs2_add_inode_blocks(&ip->i_inode, -blen);
1567 		}
1568 		bstart = bn;
1569 		blen = 1;
1570 	}
1571 	if (bstart) {
1572 		__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1573 		(*btotal) += blen;
1574 		gfs2_add_inode_blocks(&ip->i_inode, -blen);
1575 	}
1576 out_unlock:
1577 	if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks
1578 					    outside the rgrp we just processed,
1579 					    do it all over again. */
1580 		if (current->journal_info) {
1581 			struct buffer_head *dibh;
1582 
1583 			ret = gfs2_meta_inode_buffer(ip, &dibh);
1584 			if (ret)
1585 				goto out;
1586 
1587 			/* Every transaction boundary, we rewrite the dinode
1588 			   to keep its di_blocks current in case of failure. */
1589 			ip->i_inode.i_mtime = ip->i_inode.i_ctime =
1590 				current_time(&ip->i_inode);
1591 			gfs2_trans_add_meta(ip->i_gl, dibh);
1592 			gfs2_dinode_out(ip, dibh->b_data);
1593 			brelse(dibh);
1594 			up_write(&ip->i_rw_mutex);
1595 			gfs2_trans_end(sdp);
1596 		}
1597 		gfs2_glock_dq_uninit(rd_gh);
1598 		cond_resched();
1599 		goto more_rgrps;
1600 	}
1601 out:
1602 	return ret;
1603 }
1604 
1605 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h)
1606 {
1607 	if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0])))
1608 		return false;
1609 	return true;
1610 }
1611 
1612 /**
1613  * find_nonnull_ptr - find a non-null pointer given a metapath and height
1614  * @mp: starting metapath
1615  * @h: desired height to search
1616  *
1617  * Assumes the metapath is valid (with buffers) out to height h.
1618  * Returns: true if a non-null pointer was found in the metapath buffer
1619  *          false if all remaining pointers are NULL in the buffer
1620  */
1621 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp,
1622 			     unsigned int h,
1623 			     __u16 *end_list, unsigned int end_aligned)
1624 {
1625 	struct buffer_head *bh = mp->mp_bh[h];
1626 	__be64 *first, *ptr, *end;
1627 
1628 	first = metaptr1(h, mp);
1629 	ptr = first + mp->mp_list[h];
1630 	end = (__be64 *)(bh->b_data + bh->b_size);
1631 	if (end_list && mp_eq_to_hgt(mp, end_list, h)) {
1632 		bool keep_end = h < end_aligned;
1633 		end = first + end_list[h] + keep_end;
1634 	}
1635 
1636 	while (ptr < end) {
1637 		if (*ptr) { /* if we have a non-null pointer */
1638 			mp->mp_list[h] = ptr - first;
1639 			h++;
1640 			if (h < GFS2_MAX_META_HEIGHT)
1641 				mp->mp_list[h] = 0;
1642 			return true;
1643 		}
1644 		ptr++;
1645 	}
1646 	return false;
1647 }
1648 
1649 enum dealloc_states {
1650 	DEALLOC_MP_FULL = 0,    /* Strip a metapath with all buffers read in */
1651 	DEALLOC_MP_LOWER = 1,   /* lower the metapath strip height */
1652 	DEALLOC_FILL_MP = 2,  /* Fill in the metapath to the given height. */
1653 	DEALLOC_DONE = 3,       /* process complete */
1654 };
1655 
1656 static inline void
1657 metapointer_range(struct metapath *mp, int height,
1658 		  __u16 *start_list, unsigned int start_aligned,
1659 		  __u16 *end_list, unsigned int end_aligned,
1660 		  __be64 **start, __be64 **end)
1661 {
1662 	struct buffer_head *bh = mp->mp_bh[height];
1663 	__be64 *first;
1664 
1665 	first = metaptr1(height, mp);
1666 	*start = first;
1667 	if (mp_eq_to_hgt(mp, start_list, height)) {
1668 		bool keep_start = height < start_aligned;
1669 		*start = first + start_list[height] + keep_start;
1670 	}
1671 	*end = (__be64 *)(bh->b_data + bh->b_size);
1672 	if (end_list && mp_eq_to_hgt(mp, end_list, height)) {
1673 		bool keep_end = height < end_aligned;
1674 		*end = first + end_list[height] + keep_end;
1675 	}
1676 }
1677 
1678 static inline bool walk_done(struct gfs2_sbd *sdp,
1679 			     struct metapath *mp, int height,
1680 			     __u16 *end_list, unsigned int end_aligned)
1681 {
1682 	__u16 end;
1683 
1684 	if (end_list) {
1685 		bool keep_end = height < end_aligned;
1686 		if (!mp_eq_to_hgt(mp, end_list, height))
1687 			return false;
1688 		end = end_list[height] + keep_end;
1689 	} else
1690 		end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs;
1691 	return mp->mp_list[height] >= end;
1692 }
1693 
1694 /**
1695  * punch_hole - deallocate blocks in a file
1696  * @ip: inode to truncate
1697  * @offset: the start of the hole
1698  * @length: the size of the hole (or 0 for truncate)
1699  *
1700  * Punch a hole into a file or truncate a file at a given position.  This
1701  * function operates in whole blocks (@offset and @length are rounded
1702  * accordingly); partially filled blocks must be cleared otherwise.
1703  *
1704  * This function works from the bottom up, and from the right to the left. In
1705  * other words, it strips off the highest layer (data) before stripping any of
1706  * the metadata. Doing it this way is best in case the operation is interrupted
1707  * by power failure, etc.  The dinode is rewritten in every transaction to
1708  * guarantee integrity.
1709  */
1710 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length)
1711 {
1712 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1713 	u64 maxsize = sdp->sd_heightsize[ip->i_height];
1714 	struct metapath mp = {};
1715 	struct buffer_head *dibh, *bh;
1716 	struct gfs2_holder rd_gh;
1717 	unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift;
1718 	u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift;
1719 	__u16 start_list[GFS2_MAX_META_HEIGHT];
1720 	__u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL;
1721 	unsigned int start_aligned, uninitialized_var(end_aligned);
1722 	unsigned int strip_h = ip->i_height - 1;
1723 	u32 btotal = 0;
1724 	int ret, state;
1725 	int mp_h; /* metapath buffers are read in to this height */
1726 	u64 prev_bnr = 0;
1727 	__be64 *start, *end;
1728 
1729 	if (offset >= maxsize) {
1730 		/*
1731 		 * The starting point lies beyond the allocated meta-data;
1732 		 * there are no blocks do deallocate.
1733 		 */
1734 		return 0;
1735 	}
1736 
1737 	/*
1738 	 * The start position of the hole is defined by lblock, start_list, and
1739 	 * start_aligned.  The end position of the hole is defined by lend,
1740 	 * end_list, and end_aligned.
1741 	 *
1742 	 * start_aligned and end_aligned define down to which height the start
1743 	 * and end positions are aligned to the metadata tree (i.e., the
1744 	 * position is a multiple of the metadata granularity at the height
1745 	 * above).  This determines at which heights additional meta pointers
1746 	 * needs to be preserved for the remaining data.
1747 	 */
1748 
1749 	if (length) {
1750 		u64 end_offset = offset + length;
1751 		u64 lend;
1752 
1753 		/*
1754 		 * Clip the end at the maximum file size for the given height:
1755 		 * that's how far the metadata goes; files bigger than that
1756 		 * will have additional layers of indirection.
1757 		 */
1758 		if (end_offset > maxsize)
1759 			end_offset = maxsize;
1760 		lend = end_offset >> bsize_shift;
1761 
1762 		if (lblock >= lend)
1763 			return 0;
1764 
1765 		find_metapath(sdp, lend, &mp, ip->i_height);
1766 		end_list = __end_list;
1767 		memcpy(end_list, mp.mp_list, sizeof(mp.mp_list));
1768 
1769 		for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1770 			if (end_list[mp_h])
1771 				break;
1772 		}
1773 		end_aligned = mp_h;
1774 	}
1775 
1776 	find_metapath(sdp, lblock, &mp, ip->i_height);
1777 	memcpy(start_list, mp.mp_list, sizeof(start_list));
1778 
1779 	for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1780 		if (start_list[mp_h])
1781 			break;
1782 	}
1783 	start_aligned = mp_h;
1784 
1785 	ret = gfs2_meta_inode_buffer(ip, &dibh);
1786 	if (ret)
1787 		return ret;
1788 
1789 	mp.mp_bh[0] = dibh;
1790 	ret = lookup_metapath(ip, &mp);
1791 	if (ret)
1792 		goto out_metapath;
1793 
1794 	/* issue read-ahead on metadata */
1795 	for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) {
1796 		metapointer_range(&mp, mp_h, start_list, start_aligned,
1797 				  end_list, end_aligned, &start, &end);
1798 		gfs2_metapath_ra(ip->i_gl, start, end);
1799 	}
1800 
1801 	if (mp.mp_aheight == ip->i_height)
1802 		state = DEALLOC_MP_FULL; /* We have a complete metapath */
1803 	else
1804 		state = DEALLOC_FILL_MP; /* deal with partial metapath */
1805 
1806 	ret = gfs2_rindex_update(sdp);
1807 	if (ret)
1808 		goto out_metapath;
1809 
1810 	ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
1811 	if (ret)
1812 		goto out_metapath;
1813 	gfs2_holder_mark_uninitialized(&rd_gh);
1814 
1815 	mp_h = strip_h;
1816 
1817 	while (state != DEALLOC_DONE) {
1818 		switch (state) {
1819 		/* Truncate a full metapath at the given strip height.
1820 		 * Note that strip_h == mp_h in order to be in this state. */
1821 		case DEALLOC_MP_FULL:
1822 			bh = mp.mp_bh[mp_h];
1823 			gfs2_assert_withdraw(sdp, bh);
1824 			if (gfs2_assert_withdraw(sdp,
1825 						 prev_bnr != bh->b_blocknr)) {
1826 				printk(KERN_EMERG "GFS2: fsid=%s:inode %llu, "
1827 				       "block:%llu, i_h:%u, s_h:%u, mp_h:%u\n",
1828 				       sdp->sd_fsname,
1829 				       (unsigned long long)ip->i_no_addr,
1830 				       prev_bnr, ip->i_height, strip_h, mp_h);
1831 			}
1832 			prev_bnr = bh->b_blocknr;
1833 
1834 			if (gfs2_metatype_check(sdp, bh,
1835 						(mp_h ? GFS2_METATYPE_IN :
1836 							GFS2_METATYPE_DI))) {
1837 				ret = -EIO;
1838 				goto out;
1839 			}
1840 
1841 			/*
1842 			 * Below, passing end_aligned as 0 gives us the
1843 			 * metapointer range excluding the end point: the end
1844 			 * point is the first metapath we must not deallocate!
1845 			 */
1846 
1847 			metapointer_range(&mp, mp_h, start_list, start_aligned,
1848 					  end_list, 0 /* end_aligned */,
1849 					  &start, &end);
1850 			ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h],
1851 						 start, end,
1852 						 mp_h != ip->i_height - 1,
1853 						 &btotal);
1854 
1855 			/* If we hit an error or just swept dinode buffer,
1856 			   just exit. */
1857 			if (ret || !mp_h) {
1858 				state = DEALLOC_DONE;
1859 				break;
1860 			}
1861 			state = DEALLOC_MP_LOWER;
1862 			break;
1863 
1864 		/* lower the metapath strip height */
1865 		case DEALLOC_MP_LOWER:
1866 			/* We're done with the current buffer, so release it,
1867 			   unless it's the dinode buffer. Then back up to the
1868 			   previous pointer. */
1869 			if (mp_h) {
1870 				brelse(mp.mp_bh[mp_h]);
1871 				mp.mp_bh[mp_h] = NULL;
1872 			}
1873 			/* If we can't get any lower in height, we've stripped
1874 			   off all we can. Next step is to back up and start
1875 			   stripping the previous level of metadata. */
1876 			if (mp_h == 0) {
1877 				strip_h--;
1878 				memcpy(mp.mp_list, start_list, sizeof(start_list));
1879 				mp_h = strip_h;
1880 				state = DEALLOC_FILL_MP;
1881 				break;
1882 			}
1883 			mp.mp_list[mp_h] = 0;
1884 			mp_h--; /* search one metadata height down */
1885 			mp.mp_list[mp_h]++;
1886 			if (walk_done(sdp, &mp, mp_h, end_list, end_aligned))
1887 				break;
1888 			/* Here we've found a part of the metapath that is not
1889 			 * allocated. We need to search at that height for the
1890 			 * next non-null pointer. */
1891 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) {
1892 				state = DEALLOC_FILL_MP;
1893 				mp_h++;
1894 			}
1895 			/* No more non-null pointers at this height. Back up
1896 			   to the previous height and try again. */
1897 			break; /* loop around in the same state */
1898 
1899 		/* Fill the metapath with buffers to the given height. */
1900 		case DEALLOC_FILL_MP:
1901 			/* Fill the buffers out to the current height. */
1902 			ret = fillup_metapath(ip, &mp, mp_h);
1903 			if (ret < 0)
1904 				goto out;
1905 
1906 			/* On the first pass, issue read-ahead on metadata. */
1907 			if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) {
1908 				unsigned int height = mp.mp_aheight - 1;
1909 
1910 				/* No read-ahead for data blocks. */
1911 				if (mp.mp_aheight - 1 == strip_h)
1912 					height--;
1913 
1914 				for (; height >= mp.mp_aheight - ret; height--) {
1915 					metapointer_range(&mp, height,
1916 							  start_list, start_aligned,
1917 							  end_list, end_aligned,
1918 							  &start, &end);
1919 					gfs2_metapath_ra(ip->i_gl, start, end);
1920 				}
1921 			}
1922 
1923 			/* If buffers found for the entire strip height */
1924 			if (mp.mp_aheight - 1 == strip_h) {
1925 				state = DEALLOC_MP_FULL;
1926 				break;
1927 			}
1928 			if (mp.mp_aheight < ip->i_height) /* We have a partial height */
1929 				mp_h = mp.mp_aheight - 1;
1930 
1931 			/* If we find a non-null block pointer, crawl a bit
1932 			   higher up in the metapath and try again, otherwise
1933 			   we need to look lower for a new starting point. */
1934 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned))
1935 				mp_h++;
1936 			else
1937 				state = DEALLOC_MP_LOWER;
1938 			break;
1939 		}
1940 	}
1941 
1942 	if (btotal) {
1943 		if (current->journal_info == NULL) {
1944 			ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS +
1945 					       RES_QUOTA, 0);
1946 			if (ret)
1947 				goto out;
1948 			down_write(&ip->i_rw_mutex);
1949 		}
1950 		gfs2_statfs_change(sdp, 0, +btotal, 0);
1951 		gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid,
1952 				  ip->i_inode.i_gid);
1953 		ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1954 		gfs2_trans_add_meta(ip->i_gl, dibh);
1955 		gfs2_dinode_out(ip, dibh->b_data);
1956 		up_write(&ip->i_rw_mutex);
1957 		gfs2_trans_end(sdp);
1958 	}
1959 
1960 out:
1961 	if (gfs2_holder_initialized(&rd_gh))
1962 		gfs2_glock_dq_uninit(&rd_gh);
1963 	if (current->journal_info) {
1964 		up_write(&ip->i_rw_mutex);
1965 		gfs2_trans_end(sdp);
1966 		cond_resched();
1967 	}
1968 	gfs2_quota_unhold(ip);
1969 out_metapath:
1970 	release_metapath(&mp);
1971 	return ret;
1972 }
1973 
1974 static int trunc_end(struct gfs2_inode *ip)
1975 {
1976 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1977 	struct buffer_head *dibh;
1978 	int error;
1979 
1980 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1981 	if (error)
1982 		return error;
1983 
1984 	down_write(&ip->i_rw_mutex);
1985 
1986 	error = gfs2_meta_inode_buffer(ip, &dibh);
1987 	if (error)
1988 		goto out;
1989 
1990 	if (!i_size_read(&ip->i_inode)) {
1991 		ip->i_height = 0;
1992 		ip->i_goal = ip->i_no_addr;
1993 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
1994 		gfs2_ordered_del_inode(ip);
1995 	}
1996 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1997 	ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG;
1998 
1999 	gfs2_trans_add_meta(ip->i_gl, dibh);
2000 	gfs2_dinode_out(ip, dibh->b_data);
2001 	brelse(dibh);
2002 
2003 out:
2004 	up_write(&ip->i_rw_mutex);
2005 	gfs2_trans_end(sdp);
2006 	return error;
2007 }
2008 
2009 /**
2010  * do_shrink - make a file smaller
2011  * @inode: the inode
2012  * @newsize: the size to make the file
2013  *
2014  * Called with an exclusive lock on @inode. The @size must
2015  * be equal to or smaller than the current inode size.
2016  *
2017  * Returns: errno
2018  */
2019 
2020 static int do_shrink(struct inode *inode, u64 newsize)
2021 {
2022 	struct gfs2_inode *ip = GFS2_I(inode);
2023 	int error;
2024 
2025 	error = trunc_start(inode, newsize);
2026 	if (error < 0)
2027 		return error;
2028 	if (gfs2_is_stuffed(ip))
2029 		return 0;
2030 
2031 	error = punch_hole(ip, newsize, 0);
2032 	if (error == 0)
2033 		error = trunc_end(ip);
2034 
2035 	return error;
2036 }
2037 
2038 void gfs2_trim_blocks(struct inode *inode)
2039 {
2040 	int ret;
2041 
2042 	ret = do_shrink(inode, inode->i_size);
2043 	WARN_ON(ret != 0);
2044 }
2045 
2046 /**
2047  * do_grow - Touch and update inode size
2048  * @inode: The inode
2049  * @size: The new size
2050  *
2051  * This function updates the timestamps on the inode and
2052  * may also increase the size of the inode. This function
2053  * must not be called with @size any smaller than the current
2054  * inode size.
2055  *
2056  * Although it is not strictly required to unstuff files here,
2057  * earlier versions of GFS2 have a bug in the stuffed file reading
2058  * code which will result in a buffer overrun if the size is larger
2059  * than the max stuffed file size. In order to prevent this from
2060  * occurring, such files are unstuffed, but in other cases we can
2061  * just update the inode size directly.
2062  *
2063  * Returns: 0 on success, or -ve on error
2064  */
2065 
2066 static int do_grow(struct inode *inode, u64 size)
2067 {
2068 	struct gfs2_inode *ip = GFS2_I(inode);
2069 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2070 	struct gfs2_alloc_parms ap = { .target = 1, };
2071 	struct buffer_head *dibh;
2072 	int error;
2073 	int unstuff = 0;
2074 
2075 	if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) {
2076 		error = gfs2_quota_lock_check(ip, &ap);
2077 		if (error)
2078 			return error;
2079 
2080 		error = gfs2_inplace_reserve(ip, &ap);
2081 		if (error)
2082 			goto do_grow_qunlock;
2083 		unstuff = 1;
2084 	}
2085 
2086 	error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT +
2087 				 (unstuff &&
2088 				  gfs2_is_jdata(ip) ? RES_JDATA : 0) +
2089 				 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ?
2090 				  0 : RES_QUOTA), 0);
2091 	if (error)
2092 		goto do_grow_release;
2093 
2094 	if (unstuff) {
2095 		error = gfs2_unstuff_dinode(ip, NULL);
2096 		if (error)
2097 			goto do_end_trans;
2098 	}
2099 
2100 	error = gfs2_meta_inode_buffer(ip, &dibh);
2101 	if (error)
2102 		goto do_end_trans;
2103 
2104 	i_size_write(inode, size);
2105 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2106 	gfs2_trans_add_meta(ip->i_gl, dibh);
2107 	gfs2_dinode_out(ip, dibh->b_data);
2108 	brelse(dibh);
2109 
2110 do_end_trans:
2111 	gfs2_trans_end(sdp);
2112 do_grow_release:
2113 	if (unstuff) {
2114 		gfs2_inplace_release(ip);
2115 do_grow_qunlock:
2116 		gfs2_quota_unlock(ip);
2117 	}
2118 	return error;
2119 }
2120 
2121 /**
2122  * gfs2_setattr_size - make a file a given size
2123  * @inode: the inode
2124  * @newsize: the size to make the file
2125  *
2126  * The file size can grow, shrink, or stay the same size. This
2127  * is called holding i_rwsem and an exclusive glock on the inode
2128  * in question.
2129  *
2130  * Returns: errno
2131  */
2132 
2133 int gfs2_setattr_size(struct inode *inode, u64 newsize)
2134 {
2135 	struct gfs2_inode *ip = GFS2_I(inode);
2136 	int ret;
2137 
2138 	BUG_ON(!S_ISREG(inode->i_mode));
2139 
2140 	ret = inode_newsize_ok(inode, newsize);
2141 	if (ret)
2142 		return ret;
2143 
2144 	inode_dio_wait(inode);
2145 
2146 	ret = gfs2_rsqa_alloc(ip);
2147 	if (ret)
2148 		goto out;
2149 
2150 	if (newsize >= inode->i_size) {
2151 		ret = do_grow(inode, newsize);
2152 		goto out;
2153 	}
2154 
2155 	ret = do_shrink(inode, newsize);
2156 out:
2157 	gfs2_rsqa_delete(ip, NULL);
2158 	return ret;
2159 }
2160 
2161 int gfs2_truncatei_resume(struct gfs2_inode *ip)
2162 {
2163 	int error;
2164 	error = punch_hole(ip, i_size_read(&ip->i_inode), 0);
2165 	if (!error)
2166 		error = trunc_end(ip);
2167 	return error;
2168 }
2169 
2170 int gfs2_file_dealloc(struct gfs2_inode *ip)
2171 {
2172 	return punch_hole(ip, 0, 0);
2173 }
2174 
2175 /**
2176  * gfs2_free_journal_extents - Free cached journal bmap info
2177  * @jd: The journal
2178  *
2179  */
2180 
2181 void gfs2_free_journal_extents(struct gfs2_jdesc *jd)
2182 {
2183 	struct gfs2_journal_extent *jext;
2184 
2185 	while(!list_empty(&jd->extent_list)) {
2186 		jext = list_entry(jd->extent_list.next, struct gfs2_journal_extent, list);
2187 		list_del(&jext->list);
2188 		kfree(jext);
2189 	}
2190 }
2191 
2192 /**
2193  * gfs2_add_jextent - Add or merge a new extent to extent cache
2194  * @jd: The journal descriptor
2195  * @lblock: The logical block at start of new extent
2196  * @dblock: The physical block at start of new extent
2197  * @blocks: Size of extent in fs blocks
2198  *
2199  * Returns: 0 on success or -ENOMEM
2200  */
2201 
2202 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks)
2203 {
2204 	struct gfs2_journal_extent *jext;
2205 
2206 	if (!list_empty(&jd->extent_list)) {
2207 		jext = list_entry(jd->extent_list.prev, struct gfs2_journal_extent, list);
2208 		if ((jext->dblock + jext->blocks) == dblock) {
2209 			jext->blocks += blocks;
2210 			return 0;
2211 		}
2212 	}
2213 
2214 	jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS);
2215 	if (jext == NULL)
2216 		return -ENOMEM;
2217 	jext->dblock = dblock;
2218 	jext->lblock = lblock;
2219 	jext->blocks = blocks;
2220 	list_add_tail(&jext->list, &jd->extent_list);
2221 	jd->nr_extents++;
2222 	return 0;
2223 }
2224 
2225 /**
2226  * gfs2_map_journal_extents - Cache journal bmap info
2227  * @sdp: The super block
2228  * @jd: The journal to map
2229  *
2230  * Create a reusable "extent" mapping from all logical
2231  * blocks to all physical blocks for the given journal.  This will save
2232  * us time when writing journal blocks.  Most journals will have only one
2233  * extent that maps all their logical blocks.  That's because gfs2.mkfs
2234  * arranges the journal blocks sequentially to maximize performance.
2235  * So the extent would map the first block for the entire file length.
2236  * However, gfs2_jadd can happen while file activity is happening, so
2237  * those journals may not be sequential.  Less likely is the case where
2238  * the users created their own journals by mounting the metafs and
2239  * laying it out.  But it's still possible.  These journals might have
2240  * several extents.
2241  *
2242  * Returns: 0 on success, or error on failure
2243  */
2244 
2245 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd)
2246 {
2247 	u64 lblock = 0;
2248 	u64 lblock_stop;
2249 	struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
2250 	struct buffer_head bh;
2251 	unsigned int shift = sdp->sd_sb.sb_bsize_shift;
2252 	u64 size;
2253 	int rc;
2254 	ktime_t start, end;
2255 
2256 	start = ktime_get();
2257 	lblock_stop = i_size_read(jd->jd_inode) >> shift;
2258 	size = (lblock_stop - lblock) << shift;
2259 	jd->nr_extents = 0;
2260 	WARN_ON(!list_empty(&jd->extent_list));
2261 
2262 	do {
2263 		bh.b_state = 0;
2264 		bh.b_blocknr = 0;
2265 		bh.b_size = size;
2266 		rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0);
2267 		if (rc || !buffer_mapped(&bh))
2268 			goto fail;
2269 		rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift);
2270 		if (rc)
2271 			goto fail;
2272 		size -= bh.b_size;
2273 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2274 	} while(size > 0);
2275 
2276 	end = ktime_get();
2277 	fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid,
2278 		jd->nr_extents, ktime_ms_delta(end, start));
2279 	return 0;
2280 
2281 fail:
2282 	fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n",
2283 		rc, jd->jd_jid,
2284 		(unsigned long long)(i_size_read(jd->jd_inode) - size),
2285 		jd->nr_extents);
2286 	fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n",
2287 		rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr,
2288 		bh.b_state, (unsigned long long)bh.b_size);
2289 	gfs2_free_journal_extents(jd);
2290 	return rc;
2291 }
2292 
2293 /**
2294  * gfs2_write_alloc_required - figure out if a write will require an allocation
2295  * @ip: the file being written to
2296  * @offset: the offset to write to
2297  * @len: the number of bytes being written
2298  *
2299  * Returns: 1 if an alloc is required, 0 otherwise
2300  */
2301 
2302 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset,
2303 			      unsigned int len)
2304 {
2305 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2306 	struct buffer_head bh;
2307 	unsigned int shift;
2308 	u64 lblock, lblock_stop, size;
2309 	u64 end_of_file;
2310 
2311 	if (!len)
2312 		return 0;
2313 
2314 	if (gfs2_is_stuffed(ip)) {
2315 		if (offset + len > gfs2_max_stuffed_size(ip))
2316 			return 1;
2317 		return 0;
2318 	}
2319 
2320 	shift = sdp->sd_sb.sb_bsize_shift;
2321 	BUG_ON(gfs2_is_dir(ip));
2322 	end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift;
2323 	lblock = offset >> shift;
2324 	lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift;
2325 	if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex))
2326 		return 1;
2327 
2328 	size = (lblock_stop - lblock) << shift;
2329 	do {
2330 		bh.b_state = 0;
2331 		bh.b_size = size;
2332 		gfs2_block_map(&ip->i_inode, lblock, &bh, 0);
2333 		if (!buffer_mapped(&bh))
2334 			return 1;
2335 		size -= bh.b_size;
2336 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2337 	} while(size > 0);
2338 
2339 	return 0;
2340 }
2341 
2342 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length)
2343 {
2344 	struct gfs2_inode *ip = GFS2_I(inode);
2345 	struct buffer_head *dibh;
2346 	int error;
2347 
2348 	if (offset >= inode->i_size)
2349 		return 0;
2350 	if (offset + length > inode->i_size)
2351 		length = inode->i_size - offset;
2352 
2353 	error = gfs2_meta_inode_buffer(ip, &dibh);
2354 	if (error)
2355 		return error;
2356 	gfs2_trans_add_meta(ip->i_gl, dibh);
2357 	memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0,
2358 	       length);
2359 	brelse(dibh);
2360 	return 0;
2361 }
2362 
2363 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset,
2364 					 loff_t length)
2365 {
2366 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2367 	loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
2368 	int error;
2369 
2370 	while (length) {
2371 		struct gfs2_trans *tr;
2372 		loff_t chunk;
2373 		unsigned int offs;
2374 
2375 		chunk = length;
2376 		if (chunk > max_chunk)
2377 			chunk = max_chunk;
2378 
2379 		offs = offset & ~PAGE_MASK;
2380 		if (offs && chunk > PAGE_SIZE)
2381 			chunk = offs + ((chunk - offs) & PAGE_MASK);
2382 
2383 		truncate_pagecache_range(inode, offset, chunk);
2384 		offset += chunk;
2385 		length -= chunk;
2386 
2387 		tr = current->journal_info;
2388 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
2389 			continue;
2390 
2391 		gfs2_trans_end(sdp);
2392 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
2393 		if (error)
2394 			return error;
2395 	}
2396 	return 0;
2397 }
2398 
2399 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length)
2400 {
2401 	struct inode *inode = file_inode(file);
2402 	struct gfs2_inode *ip = GFS2_I(inode);
2403 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2404 	int error;
2405 
2406 	if (gfs2_is_jdata(ip))
2407 		error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA,
2408 					 GFS2_JTRUNC_REVOKES);
2409 	else
2410 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2411 	if (error)
2412 		return error;
2413 
2414 	if (gfs2_is_stuffed(ip)) {
2415 		error = stuffed_zero_range(inode, offset, length);
2416 		if (error)
2417 			goto out;
2418 	} else {
2419 		unsigned int start_off, end_len, blocksize;
2420 
2421 		blocksize = i_blocksize(inode);
2422 		start_off = offset & (blocksize - 1);
2423 		end_len = (offset + length) & (blocksize - 1);
2424 		if (start_off) {
2425 			unsigned int len = length;
2426 			if (length > blocksize - start_off)
2427 				len = blocksize - start_off;
2428 			error = gfs2_block_zero_range(inode, offset, len);
2429 			if (error)
2430 				goto out;
2431 			if (start_off + length < blocksize)
2432 				end_len = 0;
2433 		}
2434 		if (end_len) {
2435 			error = gfs2_block_zero_range(inode,
2436 				offset + length - end_len, end_len);
2437 			if (error)
2438 				goto out;
2439 		}
2440 	}
2441 
2442 	if (gfs2_is_jdata(ip)) {
2443 		BUG_ON(!current->journal_info);
2444 		gfs2_journaled_truncate_range(inode, offset, length);
2445 	} else
2446 		truncate_pagecache_range(inode, offset, offset + length - 1);
2447 
2448 	file_update_time(file);
2449 	mark_inode_dirty(inode);
2450 
2451 	if (current->journal_info)
2452 		gfs2_trans_end(sdp);
2453 
2454 	if (!gfs2_is_stuffed(ip))
2455 		error = punch_hole(ip, offset, length);
2456 
2457 out:
2458 	if (current->journal_info)
2459 		gfs2_trans_end(sdp);
2460 	return error;
2461 }
2462