1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 5 */ 6 7 #include <linux/spinlock.h> 8 #include <linux/completion.h> 9 #include <linux/buffer_head.h> 10 #include <linux/blkdev.h> 11 #include <linux/gfs2_ondisk.h> 12 #include <linux/crc32.h> 13 #include <linux/iomap.h> 14 #include <linux/ktime.h> 15 16 #include "gfs2.h" 17 #include "incore.h" 18 #include "bmap.h" 19 #include "glock.h" 20 #include "inode.h" 21 #include "meta_io.h" 22 #include "quota.h" 23 #include "rgrp.h" 24 #include "log.h" 25 #include "super.h" 26 #include "trans.h" 27 #include "dir.h" 28 #include "util.h" 29 #include "aops.h" 30 #include "trace_gfs2.h" 31 32 /* This doesn't need to be that large as max 64 bit pointers in a 4k 33 * block is 512, so __u16 is fine for that. It saves stack space to 34 * keep it small. 35 */ 36 struct metapath { 37 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT]; 38 __u16 mp_list[GFS2_MAX_META_HEIGHT]; 39 int mp_fheight; /* find_metapath height */ 40 int mp_aheight; /* actual height (lookup height) */ 41 }; 42 43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length); 44 45 /** 46 * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page 47 * @ip: the inode 48 * @dibh: the dinode buffer 49 * @block: the block number that was allocated 50 * @page: The (optional) page. This is looked up if @page is NULL 51 * 52 * Returns: errno 53 */ 54 55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh, 56 u64 block, struct page *page) 57 { 58 struct inode *inode = &ip->i_inode; 59 60 if (!PageUptodate(page)) { 61 void *kaddr = kmap(page); 62 u64 dsize = i_size_read(inode); 63 64 if (dsize > gfs2_max_stuffed_size(ip)) 65 dsize = gfs2_max_stuffed_size(ip); 66 67 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 68 memset(kaddr + dsize, 0, PAGE_SIZE - dsize); 69 kunmap(page); 70 71 SetPageUptodate(page); 72 } 73 74 if (gfs2_is_jdata(ip)) { 75 struct buffer_head *bh; 76 77 if (!page_has_buffers(page)) 78 create_empty_buffers(page, BIT(inode->i_blkbits), 79 BIT(BH_Uptodate)); 80 81 bh = page_buffers(page); 82 if (!buffer_mapped(bh)) 83 map_bh(bh, inode->i_sb, block); 84 85 set_buffer_uptodate(bh); 86 gfs2_trans_add_data(ip->i_gl, bh); 87 } else { 88 set_page_dirty(page); 89 gfs2_ordered_add_inode(ip); 90 } 91 92 return 0; 93 } 94 95 static int __gfs2_unstuff_inode(struct gfs2_inode *ip, struct page *page) 96 { 97 struct buffer_head *bh, *dibh; 98 struct gfs2_dinode *di; 99 u64 block = 0; 100 int isdir = gfs2_is_dir(ip); 101 int error; 102 103 error = gfs2_meta_inode_buffer(ip, &dibh); 104 if (error) 105 return error; 106 107 if (i_size_read(&ip->i_inode)) { 108 /* Get a free block, fill it with the stuffed data, 109 and write it out to disk */ 110 111 unsigned int n = 1; 112 error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL); 113 if (error) 114 goto out_brelse; 115 if (isdir) { 116 gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1); 117 error = gfs2_dir_get_new_buffer(ip, block, &bh); 118 if (error) 119 goto out_brelse; 120 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header), 121 dibh, sizeof(struct gfs2_dinode)); 122 brelse(bh); 123 } else { 124 error = gfs2_unstuffer_page(ip, dibh, block, page); 125 if (error) 126 goto out_brelse; 127 } 128 } 129 130 /* Set up the pointer to the new block */ 131 132 gfs2_trans_add_meta(ip->i_gl, dibh); 133 di = (struct gfs2_dinode *)dibh->b_data; 134 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 135 136 if (i_size_read(&ip->i_inode)) { 137 *(__be64 *)(di + 1) = cpu_to_be64(block); 138 gfs2_add_inode_blocks(&ip->i_inode, 1); 139 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode)); 140 } 141 142 ip->i_height = 1; 143 di->di_height = cpu_to_be16(1); 144 145 out_brelse: 146 brelse(dibh); 147 return error; 148 } 149 150 /** 151 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big 152 * @ip: The GFS2 inode to unstuff 153 * 154 * This routine unstuffs a dinode and returns it to a "normal" state such 155 * that the height can be grown in the traditional way. 156 * 157 * Returns: errno 158 */ 159 160 int gfs2_unstuff_dinode(struct gfs2_inode *ip) 161 { 162 struct inode *inode = &ip->i_inode; 163 struct page *page; 164 int error; 165 166 down_write(&ip->i_rw_mutex); 167 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 168 error = -ENOMEM; 169 if (!page) 170 goto out; 171 error = __gfs2_unstuff_inode(ip, page); 172 unlock_page(page); 173 put_page(page); 174 out: 175 up_write(&ip->i_rw_mutex); 176 return error; 177 } 178 179 /** 180 * find_metapath - Find path through the metadata tree 181 * @sdp: The superblock 182 * @block: The disk block to look up 183 * @mp: The metapath to return the result in 184 * @height: The pre-calculated height of the metadata tree 185 * 186 * This routine returns a struct metapath structure that defines a path 187 * through the metadata of inode "ip" to get to block "block". 188 * 189 * Example: 190 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a 191 * filesystem with a blocksize of 4096. 192 * 193 * find_metapath() would return a struct metapath structure set to: 194 * mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165. 195 * 196 * That means that in order to get to the block containing the byte at 197 * offset 101342453, we would load the indirect block pointed to by pointer 198 * 0 in the dinode. We would then load the indirect block pointed to by 199 * pointer 48 in that indirect block. We would then load the data block 200 * pointed to by pointer 165 in that indirect block. 201 * 202 * ---------------------------------------- 203 * | Dinode | | 204 * | | 4| 205 * | |0 1 2 3 4 5 9| 206 * | | 6| 207 * ---------------------------------------- 208 * | 209 * | 210 * V 211 * ---------------------------------------- 212 * | Indirect Block | 213 * | 5| 214 * | 4 4 4 4 4 5 5 1| 215 * |0 5 6 7 8 9 0 1 2| 216 * ---------------------------------------- 217 * | 218 * | 219 * V 220 * ---------------------------------------- 221 * | Indirect Block | 222 * | 1 1 1 1 1 5| 223 * | 6 6 6 6 6 1| 224 * |0 3 4 5 6 7 2| 225 * ---------------------------------------- 226 * | 227 * | 228 * V 229 * ---------------------------------------- 230 * | Data block containing offset | 231 * | 101342453 | 232 * | | 233 * | | 234 * ---------------------------------------- 235 * 236 */ 237 238 static void find_metapath(const struct gfs2_sbd *sdp, u64 block, 239 struct metapath *mp, unsigned int height) 240 { 241 unsigned int i; 242 243 mp->mp_fheight = height; 244 for (i = height; i--;) 245 mp->mp_list[i] = do_div(block, sdp->sd_inptrs); 246 } 247 248 static inline unsigned int metapath_branch_start(const struct metapath *mp) 249 { 250 if (mp->mp_list[0] == 0) 251 return 2; 252 return 1; 253 } 254 255 /** 256 * metaptr1 - Return the first possible metadata pointer in a metapath buffer 257 * @height: The metadata height (0 = dinode) 258 * @mp: The metapath 259 */ 260 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp) 261 { 262 struct buffer_head *bh = mp->mp_bh[height]; 263 if (height == 0) 264 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode))); 265 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header))); 266 } 267 268 /** 269 * metapointer - Return pointer to start of metadata in a buffer 270 * @height: The metadata height (0 = dinode) 271 * @mp: The metapath 272 * 273 * Return a pointer to the block number of the next height of the metadata 274 * tree given a buffer containing the pointer to the current height of the 275 * metadata tree. 276 */ 277 278 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp) 279 { 280 __be64 *p = metaptr1(height, mp); 281 return p + mp->mp_list[height]; 282 } 283 284 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp) 285 { 286 const struct buffer_head *bh = mp->mp_bh[height]; 287 return (const __be64 *)(bh->b_data + bh->b_size); 288 } 289 290 static void clone_metapath(struct metapath *clone, struct metapath *mp) 291 { 292 unsigned int hgt; 293 294 *clone = *mp; 295 for (hgt = 0; hgt < mp->mp_aheight; hgt++) 296 get_bh(clone->mp_bh[hgt]); 297 } 298 299 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end) 300 { 301 const __be64 *t; 302 303 for (t = start; t < end; t++) { 304 struct buffer_head *rabh; 305 306 if (!*t) 307 continue; 308 309 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE); 310 if (trylock_buffer(rabh)) { 311 if (!buffer_uptodate(rabh)) { 312 rabh->b_end_io = end_buffer_read_sync; 313 submit_bh(REQ_OP_READ | REQ_RAHEAD | REQ_META | 314 REQ_PRIO, rabh); 315 continue; 316 } 317 unlock_buffer(rabh); 318 } 319 brelse(rabh); 320 } 321 } 322 323 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, 324 unsigned int x, unsigned int h) 325 { 326 for (; x < h; x++) { 327 __be64 *ptr = metapointer(x, mp); 328 u64 dblock = be64_to_cpu(*ptr); 329 int ret; 330 331 if (!dblock) 332 break; 333 ret = gfs2_meta_buffer(ip, GFS2_METATYPE_IN, dblock, &mp->mp_bh[x + 1]); 334 if (ret) 335 return ret; 336 } 337 mp->mp_aheight = x + 1; 338 return 0; 339 } 340 341 /** 342 * lookup_metapath - Walk the metadata tree to a specific point 343 * @ip: The inode 344 * @mp: The metapath 345 * 346 * Assumes that the inode's buffer has already been looked up and 347 * hooked onto mp->mp_bh[0] and that the metapath has been initialised 348 * by find_metapath(). 349 * 350 * If this function encounters part of the tree which has not been 351 * allocated, it returns the current height of the tree at the point 352 * at which it found the unallocated block. Blocks which are found are 353 * added to the mp->mp_bh[] list. 354 * 355 * Returns: error 356 */ 357 358 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp) 359 { 360 return __fillup_metapath(ip, mp, 0, ip->i_height - 1); 361 } 362 363 /** 364 * fillup_metapath - fill up buffers for the metadata path to a specific height 365 * @ip: The inode 366 * @mp: The metapath 367 * @h: The height to which it should be mapped 368 * 369 * Similar to lookup_metapath, but does lookups for a range of heights 370 * 371 * Returns: error or the number of buffers filled 372 */ 373 374 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h) 375 { 376 unsigned int x = 0; 377 int ret; 378 379 if (h) { 380 /* find the first buffer we need to look up. */ 381 for (x = h - 1; x > 0; x--) { 382 if (mp->mp_bh[x]) 383 break; 384 } 385 } 386 ret = __fillup_metapath(ip, mp, x, h); 387 if (ret) 388 return ret; 389 return mp->mp_aheight - x - 1; 390 } 391 392 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp) 393 { 394 sector_t factor = 1, block = 0; 395 int hgt; 396 397 for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) { 398 if (hgt < mp->mp_aheight) 399 block += mp->mp_list[hgt] * factor; 400 factor *= sdp->sd_inptrs; 401 } 402 return block; 403 } 404 405 static void release_metapath(struct metapath *mp) 406 { 407 int i; 408 409 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) { 410 if (mp->mp_bh[i] == NULL) 411 break; 412 brelse(mp->mp_bh[i]); 413 mp->mp_bh[i] = NULL; 414 } 415 } 416 417 /** 418 * gfs2_extent_length - Returns length of an extent of blocks 419 * @bh: The metadata block 420 * @ptr: Current position in @bh 421 * @limit: Max extent length to return 422 * @eob: Set to 1 if we hit "end of block" 423 * 424 * Returns: The length of the extent (minimum of one block) 425 */ 426 427 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob) 428 { 429 const __be64 *end = (__be64 *)(bh->b_data + bh->b_size); 430 const __be64 *first = ptr; 431 u64 d = be64_to_cpu(*ptr); 432 433 *eob = 0; 434 do { 435 ptr++; 436 if (ptr >= end) 437 break; 438 d++; 439 } while(be64_to_cpu(*ptr) == d); 440 if (ptr >= end) 441 *eob = 1; 442 return ptr - first; 443 } 444 445 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE }; 446 447 /* 448 * gfs2_metadata_walker - walk an indirect block 449 * @mp: Metapath to indirect block 450 * @ptrs: Number of pointers to look at 451 * 452 * When returning WALK_FOLLOW, the walker must update @mp to point at the right 453 * indirect block to follow. 454 */ 455 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp, 456 unsigned int ptrs); 457 458 /* 459 * gfs2_walk_metadata - walk a tree of indirect blocks 460 * @inode: The inode 461 * @mp: Starting point of walk 462 * @max_len: Maximum number of blocks to walk 463 * @walker: Called during the walk 464 * 465 * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or 466 * past the end of metadata, and a negative error code otherwise. 467 */ 468 469 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp, 470 u64 max_len, gfs2_metadata_walker walker) 471 { 472 struct gfs2_inode *ip = GFS2_I(inode); 473 struct gfs2_sbd *sdp = GFS2_SB(inode); 474 u64 factor = 1; 475 unsigned int hgt; 476 int ret; 477 478 /* 479 * The walk starts in the lowest allocated indirect block, which may be 480 * before the position indicated by @mp. Adjust @max_len accordingly 481 * to avoid a short walk. 482 */ 483 for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) { 484 max_len += mp->mp_list[hgt] * factor; 485 mp->mp_list[hgt] = 0; 486 factor *= sdp->sd_inptrs; 487 } 488 489 for (;;) { 490 u16 start = mp->mp_list[hgt]; 491 enum walker_status status; 492 unsigned int ptrs; 493 u64 len; 494 495 /* Walk indirect block. */ 496 ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start; 497 len = ptrs * factor; 498 if (len > max_len) 499 ptrs = DIV_ROUND_UP_ULL(max_len, factor); 500 status = walker(mp, ptrs); 501 switch (status) { 502 case WALK_STOP: 503 return 1; 504 case WALK_FOLLOW: 505 BUG_ON(mp->mp_aheight == mp->mp_fheight); 506 ptrs = mp->mp_list[hgt] - start; 507 len = ptrs * factor; 508 break; 509 case WALK_CONTINUE: 510 break; 511 } 512 if (len >= max_len) 513 break; 514 max_len -= len; 515 if (status == WALK_FOLLOW) 516 goto fill_up_metapath; 517 518 lower_metapath: 519 /* Decrease height of metapath. */ 520 brelse(mp->mp_bh[hgt]); 521 mp->mp_bh[hgt] = NULL; 522 mp->mp_list[hgt] = 0; 523 if (!hgt) 524 break; 525 hgt--; 526 factor *= sdp->sd_inptrs; 527 528 /* Advance in metadata tree. */ 529 (mp->mp_list[hgt])++; 530 if (hgt) { 531 if (mp->mp_list[hgt] >= sdp->sd_inptrs) 532 goto lower_metapath; 533 } else { 534 if (mp->mp_list[hgt] >= sdp->sd_diptrs) 535 break; 536 } 537 538 fill_up_metapath: 539 /* Increase height of metapath. */ 540 ret = fillup_metapath(ip, mp, ip->i_height - 1); 541 if (ret < 0) 542 return ret; 543 hgt += ret; 544 for (; ret; ret--) 545 do_div(factor, sdp->sd_inptrs); 546 mp->mp_aheight = hgt + 1; 547 } 548 return 0; 549 } 550 551 static enum walker_status gfs2_hole_walker(struct metapath *mp, 552 unsigned int ptrs) 553 { 554 const __be64 *start, *ptr, *end; 555 unsigned int hgt; 556 557 hgt = mp->mp_aheight - 1; 558 start = metapointer(hgt, mp); 559 end = start + ptrs; 560 561 for (ptr = start; ptr < end; ptr++) { 562 if (*ptr) { 563 mp->mp_list[hgt] += ptr - start; 564 if (mp->mp_aheight == mp->mp_fheight) 565 return WALK_STOP; 566 return WALK_FOLLOW; 567 } 568 } 569 return WALK_CONTINUE; 570 } 571 572 /** 573 * gfs2_hole_size - figure out the size of a hole 574 * @inode: The inode 575 * @lblock: The logical starting block number 576 * @len: How far to look (in blocks) 577 * @mp: The metapath at lblock 578 * @iomap: The iomap to store the hole size in 579 * 580 * This function modifies @mp. 581 * 582 * Returns: errno on error 583 */ 584 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len, 585 struct metapath *mp, struct iomap *iomap) 586 { 587 struct metapath clone; 588 u64 hole_size; 589 int ret; 590 591 clone_metapath(&clone, mp); 592 ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker); 593 if (ret < 0) 594 goto out; 595 596 if (ret == 1) 597 hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock; 598 else 599 hole_size = len; 600 iomap->length = hole_size << inode->i_blkbits; 601 ret = 0; 602 603 out: 604 release_metapath(&clone); 605 return ret; 606 } 607 608 static inline void gfs2_indirect_init(struct metapath *mp, 609 struct gfs2_glock *gl, unsigned int i, 610 unsigned offset, u64 bn) 611 { 612 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data + 613 ((i > 1) ? sizeof(struct gfs2_meta_header) : 614 sizeof(struct gfs2_dinode))); 615 BUG_ON(i < 1); 616 BUG_ON(mp->mp_bh[i] != NULL); 617 mp->mp_bh[i] = gfs2_meta_new(gl, bn); 618 gfs2_trans_add_meta(gl, mp->mp_bh[i]); 619 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN); 620 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header)); 621 ptr += offset; 622 *ptr = cpu_to_be64(bn); 623 } 624 625 enum alloc_state { 626 ALLOC_DATA = 0, 627 ALLOC_GROW_DEPTH = 1, 628 ALLOC_GROW_HEIGHT = 2, 629 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */ 630 }; 631 632 /** 633 * __gfs2_iomap_alloc - Build a metadata tree of the requested height 634 * @inode: The GFS2 inode 635 * @iomap: The iomap structure 636 * @mp: The metapath, with proper height information calculated 637 * 638 * In this routine we may have to alloc: 639 * i) Indirect blocks to grow the metadata tree height 640 * ii) Indirect blocks to fill in lower part of the metadata tree 641 * iii) Data blocks 642 * 643 * This function is called after __gfs2_iomap_get, which works out the 644 * total number of blocks which we need via gfs2_alloc_size. 645 * 646 * We then do the actual allocation asking for an extent at a time (if 647 * enough contiguous free blocks are available, there will only be one 648 * allocation request per call) and uses the state machine to initialise 649 * the blocks in order. 650 * 651 * Right now, this function will allocate at most one indirect block 652 * worth of data -- with a default block size of 4K, that's slightly 653 * less than 2M. If this limitation is ever removed to allow huge 654 * allocations, we would probably still want to limit the iomap size we 655 * return to avoid stalling other tasks during huge writes; the next 656 * iomap iteration would then find the blocks already allocated. 657 * 658 * Returns: errno on error 659 */ 660 661 static int __gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap, 662 struct metapath *mp) 663 { 664 struct gfs2_inode *ip = GFS2_I(inode); 665 struct gfs2_sbd *sdp = GFS2_SB(inode); 666 struct buffer_head *dibh = mp->mp_bh[0]; 667 u64 bn; 668 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0; 669 size_t dblks = iomap->length >> inode->i_blkbits; 670 const unsigned end_of_metadata = mp->mp_fheight - 1; 671 int ret; 672 enum alloc_state state; 673 __be64 *ptr; 674 __be64 zero_bn = 0; 675 676 BUG_ON(mp->mp_aheight < 1); 677 BUG_ON(dibh == NULL); 678 BUG_ON(dblks < 1); 679 680 gfs2_trans_add_meta(ip->i_gl, dibh); 681 682 down_write(&ip->i_rw_mutex); 683 684 if (mp->mp_fheight == mp->mp_aheight) { 685 /* Bottom indirect block exists */ 686 state = ALLOC_DATA; 687 } else { 688 /* Need to allocate indirect blocks */ 689 if (mp->mp_fheight == ip->i_height) { 690 /* Writing into existing tree, extend tree down */ 691 iblks = mp->mp_fheight - mp->mp_aheight; 692 state = ALLOC_GROW_DEPTH; 693 } else { 694 /* Building up tree height */ 695 state = ALLOC_GROW_HEIGHT; 696 iblks = mp->mp_fheight - ip->i_height; 697 branch_start = metapath_branch_start(mp); 698 iblks += (mp->mp_fheight - branch_start); 699 } 700 } 701 702 /* start of the second part of the function (state machine) */ 703 704 blks = dblks + iblks; 705 i = mp->mp_aheight; 706 do { 707 n = blks - alloced; 708 ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL); 709 if (ret) 710 goto out; 711 alloced += n; 712 if (state != ALLOC_DATA || gfs2_is_jdata(ip)) 713 gfs2_trans_remove_revoke(sdp, bn, n); 714 switch (state) { 715 /* Growing height of tree */ 716 case ALLOC_GROW_HEIGHT: 717 if (i == 1) { 718 ptr = (__be64 *)(dibh->b_data + 719 sizeof(struct gfs2_dinode)); 720 zero_bn = *ptr; 721 } 722 for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0; 723 i++, n--) 724 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++); 725 if (i - 1 == mp->mp_fheight - ip->i_height) { 726 i--; 727 gfs2_buffer_copy_tail(mp->mp_bh[i], 728 sizeof(struct gfs2_meta_header), 729 dibh, sizeof(struct gfs2_dinode)); 730 gfs2_buffer_clear_tail(dibh, 731 sizeof(struct gfs2_dinode) + 732 sizeof(__be64)); 733 ptr = (__be64 *)(mp->mp_bh[i]->b_data + 734 sizeof(struct gfs2_meta_header)); 735 *ptr = zero_bn; 736 state = ALLOC_GROW_DEPTH; 737 for(i = branch_start; i < mp->mp_fheight; i++) { 738 if (mp->mp_bh[i] == NULL) 739 break; 740 brelse(mp->mp_bh[i]); 741 mp->mp_bh[i] = NULL; 742 } 743 i = branch_start; 744 } 745 if (n == 0) 746 break; 747 fallthrough; /* To branching from existing tree */ 748 case ALLOC_GROW_DEPTH: 749 if (i > 1 && i < mp->mp_fheight) 750 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]); 751 for (; i < mp->mp_fheight && n > 0; i++, n--) 752 gfs2_indirect_init(mp, ip->i_gl, i, 753 mp->mp_list[i-1], bn++); 754 if (i == mp->mp_fheight) 755 state = ALLOC_DATA; 756 if (n == 0) 757 break; 758 fallthrough; /* To tree complete, adding data blocks */ 759 case ALLOC_DATA: 760 BUG_ON(n > dblks); 761 BUG_ON(mp->mp_bh[end_of_metadata] == NULL); 762 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]); 763 dblks = n; 764 ptr = metapointer(end_of_metadata, mp); 765 iomap->addr = bn << inode->i_blkbits; 766 iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW; 767 while (n-- > 0) 768 *ptr++ = cpu_to_be64(bn++); 769 break; 770 } 771 } while (iomap->addr == IOMAP_NULL_ADDR); 772 773 iomap->type = IOMAP_MAPPED; 774 iomap->length = (u64)dblks << inode->i_blkbits; 775 ip->i_height = mp->mp_fheight; 776 gfs2_add_inode_blocks(&ip->i_inode, alloced); 777 gfs2_dinode_out(ip, dibh->b_data); 778 out: 779 up_write(&ip->i_rw_mutex); 780 return ret; 781 } 782 783 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE 784 785 /** 786 * gfs2_alloc_size - Compute the maximum allocation size 787 * @inode: The inode 788 * @mp: The metapath 789 * @size: Requested size in blocks 790 * 791 * Compute the maximum size of the next allocation at @mp. 792 * 793 * Returns: size in blocks 794 */ 795 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size) 796 { 797 struct gfs2_inode *ip = GFS2_I(inode); 798 struct gfs2_sbd *sdp = GFS2_SB(inode); 799 const __be64 *first, *ptr, *end; 800 801 /* 802 * For writes to stuffed files, this function is called twice via 803 * __gfs2_iomap_get, before and after unstuffing. The size we return the 804 * first time needs to be large enough to get the reservation and 805 * allocation sizes right. The size we return the second time must 806 * be exact or else __gfs2_iomap_alloc won't do the right thing. 807 */ 808 809 if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) { 810 unsigned int maxsize = mp->mp_fheight > 1 ? 811 sdp->sd_inptrs : sdp->sd_diptrs; 812 maxsize -= mp->mp_list[mp->mp_fheight - 1]; 813 if (size > maxsize) 814 size = maxsize; 815 return size; 816 } 817 818 first = metapointer(ip->i_height - 1, mp); 819 end = metaend(ip->i_height - 1, mp); 820 if (end - first > size) 821 end = first + size; 822 for (ptr = first; ptr < end; ptr++) { 823 if (*ptr) 824 break; 825 } 826 return ptr - first; 827 } 828 829 /** 830 * __gfs2_iomap_get - Map blocks from an inode to disk blocks 831 * @inode: The inode 832 * @pos: Starting position in bytes 833 * @length: Length to map, in bytes 834 * @flags: iomap flags 835 * @iomap: The iomap structure 836 * @mp: The metapath 837 * 838 * Returns: errno 839 */ 840 static int __gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length, 841 unsigned flags, struct iomap *iomap, 842 struct metapath *mp) 843 { 844 struct gfs2_inode *ip = GFS2_I(inode); 845 struct gfs2_sbd *sdp = GFS2_SB(inode); 846 loff_t size = i_size_read(inode); 847 __be64 *ptr; 848 sector_t lblock; 849 sector_t lblock_stop; 850 int ret; 851 int eob; 852 u64 len; 853 struct buffer_head *dibh = NULL, *bh; 854 u8 height; 855 856 if (!length) 857 return -EINVAL; 858 859 down_read(&ip->i_rw_mutex); 860 861 ret = gfs2_meta_inode_buffer(ip, &dibh); 862 if (ret) 863 goto unlock; 864 mp->mp_bh[0] = dibh; 865 866 if (gfs2_is_stuffed(ip)) { 867 if (flags & IOMAP_WRITE) { 868 loff_t max_size = gfs2_max_stuffed_size(ip); 869 870 if (pos + length > max_size) 871 goto unstuff; 872 iomap->length = max_size; 873 } else { 874 if (pos >= size) { 875 if (flags & IOMAP_REPORT) { 876 ret = -ENOENT; 877 goto unlock; 878 } else { 879 iomap->offset = pos; 880 iomap->length = length; 881 goto hole_found; 882 } 883 } 884 iomap->length = size; 885 } 886 iomap->addr = (ip->i_no_addr << inode->i_blkbits) + 887 sizeof(struct gfs2_dinode); 888 iomap->type = IOMAP_INLINE; 889 iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode); 890 goto out; 891 } 892 893 unstuff: 894 lblock = pos >> inode->i_blkbits; 895 iomap->offset = lblock << inode->i_blkbits; 896 lblock_stop = (pos + length - 1) >> inode->i_blkbits; 897 len = lblock_stop - lblock + 1; 898 iomap->length = len << inode->i_blkbits; 899 900 height = ip->i_height; 901 while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height]) 902 height++; 903 find_metapath(sdp, lblock, mp, height); 904 if (height > ip->i_height || gfs2_is_stuffed(ip)) 905 goto do_alloc; 906 907 ret = lookup_metapath(ip, mp); 908 if (ret) 909 goto unlock; 910 911 if (mp->mp_aheight != ip->i_height) 912 goto do_alloc; 913 914 ptr = metapointer(ip->i_height - 1, mp); 915 if (*ptr == 0) 916 goto do_alloc; 917 918 bh = mp->mp_bh[ip->i_height - 1]; 919 len = gfs2_extent_length(bh, ptr, len, &eob); 920 921 iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits; 922 iomap->length = len << inode->i_blkbits; 923 iomap->type = IOMAP_MAPPED; 924 iomap->flags |= IOMAP_F_MERGED; 925 if (eob) 926 iomap->flags |= IOMAP_F_GFS2_BOUNDARY; 927 928 out: 929 iomap->bdev = inode->i_sb->s_bdev; 930 unlock: 931 up_read(&ip->i_rw_mutex); 932 return ret; 933 934 do_alloc: 935 if (flags & IOMAP_REPORT) { 936 if (pos >= size) 937 ret = -ENOENT; 938 else if (height == ip->i_height) 939 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 940 else 941 iomap->length = size - iomap->offset; 942 } else if (flags & IOMAP_WRITE) { 943 u64 alloc_size; 944 945 if (flags & IOMAP_DIRECT) 946 goto out; /* (see gfs2_file_direct_write) */ 947 948 len = gfs2_alloc_size(inode, mp, len); 949 alloc_size = len << inode->i_blkbits; 950 if (alloc_size < iomap->length) 951 iomap->length = alloc_size; 952 } else { 953 if (pos < size && height == ip->i_height) 954 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 955 } 956 hole_found: 957 iomap->addr = IOMAP_NULL_ADDR; 958 iomap->type = IOMAP_HOLE; 959 goto out; 960 } 961 962 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos, 963 unsigned len) 964 { 965 unsigned int blockmask = i_blocksize(inode) - 1; 966 struct gfs2_sbd *sdp = GFS2_SB(inode); 967 unsigned int blocks; 968 969 blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits; 970 return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0); 971 } 972 973 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos, 974 unsigned copied, struct page *page) 975 { 976 struct gfs2_trans *tr = current->journal_info; 977 struct gfs2_inode *ip = GFS2_I(inode); 978 struct gfs2_sbd *sdp = GFS2_SB(inode); 979 980 if (page && !gfs2_is_stuffed(ip)) 981 gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied); 982 983 if (tr->tr_num_buf_new) 984 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 985 986 gfs2_trans_end(sdp); 987 } 988 989 static const struct iomap_page_ops gfs2_iomap_page_ops = { 990 .page_prepare = gfs2_iomap_page_prepare, 991 .page_done = gfs2_iomap_page_done, 992 }; 993 994 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos, 995 loff_t length, unsigned flags, 996 struct iomap *iomap, 997 struct metapath *mp) 998 { 999 struct gfs2_inode *ip = GFS2_I(inode); 1000 struct gfs2_sbd *sdp = GFS2_SB(inode); 1001 bool unstuff; 1002 int ret; 1003 1004 unstuff = gfs2_is_stuffed(ip) && 1005 pos + length > gfs2_max_stuffed_size(ip); 1006 1007 if (unstuff || iomap->type == IOMAP_HOLE) { 1008 unsigned int data_blocks, ind_blocks; 1009 struct gfs2_alloc_parms ap = {}; 1010 unsigned int rblocks; 1011 struct gfs2_trans *tr; 1012 1013 gfs2_write_calc_reserv(ip, iomap->length, &data_blocks, 1014 &ind_blocks); 1015 ap.target = data_blocks + ind_blocks; 1016 ret = gfs2_quota_lock_check(ip, &ap); 1017 if (ret) 1018 return ret; 1019 1020 ret = gfs2_inplace_reserve(ip, &ap); 1021 if (ret) 1022 goto out_qunlock; 1023 1024 rblocks = RES_DINODE + ind_blocks; 1025 if (gfs2_is_jdata(ip)) 1026 rblocks += data_blocks; 1027 if (ind_blocks || data_blocks) 1028 rblocks += RES_STATFS + RES_QUOTA; 1029 if (inode == sdp->sd_rindex) 1030 rblocks += 2 * RES_STATFS; 1031 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 1032 1033 ret = gfs2_trans_begin(sdp, rblocks, 1034 iomap->length >> inode->i_blkbits); 1035 if (ret) 1036 goto out_trans_fail; 1037 1038 if (unstuff) { 1039 ret = gfs2_unstuff_dinode(ip); 1040 if (ret) 1041 goto out_trans_end; 1042 release_metapath(mp); 1043 ret = __gfs2_iomap_get(inode, iomap->offset, 1044 iomap->length, flags, iomap, mp); 1045 if (ret) 1046 goto out_trans_end; 1047 } 1048 1049 if (iomap->type == IOMAP_HOLE) { 1050 ret = __gfs2_iomap_alloc(inode, iomap, mp); 1051 if (ret) { 1052 gfs2_trans_end(sdp); 1053 gfs2_inplace_release(ip); 1054 punch_hole(ip, iomap->offset, iomap->length); 1055 goto out_qunlock; 1056 } 1057 } 1058 1059 tr = current->journal_info; 1060 if (tr->tr_num_buf_new) 1061 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1062 1063 gfs2_trans_end(sdp); 1064 } 1065 1066 if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip)) 1067 iomap->page_ops = &gfs2_iomap_page_ops; 1068 return 0; 1069 1070 out_trans_end: 1071 gfs2_trans_end(sdp); 1072 out_trans_fail: 1073 gfs2_inplace_release(ip); 1074 out_qunlock: 1075 gfs2_quota_unlock(ip); 1076 return ret; 1077 } 1078 1079 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length, 1080 unsigned flags, struct iomap *iomap, 1081 struct iomap *srcmap) 1082 { 1083 struct gfs2_inode *ip = GFS2_I(inode); 1084 struct metapath mp = { .mp_aheight = 1, }; 1085 int ret; 1086 1087 if (gfs2_is_jdata(ip)) 1088 iomap->flags |= IOMAP_F_BUFFER_HEAD; 1089 1090 trace_gfs2_iomap_start(ip, pos, length, flags); 1091 ret = __gfs2_iomap_get(inode, pos, length, flags, iomap, &mp); 1092 if (ret) 1093 goto out_unlock; 1094 1095 switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) { 1096 case IOMAP_WRITE: 1097 if (flags & IOMAP_DIRECT) { 1098 /* 1099 * Silently fall back to buffered I/O for stuffed files 1100 * or if we've got a hole (see gfs2_file_direct_write). 1101 */ 1102 if (iomap->type != IOMAP_MAPPED) 1103 ret = -ENOTBLK; 1104 goto out_unlock; 1105 } 1106 break; 1107 case IOMAP_ZERO: 1108 if (iomap->type == IOMAP_HOLE) 1109 goto out_unlock; 1110 break; 1111 default: 1112 goto out_unlock; 1113 } 1114 1115 ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp); 1116 1117 out_unlock: 1118 release_metapath(&mp); 1119 trace_gfs2_iomap_end(ip, iomap, ret); 1120 return ret; 1121 } 1122 1123 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length, 1124 ssize_t written, unsigned flags, struct iomap *iomap) 1125 { 1126 struct gfs2_inode *ip = GFS2_I(inode); 1127 struct gfs2_sbd *sdp = GFS2_SB(inode); 1128 1129 switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) { 1130 case IOMAP_WRITE: 1131 if (flags & IOMAP_DIRECT) 1132 return 0; 1133 break; 1134 case IOMAP_ZERO: 1135 if (iomap->type == IOMAP_HOLE) 1136 return 0; 1137 break; 1138 default: 1139 return 0; 1140 } 1141 1142 if (!gfs2_is_stuffed(ip)) 1143 gfs2_ordered_add_inode(ip); 1144 1145 if (inode == sdp->sd_rindex) 1146 adjust_fs_space(inode); 1147 1148 gfs2_inplace_release(ip); 1149 1150 if (ip->i_qadata && ip->i_qadata->qa_qd_num) 1151 gfs2_quota_unlock(ip); 1152 1153 if (length != written && (iomap->flags & IOMAP_F_NEW)) { 1154 /* Deallocate blocks that were just allocated. */ 1155 loff_t hstart = round_up(pos + written, i_blocksize(inode)); 1156 loff_t hend = iomap->offset + iomap->length; 1157 1158 if (hstart < hend) { 1159 truncate_pagecache_range(inode, hstart, hend - 1); 1160 punch_hole(ip, hstart, hend - hstart); 1161 } 1162 } 1163 1164 if (unlikely(!written)) 1165 return 0; 1166 1167 if (iomap->flags & IOMAP_F_SIZE_CHANGED) 1168 mark_inode_dirty(inode); 1169 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags); 1170 return 0; 1171 } 1172 1173 const struct iomap_ops gfs2_iomap_ops = { 1174 .iomap_begin = gfs2_iomap_begin, 1175 .iomap_end = gfs2_iomap_end, 1176 }; 1177 1178 /** 1179 * gfs2_block_map - Map one or more blocks of an inode to a disk block 1180 * @inode: The inode 1181 * @lblock: The logical block number 1182 * @bh_map: The bh to be mapped 1183 * @create: True if its ok to alloc blocks to satify the request 1184 * 1185 * The size of the requested mapping is defined in bh_map->b_size. 1186 * 1187 * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged 1188 * when @lblock is not mapped. Sets buffer_mapped(bh_map) and 1189 * bh_map->b_size to indicate the size of the mapping when @lblock and 1190 * successive blocks are mapped, up to the requested size. 1191 * 1192 * Sets buffer_boundary() if a read of metadata will be required 1193 * before the next block can be mapped. Sets buffer_new() if new 1194 * blocks were allocated. 1195 * 1196 * Returns: errno 1197 */ 1198 1199 int gfs2_block_map(struct inode *inode, sector_t lblock, 1200 struct buffer_head *bh_map, int create) 1201 { 1202 struct gfs2_inode *ip = GFS2_I(inode); 1203 loff_t pos = (loff_t)lblock << inode->i_blkbits; 1204 loff_t length = bh_map->b_size; 1205 struct iomap iomap = { }; 1206 int ret; 1207 1208 clear_buffer_mapped(bh_map); 1209 clear_buffer_new(bh_map); 1210 clear_buffer_boundary(bh_map); 1211 trace_gfs2_bmap(ip, bh_map, lblock, create, 1); 1212 1213 if (!create) 1214 ret = gfs2_iomap_get(inode, pos, length, &iomap); 1215 else 1216 ret = gfs2_iomap_alloc(inode, pos, length, &iomap); 1217 if (ret) 1218 goto out; 1219 1220 if (iomap.length > bh_map->b_size) { 1221 iomap.length = bh_map->b_size; 1222 iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY; 1223 } 1224 if (iomap.addr != IOMAP_NULL_ADDR) 1225 map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits); 1226 bh_map->b_size = iomap.length; 1227 if (iomap.flags & IOMAP_F_GFS2_BOUNDARY) 1228 set_buffer_boundary(bh_map); 1229 if (iomap.flags & IOMAP_F_NEW) 1230 set_buffer_new(bh_map); 1231 1232 out: 1233 trace_gfs2_bmap(ip, bh_map, lblock, create, ret); 1234 return ret; 1235 } 1236 1237 int gfs2_get_extent(struct inode *inode, u64 lblock, u64 *dblock, 1238 unsigned int *extlen) 1239 { 1240 unsigned int blkbits = inode->i_blkbits; 1241 struct iomap iomap = { }; 1242 unsigned int len; 1243 int ret; 1244 1245 ret = gfs2_iomap_get(inode, lblock << blkbits, *extlen << blkbits, 1246 &iomap); 1247 if (ret) 1248 return ret; 1249 if (iomap.type != IOMAP_MAPPED) 1250 return -EIO; 1251 *dblock = iomap.addr >> blkbits; 1252 len = iomap.length >> blkbits; 1253 if (len < *extlen) 1254 *extlen = len; 1255 return 0; 1256 } 1257 1258 int gfs2_alloc_extent(struct inode *inode, u64 lblock, u64 *dblock, 1259 unsigned int *extlen, bool *new) 1260 { 1261 unsigned int blkbits = inode->i_blkbits; 1262 struct iomap iomap = { }; 1263 unsigned int len; 1264 int ret; 1265 1266 ret = gfs2_iomap_alloc(inode, lblock << blkbits, *extlen << blkbits, 1267 &iomap); 1268 if (ret) 1269 return ret; 1270 if (iomap.type != IOMAP_MAPPED) 1271 return -EIO; 1272 *dblock = iomap.addr >> blkbits; 1273 len = iomap.length >> blkbits; 1274 if (len < *extlen) 1275 *extlen = len; 1276 *new = iomap.flags & IOMAP_F_NEW; 1277 return 0; 1278 } 1279 1280 /* 1281 * NOTE: Never call gfs2_block_zero_range with an open transaction because it 1282 * uses iomap write to perform its actions, which begin their own transactions 1283 * (iomap_begin, page_prepare, etc.) 1284 */ 1285 static int gfs2_block_zero_range(struct inode *inode, loff_t from, 1286 unsigned int length) 1287 { 1288 BUG_ON(current->journal_info); 1289 return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops); 1290 } 1291 1292 #define GFS2_JTRUNC_REVOKES 8192 1293 1294 /** 1295 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files 1296 * @inode: The inode being truncated 1297 * @oldsize: The original (larger) size 1298 * @newsize: The new smaller size 1299 * 1300 * With jdata files, we have to journal a revoke for each block which is 1301 * truncated. As a result, we need to split this into separate transactions 1302 * if the number of pages being truncated gets too large. 1303 */ 1304 1305 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize) 1306 { 1307 struct gfs2_sbd *sdp = GFS2_SB(inode); 1308 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 1309 u64 chunk; 1310 int error; 1311 1312 while (oldsize != newsize) { 1313 struct gfs2_trans *tr; 1314 unsigned int offs; 1315 1316 chunk = oldsize - newsize; 1317 if (chunk > max_chunk) 1318 chunk = max_chunk; 1319 1320 offs = oldsize & ~PAGE_MASK; 1321 if (offs && chunk > PAGE_SIZE) 1322 chunk = offs + ((chunk - offs) & PAGE_MASK); 1323 1324 truncate_pagecache(inode, oldsize - chunk); 1325 oldsize -= chunk; 1326 1327 tr = current->journal_info; 1328 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 1329 continue; 1330 1331 gfs2_trans_end(sdp); 1332 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 1333 if (error) 1334 return error; 1335 } 1336 1337 return 0; 1338 } 1339 1340 static int trunc_start(struct inode *inode, u64 newsize) 1341 { 1342 struct gfs2_inode *ip = GFS2_I(inode); 1343 struct gfs2_sbd *sdp = GFS2_SB(inode); 1344 struct buffer_head *dibh = NULL; 1345 int journaled = gfs2_is_jdata(ip); 1346 u64 oldsize = inode->i_size; 1347 int error; 1348 1349 if (!gfs2_is_stuffed(ip)) { 1350 unsigned int blocksize = i_blocksize(inode); 1351 unsigned int offs = newsize & (blocksize - 1); 1352 if (offs) { 1353 error = gfs2_block_zero_range(inode, newsize, 1354 blocksize - offs); 1355 if (error) 1356 return error; 1357 } 1358 } 1359 if (journaled) 1360 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES); 1361 else 1362 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1363 if (error) 1364 return error; 1365 1366 error = gfs2_meta_inode_buffer(ip, &dibh); 1367 if (error) 1368 goto out; 1369 1370 gfs2_trans_add_meta(ip->i_gl, dibh); 1371 1372 if (gfs2_is_stuffed(ip)) 1373 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize); 1374 else 1375 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG; 1376 1377 i_size_write(inode, newsize); 1378 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1379 gfs2_dinode_out(ip, dibh->b_data); 1380 1381 if (journaled) 1382 error = gfs2_journaled_truncate(inode, oldsize, newsize); 1383 else 1384 truncate_pagecache(inode, newsize); 1385 1386 out: 1387 brelse(dibh); 1388 if (current->journal_info) 1389 gfs2_trans_end(sdp); 1390 return error; 1391 } 1392 1393 int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length, 1394 struct iomap *iomap) 1395 { 1396 struct metapath mp = { .mp_aheight = 1, }; 1397 int ret; 1398 1399 ret = __gfs2_iomap_get(inode, pos, length, 0, iomap, &mp); 1400 release_metapath(&mp); 1401 return ret; 1402 } 1403 1404 int gfs2_iomap_alloc(struct inode *inode, loff_t pos, loff_t length, 1405 struct iomap *iomap) 1406 { 1407 struct metapath mp = { .mp_aheight = 1, }; 1408 int ret; 1409 1410 ret = __gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp); 1411 if (!ret && iomap->type == IOMAP_HOLE) 1412 ret = __gfs2_iomap_alloc(inode, iomap, &mp); 1413 release_metapath(&mp); 1414 return ret; 1415 } 1416 1417 /** 1418 * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein 1419 * @ip: inode 1420 * @rd_gh: holder of resource group glock 1421 * @bh: buffer head to sweep 1422 * @start: starting point in bh 1423 * @end: end point in bh 1424 * @meta: true if bh points to metadata (rather than data) 1425 * @btotal: place to keep count of total blocks freed 1426 * 1427 * We sweep a metadata buffer (provided by the metapath) for blocks we need to 1428 * free, and free them all. However, we do it one rgrp at a time. If this 1429 * block has references to multiple rgrps, we break it into individual 1430 * transactions. This allows other processes to use the rgrps while we're 1431 * focused on a single one, for better concurrency / performance. 1432 * At every transaction boundary, we rewrite the inode into the journal. 1433 * That way the bitmaps are kept consistent with the inode and we can recover 1434 * if we're interrupted by power-outages. 1435 * 1436 * Returns: 0, or return code if an error occurred. 1437 * *btotal has the total number of blocks freed 1438 */ 1439 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh, 1440 struct buffer_head *bh, __be64 *start, __be64 *end, 1441 bool meta, u32 *btotal) 1442 { 1443 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1444 struct gfs2_rgrpd *rgd; 1445 struct gfs2_trans *tr; 1446 __be64 *p; 1447 int blks_outside_rgrp; 1448 u64 bn, bstart, isize_blks; 1449 s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */ 1450 int ret = 0; 1451 bool buf_in_tr = false; /* buffer was added to transaction */ 1452 1453 more_rgrps: 1454 rgd = NULL; 1455 if (gfs2_holder_initialized(rd_gh)) { 1456 rgd = gfs2_glock2rgrp(rd_gh->gh_gl); 1457 gfs2_assert_withdraw(sdp, 1458 gfs2_glock_is_locked_by_me(rd_gh->gh_gl)); 1459 } 1460 blks_outside_rgrp = 0; 1461 bstart = 0; 1462 blen = 0; 1463 1464 for (p = start; p < end; p++) { 1465 if (!*p) 1466 continue; 1467 bn = be64_to_cpu(*p); 1468 1469 if (rgd) { 1470 if (!rgrp_contains_block(rgd, bn)) { 1471 blks_outside_rgrp++; 1472 continue; 1473 } 1474 } else { 1475 rgd = gfs2_blk2rgrpd(sdp, bn, true); 1476 if (unlikely(!rgd)) { 1477 ret = -EIO; 1478 goto out; 1479 } 1480 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 1481 LM_FLAG_NODE_SCOPE, rd_gh); 1482 if (ret) 1483 goto out; 1484 1485 /* Must be done with the rgrp glock held: */ 1486 if (gfs2_rs_active(&ip->i_res) && 1487 rgd == ip->i_res.rs_rgd) 1488 gfs2_rs_deltree(&ip->i_res); 1489 } 1490 1491 /* The size of our transactions will be unknown until we 1492 actually process all the metadata blocks that relate to 1493 the rgrp. So we estimate. We know it can't be more than 1494 the dinode's i_blocks and we don't want to exceed the 1495 journal flush threshold, sd_log_thresh2. */ 1496 if (current->journal_info == NULL) { 1497 unsigned int jblocks_rqsted, revokes; 1498 1499 jblocks_rqsted = rgd->rd_length + RES_DINODE + 1500 RES_INDIRECT; 1501 isize_blks = gfs2_get_inode_blocks(&ip->i_inode); 1502 if (isize_blks > atomic_read(&sdp->sd_log_thresh2)) 1503 jblocks_rqsted += 1504 atomic_read(&sdp->sd_log_thresh2); 1505 else 1506 jblocks_rqsted += isize_blks; 1507 revokes = jblocks_rqsted; 1508 if (meta) 1509 revokes += end - start; 1510 else if (ip->i_depth) 1511 revokes += sdp->sd_inptrs; 1512 ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes); 1513 if (ret) 1514 goto out_unlock; 1515 down_write(&ip->i_rw_mutex); 1516 } 1517 /* check if we will exceed the transaction blocks requested */ 1518 tr = current->journal_info; 1519 if (tr->tr_num_buf_new + RES_STATFS + 1520 RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) { 1521 /* We set blks_outside_rgrp to ensure the loop will 1522 be repeated for the same rgrp, but with a new 1523 transaction. */ 1524 blks_outside_rgrp++; 1525 /* This next part is tricky. If the buffer was added 1526 to the transaction, we've already set some block 1527 pointers to 0, so we better follow through and free 1528 them, or we will introduce corruption (so break). 1529 This may be impossible, or at least rare, but I 1530 decided to cover the case regardless. 1531 1532 If the buffer was not added to the transaction 1533 (this call), doing so would exceed our transaction 1534 size, so we need to end the transaction and start a 1535 new one (so goto). */ 1536 1537 if (buf_in_tr) 1538 break; 1539 goto out_unlock; 1540 } 1541 1542 gfs2_trans_add_meta(ip->i_gl, bh); 1543 buf_in_tr = true; 1544 *p = 0; 1545 if (bstart + blen == bn) { 1546 blen++; 1547 continue; 1548 } 1549 if (bstart) { 1550 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1551 (*btotal) += blen; 1552 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1553 } 1554 bstart = bn; 1555 blen = 1; 1556 } 1557 if (bstart) { 1558 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1559 (*btotal) += blen; 1560 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1561 } 1562 out_unlock: 1563 if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks 1564 outside the rgrp we just processed, 1565 do it all over again. */ 1566 if (current->journal_info) { 1567 struct buffer_head *dibh; 1568 1569 ret = gfs2_meta_inode_buffer(ip, &dibh); 1570 if (ret) 1571 goto out; 1572 1573 /* Every transaction boundary, we rewrite the dinode 1574 to keep its di_blocks current in case of failure. */ 1575 ip->i_inode.i_mtime = ip->i_inode.i_ctime = 1576 current_time(&ip->i_inode); 1577 gfs2_trans_add_meta(ip->i_gl, dibh); 1578 gfs2_dinode_out(ip, dibh->b_data); 1579 brelse(dibh); 1580 up_write(&ip->i_rw_mutex); 1581 gfs2_trans_end(sdp); 1582 buf_in_tr = false; 1583 } 1584 gfs2_glock_dq_uninit(rd_gh); 1585 cond_resched(); 1586 goto more_rgrps; 1587 } 1588 out: 1589 return ret; 1590 } 1591 1592 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h) 1593 { 1594 if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0]))) 1595 return false; 1596 return true; 1597 } 1598 1599 /** 1600 * find_nonnull_ptr - find a non-null pointer given a metapath and height 1601 * @sdp: The superblock 1602 * @mp: starting metapath 1603 * @h: desired height to search 1604 * @end_list: See punch_hole(). 1605 * @end_aligned: See punch_hole(). 1606 * 1607 * Assumes the metapath is valid (with buffers) out to height h. 1608 * Returns: true if a non-null pointer was found in the metapath buffer 1609 * false if all remaining pointers are NULL in the buffer 1610 */ 1611 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp, 1612 unsigned int h, 1613 __u16 *end_list, unsigned int end_aligned) 1614 { 1615 struct buffer_head *bh = mp->mp_bh[h]; 1616 __be64 *first, *ptr, *end; 1617 1618 first = metaptr1(h, mp); 1619 ptr = first + mp->mp_list[h]; 1620 end = (__be64 *)(bh->b_data + bh->b_size); 1621 if (end_list && mp_eq_to_hgt(mp, end_list, h)) { 1622 bool keep_end = h < end_aligned; 1623 end = first + end_list[h] + keep_end; 1624 } 1625 1626 while (ptr < end) { 1627 if (*ptr) { /* if we have a non-null pointer */ 1628 mp->mp_list[h] = ptr - first; 1629 h++; 1630 if (h < GFS2_MAX_META_HEIGHT) 1631 mp->mp_list[h] = 0; 1632 return true; 1633 } 1634 ptr++; 1635 } 1636 return false; 1637 } 1638 1639 enum dealloc_states { 1640 DEALLOC_MP_FULL = 0, /* Strip a metapath with all buffers read in */ 1641 DEALLOC_MP_LOWER = 1, /* lower the metapath strip height */ 1642 DEALLOC_FILL_MP = 2, /* Fill in the metapath to the given height. */ 1643 DEALLOC_DONE = 3, /* process complete */ 1644 }; 1645 1646 static inline void 1647 metapointer_range(struct metapath *mp, int height, 1648 __u16 *start_list, unsigned int start_aligned, 1649 __u16 *end_list, unsigned int end_aligned, 1650 __be64 **start, __be64 **end) 1651 { 1652 struct buffer_head *bh = mp->mp_bh[height]; 1653 __be64 *first; 1654 1655 first = metaptr1(height, mp); 1656 *start = first; 1657 if (mp_eq_to_hgt(mp, start_list, height)) { 1658 bool keep_start = height < start_aligned; 1659 *start = first + start_list[height] + keep_start; 1660 } 1661 *end = (__be64 *)(bh->b_data + bh->b_size); 1662 if (end_list && mp_eq_to_hgt(mp, end_list, height)) { 1663 bool keep_end = height < end_aligned; 1664 *end = first + end_list[height] + keep_end; 1665 } 1666 } 1667 1668 static inline bool walk_done(struct gfs2_sbd *sdp, 1669 struct metapath *mp, int height, 1670 __u16 *end_list, unsigned int end_aligned) 1671 { 1672 __u16 end; 1673 1674 if (end_list) { 1675 bool keep_end = height < end_aligned; 1676 if (!mp_eq_to_hgt(mp, end_list, height)) 1677 return false; 1678 end = end_list[height] + keep_end; 1679 } else 1680 end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs; 1681 return mp->mp_list[height] >= end; 1682 } 1683 1684 /** 1685 * punch_hole - deallocate blocks in a file 1686 * @ip: inode to truncate 1687 * @offset: the start of the hole 1688 * @length: the size of the hole (or 0 for truncate) 1689 * 1690 * Punch a hole into a file or truncate a file at a given position. This 1691 * function operates in whole blocks (@offset and @length are rounded 1692 * accordingly); partially filled blocks must be cleared otherwise. 1693 * 1694 * This function works from the bottom up, and from the right to the left. In 1695 * other words, it strips off the highest layer (data) before stripping any of 1696 * the metadata. Doing it this way is best in case the operation is interrupted 1697 * by power failure, etc. The dinode is rewritten in every transaction to 1698 * guarantee integrity. 1699 */ 1700 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length) 1701 { 1702 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1703 u64 maxsize = sdp->sd_heightsize[ip->i_height]; 1704 struct metapath mp = {}; 1705 struct buffer_head *dibh, *bh; 1706 struct gfs2_holder rd_gh; 1707 unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift; 1708 u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift; 1709 __u16 start_list[GFS2_MAX_META_HEIGHT]; 1710 __u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL; 1711 unsigned int start_aligned, end_aligned; 1712 unsigned int strip_h = ip->i_height - 1; 1713 u32 btotal = 0; 1714 int ret, state; 1715 int mp_h; /* metapath buffers are read in to this height */ 1716 u64 prev_bnr = 0; 1717 __be64 *start, *end; 1718 1719 if (offset >= maxsize) { 1720 /* 1721 * The starting point lies beyond the allocated meta-data; 1722 * there are no blocks do deallocate. 1723 */ 1724 return 0; 1725 } 1726 1727 /* 1728 * The start position of the hole is defined by lblock, start_list, and 1729 * start_aligned. The end position of the hole is defined by lend, 1730 * end_list, and end_aligned. 1731 * 1732 * start_aligned and end_aligned define down to which height the start 1733 * and end positions are aligned to the metadata tree (i.e., the 1734 * position is a multiple of the metadata granularity at the height 1735 * above). This determines at which heights additional meta pointers 1736 * needs to be preserved for the remaining data. 1737 */ 1738 1739 if (length) { 1740 u64 end_offset = offset + length; 1741 u64 lend; 1742 1743 /* 1744 * Clip the end at the maximum file size for the given height: 1745 * that's how far the metadata goes; files bigger than that 1746 * will have additional layers of indirection. 1747 */ 1748 if (end_offset > maxsize) 1749 end_offset = maxsize; 1750 lend = end_offset >> bsize_shift; 1751 1752 if (lblock >= lend) 1753 return 0; 1754 1755 find_metapath(sdp, lend, &mp, ip->i_height); 1756 end_list = __end_list; 1757 memcpy(end_list, mp.mp_list, sizeof(mp.mp_list)); 1758 1759 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1760 if (end_list[mp_h]) 1761 break; 1762 } 1763 end_aligned = mp_h; 1764 } 1765 1766 find_metapath(sdp, lblock, &mp, ip->i_height); 1767 memcpy(start_list, mp.mp_list, sizeof(start_list)); 1768 1769 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1770 if (start_list[mp_h]) 1771 break; 1772 } 1773 start_aligned = mp_h; 1774 1775 ret = gfs2_meta_inode_buffer(ip, &dibh); 1776 if (ret) 1777 return ret; 1778 1779 mp.mp_bh[0] = dibh; 1780 ret = lookup_metapath(ip, &mp); 1781 if (ret) 1782 goto out_metapath; 1783 1784 /* issue read-ahead on metadata */ 1785 for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) { 1786 metapointer_range(&mp, mp_h, start_list, start_aligned, 1787 end_list, end_aligned, &start, &end); 1788 gfs2_metapath_ra(ip->i_gl, start, end); 1789 } 1790 1791 if (mp.mp_aheight == ip->i_height) 1792 state = DEALLOC_MP_FULL; /* We have a complete metapath */ 1793 else 1794 state = DEALLOC_FILL_MP; /* deal with partial metapath */ 1795 1796 ret = gfs2_rindex_update(sdp); 1797 if (ret) 1798 goto out_metapath; 1799 1800 ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE); 1801 if (ret) 1802 goto out_metapath; 1803 gfs2_holder_mark_uninitialized(&rd_gh); 1804 1805 mp_h = strip_h; 1806 1807 while (state != DEALLOC_DONE) { 1808 switch (state) { 1809 /* Truncate a full metapath at the given strip height. 1810 * Note that strip_h == mp_h in order to be in this state. */ 1811 case DEALLOC_MP_FULL: 1812 bh = mp.mp_bh[mp_h]; 1813 gfs2_assert_withdraw(sdp, bh); 1814 if (gfs2_assert_withdraw(sdp, 1815 prev_bnr != bh->b_blocknr)) { 1816 fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u," 1817 "s_h:%u, mp_h:%u\n", 1818 (unsigned long long)ip->i_no_addr, 1819 prev_bnr, ip->i_height, strip_h, mp_h); 1820 } 1821 prev_bnr = bh->b_blocknr; 1822 1823 if (gfs2_metatype_check(sdp, bh, 1824 (mp_h ? GFS2_METATYPE_IN : 1825 GFS2_METATYPE_DI))) { 1826 ret = -EIO; 1827 goto out; 1828 } 1829 1830 /* 1831 * Below, passing end_aligned as 0 gives us the 1832 * metapointer range excluding the end point: the end 1833 * point is the first metapath we must not deallocate! 1834 */ 1835 1836 metapointer_range(&mp, mp_h, start_list, start_aligned, 1837 end_list, 0 /* end_aligned */, 1838 &start, &end); 1839 ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h], 1840 start, end, 1841 mp_h != ip->i_height - 1, 1842 &btotal); 1843 1844 /* If we hit an error or just swept dinode buffer, 1845 just exit. */ 1846 if (ret || !mp_h) { 1847 state = DEALLOC_DONE; 1848 break; 1849 } 1850 state = DEALLOC_MP_LOWER; 1851 break; 1852 1853 /* lower the metapath strip height */ 1854 case DEALLOC_MP_LOWER: 1855 /* We're done with the current buffer, so release it, 1856 unless it's the dinode buffer. Then back up to the 1857 previous pointer. */ 1858 if (mp_h) { 1859 brelse(mp.mp_bh[mp_h]); 1860 mp.mp_bh[mp_h] = NULL; 1861 } 1862 /* If we can't get any lower in height, we've stripped 1863 off all we can. Next step is to back up and start 1864 stripping the previous level of metadata. */ 1865 if (mp_h == 0) { 1866 strip_h--; 1867 memcpy(mp.mp_list, start_list, sizeof(start_list)); 1868 mp_h = strip_h; 1869 state = DEALLOC_FILL_MP; 1870 break; 1871 } 1872 mp.mp_list[mp_h] = 0; 1873 mp_h--; /* search one metadata height down */ 1874 mp.mp_list[mp_h]++; 1875 if (walk_done(sdp, &mp, mp_h, end_list, end_aligned)) 1876 break; 1877 /* Here we've found a part of the metapath that is not 1878 * allocated. We need to search at that height for the 1879 * next non-null pointer. */ 1880 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) { 1881 state = DEALLOC_FILL_MP; 1882 mp_h++; 1883 } 1884 /* No more non-null pointers at this height. Back up 1885 to the previous height and try again. */ 1886 break; /* loop around in the same state */ 1887 1888 /* Fill the metapath with buffers to the given height. */ 1889 case DEALLOC_FILL_MP: 1890 /* Fill the buffers out to the current height. */ 1891 ret = fillup_metapath(ip, &mp, mp_h); 1892 if (ret < 0) 1893 goto out; 1894 1895 /* On the first pass, issue read-ahead on metadata. */ 1896 if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) { 1897 unsigned int height = mp.mp_aheight - 1; 1898 1899 /* No read-ahead for data blocks. */ 1900 if (mp.mp_aheight - 1 == strip_h) 1901 height--; 1902 1903 for (; height >= mp.mp_aheight - ret; height--) { 1904 metapointer_range(&mp, height, 1905 start_list, start_aligned, 1906 end_list, end_aligned, 1907 &start, &end); 1908 gfs2_metapath_ra(ip->i_gl, start, end); 1909 } 1910 } 1911 1912 /* If buffers found for the entire strip height */ 1913 if (mp.mp_aheight - 1 == strip_h) { 1914 state = DEALLOC_MP_FULL; 1915 break; 1916 } 1917 if (mp.mp_aheight < ip->i_height) /* We have a partial height */ 1918 mp_h = mp.mp_aheight - 1; 1919 1920 /* If we find a non-null block pointer, crawl a bit 1921 higher up in the metapath and try again, otherwise 1922 we need to look lower for a new starting point. */ 1923 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) 1924 mp_h++; 1925 else 1926 state = DEALLOC_MP_LOWER; 1927 break; 1928 } 1929 } 1930 1931 if (btotal) { 1932 if (current->journal_info == NULL) { 1933 ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + 1934 RES_QUOTA, 0); 1935 if (ret) 1936 goto out; 1937 down_write(&ip->i_rw_mutex); 1938 } 1939 gfs2_statfs_change(sdp, 0, +btotal, 0); 1940 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid, 1941 ip->i_inode.i_gid); 1942 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1943 gfs2_trans_add_meta(ip->i_gl, dibh); 1944 gfs2_dinode_out(ip, dibh->b_data); 1945 up_write(&ip->i_rw_mutex); 1946 gfs2_trans_end(sdp); 1947 } 1948 1949 out: 1950 if (gfs2_holder_initialized(&rd_gh)) 1951 gfs2_glock_dq_uninit(&rd_gh); 1952 if (current->journal_info) { 1953 up_write(&ip->i_rw_mutex); 1954 gfs2_trans_end(sdp); 1955 cond_resched(); 1956 } 1957 gfs2_quota_unhold(ip); 1958 out_metapath: 1959 release_metapath(&mp); 1960 return ret; 1961 } 1962 1963 static int trunc_end(struct gfs2_inode *ip) 1964 { 1965 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1966 struct buffer_head *dibh; 1967 int error; 1968 1969 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1970 if (error) 1971 return error; 1972 1973 down_write(&ip->i_rw_mutex); 1974 1975 error = gfs2_meta_inode_buffer(ip, &dibh); 1976 if (error) 1977 goto out; 1978 1979 if (!i_size_read(&ip->i_inode)) { 1980 ip->i_height = 0; 1981 ip->i_goal = ip->i_no_addr; 1982 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 1983 gfs2_ordered_del_inode(ip); 1984 } 1985 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1986 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG; 1987 1988 gfs2_trans_add_meta(ip->i_gl, dibh); 1989 gfs2_dinode_out(ip, dibh->b_data); 1990 brelse(dibh); 1991 1992 out: 1993 up_write(&ip->i_rw_mutex); 1994 gfs2_trans_end(sdp); 1995 return error; 1996 } 1997 1998 /** 1999 * do_shrink - make a file smaller 2000 * @inode: the inode 2001 * @newsize: the size to make the file 2002 * 2003 * Called with an exclusive lock on @inode. The @size must 2004 * be equal to or smaller than the current inode size. 2005 * 2006 * Returns: errno 2007 */ 2008 2009 static int do_shrink(struct inode *inode, u64 newsize) 2010 { 2011 struct gfs2_inode *ip = GFS2_I(inode); 2012 int error; 2013 2014 error = trunc_start(inode, newsize); 2015 if (error < 0) 2016 return error; 2017 if (gfs2_is_stuffed(ip)) 2018 return 0; 2019 2020 error = punch_hole(ip, newsize, 0); 2021 if (error == 0) 2022 error = trunc_end(ip); 2023 2024 return error; 2025 } 2026 2027 void gfs2_trim_blocks(struct inode *inode) 2028 { 2029 int ret; 2030 2031 ret = do_shrink(inode, inode->i_size); 2032 WARN_ON(ret != 0); 2033 } 2034 2035 /** 2036 * do_grow - Touch and update inode size 2037 * @inode: The inode 2038 * @size: The new size 2039 * 2040 * This function updates the timestamps on the inode and 2041 * may also increase the size of the inode. This function 2042 * must not be called with @size any smaller than the current 2043 * inode size. 2044 * 2045 * Although it is not strictly required to unstuff files here, 2046 * earlier versions of GFS2 have a bug in the stuffed file reading 2047 * code which will result in a buffer overrun if the size is larger 2048 * than the max stuffed file size. In order to prevent this from 2049 * occurring, such files are unstuffed, but in other cases we can 2050 * just update the inode size directly. 2051 * 2052 * Returns: 0 on success, or -ve on error 2053 */ 2054 2055 static int do_grow(struct inode *inode, u64 size) 2056 { 2057 struct gfs2_inode *ip = GFS2_I(inode); 2058 struct gfs2_sbd *sdp = GFS2_SB(inode); 2059 struct gfs2_alloc_parms ap = { .target = 1, }; 2060 struct buffer_head *dibh; 2061 int error; 2062 int unstuff = 0; 2063 2064 if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) { 2065 error = gfs2_quota_lock_check(ip, &ap); 2066 if (error) 2067 return error; 2068 2069 error = gfs2_inplace_reserve(ip, &ap); 2070 if (error) 2071 goto do_grow_qunlock; 2072 unstuff = 1; 2073 } 2074 2075 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT + 2076 (unstuff && 2077 gfs2_is_jdata(ip) ? RES_JDATA : 0) + 2078 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ? 2079 0 : RES_QUOTA), 0); 2080 if (error) 2081 goto do_grow_release; 2082 2083 if (unstuff) { 2084 error = gfs2_unstuff_dinode(ip); 2085 if (error) 2086 goto do_end_trans; 2087 } 2088 2089 error = gfs2_meta_inode_buffer(ip, &dibh); 2090 if (error) 2091 goto do_end_trans; 2092 2093 truncate_setsize(inode, size); 2094 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2095 gfs2_trans_add_meta(ip->i_gl, dibh); 2096 gfs2_dinode_out(ip, dibh->b_data); 2097 brelse(dibh); 2098 2099 do_end_trans: 2100 gfs2_trans_end(sdp); 2101 do_grow_release: 2102 if (unstuff) { 2103 gfs2_inplace_release(ip); 2104 do_grow_qunlock: 2105 gfs2_quota_unlock(ip); 2106 } 2107 return error; 2108 } 2109 2110 /** 2111 * gfs2_setattr_size - make a file a given size 2112 * @inode: the inode 2113 * @newsize: the size to make the file 2114 * 2115 * The file size can grow, shrink, or stay the same size. This 2116 * is called holding i_rwsem and an exclusive glock on the inode 2117 * in question. 2118 * 2119 * Returns: errno 2120 */ 2121 2122 int gfs2_setattr_size(struct inode *inode, u64 newsize) 2123 { 2124 struct gfs2_inode *ip = GFS2_I(inode); 2125 int ret; 2126 2127 BUG_ON(!S_ISREG(inode->i_mode)); 2128 2129 ret = inode_newsize_ok(inode, newsize); 2130 if (ret) 2131 return ret; 2132 2133 inode_dio_wait(inode); 2134 2135 ret = gfs2_qa_get(ip); 2136 if (ret) 2137 goto out; 2138 2139 if (newsize >= inode->i_size) { 2140 ret = do_grow(inode, newsize); 2141 goto out; 2142 } 2143 2144 ret = do_shrink(inode, newsize); 2145 out: 2146 gfs2_rs_delete(ip); 2147 gfs2_qa_put(ip); 2148 return ret; 2149 } 2150 2151 int gfs2_truncatei_resume(struct gfs2_inode *ip) 2152 { 2153 int error; 2154 error = punch_hole(ip, i_size_read(&ip->i_inode), 0); 2155 if (!error) 2156 error = trunc_end(ip); 2157 return error; 2158 } 2159 2160 int gfs2_file_dealloc(struct gfs2_inode *ip) 2161 { 2162 return punch_hole(ip, 0, 0); 2163 } 2164 2165 /** 2166 * gfs2_free_journal_extents - Free cached journal bmap info 2167 * @jd: The journal 2168 * 2169 */ 2170 2171 void gfs2_free_journal_extents(struct gfs2_jdesc *jd) 2172 { 2173 struct gfs2_journal_extent *jext; 2174 2175 while(!list_empty(&jd->extent_list)) { 2176 jext = list_first_entry(&jd->extent_list, struct gfs2_journal_extent, list); 2177 list_del(&jext->list); 2178 kfree(jext); 2179 } 2180 } 2181 2182 /** 2183 * gfs2_add_jextent - Add or merge a new extent to extent cache 2184 * @jd: The journal descriptor 2185 * @lblock: The logical block at start of new extent 2186 * @dblock: The physical block at start of new extent 2187 * @blocks: Size of extent in fs blocks 2188 * 2189 * Returns: 0 on success or -ENOMEM 2190 */ 2191 2192 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks) 2193 { 2194 struct gfs2_journal_extent *jext; 2195 2196 if (!list_empty(&jd->extent_list)) { 2197 jext = list_last_entry(&jd->extent_list, struct gfs2_journal_extent, list); 2198 if ((jext->dblock + jext->blocks) == dblock) { 2199 jext->blocks += blocks; 2200 return 0; 2201 } 2202 } 2203 2204 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS); 2205 if (jext == NULL) 2206 return -ENOMEM; 2207 jext->dblock = dblock; 2208 jext->lblock = lblock; 2209 jext->blocks = blocks; 2210 list_add_tail(&jext->list, &jd->extent_list); 2211 jd->nr_extents++; 2212 return 0; 2213 } 2214 2215 /** 2216 * gfs2_map_journal_extents - Cache journal bmap info 2217 * @sdp: The super block 2218 * @jd: The journal to map 2219 * 2220 * Create a reusable "extent" mapping from all logical 2221 * blocks to all physical blocks for the given journal. This will save 2222 * us time when writing journal blocks. Most journals will have only one 2223 * extent that maps all their logical blocks. That's because gfs2.mkfs 2224 * arranges the journal blocks sequentially to maximize performance. 2225 * So the extent would map the first block for the entire file length. 2226 * However, gfs2_jadd can happen while file activity is happening, so 2227 * those journals may not be sequential. Less likely is the case where 2228 * the users created their own journals by mounting the metafs and 2229 * laying it out. But it's still possible. These journals might have 2230 * several extents. 2231 * 2232 * Returns: 0 on success, or error on failure 2233 */ 2234 2235 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd) 2236 { 2237 u64 lblock = 0; 2238 u64 lblock_stop; 2239 struct gfs2_inode *ip = GFS2_I(jd->jd_inode); 2240 struct buffer_head bh; 2241 unsigned int shift = sdp->sd_sb.sb_bsize_shift; 2242 u64 size; 2243 int rc; 2244 ktime_t start, end; 2245 2246 start = ktime_get(); 2247 lblock_stop = i_size_read(jd->jd_inode) >> shift; 2248 size = (lblock_stop - lblock) << shift; 2249 jd->nr_extents = 0; 2250 WARN_ON(!list_empty(&jd->extent_list)); 2251 2252 do { 2253 bh.b_state = 0; 2254 bh.b_blocknr = 0; 2255 bh.b_size = size; 2256 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0); 2257 if (rc || !buffer_mapped(&bh)) 2258 goto fail; 2259 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift); 2260 if (rc) 2261 goto fail; 2262 size -= bh.b_size; 2263 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2264 } while(size > 0); 2265 2266 end = ktime_get(); 2267 fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid, 2268 jd->nr_extents, ktime_ms_delta(end, start)); 2269 return 0; 2270 2271 fail: 2272 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n", 2273 rc, jd->jd_jid, 2274 (unsigned long long)(i_size_read(jd->jd_inode) - size), 2275 jd->nr_extents); 2276 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n", 2277 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr, 2278 bh.b_state, (unsigned long long)bh.b_size); 2279 gfs2_free_journal_extents(jd); 2280 return rc; 2281 } 2282 2283 /** 2284 * gfs2_write_alloc_required - figure out if a write will require an allocation 2285 * @ip: the file being written to 2286 * @offset: the offset to write to 2287 * @len: the number of bytes being written 2288 * 2289 * Returns: 1 if an alloc is required, 0 otherwise 2290 */ 2291 2292 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset, 2293 unsigned int len) 2294 { 2295 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2296 struct buffer_head bh; 2297 unsigned int shift; 2298 u64 lblock, lblock_stop, size; 2299 u64 end_of_file; 2300 2301 if (!len) 2302 return 0; 2303 2304 if (gfs2_is_stuffed(ip)) { 2305 if (offset + len > gfs2_max_stuffed_size(ip)) 2306 return 1; 2307 return 0; 2308 } 2309 2310 shift = sdp->sd_sb.sb_bsize_shift; 2311 BUG_ON(gfs2_is_dir(ip)); 2312 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift; 2313 lblock = offset >> shift; 2314 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift; 2315 if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex)) 2316 return 1; 2317 2318 size = (lblock_stop - lblock) << shift; 2319 do { 2320 bh.b_state = 0; 2321 bh.b_size = size; 2322 gfs2_block_map(&ip->i_inode, lblock, &bh, 0); 2323 if (!buffer_mapped(&bh)) 2324 return 1; 2325 size -= bh.b_size; 2326 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2327 } while(size > 0); 2328 2329 return 0; 2330 } 2331 2332 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length) 2333 { 2334 struct gfs2_inode *ip = GFS2_I(inode); 2335 struct buffer_head *dibh; 2336 int error; 2337 2338 if (offset >= inode->i_size) 2339 return 0; 2340 if (offset + length > inode->i_size) 2341 length = inode->i_size - offset; 2342 2343 error = gfs2_meta_inode_buffer(ip, &dibh); 2344 if (error) 2345 return error; 2346 gfs2_trans_add_meta(ip->i_gl, dibh); 2347 memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0, 2348 length); 2349 brelse(dibh); 2350 return 0; 2351 } 2352 2353 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset, 2354 loff_t length) 2355 { 2356 struct gfs2_sbd *sdp = GFS2_SB(inode); 2357 loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 2358 int error; 2359 2360 while (length) { 2361 struct gfs2_trans *tr; 2362 loff_t chunk; 2363 unsigned int offs; 2364 2365 chunk = length; 2366 if (chunk > max_chunk) 2367 chunk = max_chunk; 2368 2369 offs = offset & ~PAGE_MASK; 2370 if (offs && chunk > PAGE_SIZE) 2371 chunk = offs + ((chunk - offs) & PAGE_MASK); 2372 2373 truncate_pagecache_range(inode, offset, chunk); 2374 offset += chunk; 2375 length -= chunk; 2376 2377 tr = current->journal_info; 2378 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 2379 continue; 2380 2381 gfs2_trans_end(sdp); 2382 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 2383 if (error) 2384 return error; 2385 } 2386 return 0; 2387 } 2388 2389 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length) 2390 { 2391 struct inode *inode = file_inode(file); 2392 struct gfs2_inode *ip = GFS2_I(inode); 2393 struct gfs2_sbd *sdp = GFS2_SB(inode); 2394 unsigned int blocksize = i_blocksize(inode); 2395 loff_t start, end; 2396 int error; 2397 2398 if (!gfs2_is_stuffed(ip)) { 2399 unsigned int start_off, end_len; 2400 2401 start_off = offset & (blocksize - 1); 2402 end_len = (offset + length) & (blocksize - 1); 2403 if (start_off) { 2404 unsigned int len = length; 2405 if (length > blocksize - start_off) 2406 len = blocksize - start_off; 2407 error = gfs2_block_zero_range(inode, offset, len); 2408 if (error) 2409 goto out; 2410 if (start_off + length < blocksize) 2411 end_len = 0; 2412 } 2413 if (end_len) { 2414 error = gfs2_block_zero_range(inode, 2415 offset + length - end_len, end_len); 2416 if (error) 2417 goto out; 2418 } 2419 } 2420 2421 start = round_down(offset, blocksize); 2422 end = round_up(offset + length, blocksize) - 1; 2423 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 2424 if (error) 2425 return error; 2426 2427 if (gfs2_is_jdata(ip)) 2428 error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA, 2429 GFS2_JTRUNC_REVOKES); 2430 else 2431 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2432 if (error) 2433 return error; 2434 2435 if (gfs2_is_stuffed(ip)) { 2436 error = stuffed_zero_range(inode, offset, length); 2437 if (error) 2438 goto out; 2439 } 2440 2441 if (gfs2_is_jdata(ip)) { 2442 BUG_ON(!current->journal_info); 2443 gfs2_journaled_truncate_range(inode, offset, length); 2444 } else 2445 truncate_pagecache_range(inode, offset, offset + length - 1); 2446 2447 file_update_time(file); 2448 mark_inode_dirty(inode); 2449 2450 if (current->journal_info) 2451 gfs2_trans_end(sdp); 2452 2453 if (!gfs2_is_stuffed(ip)) 2454 error = punch_hole(ip, offset, length); 2455 2456 out: 2457 if (current->journal_info) 2458 gfs2_trans_end(sdp); 2459 return error; 2460 } 2461 2462 static int gfs2_map_blocks(struct iomap_writepage_ctx *wpc, struct inode *inode, 2463 loff_t offset) 2464 { 2465 int ret; 2466 2467 if (WARN_ON_ONCE(gfs2_is_stuffed(GFS2_I(inode)))) 2468 return -EIO; 2469 2470 if (offset >= wpc->iomap.offset && 2471 offset < wpc->iomap.offset + wpc->iomap.length) 2472 return 0; 2473 2474 memset(&wpc->iomap, 0, sizeof(wpc->iomap)); 2475 ret = gfs2_iomap_get(inode, offset, INT_MAX, &wpc->iomap); 2476 return ret; 2477 } 2478 2479 const struct iomap_writeback_ops gfs2_writeback_ops = { 2480 .map_blocks = gfs2_map_blocks, 2481 }; 2482