xref: /openbmc/linux/fs/gfs2/bmap.c (revision d40605b6d088b20827e442903022c65f0f165c84)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #include <linux/spinlock.h>
8 #include <linux/completion.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/gfs2_ondisk.h>
12 #include <linux/crc32.h>
13 #include <linux/iomap.h>
14 #include <linux/ktime.h>
15 
16 #include "gfs2.h"
17 #include "incore.h"
18 #include "bmap.h"
19 #include "glock.h"
20 #include "inode.h"
21 #include "meta_io.h"
22 #include "quota.h"
23 #include "rgrp.h"
24 #include "log.h"
25 #include "super.h"
26 #include "trans.h"
27 #include "dir.h"
28 #include "util.h"
29 #include "aops.h"
30 #include "trace_gfs2.h"
31 
32 /* This doesn't need to be that large as max 64 bit pointers in a 4k
33  * block is 512, so __u16 is fine for that. It saves stack space to
34  * keep it small.
35  */
36 struct metapath {
37 	struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT];
38 	__u16 mp_list[GFS2_MAX_META_HEIGHT];
39 	int mp_fheight; /* find_metapath height */
40 	int mp_aheight; /* actual height (lookup height) */
41 };
42 
43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length);
44 
45 /**
46  * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page
47  * @ip: the inode
48  * @dibh: the dinode buffer
49  * @block: the block number that was allocated
50  * @page: The (optional) page. This is looked up if @page is NULL
51  *
52  * Returns: errno
53  */
54 
55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh,
56 			       u64 block, struct page *page)
57 {
58 	struct inode *inode = &ip->i_inode;
59 	struct buffer_head *bh;
60 	int release = 0;
61 
62 	if (!page || page->index) {
63 		page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
64 		if (!page)
65 			return -ENOMEM;
66 		release = 1;
67 	}
68 
69 	if (!PageUptodate(page)) {
70 		void *kaddr = kmap(page);
71 		u64 dsize = i_size_read(inode);
72 
73 		if (dsize > gfs2_max_stuffed_size(ip))
74 			dsize = gfs2_max_stuffed_size(ip);
75 
76 		memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
77 		memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
78 		kunmap(page);
79 
80 		SetPageUptodate(page);
81 	}
82 
83 	if (!page_has_buffers(page))
84 		create_empty_buffers(page, BIT(inode->i_blkbits),
85 				     BIT(BH_Uptodate));
86 
87 	bh = page_buffers(page);
88 
89 	if (!buffer_mapped(bh))
90 		map_bh(bh, inode->i_sb, block);
91 
92 	set_buffer_uptodate(bh);
93 	if (gfs2_is_jdata(ip))
94 		gfs2_trans_add_data(ip->i_gl, bh);
95 	else {
96 		mark_buffer_dirty(bh);
97 		gfs2_ordered_add_inode(ip);
98 	}
99 
100 	if (release) {
101 		unlock_page(page);
102 		put_page(page);
103 	}
104 
105 	return 0;
106 }
107 
108 /**
109  * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big
110  * @ip: The GFS2 inode to unstuff
111  * @page: The (optional) page. This is looked up if the @page is NULL
112  *
113  * This routine unstuffs a dinode and returns it to a "normal" state such
114  * that the height can be grown in the traditional way.
115  *
116  * Returns: errno
117  */
118 
119 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page)
120 {
121 	struct buffer_head *bh, *dibh;
122 	struct gfs2_dinode *di;
123 	u64 block = 0;
124 	int isdir = gfs2_is_dir(ip);
125 	int error;
126 
127 	down_write(&ip->i_rw_mutex);
128 
129 	error = gfs2_meta_inode_buffer(ip, &dibh);
130 	if (error)
131 		goto out;
132 
133 	if (i_size_read(&ip->i_inode)) {
134 		/* Get a free block, fill it with the stuffed data,
135 		   and write it out to disk */
136 
137 		unsigned int n = 1;
138 		error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL);
139 		if (error)
140 			goto out_brelse;
141 		if (isdir) {
142 			gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1);
143 			error = gfs2_dir_get_new_buffer(ip, block, &bh);
144 			if (error)
145 				goto out_brelse;
146 			gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header),
147 					      dibh, sizeof(struct gfs2_dinode));
148 			brelse(bh);
149 		} else {
150 			error = gfs2_unstuffer_page(ip, dibh, block, page);
151 			if (error)
152 				goto out_brelse;
153 		}
154 	}
155 
156 	/*  Set up the pointer to the new block  */
157 
158 	gfs2_trans_add_meta(ip->i_gl, dibh);
159 	di = (struct gfs2_dinode *)dibh->b_data;
160 	gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
161 
162 	if (i_size_read(&ip->i_inode)) {
163 		*(__be64 *)(di + 1) = cpu_to_be64(block);
164 		gfs2_add_inode_blocks(&ip->i_inode, 1);
165 		di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode));
166 	}
167 
168 	ip->i_height = 1;
169 	di->di_height = cpu_to_be16(1);
170 
171 out_brelse:
172 	brelse(dibh);
173 out:
174 	up_write(&ip->i_rw_mutex);
175 	return error;
176 }
177 
178 
179 /**
180  * find_metapath - Find path through the metadata tree
181  * @sdp: The superblock
182  * @block: The disk block to look up
183  * @mp: The metapath to return the result in
184  * @height: The pre-calculated height of the metadata tree
185  *
186  *   This routine returns a struct metapath structure that defines a path
187  *   through the metadata of inode "ip" to get to block "block".
188  *
189  *   Example:
190  *   Given:  "ip" is a height 3 file, "offset" is 101342453, and this is a
191  *   filesystem with a blocksize of 4096.
192  *
193  *   find_metapath() would return a struct metapath structure set to:
194  *   mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165.
195  *
196  *   That means that in order to get to the block containing the byte at
197  *   offset 101342453, we would load the indirect block pointed to by pointer
198  *   0 in the dinode.  We would then load the indirect block pointed to by
199  *   pointer 48 in that indirect block.  We would then load the data block
200  *   pointed to by pointer 165 in that indirect block.
201  *
202  *             ----------------------------------------
203  *             | Dinode |                             |
204  *             |        |                            4|
205  *             |        |0 1 2 3 4 5                 9|
206  *             |        |                            6|
207  *             ----------------------------------------
208  *                       |
209  *                       |
210  *                       V
211  *             ----------------------------------------
212  *             | Indirect Block                       |
213  *             |                                     5|
214  *             |            4 4 4 4 4 5 5            1|
215  *             |0           5 6 7 8 9 0 1            2|
216  *             ----------------------------------------
217  *                                |
218  *                                |
219  *                                V
220  *             ----------------------------------------
221  *             | Indirect Block                       |
222  *             |                         1 1 1 1 1   5|
223  *             |                         6 6 6 6 6   1|
224  *             |0                        3 4 5 6 7   2|
225  *             ----------------------------------------
226  *                                           |
227  *                                           |
228  *                                           V
229  *             ----------------------------------------
230  *             | Data block containing offset         |
231  *             |            101342453                 |
232  *             |                                      |
233  *             |                                      |
234  *             ----------------------------------------
235  *
236  */
237 
238 static void find_metapath(const struct gfs2_sbd *sdp, u64 block,
239 			  struct metapath *mp, unsigned int height)
240 {
241 	unsigned int i;
242 
243 	mp->mp_fheight = height;
244 	for (i = height; i--;)
245 		mp->mp_list[i] = do_div(block, sdp->sd_inptrs);
246 }
247 
248 static inline unsigned int metapath_branch_start(const struct metapath *mp)
249 {
250 	if (mp->mp_list[0] == 0)
251 		return 2;
252 	return 1;
253 }
254 
255 /**
256  * metaptr1 - Return the first possible metadata pointer in a metapath buffer
257  * @height: The metadata height (0 = dinode)
258  * @mp: The metapath
259  */
260 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp)
261 {
262 	struct buffer_head *bh = mp->mp_bh[height];
263 	if (height == 0)
264 		return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)));
265 	return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header)));
266 }
267 
268 /**
269  * metapointer - Return pointer to start of metadata in a buffer
270  * @height: The metadata height (0 = dinode)
271  * @mp: The metapath
272  *
273  * Return a pointer to the block number of the next height of the metadata
274  * tree given a buffer containing the pointer to the current height of the
275  * metadata tree.
276  */
277 
278 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp)
279 {
280 	__be64 *p = metaptr1(height, mp);
281 	return p + mp->mp_list[height];
282 }
283 
284 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp)
285 {
286 	const struct buffer_head *bh = mp->mp_bh[height];
287 	return (const __be64 *)(bh->b_data + bh->b_size);
288 }
289 
290 static void clone_metapath(struct metapath *clone, struct metapath *mp)
291 {
292 	unsigned int hgt;
293 
294 	*clone = *mp;
295 	for (hgt = 0; hgt < mp->mp_aheight; hgt++)
296 		get_bh(clone->mp_bh[hgt]);
297 }
298 
299 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end)
300 {
301 	const __be64 *t;
302 
303 	for (t = start; t < end; t++) {
304 		struct buffer_head *rabh;
305 
306 		if (!*t)
307 			continue;
308 
309 		rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE);
310 		if (trylock_buffer(rabh)) {
311 			if (!buffer_uptodate(rabh)) {
312 				rabh->b_end_io = end_buffer_read_sync;
313 				submit_bh(REQ_OP_READ,
314 					  REQ_RAHEAD | REQ_META | REQ_PRIO,
315 					  rabh);
316 				continue;
317 			}
318 			unlock_buffer(rabh);
319 		}
320 		brelse(rabh);
321 	}
322 }
323 
324 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp,
325 			     unsigned int x, unsigned int h)
326 {
327 	for (; x < h; x++) {
328 		__be64 *ptr = metapointer(x, mp);
329 		u64 dblock = be64_to_cpu(*ptr);
330 		int ret;
331 
332 		if (!dblock)
333 			break;
334 		ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]);
335 		if (ret)
336 			return ret;
337 	}
338 	mp->mp_aheight = x + 1;
339 	return 0;
340 }
341 
342 /**
343  * lookup_metapath - Walk the metadata tree to a specific point
344  * @ip: The inode
345  * @mp: The metapath
346  *
347  * Assumes that the inode's buffer has already been looked up and
348  * hooked onto mp->mp_bh[0] and that the metapath has been initialised
349  * by find_metapath().
350  *
351  * If this function encounters part of the tree which has not been
352  * allocated, it returns the current height of the tree at the point
353  * at which it found the unallocated block. Blocks which are found are
354  * added to the mp->mp_bh[] list.
355  *
356  * Returns: error
357  */
358 
359 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp)
360 {
361 	return __fillup_metapath(ip, mp, 0, ip->i_height - 1);
362 }
363 
364 /**
365  * fillup_metapath - fill up buffers for the metadata path to a specific height
366  * @ip: The inode
367  * @mp: The metapath
368  * @h: The height to which it should be mapped
369  *
370  * Similar to lookup_metapath, but does lookups for a range of heights
371  *
372  * Returns: error or the number of buffers filled
373  */
374 
375 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h)
376 {
377 	unsigned int x = 0;
378 	int ret;
379 
380 	if (h) {
381 		/* find the first buffer we need to look up. */
382 		for (x = h - 1; x > 0; x--) {
383 			if (mp->mp_bh[x])
384 				break;
385 		}
386 	}
387 	ret = __fillup_metapath(ip, mp, x, h);
388 	if (ret)
389 		return ret;
390 	return mp->mp_aheight - x - 1;
391 }
392 
393 static void release_metapath(struct metapath *mp)
394 {
395 	int i;
396 
397 	for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) {
398 		if (mp->mp_bh[i] == NULL)
399 			break;
400 		brelse(mp->mp_bh[i]);
401 		mp->mp_bh[i] = NULL;
402 	}
403 }
404 
405 /**
406  * gfs2_extent_length - Returns length of an extent of blocks
407  * @bh: The metadata block
408  * @ptr: Current position in @bh
409  * @limit: Max extent length to return
410  * @eob: Set to 1 if we hit "end of block"
411  *
412  * Returns: The length of the extent (minimum of one block)
413  */
414 
415 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob)
416 {
417 	const __be64 *end = (__be64 *)(bh->b_data + bh->b_size);
418 	const __be64 *first = ptr;
419 	u64 d = be64_to_cpu(*ptr);
420 
421 	*eob = 0;
422 	do {
423 		ptr++;
424 		if (ptr >= end)
425 			break;
426 		d++;
427 	} while(be64_to_cpu(*ptr) == d);
428 	if (ptr >= end)
429 		*eob = 1;
430 	return ptr - first;
431 }
432 
433 typedef const __be64 *(*gfs2_metadata_walker)(
434 		struct metapath *mp,
435 		const __be64 *start, const __be64 *end,
436 		u64 factor, void *data);
437 
438 #define WALK_STOP ((__be64 *)0)
439 #define WALK_NEXT ((__be64 *)1)
440 
441 static int gfs2_walk_metadata(struct inode *inode, sector_t lblock,
442 		u64 len, struct metapath *mp, gfs2_metadata_walker walker,
443 		void *data)
444 {
445 	struct metapath clone;
446 	struct gfs2_inode *ip = GFS2_I(inode);
447 	struct gfs2_sbd *sdp = GFS2_SB(inode);
448 	const __be64 *start, *end, *ptr;
449 	u64 factor = 1;
450 	unsigned int hgt;
451 	int ret = 0;
452 
453 	for (hgt = ip->i_height - 1; hgt >= mp->mp_aheight; hgt--)
454 		factor *= sdp->sd_inptrs;
455 
456 	for (;;) {
457 		u64 step;
458 
459 		/* Walk indirect block. */
460 		start = metapointer(hgt, mp);
461 		end = metaend(hgt, mp);
462 
463 		step = (end - start) * factor;
464 		if (step > len)
465 			end = start + DIV_ROUND_UP_ULL(len, factor);
466 
467 		ptr = walker(mp, start, end, factor, data);
468 		if (ptr == WALK_STOP)
469 			break;
470 		if (step >= len)
471 			break;
472 		len -= step;
473 		if (ptr != WALK_NEXT) {
474 			BUG_ON(!*ptr);
475 			mp->mp_list[hgt] += ptr - start;
476 			goto fill_up_metapath;
477 		}
478 
479 lower_metapath:
480 		/* Decrease height of metapath. */
481 		if (mp != &clone) {
482 			clone_metapath(&clone, mp);
483 			mp = &clone;
484 		}
485 		brelse(mp->mp_bh[hgt]);
486 		mp->mp_bh[hgt] = NULL;
487 		if (!hgt)
488 			break;
489 		hgt--;
490 		factor *= sdp->sd_inptrs;
491 
492 		/* Advance in metadata tree. */
493 		(mp->mp_list[hgt])++;
494 		start = metapointer(hgt, mp);
495 		end = metaend(hgt, mp);
496 		if (start >= end) {
497 			mp->mp_list[hgt] = 0;
498 			if (!hgt)
499 				break;
500 			goto lower_metapath;
501 		}
502 
503 fill_up_metapath:
504 		/* Increase height of metapath. */
505 		if (mp != &clone) {
506 			clone_metapath(&clone, mp);
507 			mp = &clone;
508 		}
509 		ret = fillup_metapath(ip, mp, ip->i_height - 1);
510 		if (ret < 0)
511 			break;
512 		hgt += ret;
513 		for (; ret; ret--)
514 			do_div(factor, sdp->sd_inptrs);
515 		mp->mp_aheight = hgt + 1;
516 	}
517 	if (mp == &clone)
518 		release_metapath(mp);
519 	return ret;
520 }
521 
522 struct gfs2_hole_walker_args {
523 	u64 blocks;
524 };
525 
526 static const __be64 *gfs2_hole_walker(struct metapath *mp,
527 		const __be64 *start, const __be64 *end,
528 		u64 factor, void *data)
529 {
530 	struct gfs2_hole_walker_args *args = data;
531 	const __be64 *ptr;
532 
533 	for (ptr = start; ptr < end; ptr++) {
534 		if (*ptr) {
535 			args->blocks += (ptr - start) * factor;
536 			if (mp->mp_aheight == mp->mp_fheight)
537 				return WALK_STOP;
538 			return ptr;  /* increase height */
539 		}
540 	}
541 	args->blocks += (end - start) * factor;
542 	return WALK_NEXT;
543 }
544 
545 /**
546  * gfs2_hole_size - figure out the size of a hole
547  * @inode: The inode
548  * @lblock: The logical starting block number
549  * @len: How far to look (in blocks)
550  * @mp: The metapath at lblock
551  * @iomap: The iomap to store the hole size in
552  *
553  * This function modifies @mp.
554  *
555  * Returns: errno on error
556  */
557 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len,
558 			  struct metapath *mp, struct iomap *iomap)
559 {
560 	struct gfs2_hole_walker_args args = { };
561 	int ret = 0;
562 
563 	ret = gfs2_walk_metadata(inode, lblock, len, mp, gfs2_hole_walker, &args);
564 	if (!ret)
565 		iomap->length = args.blocks << inode->i_blkbits;
566 	return ret;
567 }
568 
569 static inline __be64 *gfs2_indirect_init(struct metapath *mp,
570 					 struct gfs2_glock *gl, unsigned int i,
571 					 unsigned offset, u64 bn)
572 {
573 	__be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data +
574 		       ((i > 1) ? sizeof(struct gfs2_meta_header) :
575 				 sizeof(struct gfs2_dinode)));
576 	BUG_ON(i < 1);
577 	BUG_ON(mp->mp_bh[i] != NULL);
578 	mp->mp_bh[i] = gfs2_meta_new(gl, bn);
579 	gfs2_trans_add_meta(gl, mp->mp_bh[i]);
580 	gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN);
581 	gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header));
582 	ptr += offset;
583 	*ptr = cpu_to_be64(bn);
584 	return ptr;
585 }
586 
587 enum alloc_state {
588 	ALLOC_DATA = 0,
589 	ALLOC_GROW_DEPTH = 1,
590 	ALLOC_GROW_HEIGHT = 2,
591 	/* ALLOC_UNSTUFF = 3,   TBD and rather complicated */
592 };
593 
594 /**
595  * gfs2_iomap_alloc - Build a metadata tree of the requested height
596  * @inode: The GFS2 inode
597  * @iomap: The iomap structure
598  * @flags: iomap flags
599  * @mp: The metapath, with proper height information calculated
600  *
601  * In this routine we may have to alloc:
602  *   i) Indirect blocks to grow the metadata tree height
603  *  ii) Indirect blocks to fill in lower part of the metadata tree
604  * iii) Data blocks
605  *
606  * This function is called after gfs2_iomap_get, which works out the
607  * total number of blocks which we need via gfs2_alloc_size.
608  *
609  * We then do the actual allocation asking for an extent at a time (if
610  * enough contiguous free blocks are available, there will only be one
611  * allocation request per call) and uses the state machine to initialise
612  * the blocks in order.
613  *
614  * Right now, this function will allocate at most one indirect block
615  * worth of data -- with a default block size of 4K, that's slightly
616  * less than 2M.  If this limitation is ever removed to allow huge
617  * allocations, we would probably still want to limit the iomap size we
618  * return to avoid stalling other tasks during huge writes; the next
619  * iomap iteration would then find the blocks already allocated.
620  *
621  * Returns: errno on error
622  */
623 
624 static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap,
625 			    unsigned flags, struct metapath *mp)
626 {
627 	struct gfs2_inode *ip = GFS2_I(inode);
628 	struct gfs2_sbd *sdp = GFS2_SB(inode);
629 	struct buffer_head *dibh = mp->mp_bh[0];
630 	u64 bn;
631 	unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0;
632 	size_t dblks = iomap->length >> inode->i_blkbits;
633 	const unsigned end_of_metadata = mp->mp_fheight - 1;
634 	int ret;
635 	enum alloc_state state;
636 	__be64 *ptr;
637 	__be64 zero_bn = 0;
638 
639 	BUG_ON(mp->mp_aheight < 1);
640 	BUG_ON(dibh == NULL);
641 	BUG_ON(dblks < 1);
642 
643 	gfs2_trans_add_meta(ip->i_gl, dibh);
644 
645 	down_write(&ip->i_rw_mutex);
646 
647 	if (mp->mp_fheight == mp->mp_aheight) {
648 		/* Bottom indirect block exists */
649 		state = ALLOC_DATA;
650 	} else {
651 		/* Need to allocate indirect blocks */
652 		if (mp->mp_fheight == ip->i_height) {
653 			/* Writing into existing tree, extend tree down */
654 			iblks = mp->mp_fheight - mp->mp_aheight;
655 			state = ALLOC_GROW_DEPTH;
656 		} else {
657 			/* Building up tree height */
658 			state = ALLOC_GROW_HEIGHT;
659 			iblks = mp->mp_fheight - ip->i_height;
660 			branch_start = metapath_branch_start(mp);
661 			iblks += (mp->mp_fheight - branch_start);
662 		}
663 	}
664 
665 	/* start of the second part of the function (state machine) */
666 
667 	blks = dblks + iblks;
668 	i = mp->mp_aheight;
669 	do {
670 		n = blks - alloced;
671 		ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL);
672 		if (ret)
673 			goto out;
674 		alloced += n;
675 		if (state != ALLOC_DATA || gfs2_is_jdata(ip))
676 			gfs2_trans_remove_revoke(sdp, bn, n);
677 		switch (state) {
678 		/* Growing height of tree */
679 		case ALLOC_GROW_HEIGHT:
680 			if (i == 1) {
681 				ptr = (__be64 *)(dibh->b_data +
682 						 sizeof(struct gfs2_dinode));
683 				zero_bn = *ptr;
684 			}
685 			for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0;
686 			     i++, n--)
687 				gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++);
688 			if (i - 1 == mp->mp_fheight - ip->i_height) {
689 				i--;
690 				gfs2_buffer_copy_tail(mp->mp_bh[i],
691 						sizeof(struct gfs2_meta_header),
692 						dibh, sizeof(struct gfs2_dinode));
693 				gfs2_buffer_clear_tail(dibh,
694 						sizeof(struct gfs2_dinode) +
695 						sizeof(__be64));
696 				ptr = (__be64 *)(mp->mp_bh[i]->b_data +
697 					sizeof(struct gfs2_meta_header));
698 				*ptr = zero_bn;
699 				state = ALLOC_GROW_DEPTH;
700 				for(i = branch_start; i < mp->mp_fheight; i++) {
701 					if (mp->mp_bh[i] == NULL)
702 						break;
703 					brelse(mp->mp_bh[i]);
704 					mp->mp_bh[i] = NULL;
705 				}
706 				i = branch_start;
707 			}
708 			if (n == 0)
709 				break;
710 		/* fall through - To branching from existing tree */
711 		case ALLOC_GROW_DEPTH:
712 			if (i > 1 && i < mp->mp_fheight)
713 				gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]);
714 			for (; i < mp->mp_fheight && n > 0; i++, n--)
715 				gfs2_indirect_init(mp, ip->i_gl, i,
716 						   mp->mp_list[i-1], bn++);
717 			if (i == mp->mp_fheight)
718 				state = ALLOC_DATA;
719 			if (n == 0)
720 				break;
721 		/* fall through - To tree complete, adding data blocks */
722 		case ALLOC_DATA:
723 			BUG_ON(n > dblks);
724 			BUG_ON(mp->mp_bh[end_of_metadata] == NULL);
725 			gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]);
726 			dblks = n;
727 			ptr = metapointer(end_of_metadata, mp);
728 			iomap->addr = bn << inode->i_blkbits;
729 			iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW;
730 			while (n-- > 0)
731 				*ptr++ = cpu_to_be64(bn++);
732 			break;
733 		}
734 	} while (iomap->addr == IOMAP_NULL_ADDR);
735 
736 	iomap->type = IOMAP_MAPPED;
737 	iomap->length = (u64)dblks << inode->i_blkbits;
738 	ip->i_height = mp->mp_fheight;
739 	gfs2_add_inode_blocks(&ip->i_inode, alloced);
740 	gfs2_dinode_out(ip, dibh->b_data);
741 out:
742 	up_write(&ip->i_rw_mutex);
743 	return ret;
744 }
745 
746 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE
747 
748 /**
749  * gfs2_alloc_size - Compute the maximum allocation size
750  * @inode: The inode
751  * @mp: The metapath
752  * @size: Requested size in blocks
753  *
754  * Compute the maximum size of the next allocation at @mp.
755  *
756  * Returns: size in blocks
757  */
758 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size)
759 {
760 	struct gfs2_inode *ip = GFS2_I(inode);
761 	struct gfs2_sbd *sdp = GFS2_SB(inode);
762 	const __be64 *first, *ptr, *end;
763 
764 	/*
765 	 * For writes to stuffed files, this function is called twice via
766 	 * gfs2_iomap_get, before and after unstuffing. The size we return the
767 	 * first time needs to be large enough to get the reservation and
768 	 * allocation sizes right.  The size we return the second time must
769 	 * be exact or else gfs2_iomap_alloc won't do the right thing.
770 	 */
771 
772 	if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) {
773 		unsigned int maxsize = mp->mp_fheight > 1 ?
774 			sdp->sd_inptrs : sdp->sd_diptrs;
775 		maxsize -= mp->mp_list[mp->mp_fheight - 1];
776 		if (size > maxsize)
777 			size = maxsize;
778 		return size;
779 	}
780 
781 	first = metapointer(ip->i_height - 1, mp);
782 	end = metaend(ip->i_height - 1, mp);
783 	if (end - first > size)
784 		end = first + size;
785 	for (ptr = first; ptr < end; ptr++) {
786 		if (*ptr)
787 			break;
788 	}
789 	return ptr - first;
790 }
791 
792 /**
793  * gfs2_iomap_get - Map blocks from an inode to disk blocks
794  * @inode: The inode
795  * @pos: Starting position in bytes
796  * @length: Length to map, in bytes
797  * @flags: iomap flags
798  * @iomap: The iomap structure
799  * @mp: The metapath
800  *
801  * Returns: errno
802  */
803 static int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
804 			  unsigned flags, struct iomap *iomap,
805 			  struct metapath *mp)
806 {
807 	struct gfs2_inode *ip = GFS2_I(inode);
808 	struct gfs2_sbd *sdp = GFS2_SB(inode);
809 	loff_t size = i_size_read(inode);
810 	__be64 *ptr;
811 	sector_t lblock;
812 	sector_t lblock_stop;
813 	int ret;
814 	int eob;
815 	u64 len;
816 	struct buffer_head *dibh = NULL, *bh;
817 	u8 height;
818 
819 	if (!length)
820 		return -EINVAL;
821 
822 	down_read(&ip->i_rw_mutex);
823 
824 	ret = gfs2_meta_inode_buffer(ip, &dibh);
825 	if (ret)
826 		goto unlock;
827 	mp->mp_bh[0] = dibh;
828 
829 	if (gfs2_is_stuffed(ip)) {
830 		if (flags & IOMAP_WRITE) {
831 			loff_t max_size = gfs2_max_stuffed_size(ip);
832 
833 			if (pos + length > max_size)
834 				goto unstuff;
835 			iomap->length = max_size;
836 		} else {
837 			if (pos >= size) {
838 				if (flags & IOMAP_REPORT) {
839 					ret = -ENOENT;
840 					goto unlock;
841 				} else {
842 					/* report a hole */
843 					iomap->offset = pos;
844 					iomap->length = length;
845 					goto do_alloc;
846 				}
847 			}
848 			iomap->length = size;
849 		}
850 		iomap->addr = (ip->i_no_addr << inode->i_blkbits) +
851 			      sizeof(struct gfs2_dinode);
852 		iomap->type = IOMAP_INLINE;
853 		iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode);
854 		goto out;
855 	}
856 
857 unstuff:
858 	lblock = pos >> inode->i_blkbits;
859 	iomap->offset = lblock << inode->i_blkbits;
860 	lblock_stop = (pos + length - 1) >> inode->i_blkbits;
861 	len = lblock_stop - lblock + 1;
862 	iomap->length = len << inode->i_blkbits;
863 
864 	height = ip->i_height;
865 	while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height])
866 		height++;
867 	find_metapath(sdp, lblock, mp, height);
868 	if (height > ip->i_height || gfs2_is_stuffed(ip))
869 		goto do_alloc;
870 
871 	ret = lookup_metapath(ip, mp);
872 	if (ret)
873 		goto unlock;
874 
875 	if (mp->mp_aheight != ip->i_height)
876 		goto do_alloc;
877 
878 	ptr = metapointer(ip->i_height - 1, mp);
879 	if (*ptr == 0)
880 		goto do_alloc;
881 
882 	bh = mp->mp_bh[ip->i_height - 1];
883 	len = gfs2_extent_length(bh, ptr, len, &eob);
884 
885 	iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits;
886 	iomap->length = len << inode->i_blkbits;
887 	iomap->type = IOMAP_MAPPED;
888 	iomap->flags |= IOMAP_F_MERGED;
889 	if (eob)
890 		iomap->flags |= IOMAP_F_GFS2_BOUNDARY;
891 
892 out:
893 	iomap->bdev = inode->i_sb->s_bdev;
894 unlock:
895 	up_read(&ip->i_rw_mutex);
896 	return ret;
897 
898 do_alloc:
899 	iomap->addr = IOMAP_NULL_ADDR;
900 	iomap->type = IOMAP_HOLE;
901 	if (flags & IOMAP_REPORT) {
902 		if (pos >= size)
903 			ret = -ENOENT;
904 		else if (height == ip->i_height)
905 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
906 		else
907 			iomap->length = size - pos;
908 	} else if (flags & IOMAP_WRITE) {
909 		u64 alloc_size;
910 
911 		if (flags & IOMAP_DIRECT)
912 			goto out;  /* (see gfs2_file_direct_write) */
913 
914 		len = gfs2_alloc_size(inode, mp, len);
915 		alloc_size = len << inode->i_blkbits;
916 		if (alloc_size < iomap->length)
917 			iomap->length = alloc_size;
918 	} else {
919 		if (pos < size && height == ip->i_height)
920 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
921 	}
922 	goto out;
923 }
924 
925 /**
926  * gfs2_lblk_to_dblk - convert logical block to disk block
927  * @inode: the inode of the file we're mapping
928  * @lblock: the block relative to the start of the file
929  * @dblock: the returned dblock, if no error
930  *
931  * This function maps a single block from a file logical block (relative to
932  * the start of the file) to a file system absolute block using iomap.
933  *
934  * Returns: the absolute file system block, or an error
935  */
936 int gfs2_lblk_to_dblk(struct inode *inode, u32 lblock, u64 *dblock)
937 {
938 	struct iomap iomap = { };
939 	struct metapath mp = { .mp_aheight = 1, };
940 	loff_t pos = (loff_t)lblock << inode->i_blkbits;
941 	int ret;
942 
943 	ret = gfs2_iomap_get(inode, pos, i_blocksize(inode), 0, &iomap, &mp);
944 	release_metapath(&mp);
945 	if (ret == 0)
946 		*dblock = iomap.addr >> inode->i_blkbits;
947 
948 	return ret;
949 }
950 
951 static int gfs2_write_lock(struct inode *inode)
952 {
953 	struct gfs2_inode *ip = GFS2_I(inode);
954 	struct gfs2_sbd *sdp = GFS2_SB(inode);
955 	int error;
956 
957 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
958 	error = gfs2_glock_nq(&ip->i_gh);
959 	if (error)
960 		goto out_uninit;
961 	if (&ip->i_inode == sdp->sd_rindex) {
962 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
963 
964 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
965 					   GL_NOCACHE, &m_ip->i_gh);
966 		if (error)
967 			goto out_unlock;
968 	}
969 	return 0;
970 
971 out_unlock:
972 	gfs2_glock_dq(&ip->i_gh);
973 out_uninit:
974 	gfs2_holder_uninit(&ip->i_gh);
975 	return error;
976 }
977 
978 static void gfs2_write_unlock(struct inode *inode)
979 {
980 	struct gfs2_inode *ip = GFS2_I(inode);
981 	struct gfs2_sbd *sdp = GFS2_SB(inode);
982 
983 	if (&ip->i_inode == sdp->sd_rindex) {
984 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
985 
986 		gfs2_glock_dq_uninit(&m_ip->i_gh);
987 	}
988 	gfs2_glock_dq_uninit(&ip->i_gh);
989 }
990 
991 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos,
992 				   unsigned len, struct iomap *iomap)
993 {
994 	unsigned int blockmask = i_blocksize(inode) - 1;
995 	struct gfs2_sbd *sdp = GFS2_SB(inode);
996 	unsigned int blocks;
997 
998 	blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits;
999 	return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0);
1000 }
1001 
1002 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos,
1003 				 unsigned copied, struct page *page,
1004 				 struct iomap *iomap)
1005 {
1006 	struct gfs2_inode *ip = GFS2_I(inode);
1007 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1008 
1009 	if (page && !gfs2_is_stuffed(ip))
1010 		gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied);
1011 	gfs2_trans_end(sdp);
1012 }
1013 
1014 static const struct iomap_page_ops gfs2_iomap_page_ops = {
1015 	.page_prepare = gfs2_iomap_page_prepare,
1016 	.page_done = gfs2_iomap_page_done,
1017 };
1018 
1019 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos,
1020 				  loff_t length, unsigned flags,
1021 				  struct iomap *iomap,
1022 				  struct metapath *mp)
1023 {
1024 	struct gfs2_inode *ip = GFS2_I(inode);
1025 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1026 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
1027 	bool unstuff, alloc_required;
1028 	int ret;
1029 
1030 	ret = gfs2_write_lock(inode);
1031 	if (ret)
1032 		return ret;
1033 
1034 	unstuff = gfs2_is_stuffed(ip) &&
1035 		  pos + length > gfs2_max_stuffed_size(ip);
1036 
1037 	ret = gfs2_iomap_get(inode, pos, length, flags, iomap, mp);
1038 	if (ret)
1039 		goto out_unlock;
1040 
1041 	alloc_required = unstuff || iomap->type == IOMAP_HOLE;
1042 
1043 	if (alloc_required || gfs2_is_jdata(ip))
1044 		gfs2_write_calc_reserv(ip, iomap->length, &data_blocks,
1045 				       &ind_blocks);
1046 
1047 	if (alloc_required) {
1048 		struct gfs2_alloc_parms ap = {
1049 			.target = data_blocks + ind_blocks
1050 		};
1051 
1052 		ret = gfs2_quota_lock_check(ip, &ap);
1053 		if (ret)
1054 			goto out_unlock;
1055 
1056 		ret = gfs2_inplace_reserve(ip, &ap);
1057 		if (ret)
1058 			goto out_qunlock;
1059 	}
1060 
1061 	rblocks = RES_DINODE + ind_blocks;
1062 	if (gfs2_is_jdata(ip))
1063 		rblocks += data_blocks;
1064 	if (ind_blocks || data_blocks)
1065 		rblocks += RES_STATFS + RES_QUOTA;
1066 	if (inode == sdp->sd_rindex)
1067 		rblocks += 2 * RES_STATFS;
1068 	if (alloc_required)
1069 		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1070 
1071 	if (unstuff || iomap->type == IOMAP_HOLE) {
1072 		struct gfs2_trans *tr;
1073 
1074 		ret = gfs2_trans_begin(sdp, rblocks,
1075 				       iomap->length >> inode->i_blkbits);
1076 		if (ret)
1077 			goto out_trans_fail;
1078 
1079 		if (unstuff) {
1080 			ret = gfs2_unstuff_dinode(ip, NULL);
1081 			if (ret)
1082 				goto out_trans_end;
1083 			release_metapath(mp);
1084 			ret = gfs2_iomap_get(inode, iomap->offset,
1085 					     iomap->length, flags, iomap, mp);
1086 			if (ret)
1087 				goto out_trans_end;
1088 		}
1089 
1090 		if (iomap->type == IOMAP_HOLE) {
1091 			ret = gfs2_iomap_alloc(inode, iomap, flags, mp);
1092 			if (ret) {
1093 				gfs2_trans_end(sdp);
1094 				gfs2_inplace_release(ip);
1095 				punch_hole(ip, iomap->offset, iomap->length);
1096 				goto out_qunlock;
1097 			}
1098 		}
1099 
1100 		tr = current->journal_info;
1101 		if (tr->tr_num_buf_new)
1102 			__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1103 		else
1104 			gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[0]);
1105 
1106 		gfs2_trans_end(sdp);
1107 	}
1108 
1109 	if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip))
1110 		iomap->page_ops = &gfs2_iomap_page_ops;
1111 	return 0;
1112 
1113 out_trans_end:
1114 	gfs2_trans_end(sdp);
1115 out_trans_fail:
1116 	if (alloc_required)
1117 		gfs2_inplace_release(ip);
1118 out_qunlock:
1119 	if (alloc_required)
1120 		gfs2_quota_unlock(ip);
1121 out_unlock:
1122 	gfs2_write_unlock(inode);
1123 	return ret;
1124 }
1125 
1126 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
1127 			    unsigned flags, struct iomap *iomap)
1128 {
1129 	struct gfs2_inode *ip = GFS2_I(inode);
1130 	struct metapath mp = { .mp_aheight = 1, };
1131 	int ret;
1132 
1133 	iomap->flags |= IOMAP_F_BUFFER_HEAD;
1134 
1135 	trace_gfs2_iomap_start(ip, pos, length, flags);
1136 	if ((flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT)) {
1137 		ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp);
1138 	} else {
1139 		ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp);
1140 
1141 		/*
1142 		 * Silently fall back to buffered I/O for stuffed files or if
1143 		 * we've hot a hole (see gfs2_file_direct_write).
1144 		 */
1145 		if ((flags & IOMAP_WRITE) && (flags & IOMAP_DIRECT) &&
1146 		    iomap->type != IOMAP_MAPPED)
1147 			ret = -ENOTBLK;
1148 	}
1149 	release_metapath(&mp);
1150 	trace_gfs2_iomap_end(ip, iomap, ret);
1151 	return ret;
1152 }
1153 
1154 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length,
1155 			  ssize_t written, unsigned flags, struct iomap *iomap)
1156 {
1157 	struct gfs2_inode *ip = GFS2_I(inode);
1158 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1159 
1160 	if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) != IOMAP_WRITE)
1161 		goto out;
1162 
1163 	if (!gfs2_is_stuffed(ip))
1164 		gfs2_ordered_add_inode(ip);
1165 
1166 	if (inode == sdp->sd_rindex)
1167 		adjust_fs_space(inode);
1168 
1169 	gfs2_inplace_release(ip);
1170 
1171 	if (length != written && (iomap->flags & IOMAP_F_NEW)) {
1172 		/* Deallocate blocks that were just allocated. */
1173 		loff_t blockmask = i_blocksize(inode) - 1;
1174 		loff_t end = (pos + length) & ~blockmask;
1175 
1176 		pos = (pos + written + blockmask) & ~blockmask;
1177 		if (pos < end) {
1178 			truncate_pagecache_range(inode, pos, end - 1);
1179 			punch_hole(ip, pos, end - pos);
1180 		}
1181 	}
1182 
1183 	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
1184 		gfs2_quota_unlock(ip);
1185 	gfs2_write_unlock(inode);
1186 
1187 out:
1188 	return 0;
1189 }
1190 
1191 const struct iomap_ops gfs2_iomap_ops = {
1192 	.iomap_begin = gfs2_iomap_begin,
1193 	.iomap_end = gfs2_iomap_end,
1194 };
1195 
1196 /**
1197  * gfs2_block_map - Map one or more blocks of an inode to a disk block
1198  * @inode: The inode
1199  * @lblock: The logical block number
1200  * @bh_map: The bh to be mapped
1201  * @create: True if its ok to alloc blocks to satify the request
1202  *
1203  * The size of the requested mapping is defined in bh_map->b_size.
1204  *
1205  * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged
1206  * when @lblock is not mapped.  Sets buffer_mapped(bh_map) and
1207  * bh_map->b_size to indicate the size of the mapping when @lblock and
1208  * successive blocks are mapped, up to the requested size.
1209  *
1210  * Sets buffer_boundary() if a read of metadata will be required
1211  * before the next block can be mapped. Sets buffer_new() if new
1212  * blocks were allocated.
1213  *
1214  * Returns: errno
1215  */
1216 
1217 int gfs2_block_map(struct inode *inode, sector_t lblock,
1218 		   struct buffer_head *bh_map, int create)
1219 {
1220 	struct gfs2_inode *ip = GFS2_I(inode);
1221 	loff_t pos = (loff_t)lblock << inode->i_blkbits;
1222 	loff_t length = bh_map->b_size;
1223 	struct metapath mp = { .mp_aheight = 1, };
1224 	struct iomap iomap = { };
1225 	int ret;
1226 
1227 	clear_buffer_mapped(bh_map);
1228 	clear_buffer_new(bh_map);
1229 	clear_buffer_boundary(bh_map);
1230 	trace_gfs2_bmap(ip, bh_map, lblock, create, 1);
1231 
1232 	if (create) {
1233 		ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, &iomap, &mp);
1234 		if (!ret && iomap.type == IOMAP_HOLE)
1235 			ret = gfs2_iomap_alloc(inode, &iomap, IOMAP_WRITE, &mp);
1236 		release_metapath(&mp);
1237 	} else {
1238 		ret = gfs2_iomap_get(inode, pos, length, 0, &iomap, &mp);
1239 		release_metapath(&mp);
1240 	}
1241 	if (ret)
1242 		goto out;
1243 
1244 	if (iomap.length > bh_map->b_size) {
1245 		iomap.length = bh_map->b_size;
1246 		iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY;
1247 	}
1248 	if (iomap.addr != IOMAP_NULL_ADDR)
1249 		map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits);
1250 	bh_map->b_size = iomap.length;
1251 	if (iomap.flags & IOMAP_F_GFS2_BOUNDARY)
1252 		set_buffer_boundary(bh_map);
1253 	if (iomap.flags & IOMAP_F_NEW)
1254 		set_buffer_new(bh_map);
1255 
1256 out:
1257 	trace_gfs2_bmap(ip, bh_map, lblock, create, ret);
1258 	return ret;
1259 }
1260 
1261 /*
1262  * Deprecated: do not use in new code
1263  */
1264 int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen)
1265 {
1266 	struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 };
1267 	int ret;
1268 	int create = *new;
1269 
1270 	BUG_ON(!extlen);
1271 	BUG_ON(!dblock);
1272 	BUG_ON(!new);
1273 
1274 	bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5));
1275 	ret = gfs2_block_map(inode, lblock, &bh, create);
1276 	*extlen = bh.b_size >> inode->i_blkbits;
1277 	*dblock = bh.b_blocknr;
1278 	if (buffer_new(&bh))
1279 		*new = 1;
1280 	else
1281 		*new = 0;
1282 	return ret;
1283 }
1284 
1285 /**
1286  * gfs2_block_zero_range - Deal with zeroing out data
1287  *
1288  * This is partly borrowed from ext3.
1289  */
1290 static int gfs2_block_zero_range(struct inode *inode, loff_t from,
1291 				 unsigned int length)
1292 {
1293 	struct address_space *mapping = inode->i_mapping;
1294 	struct gfs2_inode *ip = GFS2_I(inode);
1295 	unsigned long index = from >> PAGE_SHIFT;
1296 	unsigned offset = from & (PAGE_SIZE-1);
1297 	unsigned blocksize, iblock, pos;
1298 	struct buffer_head *bh;
1299 	struct page *page;
1300 	int err;
1301 
1302 	page = find_or_create_page(mapping, index, GFP_NOFS);
1303 	if (!page)
1304 		return 0;
1305 
1306 	blocksize = inode->i_sb->s_blocksize;
1307 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
1308 
1309 	if (!page_has_buffers(page))
1310 		create_empty_buffers(page, blocksize, 0);
1311 
1312 	/* Find the buffer that contains "offset" */
1313 	bh = page_buffers(page);
1314 	pos = blocksize;
1315 	while (offset >= pos) {
1316 		bh = bh->b_this_page;
1317 		iblock++;
1318 		pos += blocksize;
1319 	}
1320 
1321 	err = 0;
1322 
1323 	if (!buffer_mapped(bh)) {
1324 		gfs2_block_map(inode, iblock, bh, 0);
1325 		/* unmapped? It's a hole - nothing to do */
1326 		if (!buffer_mapped(bh))
1327 			goto unlock;
1328 	}
1329 
1330 	/* Ok, it's mapped. Make sure it's up-to-date */
1331 	if (PageUptodate(page))
1332 		set_buffer_uptodate(bh);
1333 
1334 	if (!buffer_uptodate(bh)) {
1335 		err = -EIO;
1336 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1337 		wait_on_buffer(bh);
1338 		/* Uhhuh. Read error. Complain and punt. */
1339 		if (!buffer_uptodate(bh))
1340 			goto unlock;
1341 		err = 0;
1342 	}
1343 
1344 	if (gfs2_is_jdata(ip))
1345 		gfs2_trans_add_data(ip->i_gl, bh);
1346 	else
1347 		gfs2_ordered_add_inode(ip);
1348 
1349 	zero_user(page, offset, length);
1350 	mark_buffer_dirty(bh);
1351 unlock:
1352 	unlock_page(page);
1353 	put_page(page);
1354 	return err;
1355 }
1356 
1357 #define GFS2_JTRUNC_REVOKES 8192
1358 
1359 /**
1360  * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files
1361  * @inode: The inode being truncated
1362  * @oldsize: The original (larger) size
1363  * @newsize: The new smaller size
1364  *
1365  * With jdata files, we have to journal a revoke for each block which is
1366  * truncated. As a result, we need to split this into separate transactions
1367  * if the number of pages being truncated gets too large.
1368  */
1369 
1370 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize)
1371 {
1372 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1373 	u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
1374 	u64 chunk;
1375 	int error;
1376 
1377 	while (oldsize != newsize) {
1378 		struct gfs2_trans *tr;
1379 		unsigned int offs;
1380 
1381 		chunk = oldsize - newsize;
1382 		if (chunk > max_chunk)
1383 			chunk = max_chunk;
1384 
1385 		offs = oldsize & ~PAGE_MASK;
1386 		if (offs && chunk > PAGE_SIZE)
1387 			chunk = offs + ((chunk - offs) & PAGE_MASK);
1388 
1389 		truncate_pagecache(inode, oldsize - chunk);
1390 		oldsize -= chunk;
1391 
1392 		tr = current->journal_info;
1393 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
1394 			continue;
1395 
1396 		gfs2_trans_end(sdp);
1397 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
1398 		if (error)
1399 			return error;
1400 	}
1401 
1402 	return 0;
1403 }
1404 
1405 static int trunc_start(struct inode *inode, u64 newsize)
1406 {
1407 	struct gfs2_inode *ip = GFS2_I(inode);
1408 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1409 	struct buffer_head *dibh = NULL;
1410 	int journaled = gfs2_is_jdata(ip);
1411 	u64 oldsize = inode->i_size;
1412 	int error;
1413 
1414 	if (journaled)
1415 		error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES);
1416 	else
1417 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1418 	if (error)
1419 		return error;
1420 
1421 	error = gfs2_meta_inode_buffer(ip, &dibh);
1422 	if (error)
1423 		goto out;
1424 
1425 	gfs2_trans_add_meta(ip->i_gl, dibh);
1426 
1427 	if (gfs2_is_stuffed(ip)) {
1428 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize);
1429 	} else {
1430 		unsigned int blocksize = i_blocksize(inode);
1431 		unsigned int offs = newsize & (blocksize - 1);
1432 		if (offs) {
1433 			error = gfs2_block_zero_range(inode, newsize,
1434 						      blocksize - offs);
1435 			if (error)
1436 				goto out;
1437 		}
1438 		ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG;
1439 	}
1440 
1441 	i_size_write(inode, newsize);
1442 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1443 	gfs2_dinode_out(ip, dibh->b_data);
1444 
1445 	if (journaled)
1446 		error = gfs2_journaled_truncate(inode, oldsize, newsize);
1447 	else
1448 		truncate_pagecache(inode, newsize);
1449 
1450 out:
1451 	brelse(dibh);
1452 	if (current->journal_info)
1453 		gfs2_trans_end(sdp);
1454 	return error;
1455 }
1456 
1457 int gfs2_iomap_get_alloc(struct inode *inode, loff_t pos, loff_t length,
1458 			 struct iomap *iomap)
1459 {
1460 	struct metapath mp = { .mp_aheight = 1, };
1461 	int ret;
1462 
1463 	ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp);
1464 	if (!ret && iomap->type == IOMAP_HOLE)
1465 		ret = gfs2_iomap_alloc(inode, iomap, IOMAP_WRITE, &mp);
1466 	release_metapath(&mp);
1467 	return ret;
1468 }
1469 
1470 /**
1471  * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein
1472  * @ip: inode
1473  * @rg_gh: holder of resource group glock
1474  * @bh: buffer head to sweep
1475  * @start: starting point in bh
1476  * @end: end point in bh
1477  * @meta: true if bh points to metadata (rather than data)
1478  * @btotal: place to keep count of total blocks freed
1479  *
1480  * We sweep a metadata buffer (provided by the metapath) for blocks we need to
1481  * free, and free them all. However, we do it one rgrp at a time. If this
1482  * block has references to multiple rgrps, we break it into individual
1483  * transactions. This allows other processes to use the rgrps while we're
1484  * focused on a single one, for better concurrency / performance.
1485  * At every transaction boundary, we rewrite the inode into the journal.
1486  * That way the bitmaps are kept consistent with the inode and we can recover
1487  * if we're interrupted by power-outages.
1488  *
1489  * Returns: 0, or return code if an error occurred.
1490  *          *btotal has the total number of blocks freed
1491  */
1492 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh,
1493 			      struct buffer_head *bh, __be64 *start, __be64 *end,
1494 			      bool meta, u32 *btotal)
1495 {
1496 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1497 	struct gfs2_rgrpd *rgd;
1498 	struct gfs2_trans *tr;
1499 	__be64 *p;
1500 	int blks_outside_rgrp;
1501 	u64 bn, bstart, isize_blks;
1502 	s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */
1503 	int ret = 0;
1504 	bool buf_in_tr = false; /* buffer was added to transaction */
1505 
1506 more_rgrps:
1507 	rgd = NULL;
1508 	if (gfs2_holder_initialized(rd_gh)) {
1509 		rgd = gfs2_glock2rgrp(rd_gh->gh_gl);
1510 		gfs2_assert_withdraw(sdp,
1511 			     gfs2_glock_is_locked_by_me(rd_gh->gh_gl));
1512 	}
1513 	blks_outside_rgrp = 0;
1514 	bstart = 0;
1515 	blen = 0;
1516 
1517 	for (p = start; p < end; p++) {
1518 		if (!*p)
1519 			continue;
1520 		bn = be64_to_cpu(*p);
1521 
1522 		if (rgd) {
1523 			if (!rgrp_contains_block(rgd, bn)) {
1524 				blks_outside_rgrp++;
1525 				continue;
1526 			}
1527 		} else {
1528 			rgd = gfs2_blk2rgrpd(sdp, bn, true);
1529 			if (unlikely(!rgd)) {
1530 				ret = -EIO;
1531 				goto out;
1532 			}
1533 			ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1534 						 0, rd_gh);
1535 			if (ret)
1536 				goto out;
1537 
1538 			/* Must be done with the rgrp glock held: */
1539 			if (gfs2_rs_active(&ip->i_res) &&
1540 			    rgd == ip->i_res.rs_rbm.rgd)
1541 				gfs2_rs_deltree(&ip->i_res);
1542 		}
1543 
1544 		/* The size of our transactions will be unknown until we
1545 		   actually process all the metadata blocks that relate to
1546 		   the rgrp. So we estimate. We know it can't be more than
1547 		   the dinode's i_blocks and we don't want to exceed the
1548 		   journal flush threshold, sd_log_thresh2. */
1549 		if (current->journal_info == NULL) {
1550 			unsigned int jblocks_rqsted, revokes;
1551 
1552 			jblocks_rqsted = rgd->rd_length + RES_DINODE +
1553 				RES_INDIRECT;
1554 			isize_blks = gfs2_get_inode_blocks(&ip->i_inode);
1555 			if (isize_blks > atomic_read(&sdp->sd_log_thresh2))
1556 				jblocks_rqsted +=
1557 					atomic_read(&sdp->sd_log_thresh2);
1558 			else
1559 				jblocks_rqsted += isize_blks;
1560 			revokes = jblocks_rqsted;
1561 			if (meta)
1562 				revokes += end - start;
1563 			else if (ip->i_depth)
1564 				revokes += sdp->sd_inptrs;
1565 			ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes);
1566 			if (ret)
1567 				goto out_unlock;
1568 			down_write(&ip->i_rw_mutex);
1569 		}
1570 		/* check if we will exceed the transaction blocks requested */
1571 		tr = current->journal_info;
1572 		if (tr->tr_num_buf_new + RES_STATFS +
1573 		    RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) {
1574 			/* We set blks_outside_rgrp to ensure the loop will
1575 			   be repeated for the same rgrp, but with a new
1576 			   transaction. */
1577 			blks_outside_rgrp++;
1578 			/* This next part is tricky. If the buffer was added
1579 			   to the transaction, we've already set some block
1580 			   pointers to 0, so we better follow through and free
1581 			   them, or we will introduce corruption (so break).
1582 			   This may be impossible, or at least rare, but I
1583 			   decided to cover the case regardless.
1584 
1585 			   If the buffer was not added to the transaction
1586 			   (this call), doing so would exceed our transaction
1587 			   size, so we need to end the transaction and start a
1588 			   new one (so goto). */
1589 
1590 			if (buf_in_tr)
1591 				break;
1592 			goto out_unlock;
1593 		}
1594 
1595 		gfs2_trans_add_meta(ip->i_gl, bh);
1596 		buf_in_tr = true;
1597 		*p = 0;
1598 		if (bstart + blen == bn) {
1599 			blen++;
1600 			continue;
1601 		}
1602 		if (bstart) {
1603 			__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1604 			(*btotal) += blen;
1605 			gfs2_add_inode_blocks(&ip->i_inode, -blen);
1606 		}
1607 		bstart = bn;
1608 		blen = 1;
1609 	}
1610 	if (bstart) {
1611 		__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1612 		(*btotal) += blen;
1613 		gfs2_add_inode_blocks(&ip->i_inode, -blen);
1614 	}
1615 out_unlock:
1616 	if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks
1617 					    outside the rgrp we just processed,
1618 					    do it all over again. */
1619 		if (current->journal_info) {
1620 			struct buffer_head *dibh;
1621 
1622 			ret = gfs2_meta_inode_buffer(ip, &dibh);
1623 			if (ret)
1624 				goto out;
1625 
1626 			/* Every transaction boundary, we rewrite the dinode
1627 			   to keep its di_blocks current in case of failure. */
1628 			ip->i_inode.i_mtime = ip->i_inode.i_ctime =
1629 				current_time(&ip->i_inode);
1630 			gfs2_trans_add_meta(ip->i_gl, dibh);
1631 			gfs2_dinode_out(ip, dibh->b_data);
1632 			brelse(dibh);
1633 			up_write(&ip->i_rw_mutex);
1634 			gfs2_trans_end(sdp);
1635 		}
1636 		gfs2_glock_dq_uninit(rd_gh);
1637 		cond_resched();
1638 		goto more_rgrps;
1639 	}
1640 out:
1641 	return ret;
1642 }
1643 
1644 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h)
1645 {
1646 	if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0])))
1647 		return false;
1648 	return true;
1649 }
1650 
1651 /**
1652  * find_nonnull_ptr - find a non-null pointer given a metapath and height
1653  * @mp: starting metapath
1654  * @h: desired height to search
1655  *
1656  * Assumes the metapath is valid (with buffers) out to height h.
1657  * Returns: true if a non-null pointer was found in the metapath buffer
1658  *          false if all remaining pointers are NULL in the buffer
1659  */
1660 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp,
1661 			     unsigned int h,
1662 			     __u16 *end_list, unsigned int end_aligned)
1663 {
1664 	struct buffer_head *bh = mp->mp_bh[h];
1665 	__be64 *first, *ptr, *end;
1666 
1667 	first = metaptr1(h, mp);
1668 	ptr = first + mp->mp_list[h];
1669 	end = (__be64 *)(bh->b_data + bh->b_size);
1670 	if (end_list && mp_eq_to_hgt(mp, end_list, h)) {
1671 		bool keep_end = h < end_aligned;
1672 		end = first + end_list[h] + keep_end;
1673 	}
1674 
1675 	while (ptr < end) {
1676 		if (*ptr) { /* if we have a non-null pointer */
1677 			mp->mp_list[h] = ptr - first;
1678 			h++;
1679 			if (h < GFS2_MAX_META_HEIGHT)
1680 				mp->mp_list[h] = 0;
1681 			return true;
1682 		}
1683 		ptr++;
1684 	}
1685 	return false;
1686 }
1687 
1688 enum dealloc_states {
1689 	DEALLOC_MP_FULL = 0,    /* Strip a metapath with all buffers read in */
1690 	DEALLOC_MP_LOWER = 1,   /* lower the metapath strip height */
1691 	DEALLOC_FILL_MP = 2,  /* Fill in the metapath to the given height. */
1692 	DEALLOC_DONE = 3,       /* process complete */
1693 };
1694 
1695 static inline void
1696 metapointer_range(struct metapath *mp, int height,
1697 		  __u16 *start_list, unsigned int start_aligned,
1698 		  __u16 *end_list, unsigned int end_aligned,
1699 		  __be64 **start, __be64 **end)
1700 {
1701 	struct buffer_head *bh = mp->mp_bh[height];
1702 	__be64 *first;
1703 
1704 	first = metaptr1(height, mp);
1705 	*start = first;
1706 	if (mp_eq_to_hgt(mp, start_list, height)) {
1707 		bool keep_start = height < start_aligned;
1708 		*start = first + start_list[height] + keep_start;
1709 	}
1710 	*end = (__be64 *)(bh->b_data + bh->b_size);
1711 	if (end_list && mp_eq_to_hgt(mp, end_list, height)) {
1712 		bool keep_end = height < end_aligned;
1713 		*end = first + end_list[height] + keep_end;
1714 	}
1715 }
1716 
1717 static inline bool walk_done(struct gfs2_sbd *sdp,
1718 			     struct metapath *mp, int height,
1719 			     __u16 *end_list, unsigned int end_aligned)
1720 {
1721 	__u16 end;
1722 
1723 	if (end_list) {
1724 		bool keep_end = height < end_aligned;
1725 		if (!mp_eq_to_hgt(mp, end_list, height))
1726 			return false;
1727 		end = end_list[height] + keep_end;
1728 	} else
1729 		end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs;
1730 	return mp->mp_list[height] >= end;
1731 }
1732 
1733 /**
1734  * punch_hole - deallocate blocks in a file
1735  * @ip: inode to truncate
1736  * @offset: the start of the hole
1737  * @length: the size of the hole (or 0 for truncate)
1738  *
1739  * Punch a hole into a file or truncate a file at a given position.  This
1740  * function operates in whole blocks (@offset and @length are rounded
1741  * accordingly); partially filled blocks must be cleared otherwise.
1742  *
1743  * This function works from the bottom up, and from the right to the left. In
1744  * other words, it strips off the highest layer (data) before stripping any of
1745  * the metadata. Doing it this way is best in case the operation is interrupted
1746  * by power failure, etc.  The dinode is rewritten in every transaction to
1747  * guarantee integrity.
1748  */
1749 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length)
1750 {
1751 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1752 	u64 maxsize = sdp->sd_heightsize[ip->i_height];
1753 	struct metapath mp = {};
1754 	struct buffer_head *dibh, *bh;
1755 	struct gfs2_holder rd_gh;
1756 	unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift;
1757 	u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift;
1758 	__u16 start_list[GFS2_MAX_META_HEIGHT];
1759 	__u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL;
1760 	unsigned int start_aligned, uninitialized_var(end_aligned);
1761 	unsigned int strip_h = ip->i_height - 1;
1762 	u32 btotal = 0;
1763 	int ret, state;
1764 	int mp_h; /* metapath buffers are read in to this height */
1765 	u64 prev_bnr = 0;
1766 	__be64 *start, *end;
1767 
1768 	if (offset >= maxsize) {
1769 		/*
1770 		 * The starting point lies beyond the allocated meta-data;
1771 		 * there are no blocks do deallocate.
1772 		 */
1773 		return 0;
1774 	}
1775 
1776 	/*
1777 	 * The start position of the hole is defined by lblock, start_list, and
1778 	 * start_aligned.  The end position of the hole is defined by lend,
1779 	 * end_list, and end_aligned.
1780 	 *
1781 	 * start_aligned and end_aligned define down to which height the start
1782 	 * and end positions are aligned to the metadata tree (i.e., the
1783 	 * position is a multiple of the metadata granularity at the height
1784 	 * above).  This determines at which heights additional meta pointers
1785 	 * needs to be preserved for the remaining data.
1786 	 */
1787 
1788 	if (length) {
1789 		u64 end_offset = offset + length;
1790 		u64 lend;
1791 
1792 		/*
1793 		 * Clip the end at the maximum file size for the given height:
1794 		 * that's how far the metadata goes; files bigger than that
1795 		 * will have additional layers of indirection.
1796 		 */
1797 		if (end_offset > maxsize)
1798 			end_offset = maxsize;
1799 		lend = end_offset >> bsize_shift;
1800 
1801 		if (lblock >= lend)
1802 			return 0;
1803 
1804 		find_metapath(sdp, lend, &mp, ip->i_height);
1805 		end_list = __end_list;
1806 		memcpy(end_list, mp.mp_list, sizeof(mp.mp_list));
1807 
1808 		for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1809 			if (end_list[mp_h])
1810 				break;
1811 		}
1812 		end_aligned = mp_h;
1813 	}
1814 
1815 	find_metapath(sdp, lblock, &mp, ip->i_height);
1816 	memcpy(start_list, mp.mp_list, sizeof(start_list));
1817 
1818 	for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1819 		if (start_list[mp_h])
1820 			break;
1821 	}
1822 	start_aligned = mp_h;
1823 
1824 	ret = gfs2_meta_inode_buffer(ip, &dibh);
1825 	if (ret)
1826 		return ret;
1827 
1828 	mp.mp_bh[0] = dibh;
1829 	ret = lookup_metapath(ip, &mp);
1830 	if (ret)
1831 		goto out_metapath;
1832 
1833 	/* issue read-ahead on metadata */
1834 	for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) {
1835 		metapointer_range(&mp, mp_h, start_list, start_aligned,
1836 				  end_list, end_aligned, &start, &end);
1837 		gfs2_metapath_ra(ip->i_gl, start, end);
1838 	}
1839 
1840 	if (mp.mp_aheight == ip->i_height)
1841 		state = DEALLOC_MP_FULL; /* We have a complete metapath */
1842 	else
1843 		state = DEALLOC_FILL_MP; /* deal with partial metapath */
1844 
1845 	ret = gfs2_rindex_update(sdp);
1846 	if (ret)
1847 		goto out_metapath;
1848 
1849 	ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
1850 	if (ret)
1851 		goto out_metapath;
1852 	gfs2_holder_mark_uninitialized(&rd_gh);
1853 
1854 	mp_h = strip_h;
1855 
1856 	while (state != DEALLOC_DONE) {
1857 		switch (state) {
1858 		/* Truncate a full metapath at the given strip height.
1859 		 * Note that strip_h == mp_h in order to be in this state. */
1860 		case DEALLOC_MP_FULL:
1861 			bh = mp.mp_bh[mp_h];
1862 			gfs2_assert_withdraw(sdp, bh);
1863 			if (gfs2_assert_withdraw(sdp,
1864 						 prev_bnr != bh->b_blocknr)) {
1865 				printk(KERN_EMERG "GFS2: fsid=%s:inode %llu, "
1866 				       "block:%llu, i_h:%u, s_h:%u, mp_h:%u\n",
1867 				       sdp->sd_fsname,
1868 				       (unsigned long long)ip->i_no_addr,
1869 				       prev_bnr, ip->i_height, strip_h, mp_h);
1870 			}
1871 			prev_bnr = bh->b_blocknr;
1872 
1873 			if (gfs2_metatype_check(sdp, bh,
1874 						(mp_h ? GFS2_METATYPE_IN :
1875 							GFS2_METATYPE_DI))) {
1876 				ret = -EIO;
1877 				goto out;
1878 			}
1879 
1880 			/*
1881 			 * Below, passing end_aligned as 0 gives us the
1882 			 * metapointer range excluding the end point: the end
1883 			 * point is the first metapath we must not deallocate!
1884 			 */
1885 
1886 			metapointer_range(&mp, mp_h, start_list, start_aligned,
1887 					  end_list, 0 /* end_aligned */,
1888 					  &start, &end);
1889 			ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h],
1890 						 start, end,
1891 						 mp_h != ip->i_height - 1,
1892 						 &btotal);
1893 
1894 			/* If we hit an error or just swept dinode buffer,
1895 			   just exit. */
1896 			if (ret || !mp_h) {
1897 				state = DEALLOC_DONE;
1898 				break;
1899 			}
1900 			state = DEALLOC_MP_LOWER;
1901 			break;
1902 
1903 		/* lower the metapath strip height */
1904 		case DEALLOC_MP_LOWER:
1905 			/* We're done with the current buffer, so release it,
1906 			   unless it's the dinode buffer. Then back up to the
1907 			   previous pointer. */
1908 			if (mp_h) {
1909 				brelse(mp.mp_bh[mp_h]);
1910 				mp.mp_bh[mp_h] = NULL;
1911 			}
1912 			/* If we can't get any lower in height, we've stripped
1913 			   off all we can. Next step is to back up and start
1914 			   stripping the previous level of metadata. */
1915 			if (mp_h == 0) {
1916 				strip_h--;
1917 				memcpy(mp.mp_list, start_list, sizeof(start_list));
1918 				mp_h = strip_h;
1919 				state = DEALLOC_FILL_MP;
1920 				break;
1921 			}
1922 			mp.mp_list[mp_h] = 0;
1923 			mp_h--; /* search one metadata height down */
1924 			mp.mp_list[mp_h]++;
1925 			if (walk_done(sdp, &mp, mp_h, end_list, end_aligned))
1926 				break;
1927 			/* Here we've found a part of the metapath that is not
1928 			 * allocated. We need to search at that height for the
1929 			 * next non-null pointer. */
1930 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) {
1931 				state = DEALLOC_FILL_MP;
1932 				mp_h++;
1933 			}
1934 			/* No more non-null pointers at this height. Back up
1935 			   to the previous height and try again. */
1936 			break; /* loop around in the same state */
1937 
1938 		/* Fill the metapath with buffers to the given height. */
1939 		case DEALLOC_FILL_MP:
1940 			/* Fill the buffers out to the current height. */
1941 			ret = fillup_metapath(ip, &mp, mp_h);
1942 			if (ret < 0)
1943 				goto out;
1944 
1945 			/* On the first pass, issue read-ahead on metadata. */
1946 			if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) {
1947 				unsigned int height = mp.mp_aheight - 1;
1948 
1949 				/* No read-ahead for data blocks. */
1950 				if (mp.mp_aheight - 1 == strip_h)
1951 					height--;
1952 
1953 				for (; height >= mp.mp_aheight - ret; height--) {
1954 					metapointer_range(&mp, height,
1955 							  start_list, start_aligned,
1956 							  end_list, end_aligned,
1957 							  &start, &end);
1958 					gfs2_metapath_ra(ip->i_gl, start, end);
1959 				}
1960 			}
1961 
1962 			/* If buffers found for the entire strip height */
1963 			if (mp.mp_aheight - 1 == strip_h) {
1964 				state = DEALLOC_MP_FULL;
1965 				break;
1966 			}
1967 			if (mp.mp_aheight < ip->i_height) /* We have a partial height */
1968 				mp_h = mp.mp_aheight - 1;
1969 
1970 			/* If we find a non-null block pointer, crawl a bit
1971 			   higher up in the metapath and try again, otherwise
1972 			   we need to look lower for a new starting point. */
1973 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned))
1974 				mp_h++;
1975 			else
1976 				state = DEALLOC_MP_LOWER;
1977 			break;
1978 		}
1979 	}
1980 
1981 	if (btotal) {
1982 		if (current->journal_info == NULL) {
1983 			ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS +
1984 					       RES_QUOTA, 0);
1985 			if (ret)
1986 				goto out;
1987 			down_write(&ip->i_rw_mutex);
1988 		}
1989 		gfs2_statfs_change(sdp, 0, +btotal, 0);
1990 		gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid,
1991 				  ip->i_inode.i_gid);
1992 		ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1993 		gfs2_trans_add_meta(ip->i_gl, dibh);
1994 		gfs2_dinode_out(ip, dibh->b_data);
1995 		up_write(&ip->i_rw_mutex);
1996 		gfs2_trans_end(sdp);
1997 	}
1998 
1999 out:
2000 	if (gfs2_holder_initialized(&rd_gh))
2001 		gfs2_glock_dq_uninit(&rd_gh);
2002 	if (current->journal_info) {
2003 		up_write(&ip->i_rw_mutex);
2004 		gfs2_trans_end(sdp);
2005 		cond_resched();
2006 	}
2007 	gfs2_quota_unhold(ip);
2008 out_metapath:
2009 	release_metapath(&mp);
2010 	return ret;
2011 }
2012 
2013 static int trunc_end(struct gfs2_inode *ip)
2014 {
2015 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2016 	struct buffer_head *dibh;
2017 	int error;
2018 
2019 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2020 	if (error)
2021 		return error;
2022 
2023 	down_write(&ip->i_rw_mutex);
2024 
2025 	error = gfs2_meta_inode_buffer(ip, &dibh);
2026 	if (error)
2027 		goto out;
2028 
2029 	if (!i_size_read(&ip->i_inode)) {
2030 		ip->i_height = 0;
2031 		ip->i_goal = ip->i_no_addr;
2032 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
2033 		gfs2_ordered_del_inode(ip);
2034 	}
2035 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2036 	ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG;
2037 
2038 	gfs2_trans_add_meta(ip->i_gl, dibh);
2039 	gfs2_dinode_out(ip, dibh->b_data);
2040 	brelse(dibh);
2041 
2042 out:
2043 	up_write(&ip->i_rw_mutex);
2044 	gfs2_trans_end(sdp);
2045 	return error;
2046 }
2047 
2048 /**
2049  * do_shrink - make a file smaller
2050  * @inode: the inode
2051  * @newsize: the size to make the file
2052  *
2053  * Called with an exclusive lock on @inode. The @size must
2054  * be equal to or smaller than the current inode size.
2055  *
2056  * Returns: errno
2057  */
2058 
2059 static int do_shrink(struct inode *inode, u64 newsize)
2060 {
2061 	struct gfs2_inode *ip = GFS2_I(inode);
2062 	int error;
2063 
2064 	error = trunc_start(inode, newsize);
2065 	if (error < 0)
2066 		return error;
2067 	if (gfs2_is_stuffed(ip))
2068 		return 0;
2069 
2070 	error = punch_hole(ip, newsize, 0);
2071 	if (error == 0)
2072 		error = trunc_end(ip);
2073 
2074 	return error;
2075 }
2076 
2077 void gfs2_trim_blocks(struct inode *inode)
2078 {
2079 	int ret;
2080 
2081 	ret = do_shrink(inode, inode->i_size);
2082 	WARN_ON(ret != 0);
2083 }
2084 
2085 /**
2086  * do_grow - Touch and update inode size
2087  * @inode: The inode
2088  * @size: The new size
2089  *
2090  * This function updates the timestamps on the inode and
2091  * may also increase the size of the inode. This function
2092  * must not be called with @size any smaller than the current
2093  * inode size.
2094  *
2095  * Although it is not strictly required to unstuff files here,
2096  * earlier versions of GFS2 have a bug in the stuffed file reading
2097  * code which will result in a buffer overrun if the size is larger
2098  * than the max stuffed file size. In order to prevent this from
2099  * occurring, such files are unstuffed, but in other cases we can
2100  * just update the inode size directly.
2101  *
2102  * Returns: 0 on success, or -ve on error
2103  */
2104 
2105 static int do_grow(struct inode *inode, u64 size)
2106 {
2107 	struct gfs2_inode *ip = GFS2_I(inode);
2108 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2109 	struct gfs2_alloc_parms ap = { .target = 1, };
2110 	struct buffer_head *dibh;
2111 	int error;
2112 	int unstuff = 0;
2113 
2114 	if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) {
2115 		error = gfs2_quota_lock_check(ip, &ap);
2116 		if (error)
2117 			return error;
2118 
2119 		error = gfs2_inplace_reserve(ip, &ap);
2120 		if (error)
2121 			goto do_grow_qunlock;
2122 		unstuff = 1;
2123 	}
2124 
2125 	error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT +
2126 				 (unstuff &&
2127 				  gfs2_is_jdata(ip) ? RES_JDATA : 0) +
2128 				 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ?
2129 				  0 : RES_QUOTA), 0);
2130 	if (error)
2131 		goto do_grow_release;
2132 
2133 	if (unstuff) {
2134 		error = gfs2_unstuff_dinode(ip, NULL);
2135 		if (error)
2136 			goto do_end_trans;
2137 	}
2138 
2139 	error = gfs2_meta_inode_buffer(ip, &dibh);
2140 	if (error)
2141 		goto do_end_trans;
2142 
2143 	i_size_write(inode, size);
2144 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2145 	gfs2_trans_add_meta(ip->i_gl, dibh);
2146 	gfs2_dinode_out(ip, dibh->b_data);
2147 	brelse(dibh);
2148 
2149 do_end_trans:
2150 	gfs2_trans_end(sdp);
2151 do_grow_release:
2152 	if (unstuff) {
2153 		gfs2_inplace_release(ip);
2154 do_grow_qunlock:
2155 		gfs2_quota_unlock(ip);
2156 	}
2157 	return error;
2158 }
2159 
2160 /**
2161  * gfs2_setattr_size - make a file a given size
2162  * @inode: the inode
2163  * @newsize: the size to make the file
2164  *
2165  * The file size can grow, shrink, or stay the same size. This
2166  * is called holding i_rwsem and an exclusive glock on the inode
2167  * in question.
2168  *
2169  * Returns: errno
2170  */
2171 
2172 int gfs2_setattr_size(struct inode *inode, u64 newsize)
2173 {
2174 	struct gfs2_inode *ip = GFS2_I(inode);
2175 	int ret;
2176 
2177 	BUG_ON(!S_ISREG(inode->i_mode));
2178 
2179 	ret = inode_newsize_ok(inode, newsize);
2180 	if (ret)
2181 		return ret;
2182 
2183 	inode_dio_wait(inode);
2184 
2185 	ret = gfs2_rsqa_alloc(ip);
2186 	if (ret)
2187 		goto out;
2188 
2189 	if (newsize >= inode->i_size) {
2190 		ret = do_grow(inode, newsize);
2191 		goto out;
2192 	}
2193 
2194 	ret = do_shrink(inode, newsize);
2195 out:
2196 	gfs2_rsqa_delete(ip, NULL);
2197 	return ret;
2198 }
2199 
2200 int gfs2_truncatei_resume(struct gfs2_inode *ip)
2201 {
2202 	int error;
2203 	error = punch_hole(ip, i_size_read(&ip->i_inode), 0);
2204 	if (!error)
2205 		error = trunc_end(ip);
2206 	return error;
2207 }
2208 
2209 int gfs2_file_dealloc(struct gfs2_inode *ip)
2210 {
2211 	return punch_hole(ip, 0, 0);
2212 }
2213 
2214 /**
2215  * gfs2_free_journal_extents - Free cached journal bmap info
2216  * @jd: The journal
2217  *
2218  */
2219 
2220 void gfs2_free_journal_extents(struct gfs2_jdesc *jd)
2221 {
2222 	struct gfs2_journal_extent *jext;
2223 
2224 	while(!list_empty(&jd->extent_list)) {
2225 		jext = list_entry(jd->extent_list.next, struct gfs2_journal_extent, list);
2226 		list_del(&jext->list);
2227 		kfree(jext);
2228 	}
2229 }
2230 
2231 /**
2232  * gfs2_add_jextent - Add or merge a new extent to extent cache
2233  * @jd: The journal descriptor
2234  * @lblock: The logical block at start of new extent
2235  * @dblock: The physical block at start of new extent
2236  * @blocks: Size of extent in fs blocks
2237  *
2238  * Returns: 0 on success or -ENOMEM
2239  */
2240 
2241 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks)
2242 {
2243 	struct gfs2_journal_extent *jext;
2244 
2245 	if (!list_empty(&jd->extent_list)) {
2246 		jext = list_entry(jd->extent_list.prev, struct gfs2_journal_extent, list);
2247 		if ((jext->dblock + jext->blocks) == dblock) {
2248 			jext->blocks += blocks;
2249 			return 0;
2250 		}
2251 	}
2252 
2253 	jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS);
2254 	if (jext == NULL)
2255 		return -ENOMEM;
2256 	jext->dblock = dblock;
2257 	jext->lblock = lblock;
2258 	jext->blocks = blocks;
2259 	list_add_tail(&jext->list, &jd->extent_list);
2260 	jd->nr_extents++;
2261 	return 0;
2262 }
2263 
2264 /**
2265  * gfs2_map_journal_extents - Cache journal bmap info
2266  * @sdp: The super block
2267  * @jd: The journal to map
2268  *
2269  * Create a reusable "extent" mapping from all logical
2270  * blocks to all physical blocks for the given journal.  This will save
2271  * us time when writing journal blocks.  Most journals will have only one
2272  * extent that maps all their logical blocks.  That's because gfs2.mkfs
2273  * arranges the journal blocks sequentially to maximize performance.
2274  * So the extent would map the first block for the entire file length.
2275  * However, gfs2_jadd can happen while file activity is happening, so
2276  * those journals may not be sequential.  Less likely is the case where
2277  * the users created their own journals by mounting the metafs and
2278  * laying it out.  But it's still possible.  These journals might have
2279  * several extents.
2280  *
2281  * Returns: 0 on success, or error on failure
2282  */
2283 
2284 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd)
2285 {
2286 	u64 lblock = 0;
2287 	u64 lblock_stop;
2288 	struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
2289 	struct buffer_head bh;
2290 	unsigned int shift = sdp->sd_sb.sb_bsize_shift;
2291 	u64 size;
2292 	int rc;
2293 	ktime_t start, end;
2294 
2295 	start = ktime_get();
2296 	lblock_stop = i_size_read(jd->jd_inode) >> shift;
2297 	size = (lblock_stop - lblock) << shift;
2298 	jd->nr_extents = 0;
2299 	WARN_ON(!list_empty(&jd->extent_list));
2300 
2301 	do {
2302 		bh.b_state = 0;
2303 		bh.b_blocknr = 0;
2304 		bh.b_size = size;
2305 		rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0);
2306 		if (rc || !buffer_mapped(&bh))
2307 			goto fail;
2308 		rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift);
2309 		if (rc)
2310 			goto fail;
2311 		size -= bh.b_size;
2312 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2313 	} while(size > 0);
2314 
2315 	end = ktime_get();
2316 	fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid,
2317 		jd->nr_extents, ktime_ms_delta(end, start));
2318 	return 0;
2319 
2320 fail:
2321 	fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n",
2322 		rc, jd->jd_jid,
2323 		(unsigned long long)(i_size_read(jd->jd_inode) - size),
2324 		jd->nr_extents);
2325 	fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n",
2326 		rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr,
2327 		bh.b_state, (unsigned long long)bh.b_size);
2328 	gfs2_free_journal_extents(jd);
2329 	return rc;
2330 }
2331 
2332 /**
2333  * gfs2_write_alloc_required - figure out if a write will require an allocation
2334  * @ip: the file being written to
2335  * @offset: the offset to write to
2336  * @len: the number of bytes being written
2337  *
2338  * Returns: 1 if an alloc is required, 0 otherwise
2339  */
2340 
2341 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset,
2342 			      unsigned int len)
2343 {
2344 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2345 	struct buffer_head bh;
2346 	unsigned int shift;
2347 	u64 lblock, lblock_stop, size;
2348 	u64 end_of_file;
2349 
2350 	if (!len)
2351 		return 0;
2352 
2353 	if (gfs2_is_stuffed(ip)) {
2354 		if (offset + len > gfs2_max_stuffed_size(ip))
2355 			return 1;
2356 		return 0;
2357 	}
2358 
2359 	shift = sdp->sd_sb.sb_bsize_shift;
2360 	BUG_ON(gfs2_is_dir(ip));
2361 	end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift;
2362 	lblock = offset >> shift;
2363 	lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift;
2364 	if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex))
2365 		return 1;
2366 
2367 	size = (lblock_stop - lblock) << shift;
2368 	do {
2369 		bh.b_state = 0;
2370 		bh.b_size = size;
2371 		gfs2_block_map(&ip->i_inode, lblock, &bh, 0);
2372 		if (!buffer_mapped(&bh))
2373 			return 1;
2374 		size -= bh.b_size;
2375 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2376 	} while(size > 0);
2377 
2378 	return 0;
2379 }
2380 
2381 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length)
2382 {
2383 	struct gfs2_inode *ip = GFS2_I(inode);
2384 	struct buffer_head *dibh;
2385 	int error;
2386 
2387 	if (offset >= inode->i_size)
2388 		return 0;
2389 	if (offset + length > inode->i_size)
2390 		length = inode->i_size - offset;
2391 
2392 	error = gfs2_meta_inode_buffer(ip, &dibh);
2393 	if (error)
2394 		return error;
2395 	gfs2_trans_add_meta(ip->i_gl, dibh);
2396 	memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0,
2397 	       length);
2398 	brelse(dibh);
2399 	return 0;
2400 }
2401 
2402 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset,
2403 					 loff_t length)
2404 {
2405 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2406 	loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
2407 	int error;
2408 
2409 	while (length) {
2410 		struct gfs2_trans *tr;
2411 		loff_t chunk;
2412 		unsigned int offs;
2413 
2414 		chunk = length;
2415 		if (chunk > max_chunk)
2416 			chunk = max_chunk;
2417 
2418 		offs = offset & ~PAGE_MASK;
2419 		if (offs && chunk > PAGE_SIZE)
2420 			chunk = offs + ((chunk - offs) & PAGE_MASK);
2421 
2422 		truncate_pagecache_range(inode, offset, chunk);
2423 		offset += chunk;
2424 		length -= chunk;
2425 
2426 		tr = current->journal_info;
2427 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
2428 			continue;
2429 
2430 		gfs2_trans_end(sdp);
2431 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
2432 		if (error)
2433 			return error;
2434 	}
2435 	return 0;
2436 }
2437 
2438 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length)
2439 {
2440 	struct inode *inode = file_inode(file);
2441 	struct gfs2_inode *ip = GFS2_I(inode);
2442 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2443 	int error;
2444 
2445 	if (gfs2_is_jdata(ip))
2446 		error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA,
2447 					 GFS2_JTRUNC_REVOKES);
2448 	else
2449 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2450 	if (error)
2451 		return error;
2452 
2453 	if (gfs2_is_stuffed(ip)) {
2454 		error = stuffed_zero_range(inode, offset, length);
2455 		if (error)
2456 			goto out;
2457 	} else {
2458 		unsigned int start_off, end_len, blocksize;
2459 
2460 		blocksize = i_blocksize(inode);
2461 		start_off = offset & (blocksize - 1);
2462 		end_len = (offset + length) & (blocksize - 1);
2463 		if (start_off) {
2464 			unsigned int len = length;
2465 			if (length > blocksize - start_off)
2466 				len = blocksize - start_off;
2467 			error = gfs2_block_zero_range(inode, offset, len);
2468 			if (error)
2469 				goto out;
2470 			if (start_off + length < blocksize)
2471 				end_len = 0;
2472 		}
2473 		if (end_len) {
2474 			error = gfs2_block_zero_range(inode,
2475 				offset + length - end_len, end_len);
2476 			if (error)
2477 				goto out;
2478 		}
2479 	}
2480 
2481 	if (gfs2_is_jdata(ip)) {
2482 		BUG_ON(!current->journal_info);
2483 		gfs2_journaled_truncate_range(inode, offset, length);
2484 	} else
2485 		truncate_pagecache_range(inode, offset, offset + length - 1);
2486 
2487 	file_update_time(file);
2488 	mark_inode_dirty(inode);
2489 
2490 	if (current->journal_info)
2491 		gfs2_trans_end(sdp);
2492 
2493 	if (!gfs2_is_stuffed(ip))
2494 		error = punch_hole(ip, offset, length);
2495 
2496 out:
2497 	if (current->journal_info)
2498 		gfs2_trans_end(sdp);
2499 	return error;
2500 }
2501