xref: /openbmc/linux/fs/gfs2/bmap.c (revision cce8ccca)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #include <linux/spinlock.h>
8 #include <linux/completion.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/gfs2_ondisk.h>
12 #include <linux/crc32.h>
13 #include <linux/iomap.h>
14 #include <linux/ktime.h>
15 
16 #include "gfs2.h"
17 #include "incore.h"
18 #include "bmap.h"
19 #include "glock.h"
20 #include "inode.h"
21 #include "meta_io.h"
22 #include "quota.h"
23 #include "rgrp.h"
24 #include "log.h"
25 #include "super.h"
26 #include "trans.h"
27 #include "dir.h"
28 #include "util.h"
29 #include "aops.h"
30 #include "trace_gfs2.h"
31 
32 /* This doesn't need to be that large as max 64 bit pointers in a 4k
33  * block is 512, so __u16 is fine for that. It saves stack space to
34  * keep it small.
35  */
36 struct metapath {
37 	struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT];
38 	__u16 mp_list[GFS2_MAX_META_HEIGHT];
39 	int mp_fheight; /* find_metapath height */
40 	int mp_aheight; /* actual height (lookup height) */
41 };
42 
43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length);
44 
45 /**
46  * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page
47  * @ip: the inode
48  * @dibh: the dinode buffer
49  * @block: the block number that was allocated
50  * @page: The (optional) page. This is looked up if @page is NULL
51  *
52  * Returns: errno
53  */
54 
55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh,
56 			       u64 block, struct page *page)
57 {
58 	struct inode *inode = &ip->i_inode;
59 	struct buffer_head *bh;
60 	int release = 0;
61 
62 	if (!page || page->index) {
63 		page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
64 		if (!page)
65 			return -ENOMEM;
66 		release = 1;
67 	}
68 
69 	if (!PageUptodate(page)) {
70 		void *kaddr = kmap(page);
71 		u64 dsize = i_size_read(inode);
72 
73 		if (dsize > gfs2_max_stuffed_size(ip))
74 			dsize = gfs2_max_stuffed_size(ip);
75 
76 		memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
77 		memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
78 		kunmap(page);
79 
80 		SetPageUptodate(page);
81 	}
82 
83 	if (!page_has_buffers(page))
84 		create_empty_buffers(page, BIT(inode->i_blkbits),
85 				     BIT(BH_Uptodate));
86 
87 	bh = page_buffers(page);
88 
89 	if (!buffer_mapped(bh))
90 		map_bh(bh, inode->i_sb, block);
91 
92 	set_buffer_uptodate(bh);
93 	if (gfs2_is_jdata(ip))
94 		gfs2_trans_add_data(ip->i_gl, bh);
95 	else {
96 		mark_buffer_dirty(bh);
97 		gfs2_ordered_add_inode(ip);
98 	}
99 
100 	if (release) {
101 		unlock_page(page);
102 		put_page(page);
103 	}
104 
105 	return 0;
106 }
107 
108 /**
109  * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big
110  * @ip: The GFS2 inode to unstuff
111  * @page: The (optional) page. This is looked up if the @page is NULL
112  *
113  * This routine unstuffs a dinode and returns it to a "normal" state such
114  * that the height can be grown in the traditional way.
115  *
116  * Returns: errno
117  */
118 
119 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page)
120 {
121 	struct buffer_head *bh, *dibh;
122 	struct gfs2_dinode *di;
123 	u64 block = 0;
124 	int isdir = gfs2_is_dir(ip);
125 	int error;
126 
127 	down_write(&ip->i_rw_mutex);
128 
129 	error = gfs2_meta_inode_buffer(ip, &dibh);
130 	if (error)
131 		goto out;
132 
133 	if (i_size_read(&ip->i_inode)) {
134 		/* Get a free block, fill it with the stuffed data,
135 		   and write it out to disk */
136 
137 		unsigned int n = 1;
138 		error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL);
139 		if (error)
140 			goto out_brelse;
141 		if (isdir) {
142 			gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1);
143 			error = gfs2_dir_get_new_buffer(ip, block, &bh);
144 			if (error)
145 				goto out_brelse;
146 			gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header),
147 					      dibh, sizeof(struct gfs2_dinode));
148 			brelse(bh);
149 		} else {
150 			error = gfs2_unstuffer_page(ip, dibh, block, page);
151 			if (error)
152 				goto out_brelse;
153 		}
154 	}
155 
156 	/*  Set up the pointer to the new block  */
157 
158 	gfs2_trans_add_meta(ip->i_gl, dibh);
159 	di = (struct gfs2_dinode *)dibh->b_data;
160 	gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
161 
162 	if (i_size_read(&ip->i_inode)) {
163 		*(__be64 *)(di + 1) = cpu_to_be64(block);
164 		gfs2_add_inode_blocks(&ip->i_inode, 1);
165 		di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode));
166 	}
167 
168 	ip->i_height = 1;
169 	di->di_height = cpu_to_be16(1);
170 
171 out_brelse:
172 	brelse(dibh);
173 out:
174 	up_write(&ip->i_rw_mutex);
175 	return error;
176 }
177 
178 
179 /**
180  * find_metapath - Find path through the metadata tree
181  * @sdp: The superblock
182  * @block: The disk block to look up
183  * @mp: The metapath to return the result in
184  * @height: The pre-calculated height of the metadata tree
185  *
186  *   This routine returns a struct metapath structure that defines a path
187  *   through the metadata of inode "ip" to get to block "block".
188  *
189  *   Example:
190  *   Given:  "ip" is a height 3 file, "offset" is 101342453, and this is a
191  *   filesystem with a blocksize of 4096.
192  *
193  *   find_metapath() would return a struct metapath structure set to:
194  *   mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165.
195  *
196  *   That means that in order to get to the block containing the byte at
197  *   offset 101342453, we would load the indirect block pointed to by pointer
198  *   0 in the dinode.  We would then load the indirect block pointed to by
199  *   pointer 48 in that indirect block.  We would then load the data block
200  *   pointed to by pointer 165 in that indirect block.
201  *
202  *             ----------------------------------------
203  *             | Dinode |                             |
204  *             |        |                            4|
205  *             |        |0 1 2 3 4 5                 9|
206  *             |        |                            6|
207  *             ----------------------------------------
208  *                       |
209  *                       |
210  *                       V
211  *             ----------------------------------------
212  *             | Indirect Block                       |
213  *             |                                     5|
214  *             |            4 4 4 4 4 5 5            1|
215  *             |0           5 6 7 8 9 0 1            2|
216  *             ----------------------------------------
217  *                                |
218  *                                |
219  *                                V
220  *             ----------------------------------------
221  *             | Indirect Block                       |
222  *             |                         1 1 1 1 1   5|
223  *             |                         6 6 6 6 6   1|
224  *             |0                        3 4 5 6 7   2|
225  *             ----------------------------------------
226  *                                           |
227  *                                           |
228  *                                           V
229  *             ----------------------------------------
230  *             | Data block containing offset         |
231  *             |            101342453                 |
232  *             |                                      |
233  *             |                                      |
234  *             ----------------------------------------
235  *
236  */
237 
238 static void find_metapath(const struct gfs2_sbd *sdp, u64 block,
239 			  struct metapath *mp, unsigned int height)
240 {
241 	unsigned int i;
242 
243 	mp->mp_fheight = height;
244 	for (i = height; i--;)
245 		mp->mp_list[i] = do_div(block, sdp->sd_inptrs);
246 }
247 
248 static inline unsigned int metapath_branch_start(const struct metapath *mp)
249 {
250 	if (mp->mp_list[0] == 0)
251 		return 2;
252 	return 1;
253 }
254 
255 /**
256  * metaptr1 - Return the first possible metadata pointer in a metapath buffer
257  * @height: The metadata height (0 = dinode)
258  * @mp: The metapath
259  */
260 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp)
261 {
262 	struct buffer_head *bh = mp->mp_bh[height];
263 	if (height == 0)
264 		return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)));
265 	return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header)));
266 }
267 
268 /**
269  * metapointer - Return pointer to start of metadata in a buffer
270  * @height: The metadata height (0 = dinode)
271  * @mp: The metapath
272  *
273  * Return a pointer to the block number of the next height of the metadata
274  * tree given a buffer containing the pointer to the current height of the
275  * metadata tree.
276  */
277 
278 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp)
279 {
280 	__be64 *p = metaptr1(height, mp);
281 	return p + mp->mp_list[height];
282 }
283 
284 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp)
285 {
286 	const struct buffer_head *bh = mp->mp_bh[height];
287 	return (const __be64 *)(bh->b_data + bh->b_size);
288 }
289 
290 static void clone_metapath(struct metapath *clone, struct metapath *mp)
291 {
292 	unsigned int hgt;
293 
294 	*clone = *mp;
295 	for (hgt = 0; hgt < mp->mp_aheight; hgt++)
296 		get_bh(clone->mp_bh[hgt]);
297 }
298 
299 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end)
300 {
301 	const __be64 *t;
302 
303 	for (t = start; t < end; t++) {
304 		struct buffer_head *rabh;
305 
306 		if (!*t)
307 			continue;
308 
309 		rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE);
310 		if (trylock_buffer(rabh)) {
311 			if (!buffer_uptodate(rabh)) {
312 				rabh->b_end_io = end_buffer_read_sync;
313 				submit_bh(REQ_OP_READ,
314 					  REQ_RAHEAD | REQ_META | REQ_PRIO,
315 					  rabh);
316 				continue;
317 			}
318 			unlock_buffer(rabh);
319 		}
320 		brelse(rabh);
321 	}
322 }
323 
324 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp,
325 			     unsigned int x, unsigned int h)
326 {
327 	for (; x < h; x++) {
328 		__be64 *ptr = metapointer(x, mp);
329 		u64 dblock = be64_to_cpu(*ptr);
330 		int ret;
331 
332 		if (!dblock)
333 			break;
334 		ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]);
335 		if (ret)
336 			return ret;
337 	}
338 	mp->mp_aheight = x + 1;
339 	return 0;
340 }
341 
342 /**
343  * lookup_metapath - Walk the metadata tree to a specific point
344  * @ip: The inode
345  * @mp: The metapath
346  *
347  * Assumes that the inode's buffer has already been looked up and
348  * hooked onto mp->mp_bh[0] and that the metapath has been initialised
349  * by find_metapath().
350  *
351  * If this function encounters part of the tree which has not been
352  * allocated, it returns the current height of the tree at the point
353  * at which it found the unallocated block. Blocks which are found are
354  * added to the mp->mp_bh[] list.
355  *
356  * Returns: error
357  */
358 
359 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp)
360 {
361 	return __fillup_metapath(ip, mp, 0, ip->i_height - 1);
362 }
363 
364 /**
365  * fillup_metapath - fill up buffers for the metadata path to a specific height
366  * @ip: The inode
367  * @mp: The metapath
368  * @h: The height to which it should be mapped
369  *
370  * Similar to lookup_metapath, but does lookups for a range of heights
371  *
372  * Returns: error or the number of buffers filled
373  */
374 
375 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h)
376 {
377 	unsigned int x = 0;
378 	int ret;
379 
380 	if (h) {
381 		/* find the first buffer we need to look up. */
382 		for (x = h - 1; x > 0; x--) {
383 			if (mp->mp_bh[x])
384 				break;
385 		}
386 	}
387 	ret = __fillup_metapath(ip, mp, x, h);
388 	if (ret)
389 		return ret;
390 	return mp->mp_aheight - x - 1;
391 }
392 
393 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp)
394 {
395 	sector_t factor = 1, block = 0;
396 	int hgt;
397 
398 	for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) {
399 		if (hgt < mp->mp_aheight)
400 			block += mp->mp_list[hgt] * factor;
401 		factor *= sdp->sd_inptrs;
402 	}
403 	return block;
404 }
405 
406 static void release_metapath(struct metapath *mp)
407 {
408 	int i;
409 
410 	for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) {
411 		if (mp->mp_bh[i] == NULL)
412 			break;
413 		brelse(mp->mp_bh[i]);
414 		mp->mp_bh[i] = NULL;
415 	}
416 }
417 
418 /**
419  * gfs2_extent_length - Returns length of an extent of blocks
420  * @bh: The metadata block
421  * @ptr: Current position in @bh
422  * @limit: Max extent length to return
423  * @eob: Set to 1 if we hit "end of block"
424  *
425  * Returns: The length of the extent (minimum of one block)
426  */
427 
428 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob)
429 {
430 	const __be64 *end = (__be64 *)(bh->b_data + bh->b_size);
431 	const __be64 *first = ptr;
432 	u64 d = be64_to_cpu(*ptr);
433 
434 	*eob = 0;
435 	do {
436 		ptr++;
437 		if (ptr >= end)
438 			break;
439 		d++;
440 	} while(be64_to_cpu(*ptr) == d);
441 	if (ptr >= end)
442 		*eob = 1;
443 	return ptr - first;
444 }
445 
446 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE };
447 
448 /*
449  * gfs2_metadata_walker - walk an indirect block
450  * @mp: Metapath to indirect block
451  * @ptrs: Number of pointers to look at
452  *
453  * When returning WALK_FOLLOW, the walker must update @mp to point at the right
454  * indirect block to follow.
455  */
456 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp,
457 						   unsigned int ptrs);
458 
459 /*
460  * gfs2_walk_metadata - walk a tree of indirect blocks
461  * @inode: The inode
462  * @mp: Starting point of walk
463  * @max_len: Maximum number of blocks to walk
464  * @walker: Called during the walk
465  *
466  * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or
467  * past the end of metadata, and a negative error code otherwise.
468  */
469 
470 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp,
471 		u64 max_len, gfs2_metadata_walker walker)
472 {
473 	struct gfs2_inode *ip = GFS2_I(inode);
474 	struct gfs2_sbd *sdp = GFS2_SB(inode);
475 	u64 factor = 1;
476 	unsigned int hgt;
477 	int ret;
478 
479 	/*
480 	 * The walk starts in the lowest allocated indirect block, which may be
481 	 * before the position indicated by @mp.  Adjust @max_len accordingly
482 	 * to avoid a short walk.
483 	 */
484 	for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) {
485 		max_len += mp->mp_list[hgt] * factor;
486 		mp->mp_list[hgt] = 0;
487 		factor *= sdp->sd_inptrs;
488 	}
489 
490 	for (;;) {
491 		u16 start = mp->mp_list[hgt];
492 		enum walker_status status;
493 		unsigned int ptrs;
494 		u64 len;
495 
496 		/* Walk indirect block. */
497 		ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start;
498 		len = ptrs * factor;
499 		if (len > max_len)
500 			ptrs = DIV_ROUND_UP_ULL(max_len, factor);
501 		status = walker(mp, ptrs);
502 		switch (status) {
503 		case WALK_STOP:
504 			return 1;
505 		case WALK_FOLLOW:
506 			BUG_ON(mp->mp_aheight == mp->mp_fheight);
507 			ptrs = mp->mp_list[hgt] - start;
508 			len = ptrs * factor;
509 			break;
510 		case WALK_CONTINUE:
511 			break;
512 		}
513 		if (len >= max_len)
514 			break;
515 		max_len -= len;
516 		if (status == WALK_FOLLOW)
517 			goto fill_up_metapath;
518 
519 lower_metapath:
520 		/* Decrease height of metapath. */
521 		brelse(mp->mp_bh[hgt]);
522 		mp->mp_bh[hgt] = NULL;
523 		mp->mp_list[hgt] = 0;
524 		if (!hgt)
525 			break;
526 		hgt--;
527 		factor *= sdp->sd_inptrs;
528 
529 		/* Advance in metadata tree. */
530 		(mp->mp_list[hgt])++;
531 		if (mp->mp_list[hgt] >= sdp->sd_inptrs) {
532 			if (!hgt)
533 				break;
534 			goto lower_metapath;
535 		}
536 
537 fill_up_metapath:
538 		/* Increase height of metapath. */
539 		ret = fillup_metapath(ip, mp, ip->i_height - 1);
540 		if (ret < 0)
541 			return ret;
542 		hgt += ret;
543 		for (; ret; ret--)
544 			do_div(factor, sdp->sd_inptrs);
545 		mp->mp_aheight = hgt + 1;
546 	}
547 	return 0;
548 }
549 
550 static enum walker_status gfs2_hole_walker(struct metapath *mp,
551 					   unsigned int ptrs)
552 {
553 	const __be64 *start, *ptr, *end;
554 	unsigned int hgt;
555 
556 	hgt = mp->mp_aheight - 1;
557 	start = metapointer(hgt, mp);
558 	end = start + ptrs;
559 
560 	for (ptr = start; ptr < end; ptr++) {
561 		if (*ptr) {
562 			mp->mp_list[hgt] += ptr - start;
563 			if (mp->mp_aheight == mp->mp_fheight)
564 				return WALK_STOP;
565 			return WALK_FOLLOW;
566 		}
567 	}
568 	return WALK_CONTINUE;
569 }
570 
571 /**
572  * gfs2_hole_size - figure out the size of a hole
573  * @inode: The inode
574  * @lblock: The logical starting block number
575  * @len: How far to look (in blocks)
576  * @mp: The metapath at lblock
577  * @iomap: The iomap to store the hole size in
578  *
579  * This function modifies @mp.
580  *
581  * Returns: errno on error
582  */
583 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len,
584 			  struct metapath *mp, struct iomap *iomap)
585 {
586 	struct metapath clone;
587 	u64 hole_size;
588 	int ret;
589 
590 	clone_metapath(&clone, mp);
591 	ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker);
592 	if (ret < 0)
593 		goto out;
594 
595 	if (ret == 1)
596 		hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock;
597 	else
598 		hole_size = len;
599 	iomap->length = hole_size << inode->i_blkbits;
600 	ret = 0;
601 
602 out:
603 	release_metapath(&clone);
604 	return ret;
605 }
606 
607 static inline __be64 *gfs2_indirect_init(struct metapath *mp,
608 					 struct gfs2_glock *gl, unsigned int i,
609 					 unsigned offset, u64 bn)
610 {
611 	__be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data +
612 		       ((i > 1) ? sizeof(struct gfs2_meta_header) :
613 				 sizeof(struct gfs2_dinode)));
614 	BUG_ON(i < 1);
615 	BUG_ON(mp->mp_bh[i] != NULL);
616 	mp->mp_bh[i] = gfs2_meta_new(gl, bn);
617 	gfs2_trans_add_meta(gl, mp->mp_bh[i]);
618 	gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN);
619 	gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header));
620 	ptr += offset;
621 	*ptr = cpu_to_be64(bn);
622 	return ptr;
623 }
624 
625 enum alloc_state {
626 	ALLOC_DATA = 0,
627 	ALLOC_GROW_DEPTH = 1,
628 	ALLOC_GROW_HEIGHT = 2,
629 	/* ALLOC_UNSTUFF = 3,   TBD and rather complicated */
630 };
631 
632 /**
633  * gfs2_iomap_alloc - Build a metadata tree of the requested height
634  * @inode: The GFS2 inode
635  * @iomap: The iomap structure
636  * @mp: The metapath, with proper height information calculated
637  *
638  * In this routine we may have to alloc:
639  *   i) Indirect blocks to grow the metadata tree height
640  *  ii) Indirect blocks to fill in lower part of the metadata tree
641  * iii) Data blocks
642  *
643  * This function is called after gfs2_iomap_get, which works out the
644  * total number of blocks which we need via gfs2_alloc_size.
645  *
646  * We then do the actual allocation asking for an extent at a time (if
647  * enough contiguous free blocks are available, there will only be one
648  * allocation request per call) and uses the state machine to initialise
649  * the blocks in order.
650  *
651  * Right now, this function will allocate at most one indirect block
652  * worth of data -- with a default block size of 4K, that's slightly
653  * less than 2M.  If this limitation is ever removed to allow huge
654  * allocations, we would probably still want to limit the iomap size we
655  * return to avoid stalling other tasks during huge writes; the next
656  * iomap iteration would then find the blocks already allocated.
657  *
658  * Returns: errno on error
659  */
660 
661 static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap,
662 			    struct metapath *mp)
663 {
664 	struct gfs2_inode *ip = GFS2_I(inode);
665 	struct gfs2_sbd *sdp = GFS2_SB(inode);
666 	struct buffer_head *dibh = mp->mp_bh[0];
667 	u64 bn;
668 	unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0;
669 	size_t dblks = iomap->length >> inode->i_blkbits;
670 	const unsigned end_of_metadata = mp->mp_fheight - 1;
671 	int ret;
672 	enum alloc_state state;
673 	__be64 *ptr;
674 	__be64 zero_bn = 0;
675 
676 	BUG_ON(mp->mp_aheight < 1);
677 	BUG_ON(dibh == NULL);
678 	BUG_ON(dblks < 1);
679 
680 	gfs2_trans_add_meta(ip->i_gl, dibh);
681 
682 	down_write(&ip->i_rw_mutex);
683 
684 	if (mp->mp_fheight == mp->mp_aheight) {
685 		/* Bottom indirect block exists */
686 		state = ALLOC_DATA;
687 	} else {
688 		/* Need to allocate indirect blocks */
689 		if (mp->mp_fheight == ip->i_height) {
690 			/* Writing into existing tree, extend tree down */
691 			iblks = mp->mp_fheight - mp->mp_aheight;
692 			state = ALLOC_GROW_DEPTH;
693 		} else {
694 			/* Building up tree height */
695 			state = ALLOC_GROW_HEIGHT;
696 			iblks = mp->mp_fheight - ip->i_height;
697 			branch_start = metapath_branch_start(mp);
698 			iblks += (mp->mp_fheight - branch_start);
699 		}
700 	}
701 
702 	/* start of the second part of the function (state machine) */
703 
704 	blks = dblks + iblks;
705 	i = mp->mp_aheight;
706 	do {
707 		n = blks - alloced;
708 		ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL);
709 		if (ret)
710 			goto out;
711 		alloced += n;
712 		if (state != ALLOC_DATA || gfs2_is_jdata(ip))
713 			gfs2_trans_remove_revoke(sdp, bn, n);
714 		switch (state) {
715 		/* Growing height of tree */
716 		case ALLOC_GROW_HEIGHT:
717 			if (i == 1) {
718 				ptr = (__be64 *)(dibh->b_data +
719 						 sizeof(struct gfs2_dinode));
720 				zero_bn = *ptr;
721 			}
722 			for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0;
723 			     i++, n--)
724 				gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++);
725 			if (i - 1 == mp->mp_fheight - ip->i_height) {
726 				i--;
727 				gfs2_buffer_copy_tail(mp->mp_bh[i],
728 						sizeof(struct gfs2_meta_header),
729 						dibh, sizeof(struct gfs2_dinode));
730 				gfs2_buffer_clear_tail(dibh,
731 						sizeof(struct gfs2_dinode) +
732 						sizeof(__be64));
733 				ptr = (__be64 *)(mp->mp_bh[i]->b_data +
734 					sizeof(struct gfs2_meta_header));
735 				*ptr = zero_bn;
736 				state = ALLOC_GROW_DEPTH;
737 				for(i = branch_start; i < mp->mp_fheight; i++) {
738 					if (mp->mp_bh[i] == NULL)
739 						break;
740 					brelse(mp->mp_bh[i]);
741 					mp->mp_bh[i] = NULL;
742 				}
743 				i = branch_start;
744 			}
745 			if (n == 0)
746 				break;
747 		/* fall through - To branching from existing tree */
748 		case ALLOC_GROW_DEPTH:
749 			if (i > 1 && i < mp->mp_fheight)
750 				gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]);
751 			for (; i < mp->mp_fheight && n > 0; i++, n--)
752 				gfs2_indirect_init(mp, ip->i_gl, i,
753 						   mp->mp_list[i-1], bn++);
754 			if (i == mp->mp_fheight)
755 				state = ALLOC_DATA;
756 			if (n == 0)
757 				break;
758 		/* fall through - To tree complete, adding data blocks */
759 		case ALLOC_DATA:
760 			BUG_ON(n > dblks);
761 			BUG_ON(mp->mp_bh[end_of_metadata] == NULL);
762 			gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]);
763 			dblks = n;
764 			ptr = metapointer(end_of_metadata, mp);
765 			iomap->addr = bn << inode->i_blkbits;
766 			iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW;
767 			while (n-- > 0)
768 				*ptr++ = cpu_to_be64(bn++);
769 			break;
770 		}
771 	} while (iomap->addr == IOMAP_NULL_ADDR);
772 
773 	iomap->type = IOMAP_MAPPED;
774 	iomap->length = (u64)dblks << inode->i_blkbits;
775 	ip->i_height = mp->mp_fheight;
776 	gfs2_add_inode_blocks(&ip->i_inode, alloced);
777 	gfs2_dinode_out(ip, dibh->b_data);
778 out:
779 	up_write(&ip->i_rw_mutex);
780 	return ret;
781 }
782 
783 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE
784 
785 /**
786  * gfs2_alloc_size - Compute the maximum allocation size
787  * @inode: The inode
788  * @mp: The metapath
789  * @size: Requested size in blocks
790  *
791  * Compute the maximum size of the next allocation at @mp.
792  *
793  * Returns: size in blocks
794  */
795 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size)
796 {
797 	struct gfs2_inode *ip = GFS2_I(inode);
798 	struct gfs2_sbd *sdp = GFS2_SB(inode);
799 	const __be64 *first, *ptr, *end;
800 
801 	/*
802 	 * For writes to stuffed files, this function is called twice via
803 	 * gfs2_iomap_get, before and after unstuffing. The size we return the
804 	 * first time needs to be large enough to get the reservation and
805 	 * allocation sizes right.  The size we return the second time must
806 	 * be exact or else gfs2_iomap_alloc won't do the right thing.
807 	 */
808 
809 	if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) {
810 		unsigned int maxsize = mp->mp_fheight > 1 ?
811 			sdp->sd_inptrs : sdp->sd_diptrs;
812 		maxsize -= mp->mp_list[mp->mp_fheight - 1];
813 		if (size > maxsize)
814 			size = maxsize;
815 		return size;
816 	}
817 
818 	first = metapointer(ip->i_height - 1, mp);
819 	end = metaend(ip->i_height - 1, mp);
820 	if (end - first > size)
821 		end = first + size;
822 	for (ptr = first; ptr < end; ptr++) {
823 		if (*ptr)
824 			break;
825 	}
826 	return ptr - first;
827 }
828 
829 /**
830  * gfs2_iomap_get - Map blocks from an inode to disk blocks
831  * @inode: The inode
832  * @pos: Starting position in bytes
833  * @length: Length to map, in bytes
834  * @flags: iomap flags
835  * @iomap: The iomap structure
836  * @mp: The metapath
837  *
838  * Returns: errno
839  */
840 static int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
841 			  unsigned flags, struct iomap *iomap,
842 			  struct metapath *mp)
843 {
844 	struct gfs2_inode *ip = GFS2_I(inode);
845 	struct gfs2_sbd *sdp = GFS2_SB(inode);
846 	loff_t size = i_size_read(inode);
847 	__be64 *ptr;
848 	sector_t lblock;
849 	sector_t lblock_stop;
850 	int ret;
851 	int eob;
852 	u64 len;
853 	struct buffer_head *dibh = NULL, *bh;
854 	u8 height;
855 
856 	if (!length)
857 		return -EINVAL;
858 
859 	down_read(&ip->i_rw_mutex);
860 
861 	ret = gfs2_meta_inode_buffer(ip, &dibh);
862 	if (ret)
863 		goto unlock;
864 	mp->mp_bh[0] = dibh;
865 
866 	if (gfs2_is_stuffed(ip)) {
867 		if (flags & IOMAP_WRITE) {
868 			loff_t max_size = gfs2_max_stuffed_size(ip);
869 
870 			if (pos + length > max_size)
871 				goto unstuff;
872 			iomap->length = max_size;
873 		} else {
874 			if (pos >= size) {
875 				if (flags & IOMAP_REPORT) {
876 					ret = -ENOENT;
877 					goto unlock;
878 				} else {
879 					/* report a hole */
880 					iomap->offset = pos;
881 					iomap->length = length;
882 					goto do_alloc;
883 				}
884 			}
885 			iomap->length = size;
886 		}
887 		iomap->addr = (ip->i_no_addr << inode->i_blkbits) +
888 			      sizeof(struct gfs2_dinode);
889 		iomap->type = IOMAP_INLINE;
890 		iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode);
891 		goto out;
892 	}
893 
894 unstuff:
895 	lblock = pos >> inode->i_blkbits;
896 	iomap->offset = lblock << inode->i_blkbits;
897 	lblock_stop = (pos + length - 1) >> inode->i_blkbits;
898 	len = lblock_stop - lblock + 1;
899 	iomap->length = len << inode->i_blkbits;
900 
901 	height = ip->i_height;
902 	while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height])
903 		height++;
904 	find_metapath(sdp, lblock, mp, height);
905 	if (height > ip->i_height || gfs2_is_stuffed(ip))
906 		goto do_alloc;
907 
908 	ret = lookup_metapath(ip, mp);
909 	if (ret)
910 		goto unlock;
911 
912 	if (mp->mp_aheight != ip->i_height)
913 		goto do_alloc;
914 
915 	ptr = metapointer(ip->i_height - 1, mp);
916 	if (*ptr == 0)
917 		goto do_alloc;
918 
919 	bh = mp->mp_bh[ip->i_height - 1];
920 	len = gfs2_extent_length(bh, ptr, len, &eob);
921 
922 	iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits;
923 	iomap->length = len << inode->i_blkbits;
924 	iomap->type = IOMAP_MAPPED;
925 	iomap->flags |= IOMAP_F_MERGED;
926 	if (eob)
927 		iomap->flags |= IOMAP_F_GFS2_BOUNDARY;
928 
929 out:
930 	iomap->bdev = inode->i_sb->s_bdev;
931 unlock:
932 	up_read(&ip->i_rw_mutex);
933 	return ret;
934 
935 do_alloc:
936 	iomap->addr = IOMAP_NULL_ADDR;
937 	iomap->type = IOMAP_HOLE;
938 	if (flags & IOMAP_REPORT) {
939 		if (pos >= size)
940 			ret = -ENOENT;
941 		else if (height == ip->i_height)
942 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
943 		else
944 			iomap->length = size - pos;
945 	} else if (flags & IOMAP_WRITE) {
946 		u64 alloc_size;
947 
948 		if (flags & IOMAP_DIRECT)
949 			goto out;  /* (see gfs2_file_direct_write) */
950 
951 		len = gfs2_alloc_size(inode, mp, len);
952 		alloc_size = len << inode->i_blkbits;
953 		if (alloc_size < iomap->length)
954 			iomap->length = alloc_size;
955 	} else {
956 		if (pos < size && height == ip->i_height)
957 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
958 	}
959 	goto out;
960 }
961 
962 /**
963  * gfs2_lblk_to_dblk - convert logical block to disk block
964  * @inode: the inode of the file we're mapping
965  * @lblock: the block relative to the start of the file
966  * @dblock: the returned dblock, if no error
967  *
968  * This function maps a single block from a file logical block (relative to
969  * the start of the file) to a file system absolute block using iomap.
970  *
971  * Returns: the absolute file system block, or an error
972  */
973 int gfs2_lblk_to_dblk(struct inode *inode, u32 lblock, u64 *dblock)
974 {
975 	struct iomap iomap = { };
976 	struct metapath mp = { .mp_aheight = 1, };
977 	loff_t pos = (loff_t)lblock << inode->i_blkbits;
978 	int ret;
979 
980 	ret = gfs2_iomap_get(inode, pos, i_blocksize(inode), 0, &iomap, &mp);
981 	release_metapath(&mp);
982 	if (ret == 0)
983 		*dblock = iomap.addr >> inode->i_blkbits;
984 
985 	return ret;
986 }
987 
988 static int gfs2_write_lock(struct inode *inode)
989 {
990 	struct gfs2_inode *ip = GFS2_I(inode);
991 	struct gfs2_sbd *sdp = GFS2_SB(inode);
992 	int error;
993 
994 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
995 	error = gfs2_glock_nq(&ip->i_gh);
996 	if (error)
997 		goto out_uninit;
998 	if (&ip->i_inode == sdp->sd_rindex) {
999 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
1000 
1001 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
1002 					   GL_NOCACHE, &m_ip->i_gh);
1003 		if (error)
1004 			goto out_unlock;
1005 	}
1006 	return 0;
1007 
1008 out_unlock:
1009 	gfs2_glock_dq(&ip->i_gh);
1010 out_uninit:
1011 	gfs2_holder_uninit(&ip->i_gh);
1012 	return error;
1013 }
1014 
1015 static void gfs2_write_unlock(struct inode *inode)
1016 {
1017 	struct gfs2_inode *ip = GFS2_I(inode);
1018 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1019 
1020 	if (&ip->i_inode == sdp->sd_rindex) {
1021 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
1022 
1023 		gfs2_glock_dq_uninit(&m_ip->i_gh);
1024 	}
1025 	gfs2_glock_dq_uninit(&ip->i_gh);
1026 }
1027 
1028 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos,
1029 				   unsigned len, struct iomap *iomap)
1030 {
1031 	unsigned int blockmask = i_blocksize(inode) - 1;
1032 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1033 	unsigned int blocks;
1034 
1035 	blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits;
1036 	return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0);
1037 }
1038 
1039 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos,
1040 				 unsigned copied, struct page *page,
1041 				 struct iomap *iomap)
1042 {
1043 	struct gfs2_trans *tr = current->journal_info;
1044 	struct gfs2_inode *ip = GFS2_I(inode);
1045 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1046 
1047 	if (page && !gfs2_is_stuffed(ip))
1048 		gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied);
1049 
1050 	if (tr->tr_num_buf_new)
1051 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1052 
1053 	gfs2_trans_end(sdp);
1054 }
1055 
1056 static const struct iomap_page_ops gfs2_iomap_page_ops = {
1057 	.page_prepare = gfs2_iomap_page_prepare,
1058 	.page_done = gfs2_iomap_page_done,
1059 };
1060 
1061 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos,
1062 				  loff_t length, unsigned flags,
1063 				  struct iomap *iomap,
1064 				  struct metapath *mp)
1065 {
1066 	struct gfs2_inode *ip = GFS2_I(inode);
1067 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1068 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
1069 	bool unstuff, alloc_required;
1070 	int ret;
1071 
1072 	ret = gfs2_write_lock(inode);
1073 	if (ret)
1074 		return ret;
1075 
1076 	unstuff = gfs2_is_stuffed(ip) &&
1077 		  pos + length > gfs2_max_stuffed_size(ip);
1078 
1079 	ret = gfs2_iomap_get(inode, pos, length, flags, iomap, mp);
1080 	if (ret)
1081 		goto out_unlock;
1082 
1083 	alloc_required = unstuff || iomap->type == IOMAP_HOLE;
1084 
1085 	if (alloc_required || gfs2_is_jdata(ip))
1086 		gfs2_write_calc_reserv(ip, iomap->length, &data_blocks,
1087 				       &ind_blocks);
1088 
1089 	if (alloc_required) {
1090 		struct gfs2_alloc_parms ap = {
1091 			.target = data_blocks + ind_blocks
1092 		};
1093 
1094 		ret = gfs2_quota_lock_check(ip, &ap);
1095 		if (ret)
1096 			goto out_unlock;
1097 
1098 		ret = gfs2_inplace_reserve(ip, &ap);
1099 		if (ret)
1100 			goto out_qunlock;
1101 	}
1102 
1103 	rblocks = RES_DINODE + ind_blocks;
1104 	if (gfs2_is_jdata(ip))
1105 		rblocks += data_blocks;
1106 	if (ind_blocks || data_blocks)
1107 		rblocks += RES_STATFS + RES_QUOTA;
1108 	if (inode == sdp->sd_rindex)
1109 		rblocks += 2 * RES_STATFS;
1110 	if (alloc_required)
1111 		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1112 
1113 	if (unstuff || iomap->type == IOMAP_HOLE) {
1114 		struct gfs2_trans *tr;
1115 
1116 		ret = gfs2_trans_begin(sdp, rblocks,
1117 				       iomap->length >> inode->i_blkbits);
1118 		if (ret)
1119 			goto out_trans_fail;
1120 
1121 		if (unstuff) {
1122 			ret = gfs2_unstuff_dinode(ip, NULL);
1123 			if (ret)
1124 				goto out_trans_end;
1125 			release_metapath(mp);
1126 			ret = gfs2_iomap_get(inode, iomap->offset,
1127 					     iomap->length, flags, iomap, mp);
1128 			if (ret)
1129 				goto out_trans_end;
1130 		}
1131 
1132 		if (iomap->type == IOMAP_HOLE) {
1133 			ret = gfs2_iomap_alloc(inode, iomap, mp);
1134 			if (ret) {
1135 				gfs2_trans_end(sdp);
1136 				gfs2_inplace_release(ip);
1137 				punch_hole(ip, iomap->offset, iomap->length);
1138 				goto out_qunlock;
1139 			}
1140 		}
1141 
1142 		tr = current->journal_info;
1143 		if (tr->tr_num_buf_new)
1144 			__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1145 
1146 		gfs2_trans_end(sdp);
1147 	}
1148 
1149 	if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip))
1150 		iomap->page_ops = &gfs2_iomap_page_ops;
1151 	return 0;
1152 
1153 out_trans_end:
1154 	gfs2_trans_end(sdp);
1155 out_trans_fail:
1156 	if (alloc_required)
1157 		gfs2_inplace_release(ip);
1158 out_qunlock:
1159 	if (alloc_required)
1160 		gfs2_quota_unlock(ip);
1161 out_unlock:
1162 	gfs2_write_unlock(inode);
1163 	return ret;
1164 }
1165 
1166 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
1167 			    unsigned flags, struct iomap *iomap)
1168 {
1169 	struct gfs2_inode *ip = GFS2_I(inode);
1170 	struct metapath mp = { .mp_aheight = 1, };
1171 	int ret;
1172 
1173 	iomap->flags |= IOMAP_F_BUFFER_HEAD;
1174 
1175 	trace_gfs2_iomap_start(ip, pos, length, flags);
1176 	if ((flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT)) {
1177 		ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp);
1178 	} else {
1179 		ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp);
1180 
1181 		/*
1182 		 * Silently fall back to buffered I/O for stuffed files or if
1183 		 * we've hot a hole (see gfs2_file_direct_write).
1184 		 */
1185 		if ((flags & IOMAP_WRITE) && (flags & IOMAP_DIRECT) &&
1186 		    iomap->type != IOMAP_MAPPED)
1187 			ret = -ENOTBLK;
1188 	}
1189 	release_metapath(&mp);
1190 	trace_gfs2_iomap_end(ip, iomap, ret);
1191 	return ret;
1192 }
1193 
1194 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length,
1195 			  ssize_t written, unsigned flags, struct iomap *iomap)
1196 {
1197 	struct gfs2_inode *ip = GFS2_I(inode);
1198 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1199 
1200 	if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) != IOMAP_WRITE)
1201 		goto out;
1202 
1203 	if (!gfs2_is_stuffed(ip))
1204 		gfs2_ordered_add_inode(ip);
1205 
1206 	if (inode == sdp->sd_rindex)
1207 		adjust_fs_space(inode);
1208 
1209 	gfs2_inplace_release(ip);
1210 
1211 	if (length != written && (iomap->flags & IOMAP_F_NEW)) {
1212 		/* Deallocate blocks that were just allocated. */
1213 		loff_t blockmask = i_blocksize(inode) - 1;
1214 		loff_t end = (pos + length) & ~blockmask;
1215 
1216 		pos = (pos + written + blockmask) & ~blockmask;
1217 		if (pos < end) {
1218 			truncate_pagecache_range(inode, pos, end - 1);
1219 			punch_hole(ip, pos, end - pos);
1220 		}
1221 	}
1222 
1223 	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
1224 		gfs2_quota_unlock(ip);
1225 
1226 	if (unlikely(!written))
1227 		goto out_unlock;
1228 
1229 	if (iomap->flags & IOMAP_F_SIZE_CHANGED)
1230 		mark_inode_dirty(inode);
1231 	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
1232 
1233 out_unlock:
1234 	gfs2_write_unlock(inode);
1235 out:
1236 	return 0;
1237 }
1238 
1239 const struct iomap_ops gfs2_iomap_ops = {
1240 	.iomap_begin = gfs2_iomap_begin,
1241 	.iomap_end = gfs2_iomap_end,
1242 };
1243 
1244 /**
1245  * gfs2_block_map - Map one or more blocks of an inode to a disk block
1246  * @inode: The inode
1247  * @lblock: The logical block number
1248  * @bh_map: The bh to be mapped
1249  * @create: True if its ok to alloc blocks to satify the request
1250  *
1251  * The size of the requested mapping is defined in bh_map->b_size.
1252  *
1253  * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged
1254  * when @lblock is not mapped.  Sets buffer_mapped(bh_map) and
1255  * bh_map->b_size to indicate the size of the mapping when @lblock and
1256  * successive blocks are mapped, up to the requested size.
1257  *
1258  * Sets buffer_boundary() if a read of metadata will be required
1259  * before the next block can be mapped. Sets buffer_new() if new
1260  * blocks were allocated.
1261  *
1262  * Returns: errno
1263  */
1264 
1265 int gfs2_block_map(struct inode *inode, sector_t lblock,
1266 		   struct buffer_head *bh_map, int create)
1267 {
1268 	struct gfs2_inode *ip = GFS2_I(inode);
1269 	loff_t pos = (loff_t)lblock << inode->i_blkbits;
1270 	loff_t length = bh_map->b_size;
1271 	struct metapath mp = { .mp_aheight = 1, };
1272 	struct iomap iomap = { };
1273 	int ret;
1274 
1275 	clear_buffer_mapped(bh_map);
1276 	clear_buffer_new(bh_map);
1277 	clear_buffer_boundary(bh_map);
1278 	trace_gfs2_bmap(ip, bh_map, lblock, create, 1);
1279 
1280 	if (create) {
1281 		ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, &iomap, &mp);
1282 		if (!ret && iomap.type == IOMAP_HOLE)
1283 			ret = gfs2_iomap_alloc(inode, &iomap, &mp);
1284 		release_metapath(&mp);
1285 	} else {
1286 		ret = gfs2_iomap_get(inode, pos, length, 0, &iomap, &mp);
1287 		release_metapath(&mp);
1288 	}
1289 	if (ret)
1290 		goto out;
1291 
1292 	if (iomap.length > bh_map->b_size) {
1293 		iomap.length = bh_map->b_size;
1294 		iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY;
1295 	}
1296 	if (iomap.addr != IOMAP_NULL_ADDR)
1297 		map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits);
1298 	bh_map->b_size = iomap.length;
1299 	if (iomap.flags & IOMAP_F_GFS2_BOUNDARY)
1300 		set_buffer_boundary(bh_map);
1301 	if (iomap.flags & IOMAP_F_NEW)
1302 		set_buffer_new(bh_map);
1303 
1304 out:
1305 	trace_gfs2_bmap(ip, bh_map, lblock, create, ret);
1306 	return ret;
1307 }
1308 
1309 /*
1310  * Deprecated: do not use in new code
1311  */
1312 int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen)
1313 {
1314 	struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 };
1315 	int ret;
1316 	int create = *new;
1317 
1318 	BUG_ON(!extlen);
1319 	BUG_ON(!dblock);
1320 	BUG_ON(!new);
1321 
1322 	bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5));
1323 	ret = gfs2_block_map(inode, lblock, &bh, create);
1324 	*extlen = bh.b_size >> inode->i_blkbits;
1325 	*dblock = bh.b_blocknr;
1326 	if (buffer_new(&bh))
1327 		*new = 1;
1328 	else
1329 		*new = 0;
1330 	return ret;
1331 }
1332 
1333 /**
1334  * gfs2_block_zero_range - Deal with zeroing out data
1335  *
1336  * This is partly borrowed from ext3.
1337  */
1338 static int gfs2_block_zero_range(struct inode *inode, loff_t from,
1339 				 unsigned int length)
1340 {
1341 	struct address_space *mapping = inode->i_mapping;
1342 	struct gfs2_inode *ip = GFS2_I(inode);
1343 	unsigned long index = from >> PAGE_SHIFT;
1344 	unsigned offset = from & (PAGE_SIZE-1);
1345 	unsigned blocksize, iblock, pos;
1346 	struct buffer_head *bh;
1347 	struct page *page;
1348 	int err;
1349 
1350 	page = find_or_create_page(mapping, index, GFP_NOFS);
1351 	if (!page)
1352 		return 0;
1353 
1354 	blocksize = inode->i_sb->s_blocksize;
1355 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
1356 
1357 	if (!page_has_buffers(page))
1358 		create_empty_buffers(page, blocksize, 0);
1359 
1360 	/* Find the buffer that contains "offset" */
1361 	bh = page_buffers(page);
1362 	pos = blocksize;
1363 	while (offset >= pos) {
1364 		bh = bh->b_this_page;
1365 		iblock++;
1366 		pos += blocksize;
1367 	}
1368 
1369 	err = 0;
1370 
1371 	if (!buffer_mapped(bh)) {
1372 		gfs2_block_map(inode, iblock, bh, 0);
1373 		/* unmapped? It's a hole - nothing to do */
1374 		if (!buffer_mapped(bh))
1375 			goto unlock;
1376 	}
1377 
1378 	/* Ok, it's mapped. Make sure it's up-to-date */
1379 	if (PageUptodate(page))
1380 		set_buffer_uptodate(bh);
1381 
1382 	if (!buffer_uptodate(bh)) {
1383 		err = -EIO;
1384 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1385 		wait_on_buffer(bh);
1386 		/* Uhhuh. Read error. Complain and punt. */
1387 		if (!buffer_uptodate(bh))
1388 			goto unlock;
1389 		err = 0;
1390 	}
1391 
1392 	if (gfs2_is_jdata(ip))
1393 		gfs2_trans_add_data(ip->i_gl, bh);
1394 	else
1395 		gfs2_ordered_add_inode(ip);
1396 
1397 	zero_user(page, offset, length);
1398 	mark_buffer_dirty(bh);
1399 unlock:
1400 	unlock_page(page);
1401 	put_page(page);
1402 	return err;
1403 }
1404 
1405 #define GFS2_JTRUNC_REVOKES 8192
1406 
1407 /**
1408  * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files
1409  * @inode: The inode being truncated
1410  * @oldsize: The original (larger) size
1411  * @newsize: The new smaller size
1412  *
1413  * With jdata files, we have to journal a revoke for each block which is
1414  * truncated. As a result, we need to split this into separate transactions
1415  * if the number of pages being truncated gets too large.
1416  */
1417 
1418 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize)
1419 {
1420 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1421 	u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
1422 	u64 chunk;
1423 	int error;
1424 
1425 	while (oldsize != newsize) {
1426 		struct gfs2_trans *tr;
1427 		unsigned int offs;
1428 
1429 		chunk = oldsize - newsize;
1430 		if (chunk > max_chunk)
1431 			chunk = max_chunk;
1432 
1433 		offs = oldsize & ~PAGE_MASK;
1434 		if (offs && chunk > PAGE_SIZE)
1435 			chunk = offs + ((chunk - offs) & PAGE_MASK);
1436 
1437 		truncate_pagecache(inode, oldsize - chunk);
1438 		oldsize -= chunk;
1439 
1440 		tr = current->journal_info;
1441 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
1442 			continue;
1443 
1444 		gfs2_trans_end(sdp);
1445 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
1446 		if (error)
1447 			return error;
1448 	}
1449 
1450 	return 0;
1451 }
1452 
1453 static int trunc_start(struct inode *inode, u64 newsize)
1454 {
1455 	struct gfs2_inode *ip = GFS2_I(inode);
1456 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1457 	struct buffer_head *dibh = NULL;
1458 	int journaled = gfs2_is_jdata(ip);
1459 	u64 oldsize = inode->i_size;
1460 	int error;
1461 
1462 	if (journaled)
1463 		error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES);
1464 	else
1465 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1466 	if (error)
1467 		return error;
1468 
1469 	error = gfs2_meta_inode_buffer(ip, &dibh);
1470 	if (error)
1471 		goto out;
1472 
1473 	gfs2_trans_add_meta(ip->i_gl, dibh);
1474 
1475 	if (gfs2_is_stuffed(ip)) {
1476 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize);
1477 	} else {
1478 		unsigned int blocksize = i_blocksize(inode);
1479 		unsigned int offs = newsize & (blocksize - 1);
1480 		if (offs) {
1481 			error = gfs2_block_zero_range(inode, newsize,
1482 						      blocksize - offs);
1483 			if (error)
1484 				goto out;
1485 		}
1486 		ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG;
1487 	}
1488 
1489 	i_size_write(inode, newsize);
1490 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1491 	gfs2_dinode_out(ip, dibh->b_data);
1492 
1493 	if (journaled)
1494 		error = gfs2_journaled_truncate(inode, oldsize, newsize);
1495 	else
1496 		truncate_pagecache(inode, newsize);
1497 
1498 out:
1499 	brelse(dibh);
1500 	if (current->journal_info)
1501 		gfs2_trans_end(sdp);
1502 	return error;
1503 }
1504 
1505 int gfs2_iomap_get_alloc(struct inode *inode, loff_t pos, loff_t length,
1506 			 struct iomap *iomap)
1507 {
1508 	struct metapath mp = { .mp_aheight = 1, };
1509 	int ret;
1510 
1511 	ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp);
1512 	if (!ret && iomap->type == IOMAP_HOLE)
1513 		ret = gfs2_iomap_alloc(inode, iomap, &mp);
1514 	release_metapath(&mp);
1515 	return ret;
1516 }
1517 
1518 /**
1519  * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein
1520  * @ip: inode
1521  * @rg_gh: holder of resource group glock
1522  * @bh: buffer head to sweep
1523  * @start: starting point in bh
1524  * @end: end point in bh
1525  * @meta: true if bh points to metadata (rather than data)
1526  * @btotal: place to keep count of total blocks freed
1527  *
1528  * We sweep a metadata buffer (provided by the metapath) for blocks we need to
1529  * free, and free them all. However, we do it one rgrp at a time. If this
1530  * block has references to multiple rgrps, we break it into individual
1531  * transactions. This allows other processes to use the rgrps while we're
1532  * focused on a single one, for better concurrency / performance.
1533  * At every transaction boundary, we rewrite the inode into the journal.
1534  * That way the bitmaps are kept consistent with the inode and we can recover
1535  * if we're interrupted by power-outages.
1536  *
1537  * Returns: 0, or return code if an error occurred.
1538  *          *btotal has the total number of blocks freed
1539  */
1540 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh,
1541 			      struct buffer_head *bh, __be64 *start, __be64 *end,
1542 			      bool meta, u32 *btotal)
1543 {
1544 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1545 	struct gfs2_rgrpd *rgd;
1546 	struct gfs2_trans *tr;
1547 	__be64 *p;
1548 	int blks_outside_rgrp;
1549 	u64 bn, bstart, isize_blks;
1550 	s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */
1551 	int ret = 0;
1552 	bool buf_in_tr = false; /* buffer was added to transaction */
1553 
1554 more_rgrps:
1555 	rgd = NULL;
1556 	if (gfs2_holder_initialized(rd_gh)) {
1557 		rgd = gfs2_glock2rgrp(rd_gh->gh_gl);
1558 		gfs2_assert_withdraw(sdp,
1559 			     gfs2_glock_is_locked_by_me(rd_gh->gh_gl));
1560 	}
1561 	blks_outside_rgrp = 0;
1562 	bstart = 0;
1563 	blen = 0;
1564 
1565 	for (p = start; p < end; p++) {
1566 		if (!*p)
1567 			continue;
1568 		bn = be64_to_cpu(*p);
1569 
1570 		if (rgd) {
1571 			if (!rgrp_contains_block(rgd, bn)) {
1572 				blks_outside_rgrp++;
1573 				continue;
1574 			}
1575 		} else {
1576 			rgd = gfs2_blk2rgrpd(sdp, bn, true);
1577 			if (unlikely(!rgd)) {
1578 				ret = -EIO;
1579 				goto out;
1580 			}
1581 			ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1582 						 0, rd_gh);
1583 			if (ret)
1584 				goto out;
1585 
1586 			/* Must be done with the rgrp glock held: */
1587 			if (gfs2_rs_active(&ip->i_res) &&
1588 			    rgd == ip->i_res.rs_rbm.rgd)
1589 				gfs2_rs_deltree(&ip->i_res);
1590 		}
1591 
1592 		/* The size of our transactions will be unknown until we
1593 		   actually process all the metadata blocks that relate to
1594 		   the rgrp. So we estimate. We know it can't be more than
1595 		   the dinode's i_blocks and we don't want to exceed the
1596 		   journal flush threshold, sd_log_thresh2. */
1597 		if (current->journal_info == NULL) {
1598 			unsigned int jblocks_rqsted, revokes;
1599 
1600 			jblocks_rqsted = rgd->rd_length + RES_DINODE +
1601 				RES_INDIRECT;
1602 			isize_blks = gfs2_get_inode_blocks(&ip->i_inode);
1603 			if (isize_blks > atomic_read(&sdp->sd_log_thresh2))
1604 				jblocks_rqsted +=
1605 					atomic_read(&sdp->sd_log_thresh2);
1606 			else
1607 				jblocks_rqsted += isize_blks;
1608 			revokes = jblocks_rqsted;
1609 			if (meta)
1610 				revokes += end - start;
1611 			else if (ip->i_depth)
1612 				revokes += sdp->sd_inptrs;
1613 			ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes);
1614 			if (ret)
1615 				goto out_unlock;
1616 			down_write(&ip->i_rw_mutex);
1617 		}
1618 		/* check if we will exceed the transaction blocks requested */
1619 		tr = current->journal_info;
1620 		if (tr->tr_num_buf_new + RES_STATFS +
1621 		    RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) {
1622 			/* We set blks_outside_rgrp to ensure the loop will
1623 			   be repeated for the same rgrp, but with a new
1624 			   transaction. */
1625 			blks_outside_rgrp++;
1626 			/* This next part is tricky. If the buffer was added
1627 			   to the transaction, we've already set some block
1628 			   pointers to 0, so we better follow through and free
1629 			   them, or we will introduce corruption (so break).
1630 			   This may be impossible, or at least rare, but I
1631 			   decided to cover the case regardless.
1632 
1633 			   If the buffer was not added to the transaction
1634 			   (this call), doing so would exceed our transaction
1635 			   size, so we need to end the transaction and start a
1636 			   new one (so goto). */
1637 
1638 			if (buf_in_tr)
1639 				break;
1640 			goto out_unlock;
1641 		}
1642 
1643 		gfs2_trans_add_meta(ip->i_gl, bh);
1644 		buf_in_tr = true;
1645 		*p = 0;
1646 		if (bstart + blen == bn) {
1647 			blen++;
1648 			continue;
1649 		}
1650 		if (bstart) {
1651 			__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1652 			(*btotal) += blen;
1653 			gfs2_add_inode_blocks(&ip->i_inode, -blen);
1654 		}
1655 		bstart = bn;
1656 		blen = 1;
1657 	}
1658 	if (bstart) {
1659 		__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1660 		(*btotal) += blen;
1661 		gfs2_add_inode_blocks(&ip->i_inode, -blen);
1662 	}
1663 out_unlock:
1664 	if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks
1665 					    outside the rgrp we just processed,
1666 					    do it all over again. */
1667 		if (current->journal_info) {
1668 			struct buffer_head *dibh;
1669 
1670 			ret = gfs2_meta_inode_buffer(ip, &dibh);
1671 			if (ret)
1672 				goto out;
1673 
1674 			/* Every transaction boundary, we rewrite the dinode
1675 			   to keep its di_blocks current in case of failure. */
1676 			ip->i_inode.i_mtime = ip->i_inode.i_ctime =
1677 				current_time(&ip->i_inode);
1678 			gfs2_trans_add_meta(ip->i_gl, dibh);
1679 			gfs2_dinode_out(ip, dibh->b_data);
1680 			brelse(dibh);
1681 			up_write(&ip->i_rw_mutex);
1682 			gfs2_trans_end(sdp);
1683 		}
1684 		gfs2_glock_dq_uninit(rd_gh);
1685 		cond_resched();
1686 		goto more_rgrps;
1687 	}
1688 out:
1689 	return ret;
1690 }
1691 
1692 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h)
1693 {
1694 	if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0])))
1695 		return false;
1696 	return true;
1697 }
1698 
1699 /**
1700  * find_nonnull_ptr - find a non-null pointer given a metapath and height
1701  * @mp: starting metapath
1702  * @h: desired height to search
1703  *
1704  * Assumes the metapath is valid (with buffers) out to height h.
1705  * Returns: true if a non-null pointer was found in the metapath buffer
1706  *          false if all remaining pointers are NULL in the buffer
1707  */
1708 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp,
1709 			     unsigned int h,
1710 			     __u16 *end_list, unsigned int end_aligned)
1711 {
1712 	struct buffer_head *bh = mp->mp_bh[h];
1713 	__be64 *first, *ptr, *end;
1714 
1715 	first = metaptr1(h, mp);
1716 	ptr = first + mp->mp_list[h];
1717 	end = (__be64 *)(bh->b_data + bh->b_size);
1718 	if (end_list && mp_eq_to_hgt(mp, end_list, h)) {
1719 		bool keep_end = h < end_aligned;
1720 		end = first + end_list[h] + keep_end;
1721 	}
1722 
1723 	while (ptr < end) {
1724 		if (*ptr) { /* if we have a non-null pointer */
1725 			mp->mp_list[h] = ptr - first;
1726 			h++;
1727 			if (h < GFS2_MAX_META_HEIGHT)
1728 				mp->mp_list[h] = 0;
1729 			return true;
1730 		}
1731 		ptr++;
1732 	}
1733 	return false;
1734 }
1735 
1736 enum dealloc_states {
1737 	DEALLOC_MP_FULL = 0,    /* Strip a metapath with all buffers read in */
1738 	DEALLOC_MP_LOWER = 1,   /* lower the metapath strip height */
1739 	DEALLOC_FILL_MP = 2,  /* Fill in the metapath to the given height. */
1740 	DEALLOC_DONE = 3,       /* process complete */
1741 };
1742 
1743 static inline void
1744 metapointer_range(struct metapath *mp, int height,
1745 		  __u16 *start_list, unsigned int start_aligned,
1746 		  __u16 *end_list, unsigned int end_aligned,
1747 		  __be64 **start, __be64 **end)
1748 {
1749 	struct buffer_head *bh = mp->mp_bh[height];
1750 	__be64 *first;
1751 
1752 	first = metaptr1(height, mp);
1753 	*start = first;
1754 	if (mp_eq_to_hgt(mp, start_list, height)) {
1755 		bool keep_start = height < start_aligned;
1756 		*start = first + start_list[height] + keep_start;
1757 	}
1758 	*end = (__be64 *)(bh->b_data + bh->b_size);
1759 	if (end_list && mp_eq_to_hgt(mp, end_list, height)) {
1760 		bool keep_end = height < end_aligned;
1761 		*end = first + end_list[height] + keep_end;
1762 	}
1763 }
1764 
1765 static inline bool walk_done(struct gfs2_sbd *sdp,
1766 			     struct metapath *mp, int height,
1767 			     __u16 *end_list, unsigned int end_aligned)
1768 {
1769 	__u16 end;
1770 
1771 	if (end_list) {
1772 		bool keep_end = height < end_aligned;
1773 		if (!mp_eq_to_hgt(mp, end_list, height))
1774 			return false;
1775 		end = end_list[height] + keep_end;
1776 	} else
1777 		end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs;
1778 	return mp->mp_list[height] >= end;
1779 }
1780 
1781 /**
1782  * punch_hole - deallocate blocks in a file
1783  * @ip: inode to truncate
1784  * @offset: the start of the hole
1785  * @length: the size of the hole (or 0 for truncate)
1786  *
1787  * Punch a hole into a file or truncate a file at a given position.  This
1788  * function operates in whole blocks (@offset and @length are rounded
1789  * accordingly); partially filled blocks must be cleared otherwise.
1790  *
1791  * This function works from the bottom up, and from the right to the left. In
1792  * other words, it strips off the highest layer (data) before stripping any of
1793  * the metadata. Doing it this way is best in case the operation is interrupted
1794  * by power failure, etc.  The dinode is rewritten in every transaction to
1795  * guarantee integrity.
1796  */
1797 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length)
1798 {
1799 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1800 	u64 maxsize = sdp->sd_heightsize[ip->i_height];
1801 	struct metapath mp = {};
1802 	struct buffer_head *dibh, *bh;
1803 	struct gfs2_holder rd_gh;
1804 	unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift;
1805 	u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift;
1806 	__u16 start_list[GFS2_MAX_META_HEIGHT];
1807 	__u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL;
1808 	unsigned int start_aligned, uninitialized_var(end_aligned);
1809 	unsigned int strip_h = ip->i_height - 1;
1810 	u32 btotal = 0;
1811 	int ret, state;
1812 	int mp_h; /* metapath buffers are read in to this height */
1813 	u64 prev_bnr = 0;
1814 	__be64 *start, *end;
1815 
1816 	if (offset >= maxsize) {
1817 		/*
1818 		 * The starting point lies beyond the allocated meta-data;
1819 		 * there are no blocks do deallocate.
1820 		 */
1821 		return 0;
1822 	}
1823 
1824 	/*
1825 	 * The start position of the hole is defined by lblock, start_list, and
1826 	 * start_aligned.  The end position of the hole is defined by lend,
1827 	 * end_list, and end_aligned.
1828 	 *
1829 	 * start_aligned and end_aligned define down to which height the start
1830 	 * and end positions are aligned to the metadata tree (i.e., the
1831 	 * position is a multiple of the metadata granularity at the height
1832 	 * above).  This determines at which heights additional meta pointers
1833 	 * needs to be preserved for the remaining data.
1834 	 */
1835 
1836 	if (length) {
1837 		u64 end_offset = offset + length;
1838 		u64 lend;
1839 
1840 		/*
1841 		 * Clip the end at the maximum file size for the given height:
1842 		 * that's how far the metadata goes; files bigger than that
1843 		 * will have additional layers of indirection.
1844 		 */
1845 		if (end_offset > maxsize)
1846 			end_offset = maxsize;
1847 		lend = end_offset >> bsize_shift;
1848 
1849 		if (lblock >= lend)
1850 			return 0;
1851 
1852 		find_metapath(sdp, lend, &mp, ip->i_height);
1853 		end_list = __end_list;
1854 		memcpy(end_list, mp.mp_list, sizeof(mp.mp_list));
1855 
1856 		for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1857 			if (end_list[mp_h])
1858 				break;
1859 		}
1860 		end_aligned = mp_h;
1861 	}
1862 
1863 	find_metapath(sdp, lblock, &mp, ip->i_height);
1864 	memcpy(start_list, mp.mp_list, sizeof(start_list));
1865 
1866 	for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1867 		if (start_list[mp_h])
1868 			break;
1869 	}
1870 	start_aligned = mp_h;
1871 
1872 	ret = gfs2_meta_inode_buffer(ip, &dibh);
1873 	if (ret)
1874 		return ret;
1875 
1876 	mp.mp_bh[0] = dibh;
1877 	ret = lookup_metapath(ip, &mp);
1878 	if (ret)
1879 		goto out_metapath;
1880 
1881 	/* issue read-ahead on metadata */
1882 	for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) {
1883 		metapointer_range(&mp, mp_h, start_list, start_aligned,
1884 				  end_list, end_aligned, &start, &end);
1885 		gfs2_metapath_ra(ip->i_gl, start, end);
1886 	}
1887 
1888 	if (mp.mp_aheight == ip->i_height)
1889 		state = DEALLOC_MP_FULL; /* We have a complete metapath */
1890 	else
1891 		state = DEALLOC_FILL_MP; /* deal with partial metapath */
1892 
1893 	ret = gfs2_rindex_update(sdp);
1894 	if (ret)
1895 		goto out_metapath;
1896 
1897 	ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
1898 	if (ret)
1899 		goto out_metapath;
1900 	gfs2_holder_mark_uninitialized(&rd_gh);
1901 
1902 	mp_h = strip_h;
1903 
1904 	while (state != DEALLOC_DONE) {
1905 		switch (state) {
1906 		/* Truncate a full metapath at the given strip height.
1907 		 * Note that strip_h == mp_h in order to be in this state. */
1908 		case DEALLOC_MP_FULL:
1909 			bh = mp.mp_bh[mp_h];
1910 			gfs2_assert_withdraw(sdp, bh);
1911 			if (gfs2_assert_withdraw(sdp,
1912 						 prev_bnr != bh->b_blocknr)) {
1913 				fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u,"
1914 					 "s_h:%u, mp_h:%u\n",
1915 				       (unsigned long long)ip->i_no_addr,
1916 				       prev_bnr, ip->i_height, strip_h, mp_h);
1917 			}
1918 			prev_bnr = bh->b_blocknr;
1919 
1920 			if (gfs2_metatype_check(sdp, bh,
1921 						(mp_h ? GFS2_METATYPE_IN :
1922 							GFS2_METATYPE_DI))) {
1923 				ret = -EIO;
1924 				goto out;
1925 			}
1926 
1927 			/*
1928 			 * Below, passing end_aligned as 0 gives us the
1929 			 * metapointer range excluding the end point: the end
1930 			 * point is the first metapath we must not deallocate!
1931 			 */
1932 
1933 			metapointer_range(&mp, mp_h, start_list, start_aligned,
1934 					  end_list, 0 /* end_aligned */,
1935 					  &start, &end);
1936 			ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h],
1937 						 start, end,
1938 						 mp_h != ip->i_height - 1,
1939 						 &btotal);
1940 
1941 			/* If we hit an error or just swept dinode buffer,
1942 			   just exit. */
1943 			if (ret || !mp_h) {
1944 				state = DEALLOC_DONE;
1945 				break;
1946 			}
1947 			state = DEALLOC_MP_LOWER;
1948 			break;
1949 
1950 		/* lower the metapath strip height */
1951 		case DEALLOC_MP_LOWER:
1952 			/* We're done with the current buffer, so release it,
1953 			   unless it's the dinode buffer. Then back up to the
1954 			   previous pointer. */
1955 			if (mp_h) {
1956 				brelse(mp.mp_bh[mp_h]);
1957 				mp.mp_bh[mp_h] = NULL;
1958 			}
1959 			/* If we can't get any lower in height, we've stripped
1960 			   off all we can. Next step is to back up and start
1961 			   stripping the previous level of metadata. */
1962 			if (mp_h == 0) {
1963 				strip_h--;
1964 				memcpy(mp.mp_list, start_list, sizeof(start_list));
1965 				mp_h = strip_h;
1966 				state = DEALLOC_FILL_MP;
1967 				break;
1968 			}
1969 			mp.mp_list[mp_h] = 0;
1970 			mp_h--; /* search one metadata height down */
1971 			mp.mp_list[mp_h]++;
1972 			if (walk_done(sdp, &mp, mp_h, end_list, end_aligned))
1973 				break;
1974 			/* Here we've found a part of the metapath that is not
1975 			 * allocated. We need to search at that height for the
1976 			 * next non-null pointer. */
1977 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) {
1978 				state = DEALLOC_FILL_MP;
1979 				mp_h++;
1980 			}
1981 			/* No more non-null pointers at this height. Back up
1982 			   to the previous height and try again. */
1983 			break; /* loop around in the same state */
1984 
1985 		/* Fill the metapath with buffers to the given height. */
1986 		case DEALLOC_FILL_MP:
1987 			/* Fill the buffers out to the current height. */
1988 			ret = fillup_metapath(ip, &mp, mp_h);
1989 			if (ret < 0)
1990 				goto out;
1991 
1992 			/* On the first pass, issue read-ahead on metadata. */
1993 			if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) {
1994 				unsigned int height = mp.mp_aheight - 1;
1995 
1996 				/* No read-ahead for data blocks. */
1997 				if (mp.mp_aheight - 1 == strip_h)
1998 					height--;
1999 
2000 				for (; height >= mp.mp_aheight - ret; height--) {
2001 					metapointer_range(&mp, height,
2002 							  start_list, start_aligned,
2003 							  end_list, end_aligned,
2004 							  &start, &end);
2005 					gfs2_metapath_ra(ip->i_gl, start, end);
2006 				}
2007 			}
2008 
2009 			/* If buffers found for the entire strip height */
2010 			if (mp.mp_aheight - 1 == strip_h) {
2011 				state = DEALLOC_MP_FULL;
2012 				break;
2013 			}
2014 			if (mp.mp_aheight < ip->i_height) /* We have a partial height */
2015 				mp_h = mp.mp_aheight - 1;
2016 
2017 			/* If we find a non-null block pointer, crawl a bit
2018 			   higher up in the metapath and try again, otherwise
2019 			   we need to look lower for a new starting point. */
2020 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned))
2021 				mp_h++;
2022 			else
2023 				state = DEALLOC_MP_LOWER;
2024 			break;
2025 		}
2026 	}
2027 
2028 	if (btotal) {
2029 		if (current->journal_info == NULL) {
2030 			ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS +
2031 					       RES_QUOTA, 0);
2032 			if (ret)
2033 				goto out;
2034 			down_write(&ip->i_rw_mutex);
2035 		}
2036 		gfs2_statfs_change(sdp, 0, +btotal, 0);
2037 		gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid,
2038 				  ip->i_inode.i_gid);
2039 		ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2040 		gfs2_trans_add_meta(ip->i_gl, dibh);
2041 		gfs2_dinode_out(ip, dibh->b_data);
2042 		up_write(&ip->i_rw_mutex);
2043 		gfs2_trans_end(sdp);
2044 	}
2045 
2046 out:
2047 	if (gfs2_holder_initialized(&rd_gh))
2048 		gfs2_glock_dq_uninit(&rd_gh);
2049 	if (current->journal_info) {
2050 		up_write(&ip->i_rw_mutex);
2051 		gfs2_trans_end(sdp);
2052 		cond_resched();
2053 	}
2054 	gfs2_quota_unhold(ip);
2055 out_metapath:
2056 	release_metapath(&mp);
2057 	return ret;
2058 }
2059 
2060 static int trunc_end(struct gfs2_inode *ip)
2061 {
2062 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2063 	struct buffer_head *dibh;
2064 	int error;
2065 
2066 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2067 	if (error)
2068 		return error;
2069 
2070 	down_write(&ip->i_rw_mutex);
2071 
2072 	error = gfs2_meta_inode_buffer(ip, &dibh);
2073 	if (error)
2074 		goto out;
2075 
2076 	if (!i_size_read(&ip->i_inode)) {
2077 		ip->i_height = 0;
2078 		ip->i_goal = ip->i_no_addr;
2079 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
2080 		gfs2_ordered_del_inode(ip);
2081 	}
2082 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2083 	ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG;
2084 
2085 	gfs2_trans_add_meta(ip->i_gl, dibh);
2086 	gfs2_dinode_out(ip, dibh->b_data);
2087 	brelse(dibh);
2088 
2089 out:
2090 	up_write(&ip->i_rw_mutex);
2091 	gfs2_trans_end(sdp);
2092 	return error;
2093 }
2094 
2095 /**
2096  * do_shrink - make a file smaller
2097  * @inode: the inode
2098  * @newsize: the size to make the file
2099  *
2100  * Called with an exclusive lock on @inode. The @size must
2101  * be equal to or smaller than the current inode size.
2102  *
2103  * Returns: errno
2104  */
2105 
2106 static int do_shrink(struct inode *inode, u64 newsize)
2107 {
2108 	struct gfs2_inode *ip = GFS2_I(inode);
2109 	int error;
2110 
2111 	error = trunc_start(inode, newsize);
2112 	if (error < 0)
2113 		return error;
2114 	if (gfs2_is_stuffed(ip))
2115 		return 0;
2116 
2117 	error = punch_hole(ip, newsize, 0);
2118 	if (error == 0)
2119 		error = trunc_end(ip);
2120 
2121 	return error;
2122 }
2123 
2124 void gfs2_trim_blocks(struct inode *inode)
2125 {
2126 	int ret;
2127 
2128 	ret = do_shrink(inode, inode->i_size);
2129 	WARN_ON(ret != 0);
2130 }
2131 
2132 /**
2133  * do_grow - Touch and update inode size
2134  * @inode: The inode
2135  * @size: The new size
2136  *
2137  * This function updates the timestamps on the inode and
2138  * may also increase the size of the inode. This function
2139  * must not be called with @size any smaller than the current
2140  * inode size.
2141  *
2142  * Although it is not strictly required to unstuff files here,
2143  * earlier versions of GFS2 have a bug in the stuffed file reading
2144  * code which will result in a buffer overrun if the size is larger
2145  * than the max stuffed file size. In order to prevent this from
2146  * occurring, such files are unstuffed, but in other cases we can
2147  * just update the inode size directly.
2148  *
2149  * Returns: 0 on success, or -ve on error
2150  */
2151 
2152 static int do_grow(struct inode *inode, u64 size)
2153 {
2154 	struct gfs2_inode *ip = GFS2_I(inode);
2155 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2156 	struct gfs2_alloc_parms ap = { .target = 1, };
2157 	struct buffer_head *dibh;
2158 	int error;
2159 	int unstuff = 0;
2160 
2161 	if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) {
2162 		error = gfs2_quota_lock_check(ip, &ap);
2163 		if (error)
2164 			return error;
2165 
2166 		error = gfs2_inplace_reserve(ip, &ap);
2167 		if (error)
2168 			goto do_grow_qunlock;
2169 		unstuff = 1;
2170 	}
2171 
2172 	error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT +
2173 				 (unstuff &&
2174 				  gfs2_is_jdata(ip) ? RES_JDATA : 0) +
2175 				 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ?
2176 				  0 : RES_QUOTA), 0);
2177 	if (error)
2178 		goto do_grow_release;
2179 
2180 	if (unstuff) {
2181 		error = gfs2_unstuff_dinode(ip, NULL);
2182 		if (error)
2183 			goto do_end_trans;
2184 	}
2185 
2186 	error = gfs2_meta_inode_buffer(ip, &dibh);
2187 	if (error)
2188 		goto do_end_trans;
2189 
2190 	i_size_write(inode, size);
2191 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2192 	gfs2_trans_add_meta(ip->i_gl, dibh);
2193 	gfs2_dinode_out(ip, dibh->b_data);
2194 	brelse(dibh);
2195 
2196 do_end_trans:
2197 	gfs2_trans_end(sdp);
2198 do_grow_release:
2199 	if (unstuff) {
2200 		gfs2_inplace_release(ip);
2201 do_grow_qunlock:
2202 		gfs2_quota_unlock(ip);
2203 	}
2204 	return error;
2205 }
2206 
2207 /**
2208  * gfs2_setattr_size - make a file a given size
2209  * @inode: the inode
2210  * @newsize: the size to make the file
2211  *
2212  * The file size can grow, shrink, or stay the same size. This
2213  * is called holding i_rwsem and an exclusive glock on the inode
2214  * in question.
2215  *
2216  * Returns: errno
2217  */
2218 
2219 int gfs2_setattr_size(struct inode *inode, u64 newsize)
2220 {
2221 	struct gfs2_inode *ip = GFS2_I(inode);
2222 	int ret;
2223 
2224 	BUG_ON(!S_ISREG(inode->i_mode));
2225 
2226 	ret = inode_newsize_ok(inode, newsize);
2227 	if (ret)
2228 		return ret;
2229 
2230 	inode_dio_wait(inode);
2231 
2232 	ret = gfs2_rsqa_alloc(ip);
2233 	if (ret)
2234 		goto out;
2235 
2236 	if (newsize >= inode->i_size) {
2237 		ret = do_grow(inode, newsize);
2238 		goto out;
2239 	}
2240 
2241 	ret = do_shrink(inode, newsize);
2242 out:
2243 	gfs2_rsqa_delete(ip, NULL);
2244 	return ret;
2245 }
2246 
2247 int gfs2_truncatei_resume(struct gfs2_inode *ip)
2248 {
2249 	int error;
2250 	error = punch_hole(ip, i_size_read(&ip->i_inode), 0);
2251 	if (!error)
2252 		error = trunc_end(ip);
2253 	return error;
2254 }
2255 
2256 int gfs2_file_dealloc(struct gfs2_inode *ip)
2257 {
2258 	return punch_hole(ip, 0, 0);
2259 }
2260 
2261 /**
2262  * gfs2_free_journal_extents - Free cached journal bmap info
2263  * @jd: The journal
2264  *
2265  */
2266 
2267 void gfs2_free_journal_extents(struct gfs2_jdesc *jd)
2268 {
2269 	struct gfs2_journal_extent *jext;
2270 
2271 	while(!list_empty(&jd->extent_list)) {
2272 		jext = list_entry(jd->extent_list.next, struct gfs2_journal_extent, list);
2273 		list_del(&jext->list);
2274 		kfree(jext);
2275 	}
2276 }
2277 
2278 /**
2279  * gfs2_add_jextent - Add or merge a new extent to extent cache
2280  * @jd: The journal descriptor
2281  * @lblock: The logical block at start of new extent
2282  * @dblock: The physical block at start of new extent
2283  * @blocks: Size of extent in fs blocks
2284  *
2285  * Returns: 0 on success or -ENOMEM
2286  */
2287 
2288 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks)
2289 {
2290 	struct gfs2_journal_extent *jext;
2291 
2292 	if (!list_empty(&jd->extent_list)) {
2293 		jext = list_entry(jd->extent_list.prev, struct gfs2_journal_extent, list);
2294 		if ((jext->dblock + jext->blocks) == dblock) {
2295 			jext->blocks += blocks;
2296 			return 0;
2297 		}
2298 	}
2299 
2300 	jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS);
2301 	if (jext == NULL)
2302 		return -ENOMEM;
2303 	jext->dblock = dblock;
2304 	jext->lblock = lblock;
2305 	jext->blocks = blocks;
2306 	list_add_tail(&jext->list, &jd->extent_list);
2307 	jd->nr_extents++;
2308 	return 0;
2309 }
2310 
2311 /**
2312  * gfs2_map_journal_extents - Cache journal bmap info
2313  * @sdp: The super block
2314  * @jd: The journal to map
2315  *
2316  * Create a reusable "extent" mapping from all logical
2317  * blocks to all physical blocks for the given journal.  This will save
2318  * us time when writing journal blocks.  Most journals will have only one
2319  * extent that maps all their logical blocks.  That's because gfs2.mkfs
2320  * arranges the journal blocks sequentially to maximize performance.
2321  * So the extent would map the first block for the entire file length.
2322  * However, gfs2_jadd can happen while file activity is happening, so
2323  * those journals may not be sequential.  Less likely is the case where
2324  * the users created their own journals by mounting the metafs and
2325  * laying it out.  But it's still possible.  These journals might have
2326  * several extents.
2327  *
2328  * Returns: 0 on success, or error on failure
2329  */
2330 
2331 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd)
2332 {
2333 	u64 lblock = 0;
2334 	u64 lblock_stop;
2335 	struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
2336 	struct buffer_head bh;
2337 	unsigned int shift = sdp->sd_sb.sb_bsize_shift;
2338 	u64 size;
2339 	int rc;
2340 	ktime_t start, end;
2341 
2342 	start = ktime_get();
2343 	lblock_stop = i_size_read(jd->jd_inode) >> shift;
2344 	size = (lblock_stop - lblock) << shift;
2345 	jd->nr_extents = 0;
2346 	WARN_ON(!list_empty(&jd->extent_list));
2347 
2348 	do {
2349 		bh.b_state = 0;
2350 		bh.b_blocknr = 0;
2351 		bh.b_size = size;
2352 		rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0);
2353 		if (rc || !buffer_mapped(&bh))
2354 			goto fail;
2355 		rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift);
2356 		if (rc)
2357 			goto fail;
2358 		size -= bh.b_size;
2359 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2360 	} while(size > 0);
2361 
2362 	end = ktime_get();
2363 	fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid,
2364 		jd->nr_extents, ktime_ms_delta(end, start));
2365 	return 0;
2366 
2367 fail:
2368 	fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n",
2369 		rc, jd->jd_jid,
2370 		(unsigned long long)(i_size_read(jd->jd_inode) - size),
2371 		jd->nr_extents);
2372 	fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n",
2373 		rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr,
2374 		bh.b_state, (unsigned long long)bh.b_size);
2375 	gfs2_free_journal_extents(jd);
2376 	return rc;
2377 }
2378 
2379 /**
2380  * gfs2_write_alloc_required - figure out if a write will require an allocation
2381  * @ip: the file being written to
2382  * @offset: the offset to write to
2383  * @len: the number of bytes being written
2384  *
2385  * Returns: 1 if an alloc is required, 0 otherwise
2386  */
2387 
2388 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset,
2389 			      unsigned int len)
2390 {
2391 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2392 	struct buffer_head bh;
2393 	unsigned int shift;
2394 	u64 lblock, lblock_stop, size;
2395 	u64 end_of_file;
2396 
2397 	if (!len)
2398 		return 0;
2399 
2400 	if (gfs2_is_stuffed(ip)) {
2401 		if (offset + len > gfs2_max_stuffed_size(ip))
2402 			return 1;
2403 		return 0;
2404 	}
2405 
2406 	shift = sdp->sd_sb.sb_bsize_shift;
2407 	BUG_ON(gfs2_is_dir(ip));
2408 	end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift;
2409 	lblock = offset >> shift;
2410 	lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift;
2411 	if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex))
2412 		return 1;
2413 
2414 	size = (lblock_stop - lblock) << shift;
2415 	do {
2416 		bh.b_state = 0;
2417 		bh.b_size = size;
2418 		gfs2_block_map(&ip->i_inode, lblock, &bh, 0);
2419 		if (!buffer_mapped(&bh))
2420 			return 1;
2421 		size -= bh.b_size;
2422 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2423 	} while(size > 0);
2424 
2425 	return 0;
2426 }
2427 
2428 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length)
2429 {
2430 	struct gfs2_inode *ip = GFS2_I(inode);
2431 	struct buffer_head *dibh;
2432 	int error;
2433 
2434 	if (offset >= inode->i_size)
2435 		return 0;
2436 	if (offset + length > inode->i_size)
2437 		length = inode->i_size - offset;
2438 
2439 	error = gfs2_meta_inode_buffer(ip, &dibh);
2440 	if (error)
2441 		return error;
2442 	gfs2_trans_add_meta(ip->i_gl, dibh);
2443 	memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0,
2444 	       length);
2445 	brelse(dibh);
2446 	return 0;
2447 }
2448 
2449 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset,
2450 					 loff_t length)
2451 {
2452 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2453 	loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
2454 	int error;
2455 
2456 	while (length) {
2457 		struct gfs2_trans *tr;
2458 		loff_t chunk;
2459 		unsigned int offs;
2460 
2461 		chunk = length;
2462 		if (chunk > max_chunk)
2463 			chunk = max_chunk;
2464 
2465 		offs = offset & ~PAGE_MASK;
2466 		if (offs && chunk > PAGE_SIZE)
2467 			chunk = offs + ((chunk - offs) & PAGE_MASK);
2468 
2469 		truncate_pagecache_range(inode, offset, chunk);
2470 		offset += chunk;
2471 		length -= chunk;
2472 
2473 		tr = current->journal_info;
2474 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
2475 			continue;
2476 
2477 		gfs2_trans_end(sdp);
2478 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
2479 		if (error)
2480 			return error;
2481 	}
2482 	return 0;
2483 }
2484 
2485 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length)
2486 {
2487 	struct inode *inode = file_inode(file);
2488 	struct gfs2_inode *ip = GFS2_I(inode);
2489 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2490 	int error;
2491 
2492 	if (gfs2_is_jdata(ip))
2493 		error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA,
2494 					 GFS2_JTRUNC_REVOKES);
2495 	else
2496 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2497 	if (error)
2498 		return error;
2499 
2500 	if (gfs2_is_stuffed(ip)) {
2501 		error = stuffed_zero_range(inode, offset, length);
2502 		if (error)
2503 			goto out;
2504 	} else {
2505 		unsigned int start_off, end_len, blocksize;
2506 
2507 		blocksize = i_blocksize(inode);
2508 		start_off = offset & (blocksize - 1);
2509 		end_len = (offset + length) & (blocksize - 1);
2510 		if (start_off) {
2511 			unsigned int len = length;
2512 			if (length > blocksize - start_off)
2513 				len = blocksize - start_off;
2514 			error = gfs2_block_zero_range(inode, offset, len);
2515 			if (error)
2516 				goto out;
2517 			if (start_off + length < blocksize)
2518 				end_len = 0;
2519 		}
2520 		if (end_len) {
2521 			error = gfs2_block_zero_range(inode,
2522 				offset + length - end_len, end_len);
2523 			if (error)
2524 				goto out;
2525 		}
2526 	}
2527 
2528 	if (gfs2_is_jdata(ip)) {
2529 		BUG_ON(!current->journal_info);
2530 		gfs2_journaled_truncate_range(inode, offset, length);
2531 	} else
2532 		truncate_pagecache_range(inode, offset, offset + length - 1);
2533 
2534 	file_update_time(file);
2535 	mark_inode_dirty(inode);
2536 
2537 	if (current->journal_info)
2538 		gfs2_trans_end(sdp);
2539 
2540 	if (!gfs2_is_stuffed(ip))
2541 		error = punch_hole(ip, offset, length);
2542 
2543 out:
2544 	if (current->journal_info)
2545 		gfs2_trans_end(sdp);
2546 	return error;
2547 }
2548