xref: /openbmc/linux/fs/gfs2/bmap.c (revision c5c87812)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #include <linux/spinlock.h>
8 #include <linux/completion.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/gfs2_ondisk.h>
12 #include <linux/crc32.h>
13 #include <linux/iomap.h>
14 #include <linux/ktime.h>
15 
16 #include "gfs2.h"
17 #include "incore.h"
18 #include "bmap.h"
19 #include "glock.h"
20 #include "inode.h"
21 #include "meta_io.h"
22 #include "quota.h"
23 #include "rgrp.h"
24 #include "log.h"
25 #include "super.h"
26 #include "trans.h"
27 #include "dir.h"
28 #include "util.h"
29 #include "aops.h"
30 #include "trace_gfs2.h"
31 
32 /* This doesn't need to be that large as max 64 bit pointers in a 4k
33  * block is 512, so __u16 is fine for that. It saves stack space to
34  * keep it small.
35  */
36 struct metapath {
37 	struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT];
38 	__u16 mp_list[GFS2_MAX_META_HEIGHT];
39 	int mp_fheight; /* find_metapath height */
40 	int mp_aheight; /* actual height (lookup height) */
41 };
42 
43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length);
44 
45 /**
46  * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page
47  * @ip: the inode
48  * @dibh: the dinode buffer
49  * @block: the block number that was allocated
50  * @page: The (optional) page. This is looked up if @page is NULL
51  *
52  * Returns: errno
53  */
54 
55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh,
56 			       u64 block, struct page *page)
57 {
58 	struct inode *inode = &ip->i_inode;
59 	int release = 0;
60 
61 	if (!page || page->index) {
62 		page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
63 		if (!page)
64 			return -ENOMEM;
65 		release = 1;
66 	}
67 
68 	if (!PageUptodate(page)) {
69 		void *kaddr = kmap(page);
70 		u64 dsize = i_size_read(inode);
71 
72 		if (dsize > gfs2_max_stuffed_size(ip))
73 			dsize = gfs2_max_stuffed_size(ip);
74 
75 		memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
76 		memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
77 		kunmap(page);
78 
79 		SetPageUptodate(page);
80 	}
81 
82 	if (gfs2_is_jdata(ip)) {
83 		struct buffer_head *bh;
84 
85 		if (!page_has_buffers(page))
86 			create_empty_buffers(page, BIT(inode->i_blkbits),
87 					     BIT(BH_Uptodate));
88 
89 		bh = page_buffers(page);
90 		if (!buffer_mapped(bh))
91 			map_bh(bh, inode->i_sb, block);
92 
93 		set_buffer_uptodate(bh);
94 		gfs2_trans_add_data(ip->i_gl, bh);
95 	} else {
96 		set_page_dirty(page);
97 		gfs2_ordered_add_inode(ip);
98 	}
99 
100 	if (release) {
101 		unlock_page(page);
102 		put_page(page);
103 	}
104 
105 	return 0;
106 }
107 
108 /**
109  * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big
110  * @ip: The GFS2 inode to unstuff
111  * @page: The (optional) page. This is looked up if the @page is NULL
112  *
113  * This routine unstuffs a dinode and returns it to a "normal" state such
114  * that the height can be grown in the traditional way.
115  *
116  * Returns: errno
117  */
118 
119 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page)
120 {
121 	struct buffer_head *bh, *dibh;
122 	struct gfs2_dinode *di;
123 	u64 block = 0;
124 	int isdir = gfs2_is_dir(ip);
125 	int error;
126 
127 	down_write(&ip->i_rw_mutex);
128 
129 	error = gfs2_meta_inode_buffer(ip, &dibh);
130 	if (error)
131 		goto out;
132 
133 	if (i_size_read(&ip->i_inode)) {
134 		/* Get a free block, fill it with the stuffed data,
135 		   and write it out to disk */
136 
137 		unsigned int n = 1;
138 		error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL);
139 		if (error)
140 			goto out_brelse;
141 		if (isdir) {
142 			gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1);
143 			error = gfs2_dir_get_new_buffer(ip, block, &bh);
144 			if (error)
145 				goto out_brelse;
146 			gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header),
147 					      dibh, sizeof(struct gfs2_dinode));
148 			brelse(bh);
149 		} else {
150 			error = gfs2_unstuffer_page(ip, dibh, block, page);
151 			if (error)
152 				goto out_brelse;
153 		}
154 	}
155 
156 	/*  Set up the pointer to the new block  */
157 
158 	gfs2_trans_add_meta(ip->i_gl, dibh);
159 	di = (struct gfs2_dinode *)dibh->b_data;
160 	gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
161 
162 	if (i_size_read(&ip->i_inode)) {
163 		*(__be64 *)(di + 1) = cpu_to_be64(block);
164 		gfs2_add_inode_blocks(&ip->i_inode, 1);
165 		di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode));
166 	}
167 
168 	ip->i_height = 1;
169 	di->di_height = cpu_to_be16(1);
170 
171 out_brelse:
172 	brelse(dibh);
173 out:
174 	up_write(&ip->i_rw_mutex);
175 	return error;
176 }
177 
178 
179 /**
180  * find_metapath - Find path through the metadata tree
181  * @sdp: The superblock
182  * @block: The disk block to look up
183  * @mp: The metapath to return the result in
184  * @height: The pre-calculated height of the metadata tree
185  *
186  *   This routine returns a struct metapath structure that defines a path
187  *   through the metadata of inode "ip" to get to block "block".
188  *
189  *   Example:
190  *   Given:  "ip" is a height 3 file, "offset" is 101342453, and this is a
191  *   filesystem with a blocksize of 4096.
192  *
193  *   find_metapath() would return a struct metapath structure set to:
194  *   mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165.
195  *
196  *   That means that in order to get to the block containing the byte at
197  *   offset 101342453, we would load the indirect block pointed to by pointer
198  *   0 in the dinode.  We would then load the indirect block pointed to by
199  *   pointer 48 in that indirect block.  We would then load the data block
200  *   pointed to by pointer 165 in that indirect block.
201  *
202  *             ----------------------------------------
203  *             | Dinode |                             |
204  *             |        |                            4|
205  *             |        |0 1 2 3 4 5                 9|
206  *             |        |                            6|
207  *             ----------------------------------------
208  *                       |
209  *                       |
210  *                       V
211  *             ----------------------------------------
212  *             | Indirect Block                       |
213  *             |                                     5|
214  *             |            4 4 4 4 4 5 5            1|
215  *             |0           5 6 7 8 9 0 1            2|
216  *             ----------------------------------------
217  *                                |
218  *                                |
219  *                                V
220  *             ----------------------------------------
221  *             | Indirect Block                       |
222  *             |                         1 1 1 1 1   5|
223  *             |                         6 6 6 6 6   1|
224  *             |0                        3 4 5 6 7   2|
225  *             ----------------------------------------
226  *                                           |
227  *                                           |
228  *                                           V
229  *             ----------------------------------------
230  *             | Data block containing offset         |
231  *             |            101342453                 |
232  *             |                                      |
233  *             |                                      |
234  *             ----------------------------------------
235  *
236  */
237 
238 static void find_metapath(const struct gfs2_sbd *sdp, u64 block,
239 			  struct metapath *mp, unsigned int height)
240 {
241 	unsigned int i;
242 
243 	mp->mp_fheight = height;
244 	for (i = height; i--;)
245 		mp->mp_list[i] = do_div(block, sdp->sd_inptrs);
246 }
247 
248 static inline unsigned int metapath_branch_start(const struct metapath *mp)
249 {
250 	if (mp->mp_list[0] == 0)
251 		return 2;
252 	return 1;
253 }
254 
255 /**
256  * metaptr1 - Return the first possible metadata pointer in a metapath buffer
257  * @height: The metadata height (0 = dinode)
258  * @mp: The metapath
259  */
260 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp)
261 {
262 	struct buffer_head *bh = mp->mp_bh[height];
263 	if (height == 0)
264 		return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)));
265 	return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header)));
266 }
267 
268 /**
269  * metapointer - Return pointer to start of metadata in a buffer
270  * @height: The metadata height (0 = dinode)
271  * @mp: The metapath
272  *
273  * Return a pointer to the block number of the next height of the metadata
274  * tree given a buffer containing the pointer to the current height of the
275  * metadata tree.
276  */
277 
278 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp)
279 {
280 	__be64 *p = metaptr1(height, mp);
281 	return p + mp->mp_list[height];
282 }
283 
284 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp)
285 {
286 	const struct buffer_head *bh = mp->mp_bh[height];
287 	return (const __be64 *)(bh->b_data + bh->b_size);
288 }
289 
290 static void clone_metapath(struct metapath *clone, struct metapath *mp)
291 {
292 	unsigned int hgt;
293 
294 	*clone = *mp;
295 	for (hgt = 0; hgt < mp->mp_aheight; hgt++)
296 		get_bh(clone->mp_bh[hgt]);
297 }
298 
299 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end)
300 {
301 	const __be64 *t;
302 
303 	for (t = start; t < end; t++) {
304 		struct buffer_head *rabh;
305 
306 		if (!*t)
307 			continue;
308 
309 		rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE);
310 		if (trylock_buffer(rabh)) {
311 			if (!buffer_uptodate(rabh)) {
312 				rabh->b_end_io = end_buffer_read_sync;
313 				submit_bh(REQ_OP_READ,
314 					  REQ_RAHEAD | REQ_META | REQ_PRIO,
315 					  rabh);
316 				continue;
317 			}
318 			unlock_buffer(rabh);
319 		}
320 		brelse(rabh);
321 	}
322 }
323 
324 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp,
325 			     unsigned int x, unsigned int h)
326 {
327 	for (; x < h; x++) {
328 		__be64 *ptr = metapointer(x, mp);
329 		u64 dblock = be64_to_cpu(*ptr);
330 		int ret;
331 
332 		if (!dblock)
333 			break;
334 		ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]);
335 		if (ret)
336 			return ret;
337 	}
338 	mp->mp_aheight = x + 1;
339 	return 0;
340 }
341 
342 /**
343  * lookup_metapath - Walk the metadata tree to a specific point
344  * @ip: The inode
345  * @mp: The metapath
346  *
347  * Assumes that the inode's buffer has already been looked up and
348  * hooked onto mp->mp_bh[0] and that the metapath has been initialised
349  * by find_metapath().
350  *
351  * If this function encounters part of the tree which has not been
352  * allocated, it returns the current height of the tree at the point
353  * at which it found the unallocated block. Blocks which are found are
354  * added to the mp->mp_bh[] list.
355  *
356  * Returns: error
357  */
358 
359 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp)
360 {
361 	return __fillup_metapath(ip, mp, 0, ip->i_height - 1);
362 }
363 
364 /**
365  * fillup_metapath - fill up buffers for the metadata path to a specific height
366  * @ip: The inode
367  * @mp: The metapath
368  * @h: The height to which it should be mapped
369  *
370  * Similar to lookup_metapath, but does lookups for a range of heights
371  *
372  * Returns: error or the number of buffers filled
373  */
374 
375 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h)
376 {
377 	unsigned int x = 0;
378 	int ret;
379 
380 	if (h) {
381 		/* find the first buffer we need to look up. */
382 		for (x = h - 1; x > 0; x--) {
383 			if (mp->mp_bh[x])
384 				break;
385 		}
386 	}
387 	ret = __fillup_metapath(ip, mp, x, h);
388 	if (ret)
389 		return ret;
390 	return mp->mp_aheight - x - 1;
391 }
392 
393 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp)
394 {
395 	sector_t factor = 1, block = 0;
396 	int hgt;
397 
398 	for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) {
399 		if (hgt < mp->mp_aheight)
400 			block += mp->mp_list[hgt] * factor;
401 		factor *= sdp->sd_inptrs;
402 	}
403 	return block;
404 }
405 
406 static void release_metapath(struct metapath *mp)
407 {
408 	int i;
409 
410 	for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) {
411 		if (mp->mp_bh[i] == NULL)
412 			break;
413 		brelse(mp->mp_bh[i]);
414 		mp->mp_bh[i] = NULL;
415 	}
416 }
417 
418 /**
419  * gfs2_extent_length - Returns length of an extent of blocks
420  * @bh: The metadata block
421  * @ptr: Current position in @bh
422  * @limit: Max extent length to return
423  * @eob: Set to 1 if we hit "end of block"
424  *
425  * Returns: The length of the extent (minimum of one block)
426  */
427 
428 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob)
429 {
430 	const __be64 *end = (__be64 *)(bh->b_data + bh->b_size);
431 	const __be64 *first = ptr;
432 	u64 d = be64_to_cpu(*ptr);
433 
434 	*eob = 0;
435 	do {
436 		ptr++;
437 		if (ptr >= end)
438 			break;
439 		d++;
440 	} while(be64_to_cpu(*ptr) == d);
441 	if (ptr >= end)
442 		*eob = 1;
443 	return ptr - first;
444 }
445 
446 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE };
447 
448 /*
449  * gfs2_metadata_walker - walk an indirect block
450  * @mp: Metapath to indirect block
451  * @ptrs: Number of pointers to look at
452  *
453  * When returning WALK_FOLLOW, the walker must update @mp to point at the right
454  * indirect block to follow.
455  */
456 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp,
457 						   unsigned int ptrs);
458 
459 /*
460  * gfs2_walk_metadata - walk a tree of indirect blocks
461  * @inode: The inode
462  * @mp: Starting point of walk
463  * @max_len: Maximum number of blocks to walk
464  * @walker: Called during the walk
465  *
466  * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or
467  * past the end of metadata, and a negative error code otherwise.
468  */
469 
470 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp,
471 		u64 max_len, gfs2_metadata_walker walker)
472 {
473 	struct gfs2_inode *ip = GFS2_I(inode);
474 	struct gfs2_sbd *sdp = GFS2_SB(inode);
475 	u64 factor = 1;
476 	unsigned int hgt;
477 	int ret;
478 
479 	/*
480 	 * The walk starts in the lowest allocated indirect block, which may be
481 	 * before the position indicated by @mp.  Adjust @max_len accordingly
482 	 * to avoid a short walk.
483 	 */
484 	for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) {
485 		max_len += mp->mp_list[hgt] * factor;
486 		mp->mp_list[hgt] = 0;
487 		factor *= sdp->sd_inptrs;
488 	}
489 
490 	for (;;) {
491 		u16 start = mp->mp_list[hgt];
492 		enum walker_status status;
493 		unsigned int ptrs;
494 		u64 len;
495 
496 		/* Walk indirect block. */
497 		ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start;
498 		len = ptrs * factor;
499 		if (len > max_len)
500 			ptrs = DIV_ROUND_UP_ULL(max_len, factor);
501 		status = walker(mp, ptrs);
502 		switch (status) {
503 		case WALK_STOP:
504 			return 1;
505 		case WALK_FOLLOW:
506 			BUG_ON(mp->mp_aheight == mp->mp_fheight);
507 			ptrs = mp->mp_list[hgt] - start;
508 			len = ptrs * factor;
509 			break;
510 		case WALK_CONTINUE:
511 			break;
512 		}
513 		if (len >= max_len)
514 			break;
515 		max_len -= len;
516 		if (status == WALK_FOLLOW)
517 			goto fill_up_metapath;
518 
519 lower_metapath:
520 		/* Decrease height of metapath. */
521 		brelse(mp->mp_bh[hgt]);
522 		mp->mp_bh[hgt] = NULL;
523 		mp->mp_list[hgt] = 0;
524 		if (!hgt)
525 			break;
526 		hgt--;
527 		factor *= sdp->sd_inptrs;
528 
529 		/* Advance in metadata tree. */
530 		(mp->mp_list[hgt])++;
531 		if (hgt) {
532 			if (mp->mp_list[hgt] >= sdp->sd_inptrs)
533 				goto lower_metapath;
534 		} else {
535 			if (mp->mp_list[hgt] >= sdp->sd_diptrs)
536 				break;
537 		}
538 
539 fill_up_metapath:
540 		/* Increase height of metapath. */
541 		ret = fillup_metapath(ip, mp, ip->i_height - 1);
542 		if (ret < 0)
543 			return ret;
544 		hgt += ret;
545 		for (; ret; ret--)
546 			do_div(factor, sdp->sd_inptrs);
547 		mp->mp_aheight = hgt + 1;
548 	}
549 	return 0;
550 }
551 
552 static enum walker_status gfs2_hole_walker(struct metapath *mp,
553 					   unsigned int ptrs)
554 {
555 	const __be64 *start, *ptr, *end;
556 	unsigned int hgt;
557 
558 	hgt = mp->mp_aheight - 1;
559 	start = metapointer(hgt, mp);
560 	end = start + ptrs;
561 
562 	for (ptr = start; ptr < end; ptr++) {
563 		if (*ptr) {
564 			mp->mp_list[hgt] += ptr - start;
565 			if (mp->mp_aheight == mp->mp_fheight)
566 				return WALK_STOP;
567 			return WALK_FOLLOW;
568 		}
569 	}
570 	return WALK_CONTINUE;
571 }
572 
573 /**
574  * gfs2_hole_size - figure out the size of a hole
575  * @inode: The inode
576  * @lblock: The logical starting block number
577  * @len: How far to look (in blocks)
578  * @mp: The metapath at lblock
579  * @iomap: The iomap to store the hole size in
580  *
581  * This function modifies @mp.
582  *
583  * Returns: errno on error
584  */
585 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len,
586 			  struct metapath *mp, struct iomap *iomap)
587 {
588 	struct metapath clone;
589 	u64 hole_size;
590 	int ret;
591 
592 	clone_metapath(&clone, mp);
593 	ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker);
594 	if (ret < 0)
595 		goto out;
596 
597 	if (ret == 1)
598 		hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock;
599 	else
600 		hole_size = len;
601 	iomap->length = hole_size << inode->i_blkbits;
602 	ret = 0;
603 
604 out:
605 	release_metapath(&clone);
606 	return ret;
607 }
608 
609 static inline __be64 *gfs2_indirect_init(struct metapath *mp,
610 					 struct gfs2_glock *gl, unsigned int i,
611 					 unsigned offset, u64 bn)
612 {
613 	__be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data +
614 		       ((i > 1) ? sizeof(struct gfs2_meta_header) :
615 				 sizeof(struct gfs2_dinode)));
616 	BUG_ON(i < 1);
617 	BUG_ON(mp->mp_bh[i] != NULL);
618 	mp->mp_bh[i] = gfs2_meta_new(gl, bn);
619 	gfs2_trans_add_meta(gl, mp->mp_bh[i]);
620 	gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN);
621 	gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header));
622 	ptr += offset;
623 	*ptr = cpu_to_be64(bn);
624 	return ptr;
625 }
626 
627 enum alloc_state {
628 	ALLOC_DATA = 0,
629 	ALLOC_GROW_DEPTH = 1,
630 	ALLOC_GROW_HEIGHT = 2,
631 	/* ALLOC_UNSTUFF = 3,   TBD and rather complicated */
632 };
633 
634 /**
635  * gfs2_iomap_alloc - Build a metadata tree of the requested height
636  * @inode: The GFS2 inode
637  * @iomap: The iomap structure
638  * @mp: The metapath, with proper height information calculated
639  *
640  * In this routine we may have to alloc:
641  *   i) Indirect blocks to grow the metadata tree height
642  *  ii) Indirect blocks to fill in lower part of the metadata tree
643  * iii) Data blocks
644  *
645  * This function is called after gfs2_iomap_get, which works out the
646  * total number of blocks which we need via gfs2_alloc_size.
647  *
648  * We then do the actual allocation asking for an extent at a time (if
649  * enough contiguous free blocks are available, there will only be one
650  * allocation request per call) and uses the state machine to initialise
651  * the blocks in order.
652  *
653  * Right now, this function will allocate at most one indirect block
654  * worth of data -- with a default block size of 4K, that's slightly
655  * less than 2M.  If this limitation is ever removed to allow huge
656  * allocations, we would probably still want to limit the iomap size we
657  * return to avoid stalling other tasks during huge writes; the next
658  * iomap iteration would then find the blocks already allocated.
659  *
660  * Returns: errno on error
661  */
662 
663 static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap,
664 			    struct metapath *mp)
665 {
666 	struct gfs2_inode *ip = GFS2_I(inode);
667 	struct gfs2_sbd *sdp = GFS2_SB(inode);
668 	struct buffer_head *dibh = mp->mp_bh[0];
669 	u64 bn;
670 	unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0;
671 	size_t dblks = iomap->length >> inode->i_blkbits;
672 	const unsigned end_of_metadata = mp->mp_fheight - 1;
673 	int ret;
674 	enum alloc_state state;
675 	__be64 *ptr;
676 	__be64 zero_bn = 0;
677 
678 	BUG_ON(mp->mp_aheight < 1);
679 	BUG_ON(dibh == NULL);
680 	BUG_ON(dblks < 1);
681 
682 	gfs2_trans_add_meta(ip->i_gl, dibh);
683 
684 	down_write(&ip->i_rw_mutex);
685 
686 	if (mp->mp_fheight == mp->mp_aheight) {
687 		/* Bottom indirect block exists */
688 		state = ALLOC_DATA;
689 	} else {
690 		/* Need to allocate indirect blocks */
691 		if (mp->mp_fheight == ip->i_height) {
692 			/* Writing into existing tree, extend tree down */
693 			iblks = mp->mp_fheight - mp->mp_aheight;
694 			state = ALLOC_GROW_DEPTH;
695 		} else {
696 			/* Building up tree height */
697 			state = ALLOC_GROW_HEIGHT;
698 			iblks = mp->mp_fheight - ip->i_height;
699 			branch_start = metapath_branch_start(mp);
700 			iblks += (mp->mp_fheight - branch_start);
701 		}
702 	}
703 
704 	/* start of the second part of the function (state machine) */
705 
706 	blks = dblks + iblks;
707 	i = mp->mp_aheight;
708 	do {
709 		n = blks - alloced;
710 		ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL);
711 		if (ret)
712 			goto out;
713 		alloced += n;
714 		if (state != ALLOC_DATA || gfs2_is_jdata(ip))
715 			gfs2_trans_remove_revoke(sdp, bn, n);
716 		switch (state) {
717 		/* Growing height of tree */
718 		case ALLOC_GROW_HEIGHT:
719 			if (i == 1) {
720 				ptr = (__be64 *)(dibh->b_data +
721 						 sizeof(struct gfs2_dinode));
722 				zero_bn = *ptr;
723 			}
724 			for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0;
725 			     i++, n--)
726 				gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++);
727 			if (i - 1 == mp->mp_fheight - ip->i_height) {
728 				i--;
729 				gfs2_buffer_copy_tail(mp->mp_bh[i],
730 						sizeof(struct gfs2_meta_header),
731 						dibh, sizeof(struct gfs2_dinode));
732 				gfs2_buffer_clear_tail(dibh,
733 						sizeof(struct gfs2_dinode) +
734 						sizeof(__be64));
735 				ptr = (__be64 *)(mp->mp_bh[i]->b_data +
736 					sizeof(struct gfs2_meta_header));
737 				*ptr = zero_bn;
738 				state = ALLOC_GROW_DEPTH;
739 				for(i = branch_start; i < mp->mp_fheight; i++) {
740 					if (mp->mp_bh[i] == NULL)
741 						break;
742 					brelse(mp->mp_bh[i]);
743 					mp->mp_bh[i] = NULL;
744 				}
745 				i = branch_start;
746 			}
747 			if (n == 0)
748 				break;
749 			fallthrough;	/* To branching from existing tree */
750 		case ALLOC_GROW_DEPTH:
751 			if (i > 1 && i < mp->mp_fheight)
752 				gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]);
753 			for (; i < mp->mp_fheight && n > 0; i++, n--)
754 				gfs2_indirect_init(mp, ip->i_gl, i,
755 						   mp->mp_list[i-1], bn++);
756 			if (i == mp->mp_fheight)
757 				state = ALLOC_DATA;
758 			if (n == 0)
759 				break;
760 			fallthrough;	/* To tree complete, adding data blocks */
761 		case ALLOC_DATA:
762 			BUG_ON(n > dblks);
763 			BUG_ON(mp->mp_bh[end_of_metadata] == NULL);
764 			gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]);
765 			dblks = n;
766 			ptr = metapointer(end_of_metadata, mp);
767 			iomap->addr = bn << inode->i_blkbits;
768 			iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW;
769 			while (n-- > 0)
770 				*ptr++ = cpu_to_be64(bn++);
771 			break;
772 		}
773 	} while (iomap->addr == IOMAP_NULL_ADDR);
774 
775 	iomap->type = IOMAP_MAPPED;
776 	iomap->length = (u64)dblks << inode->i_blkbits;
777 	ip->i_height = mp->mp_fheight;
778 	gfs2_add_inode_blocks(&ip->i_inode, alloced);
779 	gfs2_dinode_out(ip, dibh->b_data);
780 out:
781 	up_write(&ip->i_rw_mutex);
782 	return ret;
783 }
784 
785 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE
786 
787 /**
788  * gfs2_alloc_size - Compute the maximum allocation size
789  * @inode: The inode
790  * @mp: The metapath
791  * @size: Requested size in blocks
792  *
793  * Compute the maximum size of the next allocation at @mp.
794  *
795  * Returns: size in blocks
796  */
797 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size)
798 {
799 	struct gfs2_inode *ip = GFS2_I(inode);
800 	struct gfs2_sbd *sdp = GFS2_SB(inode);
801 	const __be64 *first, *ptr, *end;
802 
803 	/*
804 	 * For writes to stuffed files, this function is called twice via
805 	 * gfs2_iomap_get, before and after unstuffing. The size we return the
806 	 * first time needs to be large enough to get the reservation and
807 	 * allocation sizes right.  The size we return the second time must
808 	 * be exact or else gfs2_iomap_alloc won't do the right thing.
809 	 */
810 
811 	if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) {
812 		unsigned int maxsize = mp->mp_fheight > 1 ?
813 			sdp->sd_inptrs : sdp->sd_diptrs;
814 		maxsize -= mp->mp_list[mp->mp_fheight - 1];
815 		if (size > maxsize)
816 			size = maxsize;
817 		return size;
818 	}
819 
820 	first = metapointer(ip->i_height - 1, mp);
821 	end = metaend(ip->i_height - 1, mp);
822 	if (end - first > size)
823 		end = first + size;
824 	for (ptr = first; ptr < end; ptr++) {
825 		if (*ptr)
826 			break;
827 	}
828 	return ptr - first;
829 }
830 
831 /**
832  * gfs2_iomap_get - Map blocks from an inode to disk blocks
833  * @inode: The inode
834  * @pos: Starting position in bytes
835  * @length: Length to map, in bytes
836  * @flags: iomap flags
837  * @iomap: The iomap structure
838  * @mp: The metapath
839  *
840  * Returns: errno
841  */
842 static int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
843 			  unsigned flags, struct iomap *iomap,
844 			  struct metapath *mp)
845 {
846 	struct gfs2_inode *ip = GFS2_I(inode);
847 	struct gfs2_sbd *sdp = GFS2_SB(inode);
848 	loff_t size = i_size_read(inode);
849 	__be64 *ptr;
850 	sector_t lblock;
851 	sector_t lblock_stop;
852 	int ret;
853 	int eob;
854 	u64 len;
855 	struct buffer_head *dibh = NULL, *bh;
856 	u8 height;
857 
858 	if (!length)
859 		return -EINVAL;
860 
861 	down_read(&ip->i_rw_mutex);
862 
863 	ret = gfs2_meta_inode_buffer(ip, &dibh);
864 	if (ret)
865 		goto unlock;
866 	mp->mp_bh[0] = dibh;
867 
868 	if (gfs2_is_stuffed(ip)) {
869 		if (flags & IOMAP_WRITE) {
870 			loff_t max_size = gfs2_max_stuffed_size(ip);
871 
872 			if (pos + length > max_size)
873 				goto unstuff;
874 			iomap->length = max_size;
875 		} else {
876 			if (pos >= size) {
877 				if (flags & IOMAP_REPORT) {
878 					ret = -ENOENT;
879 					goto unlock;
880 				} else {
881 					iomap->offset = pos;
882 					iomap->length = length;
883 					goto hole_found;
884 				}
885 			}
886 			iomap->length = size;
887 		}
888 		iomap->addr = (ip->i_no_addr << inode->i_blkbits) +
889 			      sizeof(struct gfs2_dinode);
890 		iomap->type = IOMAP_INLINE;
891 		iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode);
892 		goto out;
893 	}
894 
895 unstuff:
896 	lblock = pos >> inode->i_blkbits;
897 	iomap->offset = lblock << inode->i_blkbits;
898 	lblock_stop = (pos + length - 1) >> inode->i_blkbits;
899 	len = lblock_stop - lblock + 1;
900 	iomap->length = len << inode->i_blkbits;
901 
902 	height = ip->i_height;
903 	while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height])
904 		height++;
905 	find_metapath(sdp, lblock, mp, height);
906 	if (height > ip->i_height || gfs2_is_stuffed(ip))
907 		goto do_alloc;
908 
909 	ret = lookup_metapath(ip, mp);
910 	if (ret)
911 		goto unlock;
912 
913 	if (mp->mp_aheight != ip->i_height)
914 		goto do_alloc;
915 
916 	ptr = metapointer(ip->i_height - 1, mp);
917 	if (*ptr == 0)
918 		goto do_alloc;
919 
920 	bh = mp->mp_bh[ip->i_height - 1];
921 	len = gfs2_extent_length(bh, ptr, len, &eob);
922 
923 	iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits;
924 	iomap->length = len << inode->i_blkbits;
925 	iomap->type = IOMAP_MAPPED;
926 	iomap->flags |= IOMAP_F_MERGED;
927 	if (eob)
928 		iomap->flags |= IOMAP_F_GFS2_BOUNDARY;
929 
930 out:
931 	iomap->bdev = inode->i_sb->s_bdev;
932 unlock:
933 	up_read(&ip->i_rw_mutex);
934 	return ret;
935 
936 do_alloc:
937 	if (flags & IOMAP_REPORT) {
938 		if (pos >= size)
939 			ret = -ENOENT;
940 		else if (height == ip->i_height)
941 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
942 		else
943 			iomap->length = size - pos;
944 	} else if (flags & IOMAP_WRITE) {
945 		u64 alloc_size;
946 
947 		if (flags & IOMAP_DIRECT)
948 			goto out;  /* (see gfs2_file_direct_write) */
949 
950 		len = gfs2_alloc_size(inode, mp, len);
951 		alloc_size = len << inode->i_blkbits;
952 		if (alloc_size < iomap->length)
953 			iomap->length = alloc_size;
954 	} else {
955 		if (pos < size && height == ip->i_height)
956 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
957 	}
958 hole_found:
959 	iomap->addr = IOMAP_NULL_ADDR;
960 	iomap->type = IOMAP_HOLE;
961 	goto out;
962 }
963 
964 /**
965  * gfs2_lblk_to_dblk - convert logical block to disk block
966  * @inode: the inode of the file we're mapping
967  * @lblock: the block relative to the start of the file
968  * @dblock: the returned dblock, if no error
969  *
970  * This function maps a single block from a file logical block (relative to
971  * the start of the file) to a file system absolute block using iomap.
972  *
973  * Returns: the absolute file system block, or an error
974  */
975 int gfs2_lblk_to_dblk(struct inode *inode, u32 lblock, u64 *dblock)
976 {
977 	struct iomap iomap = { };
978 	struct metapath mp = { .mp_aheight = 1, };
979 	loff_t pos = (loff_t)lblock << inode->i_blkbits;
980 	int ret;
981 
982 	ret = gfs2_iomap_get(inode, pos, i_blocksize(inode), 0, &iomap, &mp);
983 	release_metapath(&mp);
984 	if (ret == 0)
985 		*dblock = iomap.addr >> inode->i_blkbits;
986 
987 	return ret;
988 }
989 
990 static int gfs2_write_lock(struct inode *inode)
991 {
992 	struct gfs2_inode *ip = GFS2_I(inode);
993 	struct gfs2_sbd *sdp = GFS2_SB(inode);
994 	int error;
995 
996 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
997 	error = gfs2_glock_nq(&ip->i_gh);
998 	if (error)
999 		goto out_uninit;
1000 	if (&ip->i_inode == sdp->sd_rindex) {
1001 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
1002 
1003 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
1004 					   GL_NOCACHE, &m_ip->i_gh);
1005 		if (error)
1006 			goto out_unlock;
1007 	}
1008 	return 0;
1009 
1010 out_unlock:
1011 	gfs2_glock_dq(&ip->i_gh);
1012 out_uninit:
1013 	gfs2_holder_uninit(&ip->i_gh);
1014 	return error;
1015 }
1016 
1017 static void gfs2_write_unlock(struct inode *inode)
1018 {
1019 	struct gfs2_inode *ip = GFS2_I(inode);
1020 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1021 
1022 	if (&ip->i_inode == sdp->sd_rindex) {
1023 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
1024 
1025 		gfs2_glock_dq_uninit(&m_ip->i_gh);
1026 	}
1027 	gfs2_glock_dq_uninit(&ip->i_gh);
1028 }
1029 
1030 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos,
1031 				   unsigned len, struct iomap *iomap)
1032 {
1033 	unsigned int blockmask = i_blocksize(inode) - 1;
1034 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1035 	unsigned int blocks;
1036 
1037 	blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits;
1038 	return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0);
1039 }
1040 
1041 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos,
1042 				 unsigned copied, struct page *page,
1043 				 struct iomap *iomap)
1044 {
1045 	struct gfs2_trans *tr = current->journal_info;
1046 	struct gfs2_inode *ip = GFS2_I(inode);
1047 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1048 
1049 	if (page && !gfs2_is_stuffed(ip))
1050 		gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied);
1051 
1052 	if (tr->tr_num_buf_new)
1053 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1054 
1055 	gfs2_trans_end(sdp);
1056 }
1057 
1058 static const struct iomap_page_ops gfs2_iomap_page_ops = {
1059 	.page_prepare = gfs2_iomap_page_prepare,
1060 	.page_done = gfs2_iomap_page_done,
1061 };
1062 
1063 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos,
1064 				  loff_t length, unsigned flags,
1065 				  struct iomap *iomap,
1066 				  struct metapath *mp)
1067 {
1068 	struct gfs2_inode *ip = GFS2_I(inode);
1069 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1070 	bool unstuff;
1071 	int ret;
1072 
1073 	unstuff = gfs2_is_stuffed(ip) &&
1074 		  pos + length > gfs2_max_stuffed_size(ip);
1075 
1076 	if (unstuff || iomap->type == IOMAP_HOLE) {
1077 		unsigned int data_blocks, ind_blocks;
1078 		struct gfs2_alloc_parms ap = {};
1079 		unsigned int rblocks;
1080 		struct gfs2_trans *tr;
1081 
1082 		gfs2_write_calc_reserv(ip, iomap->length, &data_blocks,
1083 				       &ind_blocks);
1084 		ap.target = data_blocks + ind_blocks;
1085 		ret = gfs2_quota_lock_check(ip, &ap);
1086 		if (ret)
1087 			return ret;
1088 
1089 		ret = gfs2_inplace_reserve(ip, &ap);
1090 		if (ret)
1091 			goto out_qunlock;
1092 
1093 		rblocks = RES_DINODE + ind_blocks;
1094 		if (gfs2_is_jdata(ip))
1095 			rblocks += data_blocks;
1096 		if (ind_blocks || data_blocks)
1097 			rblocks += RES_STATFS + RES_QUOTA;
1098 		if (inode == sdp->sd_rindex)
1099 			rblocks += 2 * RES_STATFS;
1100 		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1101 
1102 		ret = gfs2_trans_begin(sdp, rblocks,
1103 				       iomap->length >> inode->i_blkbits);
1104 		if (ret)
1105 			goto out_trans_fail;
1106 
1107 		if (unstuff) {
1108 			ret = gfs2_unstuff_dinode(ip, NULL);
1109 			if (ret)
1110 				goto out_trans_end;
1111 			release_metapath(mp);
1112 			ret = gfs2_iomap_get(inode, iomap->offset,
1113 					     iomap->length, flags, iomap, mp);
1114 			if (ret)
1115 				goto out_trans_end;
1116 		}
1117 
1118 		if (iomap->type == IOMAP_HOLE) {
1119 			ret = gfs2_iomap_alloc(inode, iomap, mp);
1120 			if (ret) {
1121 				gfs2_trans_end(sdp);
1122 				gfs2_inplace_release(ip);
1123 				punch_hole(ip, iomap->offset, iomap->length);
1124 				goto out_qunlock;
1125 			}
1126 		}
1127 
1128 		tr = current->journal_info;
1129 		if (tr->tr_num_buf_new)
1130 			__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1131 
1132 		gfs2_trans_end(sdp);
1133 	}
1134 
1135 	if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip))
1136 		iomap->page_ops = &gfs2_iomap_page_ops;
1137 	return 0;
1138 
1139 out_trans_end:
1140 	gfs2_trans_end(sdp);
1141 out_trans_fail:
1142 	gfs2_inplace_release(ip);
1143 out_qunlock:
1144 	gfs2_quota_unlock(ip);
1145 	return ret;
1146 }
1147 
1148 static inline bool gfs2_iomap_need_write_lock(unsigned flags)
1149 {
1150 	return (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT);
1151 }
1152 
1153 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
1154 			    unsigned flags, struct iomap *iomap,
1155 			    struct iomap *srcmap)
1156 {
1157 	struct gfs2_inode *ip = GFS2_I(inode);
1158 	struct metapath mp = { .mp_aheight = 1, };
1159 	int ret;
1160 
1161 	if (gfs2_is_jdata(ip))
1162 		iomap->flags |= IOMAP_F_BUFFER_HEAD;
1163 
1164 	trace_gfs2_iomap_start(ip, pos, length, flags);
1165 	if (gfs2_iomap_need_write_lock(flags)) {
1166 		ret = gfs2_write_lock(inode);
1167 		if (ret)
1168 			goto out;
1169 	}
1170 
1171 	ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp);
1172 	if (ret)
1173 		goto out_unlock;
1174 
1175 	switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1176 	case IOMAP_WRITE:
1177 		if (flags & IOMAP_DIRECT) {
1178 			/*
1179 			 * Silently fall back to buffered I/O for stuffed files
1180 			 * or if we've got a hole (see gfs2_file_direct_write).
1181 			 */
1182 			if (iomap->type != IOMAP_MAPPED)
1183 				ret = -ENOTBLK;
1184 			goto out_unlock;
1185 		}
1186 		break;
1187 	case IOMAP_ZERO:
1188 		if (iomap->type == IOMAP_HOLE)
1189 			goto out_unlock;
1190 		break;
1191 	default:
1192 		goto out_unlock;
1193 	}
1194 
1195 	ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp);
1196 
1197 out_unlock:
1198 	if (ret && gfs2_iomap_need_write_lock(flags))
1199 		gfs2_write_unlock(inode);
1200 	release_metapath(&mp);
1201 out:
1202 	trace_gfs2_iomap_end(ip, iomap, ret);
1203 	return ret;
1204 }
1205 
1206 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length,
1207 			  ssize_t written, unsigned flags, struct iomap *iomap)
1208 {
1209 	struct gfs2_inode *ip = GFS2_I(inode);
1210 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1211 
1212 	switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1213 	case IOMAP_WRITE:
1214 		if (flags & IOMAP_DIRECT)
1215 			return 0;
1216 		break;
1217 	case IOMAP_ZERO:
1218 		 if (iomap->type == IOMAP_HOLE)
1219 			 return 0;
1220 		 break;
1221 	default:
1222 		 return 0;
1223 	}
1224 
1225 	if (!gfs2_is_stuffed(ip))
1226 		gfs2_ordered_add_inode(ip);
1227 
1228 	if (inode == sdp->sd_rindex)
1229 		adjust_fs_space(inode);
1230 
1231 	gfs2_inplace_release(ip);
1232 
1233 	if (length != written && (iomap->flags & IOMAP_F_NEW)) {
1234 		/* Deallocate blocks that were just allocated. */
1235 		loff_t blockmask = i_blocksize(inode) - 1;
1236 		loff_t end = (pos + length) & ~blockmask;
1237 
1238 		pos = (pos + written + blockmask) & ~blockmask;
1239 		if (pos < end) {
1240 			truncate_pagecache_range(inode, pos, end - 1);
1241 			punch_hole(ip, pos, end - pos);
1242 		}
1243 	}
1244 
1245 	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
1246 		gfs2_quota_unlock(ip);
1247 
1248 	if (unlikely(!written))
1249 		goto out_unlock;
1250 
1251 	if (iomap->flags & IOMAP_F_SIZE_CHANGED)
1252 		mark_inode_dirty(inode);
1253 	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
1254 
1255 out_unlock:
1256 	if (gfs2_iomap_need_write_lock(flags))
1257 		gfs2_write_unlock(inode);
1258 	return 0;
1259 }
1260 
1261 const struct iomap_ops gfs2_iomap_ops = {
1262 	.iomap_begin = gfs2_iomap_begin,
1263 	.iomap_end = gfs2_iomap_end,
1264 };
1265 
1266 /**
1267  * gfs2_block_map - Map one or more blocks of an inode to a disk block
1268  * @inode: The inode
1269  * @lblock: The logical block number
1270  * @bh_map: The bh to be mapped
1271  * @create: True if its ok to alloc blocks to satify the request
1272  *
1273  * The size of the requested mapping is defined in bh_map->b_size.
1274  *
1275  * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged
1276  * when @lblock is not mapped.  Sets buffer_mapped(bh_map) and
1277  * bh_map->b_size to indicate the size of the mapping when @lblock and
1278  * successive blocks are mapped, up to the requested size.
1279  *
1280  * Sets buffer_boundary() if a read of metadata will be required
1281  * before the next block can be mapped. Sets buffer_new() if new
1282  * blocks were allocated.
1283  *
1284  * Returns: errno
1285  */
1286 
1287 int gfs2_block_map(struct inode *inode, sector_t lblock,
1288 		   struct buffer_head *bh_map, int create)
1289 {
1290 	struct gfs2_inode *ip = GFS2_I(inode);
1291 	loff_t pos = (loff_t)lblock << inode->i_blkbits;
1292 	loff_t length = bh_map->b_size;
1293 	struct metapath mp = { .mp_aheight = 1, };
1294 	struct iomap iomap = { };
1295 	int flags = create ? IOMAP_WRITE : 0;
1296 	int ret;
1297 
1298 	clear_buffer_mapped(bh_map);
1299 	clear_buffer_new(bh_map);
1300 	clear_buffer_boundary(bh_map);
1301 	trace_gfs2_bmap(ip, bh_map, lblock, create, 1);
1302 
1303 	ret = gfs2_iomap_get(inode, pos, length, flags, &iomap, &mp);
1304 	if (!ret && iomap.type == IOMAP_HOLE) {
1305 		if (create)
1306 			ret = gfs2_iomap_alloc(inode, &iomap, &mp);
1307 		else
1308 			ret = -ENODATA;
1309 	}
1310 	release_metapath(&mp);
1311 	if (ret)
1312 		goto out;
1313 
1314 	if (iomap.length > bh_map->b_size) {
1315 		iomap.length = bh_map->b_size;
1316 		iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY;
1317 	}
1318 	if (iomap.addr != IOMAP_NULL_ADDR)
1319 		map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits);
1320 	bh_map->b_size = iomap.length;
1321 	if (iomap.flags & IOMAP_F_GFS2_BOUNDARY)
1322 		set_buffer_boundary(bh_map);
1323 	if (iomap.flags & IOMAP_F_NEW)
1324 		set_buffer_new(bh_map);
1325 
1326 out:
1327 	trace_gfs2_bmap(ip, bh_map, lblock, create, ret);
1328 	return ret;
1329 }
1330 
1331 /*
1332  * Deprecated: do not use in new code
1333  */
1334 int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen)
1335 {
1336 	struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 };
1337 	int ret;
1338 	int create = *new;
1339 
1340 	BUG_ON(!extlen);
1341 	BUG_ON(!dblock);
1342 	BUG_ON(!new);
1343 
1344 	bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5));
1345 	ret = gfs2_block_map(inode, lblock, &bh, create);
1346 	*extlen = bh.b_size >> inode->i_blkbits;
1347 	*dblock = bh.b_blocknr;
1348 	if (buffer_new(&bh))
1349 		*new = 1;
1350 	else
1351 		*new = 0;
1352 	return ret;
1353 }
1354 
1355 /*
1356  * NOTE: Never call gfs2_block_zero_range with an open transaction because it
1357  * uses iomap write to perform its actions, which begin their own transactions
1358  * (iomap_begin, page_prepare, etc.)
1359  */
1360 static int gfs2_block_zero_range(struct inode *inode, loff_t from,
1361 				 unsigned int length)
1362 {
1363 	BUG_ON(current->journal_info);
1364 	return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops);
1365 }
1366 
1367 #define GFS2_JTRUNC_REVOKES 8192
1368 
1369 /**
1370  * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files
1371  * @inode: The inode being truncated
1372  * @oldsize: The original (larger) size
1373  * @newsize: The new smaller size
1374  *
1375  * With jdata files, we have to journal a revoke for each block which is
1376  * truncated. As a result, we need to split this into separate transactions
1377  * if the number of pages being truncated gets too large.
1378  */
1379 
1380 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize)
1381 {
1382 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1383 	u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
1384 	u64 chunk;
1385 	int error;
1386 
1387 	while (oldsize != newsize) {
1388 		struct gfs2_trans *tr;
1389 		unsigned int offs;
1390 
1391 		chunk = oldsize - newsize;
1392 		if (chunk > max_chunk)
1393 			chunk = max_chunk;
1394 
1395 		offs = oldsize & ~PAGE_MASK;
1396 		if (offs && chunk > PAGE_SIZE)
1397 			chunk = offs + ((chunk - offs) & PAGE_MASK);
1398 
1399 		truncate_pagecache(inode, oldsize - chunk);
1400 		oldsize -= chunk;
1401 
1402 		tr = current->journal_info;
1403 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
1404 			continue;
1405 
1406 		gfs2_trans_end(sdp);
1407 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
1408 		if (error)
1409 			return error;
1410 	}
1411 
1412 	return 0;
1413 }
1414 
1415 static int trunc_start(struct inode *inode, u64 newsize)
1416 {
1417 	struct gfs2_inode *ip = GFS2_I(inode);
1418 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1419 	struct buffer_head *dibh = NULL;
1420 	int journaled = gfs2_is_jdata(ip);
1421 	u64 oldsize = inode->i_size;
1422 	int error;
1423 
1424 	if (!gfs2_is_stuffed(ip)) {
1425 		unsigned int blocksize = i_blocksize(inode);
1426 		unsigned int offs = newsize & (blocksize - 1);
1427 		if (offs) {
1428 			error = gfs2_block_zero_range(inode, newsize,
1429 						      blocksize - offs);
1430 			if (error)
1431 				return error;
1432 		}
1433 	}
1434 	if (journaled)
1435 		error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES);
1436 	else
1437 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1438 	if (error)
1439 		return error;
1440 
1441 	error = gfs2_meta_inode_buffer(ip, &dibh);
1442 	if (error)
1443 		goto out;
1444 
1445 	gfs2_trans_add_meta(ip->i_gl, dibh);
1446 
1447 	if (gfs2_is_stuffed(ip))
1448 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize);
1449 	else
1450 		ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG;
1451 
1452 	i_size_write(inode, newsize);
1453 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1454 	gfs2_dinode_out(ip, dibh->b_data);
1455 
1456 	if (journaled)
1457 		error = gfs2_journaled_truncate(inode, oldsize, newsize);
1458 	else
1459 		truncate_pagecache(inode, newsize);
1460 
1461 out:
1462 	brelse(dibh);
1463 	if (current->journal_info)
1464 		gfs2_trans_end(sdp);
1465 	return error;
1466 }
1467 
1468 int gfs2_iomap_get_alloc(struct inode *inode, loff_t pos, loff_t length,
1469 			 struct iomap *iomap)
1470 {
1471 	struct metapath mp = { .mp_aheight = 1, };
1472 	int ret;
1473 
1474 	ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp);
1475 	if (!ret && iomap->type == IOMAP_HOLE)
1476 		ret = gfs2_iomap_alloc(inode, iomap, &mp);
1477 	release_metapath(&mp);
1478 	return ret;
1479 }
1480 
1481 /**
1482  * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein
1483  * @ip: inode
1484  * @rg_gh: holder of resource group glock
1485  * @bh: buffer head to sweep
1486  * @start: starting point in bh
1487  * @end: end point in bh
1488  * @meta: true if bh points to metadata (rather than data)
1489  * @btotal: place to keep count of total blocks freed
1490  *
1491  * We sweep a metadata buffer (provided by the metapath) for blocks we need to
1492  * free, and free them all. However, we do it one rgrp at a time. If this
1493  * block has references to multiple rgrps, we break it into individual
1494  * transactions. This allows other processes to use the rgrps while we're
1495  * focused on a single one, for better concurrency / performance.
1496  * At every transaction boundary, we rewrite the inode into the journal.
1497  * That way the bitmaps are kept consistent with the inode and we can recover
1498  * if we're interrupted by power-outages.
1499  *
1500  * Returns: 0, or return code if an error occurred.
1501  *          *btotal has the total number of blocks freed
1502  */
1503 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh,
1504 			      struct buffer_head *bh, __be64 *start, __be64 *end,
1505 			      bool meta, u32 *btotal)
1506 {
1507 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1508 	struct gfs2_rgrpd *rgd;
1509 	struct gfs2_trans *tr;
1510 	__be64 *p;
1511 	int blks_outside_rgrp;
1512 	u64 bn, bstart, isize_blks;
1513 	s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */
1514 	int ret = 0;
1515 	bool buf_in_tr = false; /* buffer was added to transaction */
1516 
1517 more_rgrps:
1518 	rgd = NULL;
1519 	if (gfs2_holder_initialized(rd_gh)) {
1520 		rgd = gfs2_glock2rgrp(rd_gh->gh_gl);
1521 		gfs2_assert_withdraw(sdp,
1522 			     gfs2_glock_is_locked_by_me(rd_gh->gh_gl));
1523 	}
1524 	blks_outside_rgrp = 0;
1525 	bstart = 0;
1526 	blen = 0;
1527 
1528 	for (p = start; p < end; p++) {
1529 		if (!*p)
1530 			continue;
1531 		bn = be64_to_cpu(*p);
1532 
1533 		if (rgd) {
1534 			if (!rgrp_contains_block(rgd, bn)) {
1535 				blks_outside_rgrp++;
1536 				continue;
1537 			}
1538 		} else {
1539 			rgd = gfs2_blk2rgrpd(sdp, bn, true);
1540 			if (unlikely(!rgd)) {
1541 				ret = -EIO;
1542 				goto out;
1543 			}
1544 			ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1545 						 0, rd_gh);
1546 			if (ret)
1547 				goto out;
1548 
1549 			/* Must be done with the rgrp glock held: */
1550 			if (gfs2_rs_active(&ip->i_res) &&
1551 			    rgd == ip->i_res.rs_rbm.rgd)
1552 				gfs2_rs_deltree(&ip->i_res);
1553 		}
1554 
1555 		/* The size of our transactions will be unknown until we
1556 		   actually process all the metadata blocks that relate to
1557 		   the rgrp. So we estimate. We know it can't be more than
1558 		   the dinode's i_blocks and we don't want to exceed the
1559 		   journal flush threshold, sd_log_thresh2. */
1560 		if (current->journal_info == NULL) {
1561 			unsigned int jblocks_rqsted, revokes;
1562 
1563 			jblocks_rqsted = rgd->rd_length + RES_DINODE +
1564 				RES_INDIRECT;
1565 			isize_blks = gfs2_get_inode_blocks(&ip->i_inode);
1566 			if (isize_blks > atomic_read(&sdp->sd_log_thresh2))
1567 				jblocks_rqsted +=
1568 					atomic_read(&sdp->sd_log_thresh2);
1569 			else
1570 				jblocks_rqsted += isize_blks;
1571 			revokes = jblocks_rqsted;
1572 			if (meta)
1573 				revokes += end - start;
1574 			else if (ip->i_depth)
1575 				revokes += sdp->sd_inptrs;
1576 			ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes);
1577 			if (ret)
1578 				goto out_unlock;
1579 			down_write(&ip->i_rw_mutex);
1580 		}
1581 		/* check if we will exceed the transaction blocks requested */
1582 		tr = current->journal_info;
1583 		if (tr->tr_num_buf_new + RES_STATFS +
1584 		    RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) {
1585 			/* We set blks_outside_rgrp to ensure the loop will
1586 			   be repeated for the same rgrp, but with a new
1587 			   transaction. */
1588 			blks_outside_rgrp++;
1589 			/* This next part is tricky. If the buffer was added
1590 			   to the transaction, we've already set some block
1591 			   pointers to 0, so we better follow through and free
1592 			   them, or we will introduce corruption (so break).
1593 			   This may be impossible, or at least rare, but I
1594 			   decided to cover the case regardless.
1595 
1596 			   If the buffer was not added to the transaction
1597 			   (this call), doing so would exceed our transaction
1598 			   size, so we need to end the transaction and start a
1599 			   new one (so goto). */
1600 
1601 			if (buf_in_tr)
1602 				break;
1603 			goto out_unlock;
1604 		}
1605 
1606 		gfs2_trans_add_meta(ip->i_gl, bh);
1607 		buf_in_tr = true;
1608 		*p = 0;
1609 		if (bstart + blen == bn) {
1610 			blen++;
1611 			continue;
1612 		}
1613 		if (bstart) {
1614 			__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1615 			(*btotal) += blen;
1616 			gfs2_add_inode_blocks(&ip->i_inode, -blen);
1617 		}
1618 		bstart = bn;
1619 		blen = 1;
1620 	}
1621 	if (bstart) {
1622 		__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1623 		(*btotal) += blen;
1624 		gfs2_add_inode_blocks(&ip->i_inode, -blen);
1625 	}
1626 out_unlock:
1627 	if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks
1628 					    outside the rgrp we just processed,
1629 					    do it all over again. */
1630 		if (current->journal_info) {
1631 			struct buffer_head *dibh;
1632 
1633 			ret = gfs2_meta_inode_buffer(ip, &dibh);
1634 			if (ret)
1635 				goto out;
1636 
1637 			/* Every transaction boundary, we rewrite the dinode
1638 			   to keep its di_blocks current in case of failure. */
1639 			ip->i_inode.i_mtime = ip->i_inode.i_ctime =
1640 				current_time(&ip->i_inode);
1641 			gfs2_trans_add_meta(ip->i_gl, dibh);
1642 			gfs2_dinode_out(ip, dibh->b_data);
1643 			brelse(dibh);
1644 			up_write(&ip->i_rw_mutex);
1645 			gfs2_trans_end(sdp);
1646 			buf_in_tr = false;
1647 		}
1648 		gfs2_glock_dq_uninit(rd_gh);
1649 		cond_resched();
1650 		goto more_rgrps;
1651 	}
1652 out:
1653 	return ret;
1654 }
1655 
1656 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h)
1657 {
1658 	if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0])))
1659 		return false;
1660 	return true;
1661 }
1662 
1663 /**
1664  * find_nonnull_ptr - find a non-null pointer given a metapath and height
1665  * @mp: starting metapath
1666  * @h: desired height to search
1667  *
1668  * Assumes the metapath is valid (with buffers) out to height h.
1669  * Returns: true if a non-null pointer was found in the metapath buffer
1670  *          false if all remaining pointers are NULL in the buffer
1671  */
1672 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp,
1673 			     unsigned int h,
1674 			     __u16 *end_list, unsigned int end_aligned)
1675 {
1676 	struct buffer_head *bh = mp->mp_bh[h];
1677 	__be64 *first, *ptr, *end;
1678 
1679 	first = metaptr1(h, mp);
1680 	ptr = first + mp->mp_list[h];
1681 	end = (__be64 *)(bh->b_data + bh->b_size);
1682 	if (end_list && mp_eq_to_hgt(mp, end_list, h)) {
1683 		bool keep_end = h < end_aligned;
1684 		end = first + end_list[h] + keep_end;
1685 	}
1686 
1687 	while (ptr < end) {
1688 		if (*ptr) { /* if we have a non-null pointer */
1689 			mp->mp_list[h] = ptr - first;
1690 			h++;
1691 			if (h < GFS2_MAX_META_HEIGHT)
1692 				mp->mp_list[h] = 0;
1693 			return true;
1694 		}
1695 		ptr++;
1696 	}
1697 	return false;
1698 }
1699 
1700 enum dealloc_states {
1701 	DEALLOC_MP_FULL = 0,    /* Strip a metapath with all buffers read in */
1702 	DEALLOC_MP_LOWER = 1,   /* lower the metapath strip height */
1703 	DEALLOC_FILL_MP = 2,  /* Fill in the metapath to the given height. */
1704 	DEALLOC_DONE = 3,       /* process complete */
1705 };
1706 
1707 static inline void
1708 metapointer_range(struct metapath *mp, int height,
1709 		  __u16 *start_list, unsigned int start_aligned,
1710 		  __u16 *end_list, unsigned int end_aligned,
1711 		  __be64 **start, __be64 **end)
1712 {
1713 	struct buffer_head *bh = mp->mp_bh[height];
1714 	__be64 *first;
1715 
1716 	first = metaptr1(height, mp);
1717 	*start = first;
1718 	if (mp_eq_to_hgt(mp, start_list, height)) {
1719 		bool keep_start = height < start_aligned;
1720 		*start = first + start_list[height] + keep_start;
1721 	}
1722 	*end = (__be64 *)(bh->b_data + bh->b_size);
1723 	if (end_list && mp_eq_to_hgt(mp, end_list, height)) {
1724 		bool keep_end = height < end_aligned;
1725 		*end = first + end_list[height] + keep_end;
1726 	}
1727 }
1728 
1729 static inline bool walk_done(struct gfs2_sbd *sdp,
1730 			     struct metapath *mp, int height,
1731 			     __u16 *end_list, unsigned int end_aligned)
1732 {
1733 	__u16 end;
1734 
1735 	if (end_list) {
1736 		bool keep_end = height < end_aligned;
1737 		if (!mp_eq_to_hgt(mp, end_list, height))
1738 			return false;
1739 		end = end_list[height] + keep_end;
1740 	} else
1741 		end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs;
1742 	return mp->mp_list[height] >= end;
1743 }
1744 
1745 /**
1746  * punch_hole - deallocate blocks in a file
1747  * @ip: inode to truncate
1748  * @offset: the start of the hole
1749  * @length: the size of the hole (or 0 for truncate)
1750  *
1751  * Punch a hole into a file or truncate a file at a given position.  This
1752  * function operates in whole blocks (@offset and @length are rounded
1753  * accordingly); partially filled blocks must be cleared otherwise.
1754  *
1755  * This function works from the bottom up, and from the right to the left. In
1756  * other words, it strips off the highest layer (data) before stripping any of
1757  * the metadata. Doing it this way is best in case the operation is interrupted
1758  * by power failure, etc.  The dinode is rewritten in every transaction to
1759  * guarantee integrity.
1760  */
1761 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length)
1762 {
1763 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1764 	u64 maxsize = sdp->sd_heightsize[ip->i_height];
1765 	struct metapath mp = {};
1766 	struct buffer_head *dibh, *bh;
1767 	struct gfs2_holder rd_gh;
1768 	unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift;
1769 	u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift;
1770 	__u16 start_list[GFS2_MAX_META_HEIGHT];
1771 	__u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL;
1772 	unsigned int start_aligned, end_aligned;
1773 	unsigned int strip_h = ip->i_height - 1;
1774 	u32 btotal = 0;
1775 	int ret, state;
1776 	int mp_h; /* metapath buffers are read in to this height */
1777 	u64 prev_bnr = 0;
1778 	__be64 *start, *end;
1779 
1780 	if (offset >= maxsize) {
1781 		/*
1782 		 * The starting point lies beyond the allocated meta-data;
1783 		 * there are no blocks do deallocate.
1784 		 */
1785 		return 0;
1786 	}
1787 
1788 	/*
1789 	 * The start position of the hole is defined by lblock, start_list, and
1790 	 * start_aligned.  The end position of the hole is defined by lend,
1791 	 * end_list, and end_aligned.
1792 	 *
1793 	 * start_aligned and end_aligned define down to which height the start
1794 	 * and end positions are aligned to the metadata tree (i.e., the
1795 	 * position is a multiple of the metadata granularity at the height
1796 	 * above).  This determines at which heights additional meta pointers
1797 	 * needs to be preserved for the remaining data.
1798 	 */
1799 
1800 	if (length) {
1801 		u64 end_offset = offset + length;
1802 		u64 lend;
1803 
1804 		/*
1805 		 * Clip the end at the maximum file size for the given height:
1806 		 * that's how far the metadata goes; files bigger than that
1807 		 * will have additional layers of indirection.
1808 		 */
1809 		if (end_offset > maxsize)
1810 			end_offset = maxsize;
1811 		lend = end_offset >> bsize_shift;
1812 
1813 		if (lblock >= lend)
1814 			return 0;
1815 
1816 		find_metapath(sdp, lend, &mp, ip->i_height);
1817 		end_list = __end_list;
1818 		memcpy(end_list, mp.mp_list, sizeof(mp.mp_list));
1819 
1820 		for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1821 			if (end_list[mp_h])
1822 				break;
1823 		}
1824 		end_aligned = mp_h;
1825 	}
1826 
1827 	find_metapath(sdp, lblock, &mp, ip->i_height);
1828 	memcpy(start_list, mp.mp_list, sizeof(start_list));
1829 
1830 	for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1831 		if (start_list[mp_h])
1832 			break;
1833 	}
1834 	start_aligned = mp_h;
1835 
1836 	ret = gfs2_meta_inode_buffer(ip, &dibh);
1837 	if (ret)
1838 		return ret;
1839 
1840 	mp.mp_bh[0] = dibh;
1841 	ret = lookup_metapath(ip, &mp);
1842 	if (ret)
1843 		goto out_metapath;
1844 
1845 	/* issue read-ahead on metadata */
1846 	for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) {
1847 		metapointer_range(&mp, mp_h, start_list, start_aligned,
1848 				  end_list, end_aligned, &start, &end);
1849 		gfs2_metapath_ra(ip->i_gl, start, end);
1850 	}
1851 
1852 	if (mp.mp_aheight == ip->i_height)
1853 		state = DEALLOC_MP_FULL; /* We have a complete metapath */
1854 	else
1855 		state = DEALLOC_FILL_MP; /* deal with partial metapath */
1856 
1857 	ret = gfs2_rindex_update(sdp);
1858 	if (ret)
1859 		goto out_metapath;
1860 
1861 	ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
1862 	if (ret)
1863 		goto out_metapath;
1864 	gfs2_holder_mark_uninitialized(&rd_gh);
1865 
1866 	mp_h = strip_h;
1867 
1868 	while (state != DEALLOC_DONE) {
1869 		switch (state) {
1870 		/* Truncate a full metapath at the given strip height.
1871 		 * Note that strip_h == mp_h in order to be in this state. */
1872 		case DEALLOC_MP_FULL:
1873 			bh = mp.mp_bh[mp_h];
1874 			gfs2_assert_withdraw(sdp, bh);
1875 			if (gfs2_assert_withdraw(sdp,
1876 						 prev_bnr != bh->b_blocknr)) {
1877 				fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u,"
1878 					 "s_h:%u, mp_h:%u\n",
1879 				       (unsigned long long)ip->i_no_addr,
1880 				       prev_bnr, ip->i_height, strip_h, mp_h);
1881 			}
1882 			prev_bnr = bh->b_blocknr;
1883 
1884 			if (gfs2_metatype_check(sdp, bh,
1885 						(mp_h ? GFS2_METATYPE_IN :
1886 							GFS2_METATYPE_DI))) {
1887 				ret = -EIO;
1888 				goto out;
1889 			}
1890 
1891 			/*
1892 			 * Below, passing end_aligned as 0 gives us the
1893 			 * metapointer range excluding the end point: the end
1894 			 * point is the first metapath we must not deallocate!
1895 			 */
1896 
1897 			metapointer_range(&mp, mp_h, start_list, start_aligned,
1898 					  end_list, 0 /* end_aligned */,
1899 					  &start, &end);
1900 			ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h],
1901 						 start, end,
1902 						 mp_h != ip->i_height - 1,
1903 						 &btotal);
1904 
1905 			/* If we hit an error or just swept dinode buffer,
1906 			   just exit. */
1907 			if (ret || !mp_h) {
1908 				state = DEALLOC_DONE;
1909 				break;
1910 			}
1911 			state = DEALLOC_MP_LOWER;
1912 			break;
1913 
1914 		/* lower the metapath strip height */
1915 		case DEALLOC_MP_LOWER:
1916 			/* We're done with the current buffer, so release it,
1917 			   unless it's the dinode buffer. Then back up to the
1918 			   previous pointer. */
1919 			if (mp_h) {
1920 				brelse(mp.mp_bh[mp_h]);
1921 				mp.mp_bh[mp_h] = NULL;
1922 			}
1923 			/* If we can't get any lower in height, we've stripped
1924 			   off all we can. Next step is to back up and start
1925 			   stripping the previous level of metadata. */
1926 			if (mp_h == 0) {
1927 				strip_h--;
1928 				memcpy(mp.mp_list, start_list, sizeof(start_list));
1929 				mp_h = strip_h;
1930 				state = DEALLOC_FILL_MP;
1931 				break;
1932 			}
1933 			mp.mp_list[mp_h] = 0;
1934 			mp_h--; /* search one metadata height down */
1935 			mp.mp_list[mp_h]++;
1936 			if (walk_done(sdp, &mp, mp_h, end_list, end_aligned))
1937 				break;
1938 			/* Here we've found a part of the metapath that is not
1939 			 * allocated. We need to search at that height for the
1940 			 * next non-null pointer. */
1941 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) {
1942 				state = DEALLOC_FILL_MP;
1943 				mp_h++;
1944 			}
1945 			/* No more non-null pointers at this height. Back up
1946 			   to the previous height and try again. */
1947 			break; /* loop around in the same state */
1948 
1949 		/* Fill the metapath with buffers to the given height. */
1950 		case DEALLOC_FILL_MP:
1951 			/* Fill the buffers out to the current height. */
1952 			ret = fillup_metapath(ip, &mp, mp_h);
1953 			if (ret < 0)
1954 				goto out;
1955 
1956 			/* On the first pass, issue read-ahead on metadata. */
1957 			if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) {
1958 				unsigned int height = mp.mp_aheight - 1;
1959 
1960 				/* No read-ahead for data blocks. */
1961 				if (mp.mp_aheight - 1 == strip_h)
1962 					height--;
1963 
1964 				for (; height >= mp.mp_aheight - ret; height--) {
1965 					metapointer_range(&mp, height,
1966 							  start_list, start_aligned,
1967 							  end_list, end_aligned,
1968 							  &start, &end);
1969 					gfs2_metapath_ra(ip->i_gl, start, end);
1970 				}
1971 			}
1972 
1973 			/* If buffers found for the entire strip height */
1974 			if (mp.mp_aheight - 1 == strip_h) {
1975 				state = DEALLOC_MP_FULL;
1976 				break;
1977 			}
1978 			if (mp.mp_aheight < ip->i_height) /* We have a partial height */
1979 				mp_h = mp.mp_aheight - 1;
1980 
1981 			/* If we find a non-null block pointer, crawl a bit
1982 			   higher up in the metapath and try again, otherwise
1983 			   we need to look lower for a new starting point. */
1984 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned))
1985 				mp_h++;
1986 			else
1987 				state = DEALLOC_MP_LOWER;
1988 			break;
1989 		}
1990 	}
1991 
1992 	if (btotal) {
1993 		if (current->journal_info == NULL) {
1994 			ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS +
1995 					       RES_QUOTA, 0);
1996 			if (ret)
1997 				goto out;
1998 			down_write(&ip->i_rw_mutex);
1999 		}
2000 		gfs2_statfs_change(sdp, 0, +btotal, 0);
2001 		gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid,
2002 				  ip->i_inode.i_gid);
2003 		ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2004 		gfs2_trans_add_meta(ip->i_gl, dibh);
2005 		gfs2_dinode_out(ip, dibh->b_data);
2006 		up_write(&ip->i_rw_mutex);
2007 		gfs2_trans_end(sdp);
2008 	}
2009 
2010 out:
2011 	if (gfs2_holder_initialized(&rd_gh))
2012 		gfs2_glock_dq_uninit(&rd_gh);
2013 	if (current->journal_info) {
2014 		up_write(&ip->i_rw_mutex);
2015 		gfs2_trans_end(sdp);
2016 		cond_resched();
2017 	}
2018 	gfs2_quota_unhold(ip);
2019 out_metapath:
2020 	release_metapath(&mp);
2021 	return ret;
2022 }
2023 
2024 static int trunc_end(struct gfs2_inode *ip)
2025 {
2026 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2027 	struct buffer_head *dibh;
2028 	int error;
2029 
2030 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2031 	if (error)
2032 		return error;
2033 
2034 	down_write(&ip->i_rw_mutex);
2035 
2036 	error = gfs2_meta_inode_buffer(ip, &dibh);
2037 	if (error)
2038 		goto out;
2039 
2040 	if (!i_size_read(&ip->i_inode)) {
2041 		ip->i_height = 0;
2042 		ip->i_goal = ip->i_no_addr;
2043 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
2044 		gfs2_ordered_del_inode(ip);
2045 	}
2046 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2047 	ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG;
2048 
2049 	gfs2_trans_add_meta(ip->i_gl, dibh);
2050 	gfs2_dinode_out(ip, dibh->b_data);
2051 	brelse(dibh);
2052 
2053 out:
2054 	up_write(&ip->i_rw_mutex);
2055 	gfs2_trans_end(sdp);
2056 	return error;
2057 }
2058 
2059 /**
2060  * do_shrink - make a file smaller
2061  * @inode: the inode
2062  * @newsize: the size to make the file
2063  *
2064  * Called with an exclusive lock on @inode. The @size must
2065  * be equal to or smaller than the current inode size.
2066  *
2067  * Returns: errno
2068  */
2069 
2070 static int do_shrink(struct inode *inode, u64 newsize)
2071 {
2072 	struct gfs2_inode *ip = GFS2_I(inode);
2073 	int error;
2074 
2075 	error = trunc_start(inode, newsize);
2076 	if (error < 0)
2077 		return error;
2078 	if (gfs2_is_stuffed(ip))
2079 		return 0;
2080 
2081 	error = punch_hole(ip, newsize, 0);
2082 	if (error == 0)
2083 		error = trunc_end(ip);
2084 
2085 	return error;
2086 }
2087 
2088 void gfs2_trim_blocks(struct inode *inode)
2089 {
2090 	int ret;
2091 
2092 	ret = do_shrink(inode, inode->i_size);
2093 	WARN_ON(ret != 0);
2094 }
2095 
2096 /**
2097  * do_grow - Touch and update inode size
2098  * @inode: The inode
2099  * @size: The new size
2100  *
2101  * This function updates the timestamps on the inode and
2102  * may also increase the size of the inode. This function
2103  * must not be called with @size any smaller than the current
2104  * inode size.
2105  *
2106  * Although it is not strictly required to unstuff files here,
2107  * earlier versions of GFS2 have a bug in the stuffed file reading
2108  * code which will result in a buffer overrun if the size is larger
2109  * than the max stuffed file size. In order to prevent this from
2110  * occurring, such files are unstuffed, but in other cases we can
2111  * just update the inode size directly.
2112  *
2113  * Returns: 0 on success, or -ve on error
2114  */
2115 
2116 static int do_grow(struct inode *inode, u64 size)
2117 {
2118 	struct gfs2_inode *ip = GFS2_I(inode);
2119 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2120 	struct gfs2_alloc_parms ap = { .target = 1, };
2121 	struct buffer_head *dibh;
2122 	int error;
2123 	int unstuff = 0;
2124 
2125 	if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) {
2126 		error = gfs2_quota_lock_check(ip, &ap);
2127 		if (error)
2128 			return error;
2129 
2130 		error = gfs2_inplace_reserve(ip, &ap);
2131 		if (error)
2132 			goto do_grow_qunlock;
2133 		unstuff = 1;
2134 	}
2135 
2136 	error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT +
2137 				 (unstuff &&
2138 				  gfs2_is_jdata(ip) ? RES_JDATA : 0) +
2139 				 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ?
2140 				  0 : RES_QUOTA), 0);
2141 	if (error)
2142 		goto do_grow_release;
2143 
2144 	if (unstuff) {
2145 		error = gfs2_unstuff_dinode(ip, NULL);
2146 		if (error)
2147 			goto do_end_trans;
2148 	}
2149 
2150 	error = gfs2_meta_inode_buffer(ip, &dibh);
2151 	if (error)
2152 		goto do_end_trans;
2153 
2154 	truncate_setsize(inode, size);
2155 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2156 	gfs2_trans_add_meta(ip->i_gl, dibh);
2157 	gfs2_dinode_out(ip, dibh->b_data);
2158 	brelse(dibh);
2159 
2160 do_end_trans:
2161 	gfs2_trans_end(sdp);
2162 do_grow_release:
2163 	if (unstuff) {
2164 		gfs2_inplace_release(ip);
2165 do_grow_qunlock:
2166 		gfs2_quota_unlock(ip);
2167 	}
2168 	return error;
2169 }
2170 
2171 /**
2172  * gfs2_setattr_size - make a file a given size
2173  * @inode: the inode
2174  * @newsize: the size to make the file
2175  *
2176  * The file size can grow, shrink, or stay the same size. This
2177  * is called holding i_rwsem and an exclusive glock on the inode
2178  * in question.
2179  *
2180  * Returns: errno
2181  */
2182 
2183 int gfs2_setattr_size(struct inode *inode, u64 newsize)
2184 {
2185 	struct gfs2_inode *ip = GFS2_I(inode);
2186 	int ret;
2187 
2188 	BUG_ON(!S_ISREG(inode->i_mode));
2189 
2190 	ret = inode_newsize_ok(inode, newsize);
2191 	if (ret)
2192 		return ret;
2193 
2194 	inode_dio_wait(inode);
2195 
2196 	ret = gfs2_qa_get(ip);
2197 	if (ret)
2198 		goto out;
2199 
2200 	if (newsize >= inode->i_size) {
2201 		ret = do_grow(inode, newsize);
2202 		goto out;
2203 	}
2204 
2205 	ret = do_shrink(inode, newsize);
2206 out:
2207 	gfs2_rs_delete(ip, NULL);
2208 	gfs2_qa_put(ip);
2209 	return ret;
2210 }
2211 
2212 int gfs2_truncatei_resume(struct gfs2_inode *ip)
2213 {
2214 	int error;
2215 	error = punch_hole(ip, i_size_read(&ip->i_inode), 0);
2216 	if (!error)
2217 		error = trunc_end(ip);
2218 	return error;
2219 }
2220 
2221 int gfs2_file_dealloc(struct gfs2_inode *ip)
2222 {
2223 	return punch_hole(ip, 0, 0);
2224 }
2225 
2226 /**
2227  * gfs2_free_journal_extents - Free cached journal bmap info
2228  * @jd: The journal
2229  *
2230  */
2231 
2232 void gfs2_free_journal_extents(struct gfs2_jdesc *jd)
2233 {
2234 	struct gfs2_journal_extent *jext;
2235 
2236 	while(!list_empty(&jd->extent_list)) {
2237 		jext = list_first_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2238 		list_del(&jext->list);
2239 		kfree(jext);
2240 	}
2241 }
2242 
2243 /**
2244  * gfs2_add_jextent - Add or merge a new extent to extent cache
2245  * @jd: The journal descriptor
2246  * @lblock: The logical block at start of new extent
2247  * @dblock: The physical block at start of new extent
2248  * @blocks: Size of extent in fs blocks
2249  *
2250  * Returns: 0 on success or -ENOMEM
2251  */
2252 
2253 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks)
2254 {
2255 	struct gfs2_journal_extent *jext;
2256 
2257 	if (!list_empty(&jd->extent_list)) {
2258 		jext = list_last_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2259 		if ((jext->dblock + jext->blocks) == dblock) {
2260 			jext->blocks += blocks;
2261 			return 0;
2262 		}
2263 	}
2264 
2265 	jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS);
2266 	if (jext == NULL)
2267 		return -ENOMEM;
2268 	jext->dblock = dblock;
2269 	jext->lblock = lblock;
2270 	jext->blocks = blocks;
2271 	list_add_tail(&jext->list, &jd->extent_list);
2272 	jd->nr_extents++;
2273 	return 0;
2274 }
2275 
2276 /**
2277  * gfs2_map_journal_extents - Cache journal bmap info
2278  * @sdp: The super block
2279  * @jd: The journal to map
2280  *
2281  * Create a reusable "extent" mapping from all logical
2282  * blocks to all physical blocks for the given journal.  This will save
2283  * us time when writing journal blocks.  Most journals will have only one
2284  * extent that maps all their logical blocks.  That's because gfs2.mkfs
2285  * arranges the journal blocks sequentially to maximize performance.
2286  * So the extent would map the first block for the entire file length.
2287  * However, gfs2_jadd can happen while file activity is happening, so
2288  * those journals may not be sequential.  Less likely is the case where
2289  * the users created their own journals by mounting the metafs and
2290  * laying it out.  But it's still possible.  These journals might have
2291  * several extents.
2292  *
2293  * Returns: 0 on success, or error on failure
2294  */
2295 
2296 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd)
2297 {
2298 	u64 lblock = 0;
2299 	u64 lblock_stop;
2300 	struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
2301 	struct buffer_head bh;
2302 	unsigned int shift = sdp->sd_sb.sb_bsize_shift;
2303 	u64 size;
2304 	int rc;
2305 	ktime_t start, end;
2306 
2307 	start = ktime_get();
2308 	lblock_stop = i_size_read(jd->jd_inode) >> shift;
2309 	size = (lblock_stop - lblock) << shift;
2310 	jd->nr_extents = 0;
2311 	WARN_ON(!list_empty(&jd->extent_list));
2312 
2313 	do {
2314 		bh.b_state = 0;
2315 		bh.b_blocknr = 0;
2316 		bh.b_size = size;
2317 		rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0);
2318 		if (rc || !buffer_mapped(&bh))
2319 			goto fail;
2320 		rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift);
2321 		if (rc)
2322 			goto fail;
2323 		size -= bh.b_size;
2324 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2325 	} while(size > 0);
2326 
2327 	end = ktime_get();
2328 	fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid,
2329 		jd->nr_extents, ktime_ms_delta(end, start));
2330 	return 0;
2331 
2332 fail:
2333 	fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n",
2334 		rc, jd->jd_jid,
2335 		(unsigned long long)(i_size_read(jd->jd_inode) - size),
2336 		jd->nr_extents);
2337 	fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n",
2338 		rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr,
2339 		bh.b_state, (unsigned long long)bh.b_size);
2340 	gfs2_free_journal_extents(jd);
2341 	return rc;
2342 }
2343 
2344 /**
2345  * gfs2_write_alloc_required - figure out if a write will require an allocation
2346  * @ip: the file being written to
2347  * @offset: the offset to write to
2348  * @len: the number of bytes being written
2349  *
2350  * Returns: 1 if an alloc is required, 0 otherwise
2351  */
2352 
2353 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset,
2354 			      unsigned int len)
2355 {
2356 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2357 	struct buffer_head bh;
2358 	unsigned int shift;
2359 	u64 lblock, lblock_stop, size;
2360 	u64 end_of_file;
2361 
2362 	if (!len)
2363 		return 0;
2364 
2365 	if (gfs2_is_stuffed(ip)) {
2366 		if (offset + len > gfs2_max_stuffed_size(ip))
2367 			return 1;
2368 		return 0;
2369 	}
2370 
2371 	shift = sdp->sd_sb.sb_bsize_shift;
2372 	BUG_ON(gfs2_is_dir(ip));
2373 	end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift;
2374 	lblock = offset >> shift;
2375 	lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift;
2376 	if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex))
2377 		return 1;
2378 
2379 	size = (lblock_stop - lblock) << shift;
2380 	do {
2381 		bh.b_state = 0;
2382 		bh.b_size = size;
2383 		gfs2_block_map(&ip->i_inode, lblock, &bh, 0);
2384 		if (!buffer_mapped(&bh))
2385 			return 1;
2386 		size -= bh.b_size;
2387 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2388 	} while(size > 0);
2389 
2390 	return 0;
2391 }
2392 
2393 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length)
2394 {
2395 	struct gfs2_inode *ip = GFS2_I(inode);
2396 	struct buffer_head *dibh;
2397 	int error;
2398 
2399 	if (offset >= inode->i_size)
2400 		return 0;
2401 	if (offset + length > inode->i_size)
2402 		length = inode->i_size - offset;
2403 
2404 	error = gfs2_meta_inode_buffer(ip, &dibh);
2405 	if (error)
2406 		return error;
2407 	gfs2_trans_add_meta(ip->i_gl, dibh);
2408 	memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0,
2409 	       length);
2410 	brelse(dibh);
2411 	return 0;
2412 }
2413 
2414 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset,
2415 					 loff_t length)
2416 {
2417 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2418 	loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
2419 	int error;
2420 
2421 	while (length) {
2422 		struct gfs2_trans *tr;
2423 		loff_t chunk;
2424 		unsigned int offs;
2425 
2426 		chunk = length;
2427 		if (chunk > max_chunk)
2428 			chunk = max_chunk;
2429 
2430 		offs = offset & ~PAGE_MASK;
2431 		if (offs && chunk > PAGE_SIZE)
2432 			chunk = offs + ((chunk - offs) & PAGE_MASK);
2433 
2434 		truncate_pagecache_range(inode, offset, chunk);
2435 		offset += chunk;
2436 		length -= chunk;
2437 
2438 		tr = current->journal_info;
2439 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
2440 			continue;
2441 
2442 		gfs2_trans_end(sdp);
2443 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
2444 		if (error)
2445 			return error;
2446 	}
2447 	return 0;
2448 }
2449 
2450 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length)
2451 {
2452 	struct inode *inode = file_inode(file);
2453 	struct gfs2_inode *ip = GFS2_I(inode);
2454 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2455 	unsigned int blocksize = i_blocksize(inode);
2456 	loff_t start, end;
2457 	int error;
2458 
2459 	if (!gfs2_is_stuffed(ip)) {
2460 		unsigned int start_off, end_len;
2461 
2462 		start_off = offset & (blocksize - 1);
2463 		end_len = (offset + length) & (blocksize - 1);
2464 		if (start_off) {
2465 			unsigned int len = length;
2466 			if (length > blocksize - start_off)
2467 				len = blocksize - start_off;
2468 			error = gfs2_block_zero_range(inode, offset, len);
2469 			if (error)
2470 				goto out;
2471 			if (start_off + length < blocksize)
2472 				end_len = 0;
2473 		}
2474 		if (end_len) {
2475 			error = gfs2_block_zero_range(inode,
2476 				offset + length - end_len, end_len);
2477 			if (error)
2478 				goto out;
2479 		}
2480 	}
2481 
2482 	start = round_down(offset, blocksize);
2483 	end = round_up(offset + length, blocksize) - 1;
2484 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
2485 	if (error)
2486 		return error;
2487 
2488 	if (gfs2_is_jdata(ip))
2489 		error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA,
2490 					 GFS2_JTRUNC_REVOKES);
2491 	else
2492 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2493 	if (error)
2494 		return error;
2495 
2496 	if (gfs2_is_stuffed(ip)) {
2497 		error = stuffed_zero_range(inode, offset, length);
2498 		if (error)
2499 			goto out;
2500 	}
2501 
2502 	if (gfs2_is_jdata(ip)) {
2503 		BUG_ON(!current->journal_info);
2504 		gfs2_journaled_truncate_range(inode, offset, length);
2505 	} else
2506 		truncate_pagecache_range(inode, offset, offset + length - 1);
2507 
2508 	file_update_time(file);
2509 	mark_inode_dirty(inode);
2510 
2511 	if (current->journal_info)
2512 		gfs2_trans_end(sdp);
2513 
2514 	if (!gfs2_is_stuffed(ip))
2515 		error = punch_hole(ip, offset, length);
2516 
2517 out:
2518 	if (current->journal_info)
2519 		gfs2_trans_end(sdp);
2520 	return error;
2521 }
2522 
2523 static int gfs2_map_blocks(struct iomap_writepage_ctx *wpc, struct inode *inode,
2524 		loff_t offset)
2525 {
2526 	struct metapath mp = { .mp_aheight = 1, };
2527 	int ret;
2528 
2529 	if (WARN_ON_ONCE(gfs2_is_stuffed(GFS2_I(inode))))
2530 		return -EIO;
2531 
2532 	if (offset >= wpc->iomap.offset &&
2533 	    offset < wpc->iomap.offset + wpc->iomap.length)
2534 		return 0;
2535 
2536 	memset(&wpc->iomap, 0, sizeof(wpc->iomap));
2537 	ret = gfs2_iomap_get(inode, offset, INT_MAX, 0, &wpc->iomap, &mp);
2538 	release_metapath(&mp);
2539 	return ret;
2540 }
2541 
2542 const struct iomap_writeback_ops gfs2_writeback_ops = {
2543 	.map_blocks		= gfs2_map_blocks,
2544 };
2545