1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 5 */ 6 7 #include <linux/spinlock.h> 8 #include <linux/completion.h> 9 #include <linux/buffer_head.h> 10 #include <linux/blkdev.h> 11 #include <linux/gfs2_ondisk.h> 12 #include <linux/crc32.h> 13 #include <linux/iomap.h> 14 #include <linux/ktime.h> 15 16 #include "gfs2.h" 17 #include "incore.h" 18 #include "bmap.h" 19 #include "glock.h" 20 #include "inode.h" 21 #include "meta_io.h" 22 #include "quota.h" 23 #include "rgrp.h" 24 #include "log.h" 25 #include "super.h" 26 #include "trans.h" 27 #include "dir.h" 28 #include "util.h" 29 #include "aops.h" 30 #include "trace_gfs2.h" 31 32 /* This doesn't need to be that large as max 64 bit pointers in a 4k 33 * block is 512, so __u16 is fine for that. It saves stack space to 34 * keep it small. 35 */ 36 struct metapath { 37 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT]; 38 __u16 mp_list[GFS2_MAX_META_HEIGHT]; 39 int mp_fheight; /* find_metapath height */ 40 int mp_aheight; /* actual height (lookup height) */ 41 }; 42 43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length); 44 45 /** 46 * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page 47 * @ip: the inode 48 * @dibh: the dinode buffer 49 * @block: the block number that was allocated 50 * @page: The (optional) page. This is looked up if @page is NULL 51 * 52 * Returns: errno 53 */ 54 55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh, 56 u64 block, struct page *page) 57 { 58 struct inode *inode = &ip->i_inode; 59 60 if (!PageUptodate(page)) { 61 void *kaddr = kmap(page); 62 u64 dsize = i_size_read(inode); 63 64 if (dsize > gfs2_max_stuffed_size(ip)) 65 dsize = gfs2_max_stuffed_size(ip); 66 67 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 68 memset(kaddr + dsize, 0, PAGE_SIZE - dsize); 69 kunmap(page); 70 71 SetPageUptodate(page); 72 } 73 74 if (gfs2_is_jdata(ip)) { 75 struct buffer_head *bh; 76 77 if (!page_has_buffers(page)) 78 create_empty_buffers(page, BIT(inode->i_blkbits), 79 BIT(BH_Uptodate)); 80 81 bh = page_buffers(page); 82 if (!buffer_mapped(bh)) 83 map_bh(bh, inode->i_sb, block); 84 85 set_buffer_uptodate(bh); 86 gfs2_trans_add_data(ip->i_gl, bh); 87 } else { 88 set_page_dirty(page); 89 gfs2_ordered_add_inode(ip); 90 } 91 92 return 0; 93 } 94 95 static int __gfs2_unstuff_inode(struct gfs2_inode *ip, struct page *page) 96 { 97 struct buffer_head *bh, *dibh; 98 struct gfs2_dinode *di; 99 u64 block = 0; 100 int isdir = gfs2_is_dir(ip); 101 int error; 102 103 error = gfs2_meta_inode_buffer(ip, &dibh); 104 if (error) 105 return error; 106 107 if (i_size_read(&ip->i_inode)) { 108 /* Get a free block, fill it with the stuffed data, 109 and write it out to disk */ 110 111 unsigned int n = 1; 112 error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL); 113 if (error) 114 goto out_brelse; 115 if (isdir) { 116 gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1); 117 error = gfs2_dir_get_new_buffer(ip, block, &bh); 118 if (error) 119 goto out_brelse; 120 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header), 121 dibh, sizeof(struct gfs2_dinode)); 122 brelse(bh); 123 } else { 124 error = gfs2_unstuffer_page(ip, dibh, block, page); 125 if (error) 126 goto out_brelse; 127 } 128 } 129 130 /* Set up the pointer to the new block */ 131 132 gfs2_trans_add_meta(ip->i_gl, dibh); 133 di = (struct gfs2_dinode *)dibh->b_data; 134 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 135 136 if (i_size_read(&ip->i_inode)) { 137 *(__be64 *)(di + 1) = cpu_to_be64(block); 138 gfs2_add_inode_blocks(&ip->i_inode, 1); 139 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode)); 140 } 141 142 ip->i_height = 1; 143 di->di_height = cpu_to_be16(1); 144 145 out_brelse: 146 brelse(dibh); 147 return error; 148 } 149 150 /** 151 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big 152 * @ip: The GFS2 inode to unstuff 153 * 154 * This routine unstuffs a dinode and returns it to a "normal" state such 155 * that the height can be grown in the traditional way. 156 * 157 * Returns: errno 158 */ 159 160 int gfs2_unstuff_dinode(struct gfs2_inode *ip) 161 { 162 struct inode *inode = &ip->i_inode; 163 struct page *page; 164 int error; 165 166 down_write(&ip->i_rw_mutex); 167 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 168 error = -ENOMEM; 169 if (!page) 170 goto out; 171 error = __gfs2_unstuff_inode(ip, page); 172 unlock_page(page); 173 put_page(page); 174 out: 175 up_write(&ip->i_rw_mutex); 176 return error; 177 } 178 179 /** 180 * find_metapath - Find path through the metadata tree 181 * @sdp: The superblock 182 * @block: The disk block to look up 183 * @mp: The metapath to return the result in 184 * @height: The pre-calculated height of the metadata tree 185 * 186 * This routine returns a struct metapath structure that defines a path 187 * through the metadata of inode "ip" to get to block "block". 188 * 189 * Example: 190 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a 191 * filesystem with a blocksize of 4096. 192 * 193 * find_metapath() would return a struct metapath structure set to: 194 * mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165. 195 * 196 * That means that in order to get to the block containing the byte at 197 * offset 101342453, we would load the indirect block pointed to by pointer 198 * 0 in the dinode. We would then load the indirect block pointed to by 199 * pointer 48 in that indirect block. We would then load the data block 200 * pointed to by pointer 165 in that indirect block. 201 * 202 * ---------------------------------------- 203 * | Dinode | | 204 * | | 4| 205 * | |0 1 2 3 4 5 9| 206 * | | 6| 207 * ---------------------------------------- 208 * | 209 * | 210 * V 211 * ---------------------------------------- 212 * | Indirect Block | 213 * | 5| 214 * | 4 4 4 4 4 5 5 1| 215 * |0 5 6 7 8 9 0 1 2| 216 * ---------------------------------------- 217 * | 218 * | 219 * V 220 * ---------------------------------------- 221 * | Indirect Block | 222 * | 1 1 1 1 1 5| 223 * | 6 6 6 6 6 1| 224 * |0 3 4 5 6 7 2| 225 * ---------------------------------------- 226 * | 227 * | 228 * V 229 * ---------------------------------------- 230 * | Data block containing offset | 231 * | 101342453 | 232 * | | 233 * | | 234 * ---------------------------------------- 235 * 236 */ 237 238 static void find_metapath(const struct gfs2_sbd *sdp, u64 block, 239 struct metapath *mp, unsigned int height) 240 { 241 unsigned int i; 242 243 mp->mp_fheight = height; 244 for (i = height; i--;) 245 mp->mp_list[i] = do_div(block, sdp->sd_inptrs); 246 } 247 248 static inline unsigned int metapath_branch_start(const struct metapath *mp) 249 { 250 if (mp->mp_list[0] == 0) 251 return 2; 252 return 1; 253 } 254 255 /** 256 * metaptr1 - Return the first possible metadata pointer in a metapath buffer 257 * @height: The metadata height (0 = dinode) 258 * @mp: The metapath 259 */ 260 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp) 261 { 262 struct buffer_head *bh = mp->mp_bh[height]; 263 if (height == 0) 264 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode))); 265 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header))); 266 } 267 268 /** 269 * metapointer - Return pointer to start of metadata in a buffer 270 * @height: The metadata height (0 = dinode) 271 * @mp: The metapath 272 * 273 * Return a pointer to the block number of the next height of the metadata 274 * tree given a buffer containing the pointer to the current height of the 275 * metadata tree. 276 */ 277 278 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp) 279 { 280 __be64 *p = metaptr1(height, mp); 281 return p + mp->mp_list[height]; 282 } 283 284 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp) 285 { 286 const struct buffer_head *bh = mp->mp_bh[height]; 287 return (const __be64 *)(bh->b_data + bh->b_size); 288 } 289 290 static void clone_metapath(struct metapath *clone, struct metapath *mp) 291 { 292 unsigned int hgt; 293 294 *clone = *mp; 295 for (hgt = 0; hgt < mp->mp_aheight; hgt++) 296 get_bh(clone->mp_bh[hgt]); 297 } 298 299 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end) 300 { 301 const __be64 *t; 302 303 for (t = start; t < end; t++) { 304 struct buffer_head *rabh; 305 306 if (!*t) 307 continue; 308 309 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE); 310 if (trylock_buffer(rabh)) { 311 if (!buffer_uptodate(rabh)) { 312 rabh->b_end_io = end_buffer_read_sync; 313 submit_bh(REQ_OP_READ, 314 REQ_RAHEAD | REQ_META | REQ_PRIO, 315 rabh); 316 continue; 317 } 318 unlock_buffer(rabh); 319 } 320 brelse(rabh); 321 } 322 } 323 324 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, 325 unsigned int x, unsigned int h) 326 { 327 for (; x < h; x++) { 328 __be64 *ptr = metapointer(x, mp); 329 u64 dblock = be64_to_cpu(*ptr); 330 int ret; 331 332 if (!dblock) 333 break; 334 ret = gfs2_meta_buffer(ip, GFS2_METATYPE_IN, dblock, &mp->mp_bh[x + 1]); 335 if (ret) 336 return ret; 337 } 338 mp->mp_aheight = x + 1; 339 return 0; 340 } 341 342 /** 343 * lookup_metapath - Walk the metadata tree to a specific point 344 * @ip: The inode 345 * @mp: The metapath 346 * 347 * Assumes that the inode's buffer has already been looked up and 348 * hooked onto mp->mp_bh[0] and that the metapath has been initialised 349 * by find_metapath(). 350 * 351 * If this function encounters part of the tree which has not been 352 * allocated, it returns the current height of the tree at the point 353 * at which it found the unallocated block. Blocks which are found are 354 * added to the mp->mp_bh[] list. 355 * 356 * Returns: error 357 */ 358 359 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp) 360 { 361 return __fillup_metapath(ip, mp, 0, ip->i_height - 1); 362 } 363 364 /** 365 * fillup_metapath - fill up buffers for the metadata path to a specific height 366 * @ip: The inode 367 * @mp: The metapath 368 * @h: The height to which it should be mapped 369 * 370 * Similar to lookup_metapath, but does lookups for a range of heights 371 * 372 * Returns: error or the number of buffers filled 373 */ 374 375 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h) 376 { 377 unsigned int x = 0; 378 int ret; 379 380 if (h) { 381 /* find the first buffer we need to look up. */ 382 for (x = h - 1; x > 0; x--) { 383 if (mp->mp_bh[x]) 384 break; 385 } 386 } 387 ret = __fillup_metapath(ip, mp, x, h); 388 if (ret) 389 return ret; 390 return mp->mp_aheight - x - 1; 391 } 392 393 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp) 394 { 395 sector_t factor = 1, block = 0; 396 int hgt; 397 398 for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) { 399 if (hgt < mp->mp_aheight) 400 block += mp->mp_list[hgt] * factor; 401 factor *= sdp->sd_inptrs; 402 } 403 return block; 404 } 405 406 static void release_metapath(struct metapath *mp) 407 { 408 int i; 409 410 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) { 411 if (mp->mp_bh[i] == NULL) 412 break; 413 brelse(mp->mp_bh[i]); 414 mp->mp_bh[i] = NULL; 415 } 416 } 417 418 /** 419 * gfs2_extent_length - Returns length of an extent of blocks 420 * @bh: The metadata block 421 * @ptr: Current position in @bh 422 * @limit: Max extent length to return 423 * @eob: Set to 1 if we hit "end of block" 424 * 425 * Returns: The length of the extent (minimum of one block) 426 */ 427 428 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob) 429 { 430 const __be64 *end = (__be64 *)(bh->b_data + bh->b_size); 431 const __be64 *first = ptr; 432 u64 d = be64_to_cpu(*ptr); 433 434 *eob = 0; 435 do { 436 ptr++; 437 if (ptr >= end) 438 break; 439 d++; 440 } while(be64_to_cpu(*ptr) == d); 441 if (ptr >= end) 442 *eob = 1; 443 return ptr - first; 444 } 445 446 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE }; 447 448 /* 449 * gfs2_metadata_walker - walk an indirect block 450 * @mp: Metapath to indirect block 451 * @ptrs: Number of pointers to look at 452 * 453 * When returning WALK_FOLLOW, the walker must update @mp to point at the right 454 * indirect block to follow. 455 */ 456 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp, 457 unsigned int ptrs); 458 459 /* 460 * gfs2_walk_metadata - walk a tree of indirect blocks 461 * @inode: The inode 462 * @mp: Starting point of walk 463 * @max_len: Maximum number of blocks to walk 464 * @walker: Called during the walk 465 * 466 * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or 467 * past the end of metadata, and a negative error code otherwise. 468 */ 469 470 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp, 471 u64 max_len, gfs2_metadata_walker walker) 472 { 473 struct gfs2_inode *ip = GFS2_I(inode); 474 struct gfs2_sbd *sdp = GFS2_SB(inode); 475 u64 factor = 1; 476 unsigned int hgt; 477 int ret; 478 479 /* 480 * The walk starts in the lowest allocated indirect block, which may be 481 * before the position indicated by @mp. Adjust @max_len accordingly 482 * to avoid a short walk. 483 */ 484 for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) { 485 max_len += mp->mp_list[hgt] * factor; 486 mp->mp_list[hgt] = 0; 487 factor *= sdp->sd_inptrs; 488 } 489 490 for (;;) { 491 u16 start = mp->mp_list[hgt]; 492 enum walker_status status; 493 unsigned int ptrs; 494 u64 len; 495 496 /* Walk indirect block. */ 497 ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start; 498 len = ptrs * factor; 499 if (len > max_len) 500 ptrs = DIV_ROUND_UP_ULL(max_len, factor); 501 status = walker(mp, ptrs); 502 switch (status) { 503 case WALK_STOP: 504 return 1; 505 case WALK_FOLLOW: 506 BUG_ON(mp->mp_aheight == mp->mp_fheight); 507 ptrs = mp->mp_list[hgt] - start; 508 len = ptrs * factor; 509 break; 510 case WALK_CONTINUE: 511 break; 512 } 513 if (len >= max_len) 514 break; 515 max_len -= len; 516 if (status == WALK_FOLLOW) 517 goto fill_up_metapath; 518 519 lower_metapath: 520 /* Decrease height of metapath. */ 521 brelse(mp->mp_bh[hgt]); 522 mp->mp_bh[hgt] = NULL; 523 mp->mp_list[hgt] = 0; 524 if (!hgt) 525 break; 526 hgt--; 527 factor *= sdp->sd_inptrs; 528 529 /* Advance in metadata tree. */ 530 (mp->mp_list[hgt])++; 531 if (hgt) { 532 if (mp->mp_list[hgt] >= sdp->sd_inptrs) 533 goto lower_metapath; 534 } else { 535 if (mp->mp_list[hgt] >= sdp->sd_diptrs) 536 break; 537 } 538 539 fill_up_metapath: 540 /* Increase height of metapath. */ 541 ret = fillup_metapath(ip, mp, ip->i_height - 1); 542 if (ret < 0) 543 return ret; 544 hgt += ret; 545 for (; ret; ret--) 546 do_div(factor, sdp->sd_inptrs); 547 mp->mp_aheight = hgt + 1; 548 } 549 return 0; 550 } 551 552 static enum walker_status gfs2_hole_walker(struct metapath *mp, 553 unsigned int ptrs) 554 { 555 const __be64 *start, *ptr, *end; 556 unsigned int hgt; 557 558 hgt = mp->mp_aheight - 1; 559 start = metapointer(hgt, mp); 560 end = start + ptrs; 561 562 for (ptr = start; ptr < end; ptr++) { 563 if (*ptr) { 564 mp->mp_list[hgt] += ptr - start; 565 if (mp->mp_aheight == mp->mp_fheight) 566 return WALK_STOP; 567 return WALK_FOLLOW; 568 } 569 } 570 return WALK_CONTINUE; 571 } 572 573 /** 574 * gfs2_hole_size - figure out the size of a hole 575 * @inode: The inode 576 * @lblock: The logical starting block number 577 * @len: How far to look (in blocks) 578 * @mp: The metapath at lblock 579 * @iomap: The iomap to store the hole size in 580 * 581 * This function modifies @mp. 582 * 583 * Returns: errno on error 584 */ 585 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len, 586 struct metapath *mp, struct iomap *iomap) 587 { 588 struct metapath clone; 589 u64 hole_size; 590 int ret; 591 592 clone_metapath(&clone, mp); 593 ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker); 594 if (ret < 0) 595 goto out; 596 597 if (ret == 1) 598 hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock; 599 else 600 hole_size = len; 601 iomap->length = hole_size << inode->i_blkbits; 602 ret = 0; 603 604 out: 605 release_metapath(&clone); 606 return ret; 607 } 608 609 static inline __be64 *gfs2_indirect_init(struct metapath *mp, 610 struct gfs2_glock *gl, unsigned int i, 611 unsigned offset, u64 bn) 612 { 613 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data + 614 ((i > 1) ? sizeof(struct gfs2_meta_header) : 615 sizeof(struct gfs2_dinode))); 616 BUG_ON(i < 1); 617 BUG_ON(mp->mp_bh[i] != NULL); 618 mp->mp_bh[i] = gfs2_meta_new(gl, bn); 619 gfs2_trans_add_meta(gl, mp->mp_bh[i]); 620 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN); 621 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header)); 622 ptr += offset; 623 *ptr = cpu_to_be64(bn); 624 return ptr; 625 } 626 627 enum alloc_state { 628 ALLOC_DATA = 0, 629 ALLOC_GROW_DEPTH = 1, 630 ALLOC_GROW_HEIGHT = 2, 631 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */ 632 }; 633 634 /** 635 * __gfs2_iomap_alloc - Build a metadata tree of the requested height 636 * @inode: The GFS2 inode 637 * @iomap: The iomap structure 638 * @mp: The metapath, with proper height information calculated 639 * 640 * In this routine we may have to alloc: 641 * i) Indirect blocks to grow the metadata tree height 642 * ii) Indirect blocks to fill in lower part of the metadata tree 643 * iii) Data blocks 644 * 645 * This function is called after __gfs2_iomap_get, which works out the 646 * total number of blocks which we need via gfs2_alloc_size. 647 * 648 * We then do the actual allocation asking for an extent at a time (if 649 * enough contiguous free blocks are available, there will only be one 650 * allocation request per call) and uses the state machine to initialise 651 * the blocks in order. 652 * 653 * Right now, this function will allocate at most one indirect block 654 * worth of data -- with a default block size of 4K, that's slightly 655 * less than 2M. If this limitation is ever removed to allow huge 656 * allocations, we would probably still want to limit the iomap size we 657 * return to avoid stalling other tasks during huge writes; the next 658 * iomap iteration would then find the blocks already allocated. 659 * 660 * Returns: errno on error 661 */ 662 663 static int __gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap, 664 struct metapath *mp) 665 { 666 struct gfs2_inode *ip = GFS2_I(inode); 667 struct gfs2_sbd *sdp = GFS2_SB(inode); 668 struct buffer_head *dibh = mp->mp_bh[0]; 669 u64 bn; 670 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0; 671 size_t dblks = iomap->length >> inode->i_blkbits; 672 const unsigned end_of_metadata = mp->mp_fheight - 1; 673 int ret; 674 enum alloc_state state; 675 __be64 *ptr; 676 __be64 zero_bn = 0; 677 678 BUG_ON(mp->mp_aheight < 1); 679 BUG_ON(dibh == NULL); 680 BUG_ON(dblks < 1); 681 682 gfs2_trans_add_meta(ip->i_gl, dibh); 683 684 down_write(&ip->i_rw_mutex); 685 686 if (mp->mp_fheight == mp->mp_aheight) { 687 /* Bottom indirect block exists */ 688 state = ALLOC_DATA; 689 } else { 690 /* Need to allocate indirect blocks */ 691 if (mp->mp_fheight == ip->i_height) { 692 /* Writing into existing tree, extend tree down */ 693 iblks = mp->mp_fheight - mp->mp_aheight; 694 state = ALLOC_GROW_DEPTH; 695 } else { 696 /* Building up tree height */ 697 state = ALLOC_GROW_HEIGHT; 698 iblks = mp->mp_fheight - ip->i_height; 699 branch_start = metapath_branch_start(mp); 700 iblks += (mp->mp_fheight - branch_start); 701 } 702 } 703 704 /* start of the second part of the function (state machine) */ 705 706 blks = dblks + iblks; 707 i = mp->mp_aheight; 708 do { 709 n = blks - alloced; 710 ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL); 711 if (ret) 712 goto out; 713 alloced += n; 714 if (state != ALLOC_DATA || gfs2_is_jdata(ip)) 715 gfs2_trans_remove_revoke(sdp, bn, n); 716 switch (state) { 717 /* Growing height of tree */ 718 case ALLOC_GROW_HEIGHT: 719 if (i == 1) { 720 ptr = (__be64 *)(dibh->b_data + 721 sizeof(struct gfs2_dinode)); 722 zero_bn = *ptr; 723 } 724 for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0; 725 i++, n--) 726 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++); 727 if (i - 1 == mp->mp_fheight - ip->i_height) { 728 i--; 729 gfs2_buffer_copy_tail(mp->mp_bh[i], 730 sizeof(struct gfs2_meta_header), 731 dibh, sizeof(struct gfs2_dinode)); 732 gfs2_buffer_clear_tail(dibh, 733 sizeof(struct gfs2_dinode) + 734 sizeof(__be64)); 735 ptr = (__be64 *)(mp->mp_bh[i]->b_data + 736 sizeof(struct gfs2_meta_header)); 737 *ptr = zero_bn; 738 state = ALLOC_GROW_DEPTH; 739 for(i = branch_start; i < mp->mp_fheight; i++) { 740 if (mp->mp_bh[i] == NULL) 741 break; 742 brelse(mp->mp_bh[i]); 743 mp->mp_bh[i] = NULL; 744 } 745 i = branch_start; 746 } 747 if (n == 0) 748 break; 749 fallthrough; /* To branching from existing tree */ 750 case ALLOC_GROW_DEPTH: 751 if (i > 1 && i < mp->mp_fheight) 752 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]); 753 for (; i < mp->mp_fheight && n > 0; i++, n--) 754 gfs2_indirect_init(mp, ip->i_gl, i, 755 mp->mp_list[i-1], bn++); 756 if (i == mp->mp_fheight) 757 state = ALLOC_DATA; 758 if (n == 0) 759 break; 760 fallthrough; /* To tree complete, adding data blocks */ 761 case ALLOC_DATA: 762 BUG_ON(n > dblks); 763 BUG_ON(mp->mp_bh[end_of_metadata] == NULL); 764 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]); 765 dblks = n; 766 ptr = metapointer(end_of_metadata, mp); 767 iomap->addr = bn << inode->i_blkbits; 768 iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW; 769 while (n-- > 0) 770 *ptr++ = cpu_to_be64(bn++); 771 break; 772 } 773 } while (iomap->addr == IOMAP_NULL_ADDR); 774 775 iomap->type = IOMAP_MAPPED; 776 iomap->length = (u64)dblks << inode->i_blkbits; 777 ip->i_height = mp->mp_fheight; 778 gfs2_add_inode_blocks(&ip->i_inode, alloced); 779 gfs2_dinode_out(ip, dibh->b_data); 780 out: 781 up_write(&ip->i_rw_mutex); 782 return ret; 783 } 784 785 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE 786 787 /** 788 * gfs2_alloc_size - Compute the maximum allocation size 789 * @inode: The inode 790 * @mp: The metapath 791 * @size: Requested size in blocks 792 * 793 * Compute the maximum size of the next allocation at @mp. 794 * 795 * Returns: size in blocks 796 */ 797 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size) 798 { 799 struct gfs2_inode *ip = GFS2_I(inode); 800 struct gfs2_sbd *sdp = GFS2_SB(inode); 801 const __be64 *first, *ptr, *end; 802 803 /* 804 * For writes to stuffed files, this function is called twice via 805 * __gfs2_iomap_get, before and after unstuffing. The size we return the 806 * first time needs to be large enough to get the reservation and 807 * allocation sizes right. The size we return the second time must 808 * be exact or else __gfs2_iomap_alloc won't do the right thing. 809 */ 810 811 if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) { 812 unsigned int maxsize = mp->mp_fheight > 1 ? 813 sdp->sd_inptrs : sdp->sd_diptrs; 814 maxsize -= mp->mp_list[mp->mp_fheight - 1]; 815 if (size > maxsize) 816 size = maxsize; 817 return size; 818 } 819 820 first = metapointer(ip->i_height - 1, mp); 821 end = metaend(ip->i_height - 1, mp); 822 if (end - first > size) 823 end = first + size; 824 for (ptr = first; ptr < end; ptr++) { 825 if (*ptr) 826 break; 827 } 828 return ptr - first; 829 } 830 831 /** 832 * __gfs2_iomap_get - Map blocks from an inode to disk blocks 833 * @inode: The inode 834 * @pos: Starting position in bytes 835 * @length: Length to map, in bytes 836 * @flags: iomap flags 837 * @iomap: The iomap structure 838 * @mp: The metapath 839 * 840 * Returns: errno 841 */ 842 static int __gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length, 843 unsigned flags, struct iomap *iomap, 844 struct metapath *mp) 845 { 846 struct gfs2_inode *ip = GFS2_I(inode); 847 struct gfs2_sbd *sdp = GFS2_SB(inode); 848 loff_t size = i_size_read(inode); 849 __be64 *ptr; 850 sector_t lblock; 851 sector_t lblock_stop; 852 int ret; 853 int eob; 854 u64 len; 855 struct buffer_head *dibh = NULL, *bh; 856 u8 height; 857 858 if (!length) 859 return -EINVAL; 860 861 down_read(&ip->i_rw_mutex); 862 863 ret = gfs2_meta_inode_buffer(ip, &dibh); 864 if (ret) 865 goto unlock; 866 mp->mp_bh[0] = dibh; 867 868 if (gfs2_is_stuffed(ip)) { 869 if (flags & IOMAP_WRITE) { 870 loff_t max_size = gfs2_max_stuffed_size(ip); 871 872 if (pos + length > max_size) 873 goto unstuff; 874 iomap->length = max_size; 875 } else { 876 if (pos >= size) { 877 if (flags & IOMAP_REPORT) { 878 ret = -ENOENT; 879 goto unlock; 880 } else { 881 iomap->offset = pos; 882 iomap->length = length; 883 goto hole_found; 884 } 885 } 886 iomap->length = size; 887 } 888 iomap->addr = (ip->i_no_addr << inode->i_blkbits) + 889 sizeof(struct gfs2_dinode); 890 iomap->type = IOMAP_INLINE; 891 iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode); 892 goto out; 893 } 894 895 unstuff: 896 lblock = pos >> inode->i_blkbits; 897 iomap->offset = lblock << inode->i_blkbits; 898 lblock_stop = (pos + length - 1) >> inode->i_blkbits; 899 len = lblock_stop - lblock + 1; 900 iomap->length = len << inode->i_blkbits; 901 902 height = ip->i_height; 903 while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height]) 904 height++; 905 find_metapath(sdp, lblock, mp, height); 906 if (height > ip->i_height || gfs2_is_stuffed(ip)) 907 goto do_alloc; 908 909 ret = lookup_metapath(ip, mp); 910 if (ret) 911 goto unlock; 912 913 if (mp->mp_aheight != ip->i_height) 914 goto do_alloc; 915 916 ptr = metapointer(ip->i_height - 1, mp); 917 if (*ptr == 0) 918 goto do_alloc; 919 920 bh = mp->mp_bh[ip->i_height - 1]; 921 len = gfs2_extent_length(bh, ptr, len, &eob); 922 923 iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits; 924 iomap->length = len << inode->i_blkbits; 925 iomap->type = IOMAP_MAPPED; 926 iomap->flags |= IOMAP_F_MERGED; 927 if (eob) 928 iomap->flags |= IOMAP_F_GFS2_BOUNDARY; 929 930 out: 931 iomap->bdev = inode->i_sb->s_bdev; 932 unlock: 933 up_read(&ip->i_rw_mutex); 934 return ret; 935 936 do_alloc: 937 if (flags & IOMAP_REPORT) { 938 if (pos >= size) 939 ret = -ENOENT; 940 else if (height == ip->i_height) 941 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 942 else 943 iomap->length = size - pos; 944 } else if (flags & IOMAP_WRITE) { 945 u64 alloc_size; 946 947 if (flags & IOMAP_DIRECT) 948 goto out; /* (see gfs2_file_direct_write) */ 949 950 len = gfs2_alloc_size(inode, mp, len); 951 alloc_size = len << inode->i_blkbits; 952 if (alloc_size < iomap->length) 953 iomap->length = alloc_size; 954 } else { 955 if (pos < size && height == ip->i_height) 956 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 957 } 958 hole_found: 959 iomap->addr = IOMAP_NULL_ADDR; 960 iomap->type = IOMAP_HOLE; 961 goto out; 962 } 963 964 static int gfs2_write_lock(struct inode *inode) 965 { 966 struct gfs2_inode *ip = GFS2_I(inode); 967 struct gfs2_sbd *sdp = GFS2_SB(inode); 968 int error; 969 970 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh); 971 error = gfs2_glock_nq(&ip->i_gh); 972 if (error) 973 goto out_uninit; 974 if (&ip->i_inode == sdp->sd_rindex) { 975 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 976 977 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE, 978 GL_NOCACHE, &m_ip->i_gh); 979 if (error) 980 goto out_unlock; 981 } 982 return 0; 983 984 out_unlock: 985 gfs2_glock_dq(&ip->i_gh); 986 out_uninit: 987 gfs2_holder_uninit(&ip->i_gh); 988 return error; 989 } 990 991 static void gfs2_write_unlock(struct inode *inode) 992 { 993 struct gfs2_inode *ip = GFS2_I(inode); 994 struct gfs2_sbd *sdp = GFS2_SB(inode); 995 996 if (&ip->i_inode == sdp->sd_rindex) { 997 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 998 999 gfs2_glock_dq_uninit(&m_ip->i_gh); 1000 } 1001 gfs2_glock_dq_uninit(&ip->i_gh); 1002 } 1003 1004 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos, 1005 unsigned len) 1006 { 1007 unsigned int blockmask = i_blocksize(inode) - 1; 1008 struct gfs2_sbd *sdp = GFS2_SB(inode); 1009 unsigned int blocks; 1010 1011 blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits; 1012 return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0); 1013 } 1014 1015 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos, 1016 unsigned copied, struct page *page) 1017 { 1018 struct gfs2_trans *tr = current->journal_info; 1019 struct gfs2_inode *ip = GFS2_I(inode); 1020 struct gfs2_sbd *sdp = GFS2_SB(inode); 1021 1022 if (page && !gfs2_is_stuffed(ip)) 1023 gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied); 1024 1025 if (tr->tr_num_buf_new) 1026 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1027 1028 gfs2_trans_end(sdp); 1029 } 1030 1031 static const struct iomap_page_ops gfs2_iomap_page_ops = { 1032 .page_prepare = gfs2_iomap_page_prepare, 1033 .page_done = gfs2_iomap_page_done, 1034 }; 1035 1036 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos, 1037 loff_t length, unsigned flags, 1038 struct iomap *iomap, 1039 struct metapath *mp) 1040 { 1041 struct gfs2_inode *ip = GFS2_I(inode); 1042 struct gfs2_sbd *sdp = GFS2_SB(inode); 1043 bool unstuff; 1044 int ret; 1045 1046 unstuff = gfs2_is_stuffed(ip) && 1047 pos + length > gfs2_max_stuffed_size(ip); 1048 1049 if (unstuff || iomap->type == IOMAP_HOLE) { 1050 unsigned int data_blocks, ind_blocks; 1051 struct gfs2_alloc_parms ap = {}; 1052 unsigned int rblocks; 1053 struct gfs2_trans *tr; 1054 1055 gfs2_write_calc_reserv(ip, iomap->length, &data_blocks, 1056 &ind_blocks); 1057 ap.target = data_blocks + ind_blocks; 1058 ret = gfs2_quota_lock_check(ip, &ap); 1059 if (ret) 1060 return ret; 1061 1062 ret = gfs2_inplace_reserve(ip, &ap); 1063 if (ret) 1064 goto out_qunlock; 1065 1066 rblocks = RES_DINODE + ind_blocks; 1067 if (gfs2_is_jdata(ip)) 1068 rblocks += data_blocks; 1069 if (ind_blocks || data_blocks) 1070 rblocks += RES_STATFS + RES_QUOTA; 1071 if (inode == sdp->sd_rindex) 1072 rblocks += 2 * RES_STATFS; 1073 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 1074 1075 ret = gfs2_trans_begin(sdp, rblocks, 1076 iomap->length >> inode->i_blkbits); 1077 if (ret) 1078 goto out_trans_fail; 1079 1080 if (unstuff) { 1081 ret = gfs2_unstuff_dinode(ip); 1082 if (ret) 1083 goto out_trans_end; 1084 release_metapath(mp); 1085 ret = __gfs2_iomap_get(inode, iomap->offset, 1086 iomap->length, flags, iomap, mp); 1087 if (ret) 1088 goto out_trans_end; 1089 } 1090 1091 if (iomap->type == IOMAP_HOLE) { 1092 ret = __gfs2_iomap_alloc(inode, iomap, mp); 1093 if (ret) { 1094 gfs2_trans_end(sdp); 1095 gfs2_inplace_release(ip); 1096 punch_hole(ip, iomap->offset, iomap->length); 1097 goto out_qunlock; 1098 } 1099 } 1100 1101 tr = current->journal_info; 1102 if (tr->tr_num_buf_new) 1103 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1104 1105 gfs2_trans_end(sdp); 1106 } 1107 1108 if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip)) 1109 iomap->page_ops = &gfs2_iomap_page_ops; 1110 return 0; 1111 1112 out_trans_end: 1113 gfs2_trans_end(sdp); 1114 out_trans_fail: 1115 gfs2_inplace_release(ip); 1116 out_qunlock: 1117 gfs2_quota_unlock(ip); 1118 return ret; 1119 } 1120 1121 static inline bool gfs2_iomap_need_write_lock(unsigned flags) 1122 { 1123 return (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT); 1124 } 1125 1126 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length, 1127 unsigned flags, struct iomap *iomap, 1128 struct iomap *srcmap) 1129 { 1130 struct gfs2_inode *ip = GFS2_I(inode); 1131 struct metapath mp = { .mp_aheight = 1, }; 1132 int ret; 1133 1134 if (gfs2_is_jdata(ip)) 1135 iomap->flags |= IOMAP_F_BUFFER_HEAD; 1136 1137 trace_gfs2_iomap_start(ip, pos, length, flags); 1138 if (gfs2_iomap_need_write_lock(flags)) { 1139 ret = gfs2_write_lock(inode); 1140 if (ret) 1141 goto out; 1142 } 1143 1144 ret = __gfs2_iomap_get(inode, pos, length, flags, iomap, &mp); 1145 if (ret) 1146 goto out_unlock; 1147 1148 switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) { 1149 case IOMAP_WRITE: 1150 if (flags & IOMAP_DIRECT) { 1151 /* 1152 * Silently fall back to buffered I/O for stuffed files 1153 * or if we've got a hole (see gfs2_file_direct_write). 1154 */ 1155 if (iomap->type != IOMAP_MAPPED) 1156 ret = -ENOTBLK; 1157 goto out_unlock; 1158 } 1159 break; 1160 case IOMAP_ZERO: 1161 if (iomap->type == IOMAP_HOLE) 1162 goto out_unlock; 1163 break; 1164 default: 1165 goto out_unlock; 1166 } 1167 1168 ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp); 1169 1170 out_unlock: 1171 if (ret && gfs2_iomap_need_write_lock(flags)) 1172 gfs2_write_unlock(inode); 1173 release_metapath(&mp); 1174 out: 1175 trace_gfs2_iomap_end(ip, iomap, ret); 1176 return ret; 1177 } 1178 1179 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length, 1180 ssize_t written, unsigned flags, struct iomap *iomap) 1181 { 1182 struct gfs2_inode *ip = GFS2_I(inode); 1183 struct gfs2_sbd *sdp = GFS2_SB(inode); 1184 1185 switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) { 1186 case IOMAP_WRITE: 1187 if (flags & IOMAP_DIRECT) 1188 return 0; 1189 break; 1190 case IOMAP_ZERO: 1191 if (iomap->type == IOMAP_HOLE) 1192 return 0; 1193 break; 1194 default: 1195 return 0; 1196 } 1197 1198 if (!gfs2_is_stuffed(ip)) 1199 gfs2_ordered_add_inode(ip); 1200 1201 if (inode == sdp->sd_rindex) 1202 adjust_fs_space(inode); 1203 1204 gfs2_inplace_release(ip); 1205 1206 if (ip->i_qadata && ip->i_qadata->qa_qd_num) 1207 gfs2_quota_unlock(ip); 1208 1209 if (length != written && (iomap->flags & IOMAP_F_NEW)) { 1210 /* Deallocate blocks that were just allocated. */ 1211 loff_t blockmask = i_blocksize(inode) - 1; 1212 loff_t end = (pos + length) & ~blockmask; 1213 1214 pos = (pos + written + blockmask) & ~blockmask; 1215 if (pos < end) { 1216 truncate_pagecache_range(inode, pos, end - 1); 1217 punch_hole(ip, pos, end - pos); 1218 } 1219 } 1220 1221 if (unlikely(!written)) 1222 goto out_unlock; 1223 1224 if (iomap->flags & IOMAP_F_SIZE_CHANGED) 1225 mark_inode_dirty(inode); 1226 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags); 1227 1228 out_unlock: 1229 if (gfs2_iomap_need_write_lock(flags)) 1230 gfs2_write_unlock(inode); 1231 return 0; 1232 } 1233 1234 const struct iomap_ops gfs2_iomap_ops = { 1235 .iomap_begin = gfs2_iomap_begin, 1236 .iomap_end = gfs2_iomap_end, 1237 }; 1238 1239 /** 1240 * gfs2_block_map - Map one or more blocks of an inode to a disk block 1241 * @inode: The inode 1242 * @lblock: The logical block number 1243 * @bh_map: The bh to be mapped 1244 * @create: True if its ok to alloc blocks to satify the request 1245 * 1246 * The size of the requested mapping is defined in bh_map->b_size. 1247 * 1248 * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged 1249 * when @lblock is not mapped. Sets buffer_mapped(bh_map) and 1250 * bh_map->b_size to indicate the size of the mapping when @lblock and 1251 * successive blocks are mapped, up to the requested size. 1252 * 1253 * Sets buffer_boundary() if a read of metadata will be required 1254 * before the next block can be mapped. Sets buffer_new() if new 1255 * blocks were allocated. 1256 * 1257 * Returns: errno 1258 */ 1259 1260 int gfs2_block_map(struct inode *inode, sector_t lblock, 1261 struct buffer_head *bh_map, int create) 1262 { 1263 struct gfs2_inode *ip = GFS2_I(inode); 1264 loff_t pos = (loff_t)lblock << inode->i_blkbits; 1265 loff_t length = bh_map->b_size; 1266 struct iomap iomap = { }; 1267 int ret; 1268 1269 clear_buffer_mapped(bh_map); 1270 clear_buffer_new(bh_map); 1271 clear_buffer_boundary(bh_map); 1272 trace_gfs2_bmap(ip, bh_map, lblock, create, 1); 1273 1274 if (!create) 1275 ret = gfs2_iomap_get(inode, pos, length, &iomap); 1276 else 1277 ret = gfs2_iomap_alloc(inode, pos, length, &iomap); 1278 if (ret) 1279 goto out; 1280 1281 if (iomap.length > bh_map->b_size) { 1282 iomap.length = bh_map->b_size; 1283 iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY; 1284 } 1285 if (iomap.addr != IOMAP_NULL_ADDR) 1286 map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits); 1287 bh_map->b_size = iomap.length; 1288 if (iomap.flags & IOMAP_F_GFS2_BOUNDARY) 1289 set_buffer_boundary(bh_map); 1290 if (iomap.flags & IOMAP_F_NEW) 1291 set_buffer_new(bh_map); 1292 1293 out: 1294 trace_gfs2_bmap(ip, bh_map, lblock, create, ret); 1295 return ret; 1296 } 1297 1298 int gfs2_get_extent(struct inode *inode, u64 lblock, u64 *dblock, 1299 unsigned int *extlen) 1300 { 1301 unsigned int blkbits = inode->i_blkbits; 1302 struct iomap iomap = { }; 1303 unsigned int len; 1304 int ret; 1305 1306 ret = gfs2_iomap_get(inode, lblock << blkbits, *extlen << blkbits, 1307 &iomap); 1308 if (ret) 1309 return ret; 1310 if (iomap.type != IOMAP_MAPPED) 1311 return -EIO; 1312 *dblock = iomap.addr >> blkbits; 1313 len = iomap.length >> blkbits; 1314 if (len < *extlen) 1315 *extlen = len; 1316 return 0; 1317 } 1318 1319 int gfs2_alloc_extent(struct inode *inode, u64 lblock, u64 *dblock, 1320 unsigned int *extlen, bool *new) 1321 { 1322 unsigned int blkbits = inode->i_blkbits; 1323 struct iomap iomap = { }; 1324 unsigned int len; 1325 int ret; 1326 1327 ret = gfs2_iomap_alloc(inode, lblock << blkbits, *extlen << blkbits, 1328 &iomap); 1329 if (ret) 1330 return ret; 1331 if (iomap.type != IOMAP_MAPPED) 1332 return -EIO; 1333 *dblock = iomap.addr >> blkbits; 1334 len = iomap.length >> blkbits; 1335 if (len < *extlen) 1336 *extlen = len; 1337 *new = iomap.flags & IOMAP_F_NEW; 1338 return 0; 1339 } 1340 1341 /* 1342 * NOTE: Never call gfs2_block_zero_range with an open transaction because it 1343 * uses iomap write to perform its actions, which begin their own transactions 1344 * (iomap_begin, page_prepare, etc.) 1345 */ 1346 static int gfs2_block_zero_range(struct inode *inode, loff_t from, 1347 unsigned int length) 1348 { 1349 BUG_ON(current->journal_info); 1350 return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops); 1351 } 1352 1353 #define GFS2_JTRUNC_REVOKES 8192 1354 1355 /** 1356 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files 1357 * @inode: The inode being truncated 1358 * @oldsize: The original (larger) size 1359 * @newsize: The new smaller size 1360 * 1361 * With jdata files, we have to journal a revoke for each block which is 1362 * truncated. As a result, we need to split this into separate transactions 1363 * if the number of pages being truncated gets too large. 1364 */ 1365 1366 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize) 1367 { 1368 struct gfs2_sbd *sdp = GFS2_SB(inode); 1369 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 1370 u64 chunk; 1371 int error; 1372 1373 while (oldsize != newsize) { 1374 struct gfs2_trans *tr; 1375 unsigned int offs; 1376 1377 chunk = oldsize - newsize; 1378 if (chunk > max_chunk) 1379 chunk = max_chunk; 1380 1381 offs = oldsize & ~PAGE_MASK; 1382 if (offs && chunk > PAGE_SIZE) 1383 chunk = offs + ((chunk - offs) & PAGE_MASK); 1384 1385 truncate_pagecache(inode, oldsize - chunk); 1386 oldsize -= chunk; 1387 1388 tr = current->journal_info; 1389 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 1390 continue; 1391 1392 gfs2_trans_end(sdp); 1393 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 1394 if (error) 1395 return error; 1396 } 1397 1398 return 0; 1399 } 1400 1401 static int trunc_start(struct inode *inode, u64 newsize) 1402 { 1403 struct gfs2_inode *ip = GFS2_I(inode); 1404 struct gfs2_sbd *sdp = GFS2_SB(inode); 1405 struct buffer_head *dibh = NULL; 1406 int journaled = gfs2_is_jdata(ip); 1407 u64 oldsize = inode->i_size; 1408 int error; 1409 1410 if (!gfs2_is_stuffed(ip)) { 1411 unsigned int blocksize = i_blocksize(inode); 1412 unsigned int offs = newsize & (blocksize - 1); 1413 if (offs) { 1414 error = gfs2_block_zero_range(inode, newsize, 1415 blocksize - offs); 1416 if (error) 1417 return error; 1418 } 1419 } 1420 if (journaled) 1421 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES); 1422 else 1423 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1424 if (error) 1425 return error; 1426 1427 error = gfs2_meta_inode_buffer(ip, &dibh); 1428 if (error) 1429 goto out; 1430 1431 gfs2_trans_add_meta(ip->i_gl, dibh); 1432 1433 if (gfs2_is_stuffed(ip)) 1434 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize); 1435 else 1436 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG; 1437 1438 i_size_write(inode, newsize); 1439 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1440 gfs2_dinode_out(ip, dibh->b_data); 1441 1442 if (journaled) 1443 error = gfs2_journaled_truncate(inode, oldsize, newsize); 1444 else 1445 truncate_pagecache(inode, newsize); 1446 1447 out: 1448 brelse(dibh); 1449 if (current->journal_info) 1450 gfs2_trans_end(sdp); 1451 return error; 1452 } 1453 1454 int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length, 1455 struct iomap *iomap) 1456 { 1457 struct metapath mp = { .mp_aheight = 1, }; 1458 int ret; 1459 1460 ret = __gfs2_iomap_get(inode, pos, length, 0, iomap, &mp); 1461 release_metapath(&mp); 1462 return ret; 1463 } 1464 1465 int gfs2_iomap_alloc(struct inode *inode, loff_t pos, loff_t length, 1466 struct iomap *iomap) 1467 { 1468 struct metapath mp = { .mp_aheight = 1, }; 1469 int ret; 1470 1471 ret = __gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp); 1472 if (!ret && iomap->type == IOMAP_HOLE) 1473 ret = __gfs2_iomap_alloc(inode, iomap, &mp); 1474 release_metapath(&mp); 1475 return ret; 1476 } 1477 1478 /** 1479 * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein 1480 * @ip: inode 1481 * @rd_gh: holder of resource group glock 1482 * @bh: buffer head to sweep 1483 * @start: starting point in bh 1484 * @end: end point in bh 1485 * @meta: true if bh points to metadata (rather than data) 1486 * @btotal: place to keep count of total blocks freed 1487 * 1488 * We sweep a metadata buffer (provided by the metapath) for blocks we need to 1489 * free, and free them all. However, we do it one rgrp at a time. If this 1490 * block has references to multiple rgrps, we break it into individual 1491 * transactions. This allows other processes to use the rgrps while we're 1492 * focused on a single one, for better concurrency / performance. 1493 * At every transaction boundary, we rewrite the inode into the journal. 1494 * That way the bitmaps are kept consistent with the inode and we can recover 1495 * if we're interrupted by power-outages. 1496 * 1497 * Returns: 0, or return code if an error occurred. 1498 * *btotal has the total number of blocks freed 1499 */ 1500 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh, 1501 struct buffer_head *bh, __be64 *start, __be64 *end, 1502 bool meta, u32 *btotal) 1503 { 1504 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1505 struct gfs2_rgrpd *rgd; 1506 struct gfs2_trans *tr; 1507 __be64 *p; 1508 int blks_outside_rgrp; 1509 u64 bn, bstart, isize_blks; 1510 s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */ 1511 int ret = 0; 1512 bool buf_in_tr = false; /* buffer was added to transaction */ 1513 1514 more_rgrps: 1515 rgd = NULL; 1516 if (gfs2_holder_initialized(rd_gh)) { 1517 rgd = gfs2_glock2rgrp(rd_gh->gh_gl); 1518 gfs2_assert_withdraw(sdp, 1519 gfs2_glock_is_locked_by_me(rd_gh->gh_gl)); 1520 } 1521 blks_outside_rgrp = 0; 1522 bstart = 0; 1523 blen = 0; 1524 1525 for (p = start; p < end; p++) { 1526 if (!*p) 1527 continue; 1528 bn = be64_to_cpu(*p); 1529 1530 if (rgd) { 1531 if (!rgrp_contains_block(rgd, bn)) { 1532 blks_outside_rgrp++; 1533 continue; 1534 } 1535 } else { 1536 rgd = gfs2_blk2rgrpd(sdp, bn, true); 1537 if (unlikely(!rgd)) { 1538 ret = -EIO; 1539 goto out; 1540 } 1541 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 1542 LM_FLAG_NODE_SCOPE, rd_gh); 1543 if (ret) 1544 goto out; 1545 1546 /* Must be done with the rgrp glock held: */ 1547 if (gfs2_rs_active(&ip->i_res) && 1548 rgd == ip->i_res.rs_rgd) 1549 gfs2_rs_deltree(&ip->i_res); 1550 } 1551 1552 /* The size of our transactions will be unknown until we 1553 actually process all the metadata blocks that relate to 1554 the rgrp. So we estimate. We know it can't be more than 1555 the dinode's i_blocks and we don't want to exceed the 1556 journal flush threshold, sd_log_thresh2. */ 1557 if (current->journal_info == NULL) { 1558 unsigned int jblocks_rqsted, revokes; 1559 1560 jblocks_rqsted = rgd->rd_length + RES_DINODE + 1561 RES_INDIRECT; 1562 isize_blks = gfs2_get_inode_blocks(&ip->i_inode); 1563 if (isize_blks > atomic_read(&sdp->sd_log_thresh2)) 1564 jblocks_rqsted += 1565 atomic_read(&sdp->sd_log_thresh2); 1566 else 1567 jblocks_rqsted += isize_blks; 1568 revokes = jblocks_rqsted; 1569 if (meta) 1570 revokes += end - start; 1571 else if (ip->i_depth) 1572 revokes += sdp->sd_inptrs; 1573 ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes); 1574 if (ret) 1575 goto out_unlock; 1576 down_write(&ip->i_rw_mutex); 1577 } 1578 /* check if we will exceed the transaction blocks requested */ 1579 tr = current->journal_info; 1580 if (tr->tr_num_buf_new + RES_STATFS + 1581 RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) { 1582 /* We set blks_outside_rgrp to ensure the loop will 1583 be repeated for the same rgrp, but with a new 1584 transaction. */ 1585 blks_outside_rgrp++; 1586 /* This next part is tricky. If the buffer was added 1587 to the transaction, we've already set some block 1588 pointers to 0, so we better follow through and free 1589 them, or we will introduce corruption (so break). 1590 This may be impossible, or at least rare, but I 1591 decided to cover the case regardless. 1592 1593 If the buffer was not added to the transaction 1594 (this call), doing so would exceed our transaction 1595 size, so we need to end the transaction and start a 1596 new one (so goto). */ 1597 1598 if (buf_in_tr) 1599 break; 1600 goto out_unlock; 1601 } 1602 1603 gfs2_trans_add_meta(ip->i_gl, bh); 1604 buf_in_tr = true; 1605 *p = 0; 1606 if (bstart + blen == bn) { 1607 blen++; 1608 continue; 1609 } 1610 if (bstart) { 1611 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1612 (*btotal) += blen; 1613 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1614 } 1615 bstart = bn; 1616 blen = 1; 1617 } 1618 if (bstart) { 1619 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1620 (*btotal) += blen; 1621 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1622 } 1623 out_unlock: 1624 if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks 1625 outside the rgrp we just processed, 1626 do it all over again. */ 1627 if (current->journal_info) { 1628 struct buffer_head *dibh; 1629 1630 ret = gfs2_meta_inode_buffer(ip, &dibh); 1631 if (ret) 1632 goto out; 1633 1634 /* Every transaction boundary, we rewrite the dinode 1635 to keep its di_blocks current in case of failure. */ 1636 ip->i_inode.i_mtime = ip->i_inode.i_ctime = 1637 current_time(&ip->i_inode); 1638 gfs2_trans_add_meta(ip->i_gl, dibh); 1639 gfs2_dinode_out(ip, dibh->b_data); 1640 brelse(dibh); 1641 up_write(&ip->i_rw_mutex); 1642 gfs2_trans_end(sdp); 1643 buf_in_tr = false; 1644 } 1645 gfs2_glock_dq_uninit(rd_gh); 1646 cond_resched(); 1647 goto more_rgrps; 1648 } 1649 out: 1650 return ret; 1651 } 1652 1653 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h) 1654 { 1655 if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0]))) 1656 return false; 1657 return true; 1658 } 1659 1660 /** 1661 * find_nonnull_ptr - find a non-null pointer given a metapath and height 1662 * @sdp: The superblock 1663 * @mp: starting metapath 1664 * @h: desired height to search 1665 * @end_list: See punch_hole(). 1666 * @end_aligned: See punch_hole(). 1667 * 1668 * Assumes the metapath is valid (with buffers) out to height h. 1669 * Returns: true if a non-null pointer was found in the metapath buffer 1670 * false if all remaining pointers are NULL in the buffer 1671 */ 1672 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp, 1673 unsigned int h, 1674 __u16 *end_list, unsigned int end_aligned) 1675 { 1676 struct buffer_head *bh = mp->mp_bh[h]; 1677 __be64 *first, *ptr, *end; 1678 1679 first = metaptr1(h, mp); 1680 ptr = first + mp->mp_list[h]; 1681 end = (__be64 *)(bh->b_data + bh->b_size); 1682 if (end_list && mp_eq_to_hgt(mp, end_list, h)) { 1683 bool keep_end = h < end_aligned; 1684 end = first + end_list[h] + keep_end; 1685 } 1686 1687 while (ptr < end) { 1688 if (*ptr) { /* if we have a non-null pointer */ 1689 mp->mp_list[h] = ptr - first; 1690 h++; 1691 if (h < GFS2_MAX_META_HEIGHT) 1692 mp->mp_list[h] = 0; 1693 return true; 1694 } 1695 ptr++; 1696 } 1697 return false; 1698 } 1699 1700 enum dealloc_states { 1701 DEALLOC_MP_FULL = 0, /* Strip a metapath with all buffers read in */ 1702 DEALLOC_MP_LOWER = 1, /* lower the metapath strip height */ 1703 DEALLOC_FILL_MP = 2, /* Fill in the metapath to the given height. */ 1704 DEALLOC_DONE = 3, /* process complete */ 1705 }; 1706 1707 static inline void 1708 metapointer_range(struct metapath *mp, int height, 1709 __u16 *start_list, unsigned int start_aligned, 1710 __u16 *end_list, unsigned int end_aligned, 1711 __be64 **start, __be64 **end) 1712 { 1713 struct buffer_head *bh = mp->mp_bh[height]; 1714 __be64 *first; 1715 1716 first = metaptr1(height, mp); 1717 *start = first; 1718 if (mp_eq_to_hgt(mp, start_list, height)) { 1719 bool keep_start = height < start_aligned; 1720 *start = first + start_list[height] + keep_start; 1721 } 1722 *end = (__be64 *)(bh->b_data + bh->b_size); 1723 if (end_list && mp_eq_to_hgt(mp, end_list, height)) { 1724 bool keep_end = height < end_aligned; 1725 *end = first + end_list[height] + keep_end; 1726 } 1727 } 1728 1729 static inline bool walk_done(struct gfs2_sbd *sdp, 1730 struct metapath *mp, int height, 1731 __u16 *end_list, unsigned int end_aligned) 1732 { 1733 __u16 end; 1734 1735 if (end_list) { 1736 bool keep_end = height < end_aligned; 1737 if (!mp_eq_to_hgt(mp, end_list, height)) 1738 return false; 1739 end = end_list[height] + keep_end; 1740 } else 1741 end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs; 1742 return mp->mp_list[height] >= end; 1743 } 1744 1745 /** 1746 * punch_hole - deallocate blocks in a file 1747 * @ip: inode to truncate 1748 * @offset: the start of the hole 1749 * @length: the size of the hole (or 0 for truncate) 1750 * 1751 * Punch a hole into a file or truncate a file at a given position. This 1752 * function operates in whole blocks (@offset and @length are rounded 1753 * accordingly); partially filled blocks must be cleared otherwise. 1754 * 1755 * This function works from the bottom up, and from the right to the left. In 1756 * other words, it strips off the highest layer (data) before stripping any of 1757 * the metadata. Doing it this way is best in case the operation is interrupted 1758 * by power failure, etc. The dinode is rewritten in every transaction to 1759 * guarantee integrity. 1760 */ 1761 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length) 1762 { 1763 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1764 u64 maxsize = sdp->sd_heightsize[ip->i_height]; 1765 struct metapath mp = {}; 1766 struct buffer_head *dibh, *bh; 1767 struct gfs2_holder rd_gh; 1768 unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift; 1769 u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift; 1770 __u16 start_list[GFS2_MAX_META_HEIGHT]; 1771 __u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL; 1772 unsigned int start_aligned, end_aligned; 1773 unsigned int strip_h = ip->i_height - 1; 1774 u32 btotal = 0; 1775 int ret, state; 1776 int mp_h; /* metapath buffers are read in to this height */ 1777 u64 prev_bnr = 0; 1778 __be64 *start, *end; 1779 1780 if (offset >= maxsize) { 1781 /* 1782 * The starting point lies beyond the allocated meta-data; 1783 * there are no blocks do deallocate. 1784 */ 1785 return 0; 1786 } 1787 1788 /* 1789 * The start position of the hole is defined by lblock, start_list, and 1790 * start_aligned. The end position of the hole is defined by lend, 1791 * end_list, and end_aligned. 1792 * 1793 * start_aligned and end_aligned define down to which height the start 1794 * and end positions are aligned to the metadata tree (i.e., the 1795 * position is a multiple of the metadata granularity at the height 1796 * above). This determines at which heights additional meta pointers 1797 * needs to be preserved for the remaining data. 1798 */ 1799 1800 if (length) { 1801 u64 end_offset = offset + length; 1802 u64 lend; 1803 1804 /* 1805 * Clip the end at the maximum file size for the given height: 1806 * that's how far the metadata goes; files bigger than that 1807 * will have additional layers of indirection. 1808 */ 1809 if (end_offset > maxsize) 1810 end_offset = maxsize; 1811 lend = end_offset >> bsize_shift; 1812 1813 if (lblock >= lend) 1814 return 0; 1815 1816 find_metapath(sdp, lend, &mp, ip->i_height); 1817 end_list = __end_list; 1818 memcpy(end_list, mp.mp_list, sizeof(mp.mp_list)); 1819 1820 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1821 if (end_list[mp_h]) 1822 break; 1823 } 1824 end_aligned = mp_h; 1825 } 1826 1827 find_metapath(sdp, lblock, &mp, ip->i_height); 1828 memcpy(start_list, mp.mp_list, sizeof(start_list)); 1829 1830 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1831 if (start_list[mp_h]) 1832 break; 1833 } 1834 start_aligned = mp_h; 1835 1836 ret = gfs2_meta_inode_buffer(ip, &dibh); 1837 if (ret) 1838 return ret; 1839 1840 mp.mp_bh[0] = dibh; 1841 ret = lookup_metapath(ip, &mp); 1842 if (ret) 1843 goto out_metapath; 1844 1845 /* issue read-ahead on metadata */ 1846 for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) { 1847 metapointer_range(&mp, mp_h, start_list, start_aligned, 1848 end_list, end_aligned, &start, &end); 1849 gfs2_metapath_ra(ip->i_gl, start, end); 1850 } 1851 1852 if (mp.mp_aheight == ip->i_height) 1853 state = DEALLOC_MP_FULL; /* We have a complete metapath */ 1854 else 1855 state = DEALLOC_FILL_MP; /* deal with partial metapath */ 1856 1857 ret = gfs2_rindex_update(sdp); 1858 if (ret) 1859 goto out_metapath; 1860 1861 ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE); 1862 if (ret) 1863 goto out_metapath; 1864 gfs2_holder_mark_uninitialized(&rd_gh); 1865 1866 mp_h = strip_h; 1867 1868 while (state != DEALLOC_DONE) { 1869 switch (state) { 1870 /* Truncate a full metapath at the given strip height. 1871 * Note that strip_h == mp_h in order to be in this state. */ 1872 case DEALLOC_MP_FULL: 1873 bh = mp.mp_bh[mp_h]; 1874 gfs2_assert_withdraw(sdp, bh); 1875 if (gfs2_assert_withdraw(sdp, 1876 prev_bnr != bh->b_blocknr)) { 1877 fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u," 1878 "s_h:%u, mp_h:%u\n", 1879 (unsigned long long)ip->i_no_addr, 1880 prev_bnr, ip->i_height, strip_h, mp_h); 1881 } 1882 prev_bnr = bh->b_blocknr; 1883 1884 if (gfs2_metatype_check(sdp, bh, 1885 (mp_h ? GFS2_METATYPE_IN : 1886 GFS2_METATYPE_DI))) { 1887 ret = -EIO; 1888 goto out; 1889 } 1890 1891 /* 1892 * Below, passing end_aligned as 0 gives us the 1893 * metapointer range excluding the end point: the end 1894 * point is the first metapath we must not deallocate! 1895 */ 1896 1897 metapointer_range(&mp, mp_h, start_list, start_aligned, 1898 end_list, 0 /* end_aligned */, 1899 &start, &end); 1900 ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h], 1901 start, end, 1902 mp_h != ip->i_height - 1, 1903 &btotal); 1904 1905 /* If we hit an error or just swept dinode buffer, 1906 just exit. */ 1907 if (ret || !mp_h) { 1908 state = DEALLOC_DONE; 1909 break; 1910 } 1911 state = DEALLOC_MP_LOWER; 1912 break; 1913 1914 /* lower the metapath strip height */ 1915 case DEALLOC_MP_LOWER: 1916 /* We're done with the current buffer, so release it, 1917 unless it's the dinode buffer. Then back up to the 1918 previous pointer. */ 1919 if (mp_h) { 1920 brelse(mp.mp_bh[mp_h]); 1921 mp.mp_bh[mp_h] = NULL; 1922 } 1923 /* If we can't get any lower in height, we've stripped 1924 off all we can. Next step is to back up and start 1925 stripping the previous level of metadata. */ 1926 if (mp_h == 0) { 1927 strip_h--; 1928 memcpy(mp.mp_list, start_list, sizeof(start_list)); 1929 mp_h = strip_h; 1930 state = DEALLOC_FILL_MP; 1931 break; 1932 } 1933 mp.mp_list[mp_h] = 0; 1934 mp_h--; /* search one metadata height down */ 1935 mp.mp_list[mp_h]++; 1936 if (walk_done(sdp, &mp, mp_h, end_list, end_aligned)) 1937 break; 1938 /* Here we've found a part of the metapath that is not 1939 * allocated. We need to search at that height for the 1940 * next non-null pointer. */ 1941 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) { 1942 state = DEALLOC_FILL_MP; 1943 mp_h++; 1944 } 1945 /* No more non-null pointers at this height. Back up 1946 to the previous height and try again. */ 1947 break; /* loop around in the same state */ 1948 1949 /* Fill the metapath with buffers to the given height. */ 1950 case DEALLOC_FILL_MP: 1951 /* Fill the buffers out to the current height. */ 1952 ret = fillup_metapath(ip, &mp, mp_h); 1953 if (ret < 0) 1954 goto out; 1955 1956 /* On the first pass, issue read-ahead on metadata. */ 1957 if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) { 1958 unsigned int height = mp.mp_aheight - 1; 1959 1960 /* No read-ahead for data blocks. */ 1961 if (mp.mp_aheight - 1 == strip_h) 1962 height--; 1963 1964 for (; height >= mp.mp_aheight - ret; height--) { 1965 metapointer_range(&mp, height, 1966 start_list, start_aligned, 1967 end_list, end_aligned, 1968 &start, &end); 1969 gfs2_metapath_ra(ip->i_gl, start, end); 1970 } 1971 } 1972 1973 /* If buffers found for the entire strip height */ 1974 if (mp.mp_aheight - 1 == strip_h) { 1975 state = DEALLOC_MP_FULL; 1976 break; 1977 } 1978 if (mp.mp_aheight < ip->i_height) /* We have a partial height */ 1979 mp_h = mp.mp_aheight - 1; 1980 1981 /* If we find a non-null block pointer, crawl a bit 1982 higher up in the metapath and try again, otherwise 1983 we need to look lower for a new starting point. */ 1984 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) 1985 mp_h++; 1986 else 1987 state = DEALLOC_MP_LOWER; 1988 break; 1989 } 1990 } 1991 1992 if (btotal) { 1993 if (current->journal_info == NULL) { 1994 ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + 1995 RES_QUOTA, 0); 1996 if (ret) 1997 goto out; 1998 down_write(&ip->i_rw_mutex); 1999 } 2000 gfs2_statfs_change(sdp, 0, +btotal, 0); 2001 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid, 2002 ip->i_inode.i_gid); 2003 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2004 gfs2_trans_add_meta(ip->i_gl, dibh); 2005 gfs2_dinode_out(ip, dibh->b_data); 2006 up_write(&ip->i_rw_mutex); 2007 gfs2_trans_end(sdp); 2008 } 2009 2010 out: 2011 if (gfs2_holder_initialized(&rd_gh)) 2012 gfs2_glock_dq_uninit(&rd_gh); 2013 if (current->journal_info) { 2014 up_write(&ip->i_rw_mutex); 2015 gfs2_trans_end(sdp); 2016 cond_resched(); 2017 } 2018 gfs2_quota_unhold(ip); 2019 out_metapath: 2020 release_metapath(&mp); 2021 return ret; 2022 } 2023 2024 static int trunc_end(struct gfs2_inode *ip) 2025 { 2026 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2027 struct buffer_head *dibh; 2028 int error; 2029 2030 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2031 if (error) 2032 return error; 2033 2034 down_write(&ip->i_rw_mutex); 2035 2036 error = gfs2_meta_inode_buffer(ip, &dibh); 2037 if (error) 2038 goto out; 2039 2040 if (!i_size_read(&ip->i_inode)) { 2041 ip->i_height = 0; 2042 ip->i_goal = ip->i_no_addr; 2043 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 2044 gfs2_ordered_del_inode(ip); 2045 } 2046 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2047 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG; 2048 2049 gfs2_trans_add_meta(ip->i_gl, dibh); 2050 gfs2_dinode_out(ip, dibh->b_data); 2051 brelse(dibh); 2052 2053 out: 2054 up_write(&ip->i_rw_mutex); 2055 gfs2_trans_end(sdp); 2056 return error; 2057 } 2058 2059 /** 2060 * do_shrink - make a file smaller 2061 * @inode: the inode 2062 * @newsize: the size to make the file 2063 * 2064 * Called with an exclusive lock on @inode. The @size must 2065 * be equal to or smaller than the current inode size. 2066 * 2067 * Returns: errno 2068 */ 2069 2070 static int do_shrink(struct inode *inode, u64 newsize) 2071 { 2072 struct gfs2_inode *ip = GFS2_I(inode); 2073 int error; 2074 2075 error = trunc_start(inode, newsize); 2076 if (error < 0) 2077 return error; 2078 if (gfs2_is_stuffed(ip)) 2079 return 0; 2080 2081 error = punch_hole(ip, newsize, 0); 2082 if (error == 0) 2083 error = trunc_end(ip); 2084 2085 return error; 2086 } 2087 2088 void gfs2_trim_blocks(struct inode *inode) 2089 { 2090 int ret; 2091 2092 ret = do_shrink(inode, inode->i_size); 2093 WARN_ON(ret != 0); 2094 } 2095 2096 /** 2097 * do_grow - Touch and update inode size 2098 * @inode: The inode 2099 * @size: The new size 2100 * 2101 * This function updates the timestamps on the inode and 2102 * may also increase the size of the inode. This function 2103 * must not be called with @size any smaller than the current 2104 * inode size. 2105 * 2106 * Although it is not strictly required to unstuff files here, 2107 * earlier versions of GFS2 have a bug in the stuffed file reading 2108 * code which will result in a buffer overrun if the size is larger 2109 * than the max stuffed file size. In order to prevent this from 2110 * occurring, such files are unstuffed, but in other cases we can 2111 * just update the inode size directly. 2112 * 2113 * Returns: 0 on success, or -ve on error 2114 */ 2115 2116 static int do_grow(struct inode *inode, u64 size) 2117 { 2118 struct gfs2_inode *ip = GFS2_I(inode); 2119 struct gfs2_sbd *sdp = GFS2_SB(inode); 2120 struct gfs2_alloc_parms ap = { .target = 1, }; 2121 struct buffer_head *dibh; 2122 int error; 2123 int unstuff = 0; 2124 2125 if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) { 2126 error = gfs2_quota_lock_check(ip, &ap); 2127 if (error) 2128 return error; 2129 2130 error = gfs2_inplace_reserve(ip, &ap); 2131 if (error) 2132 goto do_grow_qunlock; 2133 unstuff = 1; 2134 } 2135 2136 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT + 2137 (unstuff && 2138 gfs2_is_jdata(ip) ? RES_JDATA : 0) + 2139 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ? 2140 0 : RES_QUOTA), 0); 2141 if (error) 2142 goto do_grow_release; 2143 2144 if (unstuff) { 2145 error = gfs2_unstuff_dinode(ip); 2146 if (error) 2147 goto do_end_trans; 2148 } 2149 2150 error = gfs2_meta_inode_buffer(ip, &dibh); 2151 if (error) 2152 goto do_end_trans; 2153 2154 truncate_setsize(inode, size); 2155 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2156 gfs2_trans_add_meta(ip->i_gl, dibh); 2157 gfs2_dinode_out(ip, dibh->b_data); 2158 brelse(dibh); 2159 2160 do_end_trans: 2161 gfs2_trans_end(sdp); 2162 do_grow_release: 2163 if (unstuff) { 2164 gfs2_inplace_release(ip); 2165 do_grow_qunlock: 2166 gfs2_quota_unlock(ip); 2167 } 2168 return error; 2169 } 2170 2171 /** 2172 * gfs2_setattr_size - make a file a given size 2173 * @inode: the inode 2174 * @newsize: the size to make the file 2175 * 2176 * The file size can grow, shrink, or stay the same size. This 2177 * is called holding i_rwsem and an exclusive glock on the inode 2178 * in question. 2179 * 2180 * Returns: errno 2181 */ 2182 2183 int gfs2_setattr_size(struct inode *inode, u64 newsize) 2184 { 2185 struct gfs2_inode *ip = GFS2_I(inode); 2186 int ret; 2187 2188 BUG_ON(!S_ISREG(inode->i_mode)); 2189 2190 ret = inode_newsize_ok(inode, newsize); 2191 if (ret) 2192 return ret; 2193 2194 inode_dio_wait(inode); 2195 2196 ret = gfs2_qa_get(ip); 2197 if (ret) 2198 goto out; 2199 2200 if (newsize >= inode->i_size) { 2201 ret = do_grow(inode, newsize); 2202 goto out; 2203 } 2204 2205 ret = do_shrink(inode, newsize); 2206 out: 2207 gfs2_rs_delete(ip, NULL); 2208 gfs2_qa_put(ip); 2209 return ret; 2210 } 2211 2212 int gfs2_truncatei_resume(struct gfs2_inode *ip) 2213 { 2214 int error; 2215 error = punch_hole(ip, i_size_read(&ip->i_inode), 0); 2216 if (!error) 2217 error = trunc_end(ip); 2218 return error; 2219 } 2220 2221 int gfs2_file_dealloc(struct gfs2_inode *ip) 2222 { 2223 return punch_hole(ip, 0, 0); 2224 } 2225 2226 /** 2227 * gfs2_free_journal_extents - Free cached journal bmap info 2228 * @jd: The journal 2229 * 2230 */ 2231 2232 void gfs2_free_journal_extents(struct gfs2_jdesc *jd) 2233 { 2234 struct gfs2_journal_extent *jext; 2235 2236 while(!list_empty(&jd->extent_list)) { 2237 jext = list_first_entry(&jd->extent_list, struct gfs2_journal_extent, list); 2238 list_del(&jext->list); 2239 kfree(jext); 2240 } 2241 } 2242 2243 /** 2244 * gfs2_add_jextent - Add or merge a new extent to extent cache 2245 * @jd: The journal descriptor 2246 * @lblock: The logical block at start of new extent 2247 * @dblock: The physical block at start of new extent 2248 * @blocks: Size of extent in fs blocks 2249 * 2250 * Returns: 0 on success or -ENOMEM 2251 */ 2252 2253 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks) 2254 { 2255 struct gfs2_journal_extent *jext; 2256 2257 if (!list_empty(&jd->extent_list)) { 2258 jext = list_last_entry(&jd->extent_list, struct gfs2_journal_extent, list); 2259 if ((jext->dblock + jext->blocks) == dblock) { 2260 jext->blocks += blocks; 2261 return 0; 2262 } 2263 } 2264 2265 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS); 2266 if (jext == NULL) 2267 return -ENOMEM; 2268 jext->dblock = dblock; 2269 jext->lblock = lblock; 2270 jext->blocks = blocks; 2271 list_add_tail(&jext->list, &jd->extent_list); 2272 jd->nr_extents++; 2273 return 0; 2274 } 2275 2276 /** 2277 * gfs2_map_journal_extents - Cache journal bmap info 2278 * @sdp: The super block 2279 * @jd: The journal to map 2280 * 2281 * Create a reusable "extent" mapping from all logical 2282 * blocks to all physical blocks for the given journal. This will save 2283 * us time when writing journal blocks. Most journals will have only one 2284 * extent that maps all their logical blocks. That's because gfs2.mkfs 2285 * arranges the journal blocks sequentially to maximize performance. 2286 * So the extent would map the first block for the entire file length. 2287 * However, gfs2_jadd can happen while file activity is happening, so 2288 * those journals may not be sequential. Less likely is the case where 2289 * the users created their own journals by mounting the metafs and 2290 * laying it out. But it's still possible. These journals might have 2291 * several extents. 2292 * 2293 * Returns: 0 on success, or error on failure 2294 */ 2295 2296 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd) 2297 { 2298 u64 lblock = 0; 2299 u64 lblock_stop; 2300 struct gfs2_inode *ip = GFS2_I(jd->jd_inode); 2301 struct buffer_head bh; 2302 unsigned int shift = sdp->sd_sb.sb_bsize_shift; 2303 u64 size; 2304 int rc; 2305 ktime_t start, end; 2306 2307 start = ktime_get(); 2308 lblock_stop = i_size_read(jd->jd_inode) >> shift; 2309 size = (lblock_stop - lblock) << shift; 2310 jd->nr_extents = 0; 2311 WARN_ON(!list_empty(&jd->extent_list)); 2312 2313 do { 2314 bh.b_state = 0; 2315 bh.b_blocknr = 0; 2316 bh.b_size = size; 2317 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0); 2318 if (rc || !buffer_mapped(&bh)) 2319 goto fail; 2320 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift); 2321 if (rc) 2322 goto fail; 2323 size -= bh.b_size; 2324 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2325 } while(size > 0); 2326 2327 end = ktime_get(); 2328 fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid, 2329 jd->nr_extents, ktime_ms_delta(end, start)); 2330 return 0; 2331 2332 fail: 2333 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n", 2334 rc, jd->jd_jid, 2335 (unsigned long long)(i_size_read(jd->jd_inode) - size), 2336 jd->nr_extents); 2337 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n", 2338 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr, 2339 bh.b_state, (unsigned long long)bh.b_size); 2340 gfs2_free_journal_extents(jd); 2341 return rc; 2342 } 2343 2344 /** 2345 * gfs2_write_alloc_required - figure out if a write will require an allocation 2346 * @ip: the file being written to 2347 * @offset: the offset to write to 2348 * @len: the number of bytes being written 2349 * 2350 * Returns: 1 if an alloc is required, 0 otherwise 2351 */ 2352 2353 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset, 2354 unsigned int len) 2355 { 2356 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2357 struct buffer_head bh; 2358 unsigned int shift; 2359 u64 lblock, lblock_stop, size; 2360 u64 end_of_file; 2361 2362 if (!len) 2363 return 0; 2364 2365 if (gfs2_is_stuffed(ip)) { 2366 if (offset + len > gfs2_max_stuffed_size(ip)) 2367 return 1; 2368 return 0; 2369 } 2370 2371 shift = sdp->sd_sb.sb_bsize_shift; 2372 BUG_ON(gfs2_is_dir(ip)); 2373 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift; 2374 lblock = offset >> shift; 2375 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift; 2376 if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex)) 2377 return 1; 2378 2379 size = (lblock_stop - lblock) << shift; 2380 do { 2381 bh.b_state = 0; 2382 bh.b_size = size; 2383 gfs2_block_map(&ip->i_inode, lblock, &bh, 0); 2384 if (!buffer_mapped(&bh)) 2385 return 1; 2386 size -= bh.b_size; 2387 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2388 } while(size > 0); 2389 2390 return 0; 2391 } 2392 2393 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length) 2394 { 2395 struct gfs2_inode *ip = GFS2_I(inode); 2396 struct buffer_head *dibh; 2397 int error; 2398 2399 if (offset >= inode->i_size) 2400 return 0; 2401 if (offset + length > inode->i_size) 2402 length = inode->i_size - offset; 2403 2404 error = gfs2_meta_inode_buffer(ip, &dibh); 2405 if (error) 2406 return error; 2407 gfs2_trans_add_meta(ip->i_gl, dibh); 2408 memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0, 2409 length); 2410 brelse(dibh); 2411 return 0; 2412 } 2413 2414 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset, 2415 loff_t length) 2416 { 2417 struct gfs2_sbd *sdp = GFS2_SB(inode); 2418 loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 2419 int error; 2420 2421 while (length) { 2422 struct gfs2_trans *tr; 2423 loff_t chunk; 2424 unsigned int offs; 2425 2426 chunk = length; 2427 if (chunk > max_chunk) 2428 chunk = max_chunk; 2429 2430 offs = offset & ~PAGE_MASK; 2431 if (offs && chunk > PAGE_SIZE) 2432 chunk = offs + ((chunk - offs) & PAGE_MASK); 2433 2434 truncate_pagecache_range(inode, offset, chunk); 2435 offset += chunk; 2436 length -= chunk; 2437 2438 tr = current->journal_info; 2439 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 2440 continue; 2441 2442 gfs2_trans_end(sdp); 2443 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 2444 if (error) 2445 return error; 2446 } 2447 return 0; 2448 } 2449 2450 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length) 2451 { 2452 struct inode *inode = file_inode(file); 2453 struct gfs2_inode *ip = GFS2_I(inode); 2454 struct gfs2_sbd *sdp = GFS2_SB(inode); 2455 unsigned int blocksize = i_blocksize(inode); 2456 loff_t start, end; 2457 int error; 2458 2459 if (!gfs2_is_stuffed(ip)) { 2460 unsigned int start_off, end_len; 2461 2462 start_off = offset & (blocksize - 1); 2463 end_len = (offset + length) & (blocksize - 1); 2464 if (start_off) { 2465 unsigned int len = length; 2466 if (length > blocksize - start_off) 2467 len = blocksize - start_off; 2468 error = gfs2_block_zero_range(inode, offset, len); 2469 if (error) 2470 goto out; 2471 if (start_off + length < blocksize) 2472 end_len = 0; 2473 } 2474 if (end_len) { 2475 error = gfs2_block_zero_range(inode, 2476 offset + length - end_len, end_len); 2477 if (error) 2478 goto out; 2479 } 2480 } 2481 2482 start = round_down(offset, blocksize); 2483 end = round_up(offset + length, blocksize) - 1; 2484 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 2485 if (error) 2486 return error; 2487 2488 if (gfs2_is_jdata(ip)) 2489 error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA, 2490 GFS2_JTRUNC_REVOKES); 2491 else 2492 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2493 if (error) 2494 return error; 2495 2496 if (gfs2_is_stuffed(ip)) { 2497 error = stuffed_zero_range(inode, offset, length); 2498 if (error) 2499 goto out; 2500 } 2501 2502 if (gfs2_is_jdata(ip)) { 2503 BUG_ON(!current->journal_info); 2504 gfs2_journaled_truncate_range(inode, offset, length); 2505 } else 2506 truncate_pagecache_range(inode, offset, offset + length - 1); 2507 2508 file_update_time(file); 2509 mark_inode_dirty(inode); 2510 2511 if (current->journal_info) 2512 gfs2_trans_end(sdp); 2513 2514 if (!gfs2_is_stuffed(ip)) 2515 error = punch_hole(ip, offset, length); 2516 2517 out: 2518 if (current->journal_info) 2519 gfs2_trans_end(sdp); 2520 return error; 2521 } 2522 2523 static int gfs2_map_blocks(struct iomap_writepage_ctx *wpc, struct inode *inode, 2524 loff_t offset) 2525 { 2526 int ret; 2527 2528 if (WARN_ON_ONCE(gfs2_is_stuffed(GFS2_I(inode)))) 2529 return -EIO; 2530 2531 if (offset >= wpc->iomap.offset && 2532 offset < wpc->iomap.offset + wpc->iomap.length) 2533 return 0; 2534 2535 memset(&wpc->iomap, 0, sizeof(wpc->iomap)); 2536 ret = gfs2_iomap_get(inode, offset, INT_MAX, &wpc->iomap); 2537 return ret; 2538 } 2539 2540 const struct iomap_writeback_ops gfs2_writeback_ops = { 2541 .map_blocks = gfs2_map_blocks, 2542 }; 2543