1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 5 */ 6 7 #include <linux/spinlock.h> 8 #include <linux/completion.h> 9 #include <linux/buffer_head.h> 10 #include <linux/blkdev.h> 11 #include <linux/gfs2_ondisk.h> 12 #include <linux/crc32.h> 13 #include <linux/iomap.h> 14 #include <linux/ktime.h> 15 16 #include "gfs2.h" 17 #include "incore.h" 18 #include "bmap.h" 19 #include "glock.h" 20 #include "inode.h" 21 #include "meta_io.h" 22 #include "quota.h" 23 #include "rgrp.h" 24 #include "log.h" 25 #include "super.h" 26 #include "trans.h" 27 #include "dir.h" 28 #include "util.h" 29 #include "aops.h" 30 #include "trace_gfs2.h" 31 32 /* This doesn't need to be that large as max 64 bit pointers in a 4k 33 * block is 512, so __u16 is fine for that. It saves stack space to 34 * keep it small. 35 */ 36 struct metapath { 37 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT]; 38 __u16 mp_list[GFS2_MAX_META_HEIGHT]; 39 int mp_fheight; /* find_metapath height */ 40 int mp_aheight; /* actual height (lookup height) */ 41 }; 42 43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length); 44 45 /** 46 * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page 47 * @ip: the inode 48 * @dibh: the dinode buffer 49 * @block: the block number that was allocated 50 * @page: The (optional) page. This is looked up if @page is NULL 51 * 52 * Returns: errno 53 */ 54 55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh, 56 u64 block, struct page *page) 57 { 58 struct inode *inode = &ip->i_inode; 59 struct buffer_head *bh; 60 int release = 0; 61 62 if (!page || page->index) { 63 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 64 if (!page) 65 return -ENOMEM; 66 release = 1; 67 } 68 69 if (!PageUptodate(page)) { 70 void *kaddr = kmap(page); 71 u64 dsize = i_size_read(inode); 72 73 if (dsize > gfs2_max_stuffed_size(ip)) 74 dsize = gfs2_max_stuffed_size(ip); 75 76 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 77 memset(kaddr + dsize, 0, PAGE_SIZE - dsize); 78 kunmap(page); 79 80 SetPageUptodate(page); 81 } 82 83 if (!page_has_buffers(page)) 84 create_empty_buffers(page, BIT(inode->i_blkbits), 85 BIT(BH_Uptodate)); 86 87 bh = page_buffers(page); 88 89 if (!buffer_mapped(bh)) 90 map_bh(bh, inode->i_sb, block); 91 92 set_buffer_uptodate(bh); 93 if (gfs2_is_jdata(ip)) 94 gfs2_trans_add_data(ip->i_gl, bh); 95 else { 96 mark_buffer_dirty(bh); 97 gfs2_ordered_add_inode(ip); 98 } 99 100 if (release) { 101 unlock_page(page); 102 put_page(page); 103 } 104 105 return 0; 106 } 107 108 /** 109 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big 110 * @ip: The GFS2 inode to unstuff 111 * @page: The (optional) page. This is looked up if the @page is NULL 112 * 113 * This routine unstuffs a dinode and returns it to a "normal" state such 114 * that the height can be grown in the traditional way. 115 * 116 * Returns: errno 117 */ 118 119 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page) 120 { 121 struct buffer_head *bh, *dibh; 122 struct gfs2_dinode *di; 123 u64 block = 0; 124 int isdir = gfs2_is_dir(ip); 125 int error; 126 127 down_write(&ip->i_rw_mutex); 128 129 error = gfs2_meta_inode_buffer(ip, &dibh); 130 if (error) 131 goto out; 132 133 if (i_size_read(&ip->i_inode)) { 134 /* Get a free block, fill it with the stuffed data, 135 and write it out to disk */ 136 137 unsigned int n = 1; 138 error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL); 139 if (error) 140 goto out_brelse; 141 if (isdir) { 142 gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1); 143 error = gfs2_dir_get_new_buffer(ip, block, &bh); 144 if (error) 145 goto out_brelse; 146 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header), 147 dibh, sizeof(struct gfs2_dinode)); 148 brelse(bh); 149 } else { 150 error = gfs2_unstuffer_page(ip, dibh, block, page); 151 if (error) 152 goto out_brelse; 153 } 154 } 155 156 /* Set up the pointer to the new block */ 157 158 gfs2_trans_add_meta(ip->i_gl, dibh); 159 di = (struct gfs2_dinode *)dibh->b_data; 160 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 161 162 if (i_size_read(&ip->i_inode)) { 163 *(__be64 *)(di + 1) = cpu_to_be64(block); 164 gfs2_add_inode_blocks(&ip->i_inode, 1); 165 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode)); 166 } 167 168 ip->i_height = 1; 169 di->di_height = cpu_to_be16(1); 170 171 out_brelse: 172 brelse(dibh); 173 out: 174 up_write(&ip->i_rw_mutex); 175 return error; 176 } 177 178 179 /** 180 * find_metapath - Find path through the metadata tree 181 * @sdp: The superblock 182 * @block: The disk block to look up 183 * @mp: The metapath to return the result in 184 * @height: The pre-calculated height of the metadata tree 185 * 186 * This routine returns a struct metapath structure that defines a path 187 * through the metadata of inode "ip" to get to block "block". 188 * 189 * Example: 190 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a 191 * filesystem with a blocksize of 4096. 192 * 193 * find_metapath() would return a struct metapath structure set to: 194 * mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165. 195 * 196 * That means that in order to get to the block containing the byte at 197 * offset 101342453, we would load the indirect block pointed to by pointer 198 * 0 in the dinode. We would then load the indirect block pointed to by 199 * pointer 48 in that indirect block. We would then load the data block 200 * pointed to by pointer 165 in that indirect block. 201 * 202 * ---------------------------------------- 203 * | Dinode | | 204 * | | 4| 205 * | |0 1 2 3 4 5 9| 206 * | | 6| 207 * ---------------------------------------- 208 * | 209 * | 210 * V 211 * ---------------------------------------- 212 * | Indirect Block | 213 * | 5| 214 * | 4 4 4 4 4 5 5 1| 215 * |0 5 6 7 8 9 0 1 2| 216 * ---------------------------------------- 217 * | 218 * | 219 * V 220 * ---------------------------------------- 221 * | Indirect Block | 222 * | 1 1 1 1 1 5| 223 * | 6 6 6 6 6 1| 224 * |0 3 4 5 6 7 2| 225 * ---------------------------------------- 226 * | 227 * | 228 * V 229 * ---------------------------------------- 230 * | Data block containing offset | 231 * | 101342453 | 232 * | | 233 * | | 234 * ---------------------------------------- 235 * 236 */ 237 238 static void find_metapath(const struct gfs2_sbd *sdp, u64 block, 239 struct metapath *mp, unsigned int height) 240 { 241 unsigned int i; 242 243 mp->mp_fheight = height; 244 for (i = height; i--;) 245 mp->mp_list[i] = do_div(block, sdp->sd_inptrs); 246 } 247 248 static inline unsigned int metapath_branch_start(const struct metapath *mp) 249 { 250 if (mp->mp_list[0] == 0) 251 return 2; 252 return 1; 253 } 254 255 /** 256 * metaptr1 - Return the first possible metadata pointer in a metapath buffer 257 * @height: The metadata height (0 = dinode) 258 * @mp: The metapath 259 */ 260 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp) 261 { 262 struct buffer_head *bh = mp->mp_bh[height]; 263 if (height == 0) 264 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode))); 265 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header))); 266 } 267 268 /** 269 * metapointer - Return pointer to start of metadata in a buffer 270 * @height: The metadata height (0 = dinode) 271 * @mp: The metapath 272 * 273 * Return a pointer to the block number of the next height of the metadata 274 * tree given a buffer containing the pointer to the current height of the 275 * metadata tree. 276 */ 277 278 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp) 279 { 280 __be64 *p = metaptr1(height, mp); 281 return p + mp->mp_list[height]; 282 } 283 284 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp) 285 { 286 const struct buffer_head *bh = mp->mp_bh[height]; 287 return (const __be64 *)(bh->b_data + bh->b_size); 288 } 289 290 static void clone_metapath(struct metapath *clone, struct metapath *mp) 291 { 292 unsigned int hgt; 293 294 *clone = *mp; 295 for (hgt = 0; hgt < mp->mp_aheight; hgt++) 296 get_bh(clone->mp_bh[hgt]); 297 } 298 299 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end) 300 { 301 const __be64 *t; 302 303 for (t = start; t < end; t++) { 304 struct buffer_head *rabh; 305 306 if (!*t) 307 continue; 308 309 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE); 310 if (trylock_buffer(rabh)) { 311 if (!buffer_uptodate(rabh)) { 312 rabh->b_end_io = end_buffer_read_sync; 313 submit_bh(REQ_OP_READ, 314 REQ_RAHEAD | REQ_META | REQ_PRIO, 315 rabh); 316 continue; 317 } 318 unlock_buffer(rabh); 319 } 320 brelse(rabh); 321 } 322 } 323 324 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, 325 unsigned int x, unsigned int h) 326 { 327 for (; x < h; x++) { 328 __be64 *ptr = metapointer(x, mp); 329 u64 dblock = be64_to_cpu(*ptr); 330 int ret; 331 332 if (!dblock) 333 break; 334 ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]); 335 if (ret) 336 return ret; 337 } 338 mp->mp_aheight = x + 1; 339 return 0; 340 } 341 342 /** 343 * lookup_metapath - Walk the metadata tree to a specific point 344 * @ip: The inode 345 * @mp: The metapath 346 * 347 * Assumes that the inode's buffer has already been looked up and 348 * hooked onto mp->mp_bh[0] and that the metapath has been initialised 349 * by find_metapath(). 350 * 351 * If this function encounters part of the tree which has not been 352 * allocated, it returns the current height of the tree at the point 353 * at which it found the unallocated block. Blocks which are found are 354 * added to the mp->mp_bh[] list. 355 * 356 * Returns: error 357 */ 358 359 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp) 360 { 361 return __fillup_metapath(ip, mp, 0, ip->i_height - 1); 362 } 363 364 /** 365 * fillup_metapath - fill up buffers for the metadata path to a specific height 366 * @ip: The inode 367 * @mp: The metapath 368 * @h: The height to which it should be mapped 369 * 370 * Similar to lookup_metapath, but does lookups for a range of heights 371 * 372 * Returns: error or the number of buffers filled 373 */ 374 375 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h) 376 { 377 unsigned int x = 0; 378 int ret; 379 380 if (h) { 381 /* find the first buffer we need to look up. */ 382 for (x = h - 1; x > 0; x--) { 383 if (mp->mp_bh[x]) 384 break; 385 } 386 } 387 ret = __fillup_metapath(ip, mp, x, h); 388 if (ret) 389 return ret; 390 return mp->mp_aheight - x - 1; 391 } 392 393 static void release_metapath(struct metapath *mp) 394 { 395 int i; 396 397 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) { 398 if (mp->mp_bh[i] == NULL) 399 break; 400 brelse(mp->mp_bh[i]); 401 mp->mp_bh[i] = NULL; 402 } 403 } 404 405 /** 406 * gfs2_extent_length - Returns length of an extent of blocks 407 * @bh: The metadata block 408 * @ptr: Current position in @bh 409 * @limit: Max extent length to return 410 * @eob: Set to 1 if we hit "end of block" 411 * 412 * Returns: The length of the extent (minimum of one block) 413 */ 414 415 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob) 416 { 417 const __be64 *end = (__be64 *)(bh->b_data + bh->b_size); 418 const __be64 *first = ptr; 419 u64 d = be64_to_cpu(*ptr); 420 421 *eob = 0; 422 do { 423 ptr++; 424 if (ptr >= end) 425 break; 426 d++; 427 } while(be64_to_cpu(*ptr) == d); 428 if (ptr >= end) 429 *eob = 1; 430 return ptr - first; 431 } 432 433 typedef const __be64 *(*gfs2_metadata_walker)( 434 struct metapath *mp, 435 const __be64 *start, const __be64 *end, 436 u64 factor, void *data); 437 438 #define WALK_STOP ((__be64 *)0) 439 #define WALK_NEXT ((__be64 *)1) 440 441 static int gfs2_walk_metadata(struct inode *inode, sector_t lblock, 442 u64 len, struct metapath *mp, gfs2_metadata_walker walker, 443 void *data) 444 { 445 struct metapath clone; 446 struct gfs2_inode *ip = GFS2_I(inode); 447 struct gfs2_sbd *sdp = GFS2_SB(inode); 448 const __be64 *start, *end, *ptr; 449 u64 factor = 1; 450 unsigned int hgt; 451 int ret = 0; 452 453 for (hgt = ip->i_height - 1; hgt >= mp->mp_aheight; hgt--) 454 factor *= sdp->sd_inptrs; 455 456 for (;;) { 457 u64 step; 458 459 /* Walk indirect block. */ 460 start = metapointer(hgt, mp); 461 end = metaend(hgt, mp); 462 463 step = (end - start) * factor; 464 if (step > len) 465 end = start + DIV_ROUND_UP_ULL(len, factor); 466 467 ptr = walker(mp, start, end, factor, data); 468 if (ptr == WALK_STOP) 469 break; 470 if (step >= len) 471 break; 472 len -= step; 473 if (ptr != WALK_NEXT) { 474 BUG_ON(!*ptr); 475 mp->mp_list[hgt] += ptr - start; 476 goto fill_up_metapath; 477 } 478 479 lower_metapath: 480 /* Decrease height of metapath. */ 481 if (mp != &clone) { 482 clone_metapath(&clone, mp); 483 mp = &clone; 484 } 485 brelse(mp->mp_bh[hgt]); 486 mp->mp_bh[hgt] = NULL; 487 if (!hgt) 488 break; 489 hgt--; 490 factor *= sdp->sd_inptrs; 491 492 /* Advance in metadata tree. */ 493 (mp->mp_list[hgt])++; 494 start = metapointer(hgt, mp); 495 end = metaend(hgt, mp); 496 if (start >= end) { 497 mp->mp_list[hgt] = 0; 498 if (!hgt) 499 break; 500 goto lower_metapath; 501 } 502 503 fill_up_metapath: 504 /* Increase height of metapath. */ 505 if (mp != &clone) { 506 clone_metapath(&clone, mp); 507 mp = &clone; 508 } 509 ret = fillup_metapath(ip, mp, ip->i_height - 1); 510 if (ret < 0) 511 break; 512 hgt += ret; 513 for (; ret; ret--) 514 do_div(factor, sdp->sd_inptrs); 515 mp->mp_aheight = hgt + 1; 516 } 517 if (mp == &clone) 518 release_metapath(mp); 519 return ret; 520 } 521 522 struct gfs2_hole_walker_args { 523 u64 blocks; 524 }; 525 526 static const __be64 *gfs2_hole_walker(struct metapath *mp, 527 const __be64 *start, const __be64 *end, 528 u64 factor, void *data) 529 { 530 struct gfs2_hole_walker_args *args = data; 531 const __be64 *ptr; 532 533 for (ptr = start; ptr < end; ptr++) { 534 if (*ptr) { 535 args->blocks += (ptr - start) * factor; 536 if (mp->mp_aheight == mp->mp_fheight) 537 return WALK_STOP; 538 return ptr; /* increase height */ 539 } 540 } 541 args->blocks += (end - start) * factor; 542 return WALK_NEXT; 543 } 544 545 /** 546 * gfs2_hole_size - figure out the size of a hole 547 * @inode: The inode 548 * @lblock: The logical starting block number 549 * @len: How far to look (in blocks) 550 * @mp: The metapath at lblock 551 * @iomap: The iomap to store the hole size in 552 * 553 * This function modifies @mp. 554 * 555 * Returns: errno on error 556 */ 557 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len, 558 struct metapath *mp, struct iomap *iomap) 559 { 560 struct gfs2_hole_walker_args args = { }; 561 int ret = 0; 562 563 ret = gfs2_walk_metadata(inode, lblock, len, mp, gfs2_hole_walker, &args); 564 if (!ret) 565 iomap->length = args.blocks << inode->i_blkbits; 566 return ret; 567 } 568 569 static inline __be64 *gfs2_indirect_init(struct metapath *mp, 570 struct gfs2_glock *gl, unsigned int i, 571 unsigned offset, u64 bn) 572 { 573 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data + 574 ((i > 1) ? sizeof(struct gfs2_meta_header) : 575 sizeof(struct gfs2_dinode))); 576 BUG_ON(i < 1); 577 BUG_ON(mp->mp_bh[i] != NULL); 578 mp->mp_bh[i] = gfs2_meta_new(gl, bn); 579 gfs2_trans_add_meta(gl, mp->mp_bh[i]); 580 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN); 581 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header)); 582 ptr += offset; 583 *ptr = cpu_to_be64(bn); 584 return ptr; 585 } 586 587 enum alloc_state { 588 ALLOC_DATA = 0, 589 ALLOC_GROW_DEPTH = 1, 590 ALLOC_GROW_HEIGHT = 2, 591 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */ 592 }; 593 594 /** 595 * gfs2_iomap_alloc - Build a metadata tree of the requested height 596 * @inode: The GFS2 inode 597 * @iomap: The iomap structure 598 * @mp: The metapath, with proper height information calculated 599 * 600 * In this routine we may have to alloc: 601 * i) Indirect blocks to grow the metadata tree height 602 * ii) Indirect blocks to fill in lower part of the metadata tree 603 * iii) Data blocks 604 * 605 * This function is called after gfs2_iomap_get, which works out the 606 * total number of blocks which we need via gfs2_alloc_size. 607 * 608 * We then do the actual allocation asking for an extent at a time (if 609 * enough contiguous free blocks are available, there will only be one 610 * allocation request per call) and uses the state machine to initialise 611 * the blocks in order. 612 * 613 * Right now, this function will allocate at most one indirect block 614 * worth of data -- with a default block size of 4K, that's slightly 615 * less than 2M. If this limitation is ever removed to allow huge 616 * allocations, we would probably still want to limit the iomap size we 617 * return to avoid stalling other tasks during huge writes; the next 618 * iomap iteration would then find the blocks already allocated. 619 * 620 * Returns: errno on error 621 */ 622 623 static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap, 624 struct metapath *mp) 625 { 626 struct gfs2_inode *ip = GFS2_I(inode); 627 struct gfs2_sbd *sdp = GFS2_SB(inode); 628 struct buffer_head *dibh = mp->mp_bh[0]; 629 u64 bn; 630 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0; 631 size_t dblks = iomap->length >> inode->i_blkbits; 632 const unsigned end_of_metadata = mp->mp_fheight - 1; 633 int ret; 634 enum alloc_state state; 635 __be64 *ptr; 636 __be64 zero_bn = 0; 637 638 BUG_ON(mp->mp_aheight < 1); 639 BUG_ON(dibh == NULL); 640 BUG_ON(dblks < 1); 641 642 gfs2_trans_add_meta(ip->i_gl, dibh); 643 644 down_write(&ip->i_rw_mutex); 645 646 if (mp->mp_fheight == mp->mp_aheight) { 647 /* Bottom indirect block exists */ 648 state = ALLOC_DATA; 649 } else { 650 /* Need to allocate indirect blocks */ 651 if (mp->mp_fheight == ip->i_height) { 652 /* Writing into existing tree, extend tree down */ 653 iblks = mp->mp_fheight - mp->mp_aheight; 654 state = ALLOC_GROW_DEPTH; 655 } else { 656 /* Building up tree height */ 657 state = ALLOC_GROW_HEIGHT; 658 iblks = mp->mp_fheight - ip->i_height; 659 branch_start = metapath_branch_start(mp); 660 iblks += (mp->mp_fheight - branch_start); 661 } 662 } 663 664 /* start of the second part of the function (state machine) */ 665 666 blks = dblks + iblks; 667 i = mp->mp_aheight; 668 do { 669 n = blks - alloced; 670 ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL); 671 if (ret) 672 goto out; 673 alloced += n; 674 if (state != ALLOC_DATA || gfs2_is_jdata(ip)) 675 gfs2_trans_remove_revoke(sdp, bn, n); 676 switch (state) { 677 /* Growing height of tree */ 678 case ALLOC_GROW_HEIGHT: 679 if (i == 1) { 680 ptr = (__be64 *)(dibh->b_data + 681 sizeof(struct gfs2_dinode)); 682 zero_bn = *ptr; 683 } 684 for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0; 685 i++, n--) 686 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++); 687 if (i - 1 == mp->mp_fheight - ip->i_height) { 688 i--; 689 gfs2_buffer_copy_tail(mp->mp_bh[i], 690 sizeof(struct gfs2_meta_header), 691 dibh, sizeof(struct gfs2_dinode)); 692 gfs2_buffer_clear_tail(dibh, 693 sizeof(struct gfs2_dinode) + 694 sizeof(__be64)); 695 ptr = (__be64 *)(mp->mp_bh[i]->b_data + 696 sizeof(struct gfs2_meta_header)); 697 *ptr = zero_bn; 698 state = ALLOC_GROW_DEPTH; 699 for(i = branch_start; i < mp->mp_fheight; i++) { 700 if (mp->mp_bh[i] == NULL) 701 break; 702 brelse(mp->mp_bh[i]); 703 mp->mp_bh[i] = NULL; 704 } 705 i = branch_start; 706 } 707 if (n == 0) 708 break; 709 /* fall through - To branching from existing tree */ 710 case ALLOC_GROW_DEPTH: 711 if (i > 1 && i < mp->mp_fheight) 712 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]); 713 for (; i < mp->mp_fheight && n > 0; i++, n--) 714 gfs2_indirect_init(mp, ip->i_gl, i, 715 mp->mp_list[i-1], bn++); 716 if (i == mp->mp_fheight) 717 state = ALLOC_DATA; 718 if (n == 0) 719 break; 720 /* fall through - To tree complete, adding data blocks */ 721 case ALLOC_DATA: 722 BUG_ON(n > dblks); 723 BUG_ON(mp->mp_bh[end_of_metadata] == NULL); 724 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]); 725 dblks = n; 726 ptr = metapointer(end_of_metadata, mp); 727 iomap->addr = bn << inode->i_blkbits; 728 iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW; 729 while (n-- > 0) 730 *ptr++ = cpu_to_be64(bn++); 731 break; 732 } 733 } while (iomap->addr == IOMAP_NULL_ADDR); 734 735 iomap->type = IOMAP_MAPPED; 736 iomap->length = (u64)dblks << inode->i_blkbits; 737 ip->i_height = mp->mp_fheight; 738 gfs2_add_inode_blocks(&ip->i_inode, alloced); 739 gfs2_dinode_out(ip, dibh->b_data); 740 out: 741 up_write(&ip->i_rw_mutex); 742 return ret; 743 } 744 745 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE 746 747 /** 748 * gfs2_alloc_size - Compute the maximum allocation size 749 * @inode: The inode 750 * @mp: The metapath 751 * @size: Requested size in blocks 752 * 753 * Compute the maximum size of the next allocation at @mp. 754 * 755 * Returns: size in blocks 756 */ 757 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size) 758 { 759 struct gfs2_inode *ip = GFS2_I(inode); 760 struct gfs2_sbd *sdp = GFS2_SB(inode); 761 const __be64 *first, *ptr, *end; 762 763 /* 764 * For writes to stuffed files, this function is called twice via 765 * gfs2_iomap_get, before and after unstuffing. The size we return the 766 * first time needs to be large enough to get the reservation and 767 * allocation sizes right. The size we return the second time must 768 * be exact or else gfs2_iomap_alloc won't do the right thing. 769 */ 770 771 if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) { 772 unsigned int maxsize = mp->mp_fheight > 1 ? 773 sdp->sd_inptrs : sdp->sd_diptrs; 774 maxsize -= mp->mp_list[mp->mp_fheight - 1]; 775 if (size > maxsize) 776 size = maxsize; 777 return size; 778 } 779 780 first = metapointer(ip->i_height - 1, mp); 781 end = metaend(ip->i_height - 1, mp); 782 if (end - first > size) 783 end = first + size; 784 for (ptr = first; ptr < end; ptr++) { 785 if (*ptr) 786 break; 787 } 788 return ptr - first; 789 } 790 791 /** 792 * gfs2_iomap_get - Map blocks from an inode to disk blocks 793 * @inode: The inode 794 * @pos: Starting position in bytes 795 * @length: Length to map, in bytes 796 * @flags: iomap flags 797 * @iomap: The iomap structure 798 * @mp: The metapath 799 * 800 * Returns: errno 801 */ 802 static int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length, 803 unsigned flags, struct iomap *iomap, 804 struct metapath *mp) 805 { 806 struct gfs2_inode *ip = GFS2_I(inode); 807 struct gfs2_sbd *sdp = GFS2_SB(inode); 808 loff_t size = i_size_read(inode); 809 __be64 *ptr; 810 sector_t lblock; 811 sector_t lblock_stop; 812 int ret; 813 int eob; 814 u64 len; 815 struct buffer_head *dibh = NULL, *bh; 816 u8 height; 817 818 if (!length) 819 return -EINVAL; 820 821 down_read(&ip->i_rw_mutex); 822 823 ret = gfs2_meta_inode_buffer(ip, &dibh); 824 if (ret) 825 goto unlock; 826 mp->mp_bh[0] = dibh; 827 828 if (gfs2_is_stuffed(ip)) { 829 if (flags & IOMAP_WRITE) { 830 loff_t max_size = gfs2_max_stuffed_size(ip); 831 832 if (pos + length > max_size) 833 goto unstuff; 834 iomap->length = max_size; 835 } else { 836 if (pos >= size) { 837 if (flags & IOMAP_REPORT) { 838 ret = -ENOENT; 839 goto unlock; 840 } else { 841 /* report a hole */ 842 iomap->offset = pos; 843 iomap->length = length; 844 goto do_alloc; 845 } 846 } 847 iomap->length = size; 848 } 849 iomap->addr = (ip->i_no_addr << inode->i_blkbits) + 850 sizeof(struct gfs2_dinode); 851 iomap->type = IOMAP_INLINE; 852 iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode); 853 goto out; 854 } 855 856 unstuff: 857 lblock = pos >> inode->i_blkbits; 858 iomap->offset = lblock << inode->i_blkbits; 859 lblock_stop = (pos + length - 1) >> inode->i_blkbits; 860 len = lblock_stop - lblock + 1; 861 iomap->length = len << inode->i_blkbits; 862 863 height = ip->i_height; 864 while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height]) 865 height++; 866 find_metapath(sdp, lblock, mp, height); 867 if (height > ip->i_height || gfs2_is_stuffed(ip)) 868 goto do_alloc; 869 870 ret = lookup_metapath(ip, mp); 871 if (ret) 872 goto unlock; 873 874 if (mp->mp_aheight != ip->i_height) 875 goto do_alloc; 876 877 ptr = metapointer(ip->i_height - 1, mp); 878 if (*ptr == 0) 879 goto do_alloc; 880 881 bh = mp->mp_bh[ip->i_height - 1]; 882 len = gfs2_extent_length(bh, ptr, len, &eob); 883 884 iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits; 885 iomap->length = len << inode->i_blkbits; 886 iomap->type = IOMAP_MAPPED; 887 iomap->flags |= IOMAP_F_MERGED; 888 if (eob) 889 iomap->flags |= IOMAP_F_GFS2_BOUNDARY; 890 891 out: 892 iomap->bdev = inode->i_sb->s_bdev; 893 unlock: 894 up_read(&ip->i_rw_mutex); 895 return ret; 896 897 do_alloc: 898 iomap->addr = IOMAP_NULL_ADDR; 899 iomap->type = IOMAP_HOLE; 900 if (flags & IOMAP_REPORT) { 901 if (pos >= size) 902 ret = -ENOENT; 903 else if (height == ip->i_height) 904 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 905 else 906 iomap->length = size - pos; 907 } else if (flags & IOMAP_WRITE) { 908 u64 alloc_size; 909 910 if (flags & IOMAP_DIRECT) 911 goto out; /* (see gfs2_file_direct_write) */ 912 913 len = gfs2_alloc_size(inode, mp, len); 914 alloc_size = len << inode->i_blkbits; 915 if (alloc_size < iomap->length) 916 iomap->length = alloc_size; 917 } else { 918 if (pos < size && height == ip->i_height) 919 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 920 } 921 goto out; 922 } 923 924 /** 925 * gfs2_lblk_to_dblk - convert logical block to disk block 926 * @inode: the inode of the file we're mapping 927 * @lblock: the block relative to the start of the file 928 * @dblock: the returned dblock, if no error 929 * 930 * This function maps a single block from a file logical block (relative to 931 * the start of the file) to a file system absolute block using iomap. 932 * 933 * Returns: the absolute file system block, or an error 934 */ 935 int gfs2_lblk_to_dblk(struct inode *inode, u32 lblock, u64 *dblock) 936 { 937 struct iomap iomap = { }; 938 struct metapath mp = { .mp_aheight = 1, }; 939 loff_t pos = (loff_t)lblock << inode->i_blkbits; 940 int ret; 941 942 ret = gfs2_iomap_get(inode, pos, i_blocksize(inode), 0, &iomap, &mp); 943 release_metapath(&mp); 944 if (ret == 0) 945 *dblock = iomap.addr >> inode->i_blkbits; 946 947 return ret; 948 } 949 950 static int gfs2_write_lock(struct inode *inode) 951 { 952 struct gfs2_inode *ip = GFS2_I(inode); 953 struct gfs2_sbd *sdp = GFS2_SB(inode); 954 int error; 955 956 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh); 957 error = gfs2_glock_nq(&ip->i_gh); 958 if (error) 959 goto out_uninit; 960 if (&ip->i_inode == sdp->sd_rindex) { 961 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 962 963 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE, 964 GL_NOCACHE, &m_ip->i_gh); 965 if (error) 966 goto out_unlock; 967 } 968 return 0; 969 970 out_unlock: 971 gfs2_glock_dq(&ip->i_gh); 972 out_uninit: 973 gfs2_holder_uninit(&ip->i_gh); 974 return error; 975 } 976 977 static void gfs2_write_unlock(struct inode *inode) 978 { 979 struct gfs2_inode *ip = GFS2_I(inode); 980 struct gfs2_sbd *sdp = GFS2_SB(inode); 981 982 if (&ip->i_inode == sdp->sd_rindex) { 983 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 984 985 gfs2_glock_dq_uninit(&m_ip->i_gh); 986 } 987 gfs2_glock_dq_uninit(&ip->i_gh); 988 } 989 990 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos, 991 unsigned len, struct iomap *iomap) 992 { 993 unsigned int blockmask = i_blocksize(inode) - 1; 994 struct gfs2_sbd *sdp = GFS2_SB(inode); 995 unsigned int blocks; 996 997 blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits; 998 return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0); 999 } 1000 1001 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos, 1002 unsigned copied, struct page *page, 1003 struct iomap *iomap) 1004 { 1005 struct gfs2_inode *ip = GFS2_I(inode); 1006 struct gfs2_sbd *sdp = GFS2_SB(inode); 1007 1008 if (page && !gfs2_is_stuffed(ip)) 1009 gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied); 1010 gfs2_trans_end(sdp); 1011 } 1012 1013 static const struct iomap_page_ops gfs2_iomap_page_ops = { 1014 .page_prepare = gfs2_iomap_page_prepare, 1015 .page_done = gfs2_iomap_page_done, 1016 }; 1017 1018 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos, 1019 loff_t length, unsigned flags, 1020 struct iomap *iomap, 1021 struct metapath *mp) 1022 { 1023 struct gfs2_inode *ip = GFS2_I(inode); 1024 struct gfs2_sbd *sdp = GFS2_SB(inode); 1025 unsigned int data_blocks = 0, ind_blocks = 0, rblocks; 1026 bool unstuff, alloc_required; 1027 int ret; 1028 1029 ret = gfs2_write_lock(inode); 1030 if (ret) 1031 return ret; 1032 1033 unstuff = gfs2_is_stuffed(ip) && 1034 pos + length > gfs2_max_stuffed_size(ip); 1035 1036 ret = gfs2_iomap_get(inode, pos, length, flags, iomap, mp); 1037 if (ret) 1038 goto out_unlock; 1039 1040 alloc_required = unstuff || iomap->type == IOMAP_HOLE; 1041 1042 if (alloc_required || gfs2_is_jdata(ip)) 1043 gfs2_write_calc_reserv(ip, iomap->length, &data_blocks, 1044 &ind_blocks); 1045 1046 if (alloc_required) { 1047 struct gfs2_alloc_parms ap = { 1048 .target = data_blocks + ind_blocks 1049 }; 1050 1051 ret = gfs2_quota_lock_check(ip, &ap); 1052 if (ret) 1053 goto out_unlock; 1054 1055 ret = gfs2_inplace_reserve(ip, &ap); 1056 if (ret) 1057 goto out_qunlock; 1058 } 1059 1060 rblocks = RES_DINODE + ind_blocks; 1061 if (gfs2_is_jdata(ip)) 1062 rblocks += data_blocks; 1063 if (ind_blocks || data_blocks) 1064 rblocks += RES_STATFS + RES_QUOTA; 1065 if (inode == sdp->sd_rindex) 1066 rblocks += 2 * RES_STATFS; 1067 if (alloc_required) 1068 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 1069 1070 if (unstuff || iomap->type == IOMAP_HOLE) { 1071 struct gfs2_trans *tr; 1072 1073 ret = gfs2_trans_begin(sdp, rblocks, 1074 iomap->length >> inode->i_blkbits); 1075 if (ret) 1076 goto out_trans_fail; 1077 1078 if (unstuff) { 1079 ret = gfs2_unstuff_dinode(ip, NULL); 1080 if (ret) 1081 goto out_trans_end; 1082 release_metapath(mp); 1083 ret = gfs2_iomap_get(inode, iomap->offset, 1084 iomap->length, flags, iomap, mp); 1085 if (ret) 1086 goto out_trans_end; 1087 } 1088 1089 if (iomap->type == IOMAP_HOLE) { 1090 ret = gfs2_iomap_alloc(inode, iomap, mp); 1091 if (ret) { 1092 gfs2_trans_end(sdp); 1093 gfs2_inplace_release(ip); 1094 punch_hole(ip, iomap->offset, iomap->length); 1095 goto out_qunlock; 1096 } 1097 } 1098 1099 tr = current->journal_info; 1100 if (tr->tr_num_buf_new) 1101 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1102 else 1103 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[0]); 1104 1105 gfs2_trans_end(sdp); 1106 } 1107 1108 if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip)) 1109 iomap->page_ops = &gfs2_iomap_page_ops; 1110 return 0; 1111 1112 out_trans_end: 1113 gfs2_trans_end(sdp); 1114 out_trans_fail: 1115 if (alloc_required) 1116 gfs2_inplace_release(ip); 1117 out_qunlock: 1118 if (alloc_required) 1119 gfs2_quota_unlock(ip); 1120 out_unlock: 1121 gfs2_write_unlock(inode); 1122 return ret; 1123 } 1124 1125 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length, 1126 unsigned flags, struct iomap *iomap) 1127 { 1128 struct gfs2_inode *ip = GFS2_I(inode); 1129 struct metapath mp = { .mp_aheight = 1, }; 1130 int ret; 1131 1132 iomap->flags |= IOMAP_F_BUFFER_HEAD; 1133 1134 trace_gfs2_iomap_start(ip, pos, length, flags); 1135 if ((flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT)) { 1136 ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp); 1137 } else { 1138 ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp); 1139 1140 /* 1141 * Silently fall back to buffered I/O for stuffed files or if 1142 * we've hot a hole (see gfs2_file_direct_write). 1143 */ 1144 if ((flags & IOMAP_WRITE) && (flags & IOMAP_DIRECT) && 1145 iomap->type != IOMAP_MAPPED) 1146 ret = -ENOTBLK; 1147 } 1148 release_metapath(&mp); 1149 trace_gfs2_iomap_end(ip, iomap, ret); 1150 return ret; 1151 } 1152 1153 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length, 1154 ssize_t written, unsigned flags, struct iomap *iomap) 1155 { 1156 struct gfs2_inode *ip = GFS2_I(inode); 1157 struct gfs2_sbd *sdp = GFS2_SB(inode); 1158 1159 if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) != IOMAP_WRITE) 1160 goto out; 1161 1162 if (!gfs2_is_stuffed(ip)) 1163 gfs2_ordered_add_inode(ip); 1164 1165 if (inode == sdp->sd_rindex) 1166 adjust_fs_space(inode); 1167 1168 gfs2_inplace_release(ip); 1169 1170 if (length != written && (iomap->flags & IOMAP_F_NEW)) { 1171 /* Deallocate blocks that were just allocated. */ 1172 loff_t blockmask = i_blocksize(inode) - 1; 1173 loff_t end = (pos + length) & ~blockmask; 1174 1175 pos = (pos + written + blockmask) & ~blockmask; 1176 if (pos < end) { 1177 truncate_pagecache_range(inode, pos, end - 1); 1178 punch_hole(ip, pos, end - pos); 1179 } 1180 } 1181 1182 if (ip->i_qadata && ip->i_qadata->qa_qd_num) 1183 gfs2_quota_unlock(ip); 1184 if (iomap->flags & IOMAP_F_SIZE_CHANGED) 1185 mark_inode_dirty(inode); 1186 gfs2_write_unlock(inode); 1187 1188 out: 1189 return 0; 1190 } 1191 1192 const struct iomap_ops gfs2_iomap_ops = { 1193 .iomap_begin = gfs2_iomap_begin, 1194 .iomap_end = gfs2_iomap_end, 1195 }; 1196 1197 /** 1198 * gfs2_block_map - Map one or more blocks of an inode to a disk block 1199 * @inode: The inode 1200 * @lblock: The logical block number 1201 * @bh_map: The bh to be mapped 1202 * @create: True if its ok to alloc blocks to satify the request 1203 * 1204 * The size of the requested mapping is defined in bh_map->b_size. 1205 * 1206 * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged 1207 * when @lblock is not mapped. Sets buffer_mapped(bh_map) and 1208 * bh_map->b_size to indicate the size of the mapping when @lblock and 1209 * successive blocks are mapped, up to the requested size. 1210 * 1211 * Sets buffer_boundary() if a read of metadata will be required 1212 * before the next block can be mapped. Sets buffer_new() if new 1213 * blocks were allocated. 1214 * 1215 * Returns: errno 1216 */ 1217 1218 int gfs2_block_map(struct inode *inode, sector_t lblock, 1219 struct buffer_head *bh_map, int create) 1220 { 1221 struct gfs2_inode *ip = GFS2_I(inode); 1222 loff_t pos = (loff_t)lblock << inode->i_blkbits; 1223 loff_t length = bh_map->b_size; 1224 struct metapath mp = { .mp_aheight = 1, }; 1225 struct iomap iomap = { }; 1226 int ret; 1227 1228 clear_buffer_mapped(bh_map); 1229 clear_buffer_new(bh_map); 1230 clear_buffer_boundary(bh_map); 1231 trace_gfs2_bmap(ip, bh_map, lblock, create, 1); 1232 1233 if (create) { 1234 ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, &iomap, &mp); 1235 if (!ret && iomap.type == IOMAP_HOLE) 1236 ret = gfs2_iomap_alloc(inode, &iomap, &mp); 1237 release_metapath(&mp); 1238 } else { 1239 ret = gfs2_iomap_get(inode, pos, length, 0, &iomap, &mp); 1240 release_metapath(&mp); 1241 } 1242 if (ret) 1243 goto out; 1244 1245 if (iomap.length > bh_map->b_size) { 1246 iomap.length = bh_map->b_size; 1247 iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY; 1248 } 1249 if (iomap.addr != IOMAP_NULL_ADDR) 1250 map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits); 1251 bh_map->b_size = iomap.length; 1252 if (iomap.flags & IOMAP_F_GFS2_BOUNDARY) 1253 set_buffer_boundary(bh_map); 1254 if (iomap.flags & IOMAP_F_NEW) 1255 set_buffer_new(bh_map); 1256 1257 out: 1258 trace_gfs2_bmap(ip, bh_map, lblock, create, ret); 1259 return ret; 1260 } 1261 1262 /* 1263 * Deprecated: do not use in new code 1264 */ 1265 int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen) 1266 { 1267 struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 }; 1268 int ret; 1269 int create = *new; 1270 1271 BUG_ON(!extlen); 1272 BUG_ON(!dblock); 1273 BUG_ON(!new); 1274 1275 bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5)); 1276 ret = gfs2_block_map(inode, lblock, &bh, create); 1277 *extlen = bh.b_size >> inode->i_blkbits; 1278 *dblock = bh.b_blocknr; 1279 if (buffer_new(&bh)) 1280 *new = 1; 1281 else 1282 *new = 0; 1283 return ret; 1284 } 1285 1286 /** 1287 * gfs2_block_zero_range - Deal with zeroing out data 1288 * 1289 * This is partly borrowed from ext3. 1290 */ 1291 static int gfs2_block_zero_range(struct inode *inode, loff_t from, 1292 unsigned int length) 1293 { 1294 struct address_space *mapping = inode->i_mapping; 1295 struct gfs2_inode *ip = GFS2_I(inode); 1296 unsigned long index = from >> PAGE_SHIFT; 1297 unsigned offset = from & (PAGE_SIZE-1); 1298 unsigned blocksize, iblock, pos; 1299 struct buffer_head *bh; 1300 struct page *page; 1301 int err; 1302 1303 page = find_or_create_page(mapping, index, GFP_NOFS); 1304 if (!page) 1305 return 0; 1306 1307 blocksize = inode->i_sb->s_blocksize; 1308 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 1309 1310 if (!page_has_buffers(page)) 1311 create_empty_buffers(page, blocksize, 0); 1312 1313 /* Find the buffer that contains "offset" */ 1314 bh = page_buffers(page); 1315 pos = blocksize; 1316 while (offset >= pos) { 1317 bh = bh->b_this_page; 1318 iblock++; 1319 pos += blocksize; 1320 } 1321 1322 err = 0; 1323 1324 if (!buffer_mapped(bh)) { 1325 gfs2_block_map(inode, iblock, bh, 0); 1326 /* unmapped? It's a hole - nothing to do */ 1327 if (!buffer_mapped(bh)) 1328 goto unlock; 1329 } 1330 1331 /* Ok, it's mapped. Make sure it's up-to-date */ 1332 if (PageUptodate(page)) 1333 set_buffer_uptodate(bh); 1334 1335 if (!buffer_uptodate(bh)) { 1336 err = -EIO; 1337 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1338 wait_on_buffer(bh); 1339 /* Uhhuh. Read error. Complain and punt. */ 1340 if (!buffer_uptodate(bh)) 1341 goto unlock; 1342 err = 0; 1343 } 1344 1345 if (gfs2_is_jdata(ip)) 1346 gfs2_trans_add_data(ip->i_gl, bh); 1347 else 1348 gfs2_ordered_add_inode(ip); 1349 1350 zero_user(page, offset, length); 1351 mark_buffer_dirty(bh); 1352 unlock: 1353 unlock_page(page); 1354 put_page(page); 1355 return err; 1356 } 1357 1358 #define GFS2_JTRUNC_REVOKES 8192 1359 1360 /** 1361 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files 1362 * @inode: The inode being truncated 1363 * @oldsize: The original (larger) size 1364 * @newsize: The new smaller size 1365 * 1366 * With jdata files, we have to journal a revoke for each block which is 1367 * truncated. As a result, we need to split this into separate transactions 1368 * if the number of pages being truncated gets too large. 1369 */ 1370 1371 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize) 1372 { 1373 struct gfs2_sbd *sdp = GFS2_SB(inode); 1374 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 1375 u64 chunk; 1376 int error; 1377 1378 while (oldsize != newsize) { 1379 struct gfs2_trans *tr; 1380 unsigned int offs; 1381 1382 chunk = oldsize - newsize; 1383 if (chunk > max_chunk) 1384 chunk = max_chunk; 1385 1386 offs = oldsize & ~PAGE_MASK; 1387 if (offs && chunk > PAGE_SIZE) 1388 chunk = offs + ((chunk - offs) & PAGE_MASK); 1389 1390 truncate_pagecache(inode, oldsize - chunk); 1391 oldsize -= chunk; 1392 1393 tr = current->journal_info; 1394 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 1395 continue; 1396 1397 gfs2_trans_end(sdp); 1398 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 1399 if (error) 1400 return error; 1401 } 1402 1403 return 0; 1404 } 1405 1406 static int trunc_start(struct inode *inode, u64 newsize) 1407 { 1408 struct gfs2_inode *ip = GFS2_I(inode); 1409 struct gfs2_sbd *sdp = GFS2_SB(inode); 1410 struct buffer_head *dibh = NULL; 1411 int journaled = gfs2_is_jdata(ip); 1412 u64 oldsize = inode->i_size; 1413 int error; 1414 1415 if (journaled) 1416 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES); 1417 else 1418 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1419 if (error) 1420 return error; 1421 1422 error = gfs2_meta_inode_buffer(ip, &dibh); 1423 if (error) 1424 goto out; 1425 1426 gfs2_trans_add_meta(ip->i_gl, dibh); 1427 1428 if (gfs2_is_stuffed(ip)) { 1429 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize); 1430 } else { 1431 unsigned int blocksize = i_blocksize(inode); 1432 unsigned int offs = newsize & (blocksize - 1); 1433 if (offs) { 1434 error = gfs2_block_zero_range(inode, newsize, 1435 blocksize - offs); 1436 if (error) 1437 goto out; 1438 } 1439 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG; 1440 } 1441 1442 i_size_write(inode, newsize); 1443 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1444 gfs2_dinode_out(ip, dibh->b_data); 1445 1446 if (journaled) 1447 error = gfs2_journaled_truncate(inode, oldsize, newsize); 1448 else 1449 truncate_pagecache(inode, newsize); 1450 1451 out: 1452 brelse(dibh); 1453 if (current->journal_info) 1454 gfs2_trans_end(sdp); 1455 return error; 1456 } 1457 1458 int gfs2_iomap_get_alloc(struct inode *inode, loff_t pos, loff_t length, 1459 struct iomap *iomap) 1460 { 1461 struct metapath mp = { .mp_aheight = 1, }; 1462 int ret; 1463 1464 ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp); 1465 if (!ret && iomap->type == IOMAP_HOLE) 1466 ret = gfs2_iomap_alloc(inode, iomap, &mp); 1467 release_metapath(&mp); 1468 return ret; 1469 } 1470 1471 /** 1472 * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein 1473 * @ip: inode 1474 * @rg_gh: holder of resource group glock 1475 * @bh: buffer head to sweep 1476 * @start: starting point in bh 1477 * @end: end point in bh 1478 * @meta: true if bh points to metadata (rather than data) 1479 * @btotal: place to keep count of total blocks freed 1480 * 1481 * We sweep a metadata buffer (provided by the metapath) for blocks we need to 1482 * free, and free them all. However, we do it one rgrp at a time. If this 1483 * block has references to multiple rgrps, we break it into individual 1484 * transactions. This allows other processes to use the rgrps while we're 1485 * focused on a single one, for better concurrency / performance. 1486 * At every transaction boundary, we rewrite the inode into the journal. 1487 * That way the bitmaps are kept consistent with the inode and we can recover 1488 * if we're interrupted by power-outages. 1489 * 1490 * Returns: 0, or return code if an error occurred. 1491 * *btotal has the total number of blocks freed 1492 */ 1493 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh, 1494 struct buffer_head *bh, __be64 *start, __be64 *end, 1495 bool meta, u32 *btotal) 1496 { 1497 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1498 struct gfs2_rgrpd *rgd; 1499 struct gfs2_trans *tr; 1500 __be64 *p; 1501 int blks_outside_rgrp; 1502 u64 bn, bstart, isize_blks; 1503 s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */ 1504 int ret = 0; 1505 bool buf_in_tr = false; /* buffer was added to transaction */ 1506 1507 more_rgrps: 1508 rgd = NULL; 1509 if (gfs2_holder_initialized(rd_gh)) { 1510 rgd = gfs2_glock2rgrp(rd_gh->gh_gl); 1511 gfs2_assert_withdraw(sdp, 1512 gfs2_glock_is_locked_by_me(rd_gh->gh_gl)); 1513 } 1514 blks_outside_rgrp = 0; 1515 bstart = 0; 1516 blen = 0; 1517 1518 for (p = start; p < end; p++) { 1519 if (!*p) 1520 continue; 1521 bn = be64_to_cpu(*p); 1522 1523 if (rgd) { 1524 if (!rgrp_contains_block(rgd, bn)) { 1525 blks_outside_rgrp++; 1526 continue; 1527 } 1528 } else { 1529 rgd = gfs2_blk2rgrpd(sdp, bn, true); 1530 if (unlikely(!rgd)) { 1531 ret = -EIO; 1532 goto out; 1533 } 1534 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 1535 0, rd_gh); 1536 if (ret) 1537 goto out; 1538 1539 /* Must be done with the rgrp glock held: */ 1540 if (gfs2_rs_active(&ip->i_res) && 1541 rgd == ip->i_res.rs_rbm.rgd) 1542 gfs2_rs_deltree(&ip->i_res); 1543 } 1544 1545 /* The size of our transactions will be unknown until we 1546 actually process all the metadata blocks that relate to 1547 the rgrp. So we estimate. We know it can't be more than 1548 the dinode's i_blocks and we don't want to exceed the 1549 journal flush threshold, sd_log_thresh2. */ 1550 if (current->journal_info == NULL) { 1551 unsigned int jblocks_rqsted, revokes; 1552 1553 jblocks_rqsted = rgd->rd_length + RES_DINODE + 1554 RES_INDIRECT; 1555 isize_blks = gfs2_get_inode_blocks(&ip->i_inode); 1556 if (isize_blks > atomic_read(&sdp->sd_log_thresh2)) 1557 jblocks_rqsted += 1558 atomic_read(&sdp->sd_log_thresh2); 1559 else 1560 jblocks_rqsted += isize_blks; 1561 revokes = jblocks_rqsted; 1562 if (meta) 1563 revokes += end - start; 1564 else if (ip->i_depth) 1565 revokes += sdp->sd_inptrs; 1566 ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes); 1567 if (ret) 1568 goto out_unlock; 1569 down_write(&ip->i_rw_mutex); 1570 } 1571 /* check if we will exceed the transaction blocks requested */ 1572 tr = current->journal_info; 1573 if (tr->tr_num_buf_new + RES_STATFS + 1574 RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) { 1575 /* We set blks_outside_rgrp to ensure the loop will 1576 be repeated for the same rgrp, but with a new 1577 transaction. */ 1578 blks_outside_rgrp++; 1579 /* This next part is tricky. If the buffer was added 1580 to the transaction, we've already set some block 1581 pointers to 0, so we better follow through and free 1582 them, or we will introduce corruption (so break). 1583 This may be impossible, or at least rare, but I 1584 decided to cover the case regardless. 1585 1586 If the buffer was not added to the transaction 1587 (this call), doing so would exceed our transaction 1588 size, so we need to end the transaction and start a 1589 new one (so goto). */ 1590 1591 if (buf_in_tr) 1592 break; 1593 goto out_unlock; 1594 } 1595 1596 gfs2_trans_add_meta(ip->i_gl, bh); 1597 buf_in_tr = true; 1598 *p = 0; 1599 if (bstart + blen == bn) { 1600 blen++; 1601 continue; 1602 } 1603 if (bstart) { 1604 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1605 (*btotal) += blen; 1606 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1607 } 1608 bstart = bn; 1609 blen = 1; 1610 } 1611 if (bstart) { 1612 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1613 (*btotal) += blen; 1614 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1615 } 1616 out_unlock: 1617 if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks 1618 outside the rgrp we just processed, 1619 do it all over again. */ 1620 if (current->journal_info) { 1621 struct buffer_head *dibh; 1622 1623 ret = gfs2_meta_inode_buffer(ip, &dibh); 1624 if (ret) 1625 goto out; 1626 1627 /* Every transaction boundary, we rewrite the dinode 1628 to keep its di_blocks current in case of failure. */ 1629 ip->i_inode.i_mtime = ip->i_inode.i_ctime = 1630 current_time(&ip->i_inode); 1631 gfs2_trans_add_meta(ip->i_gl, dibh); 1632 gfs2_dinode_out(ip, dibh->b_data); 1633 brelse(dibh); 1634 up_write(&ip->i_rw_mutex); 1635 gfs2_trans_end(sdp); 1636 } 1637 gfs2_glock_dq_uninit(rd_gh); 1638 cond_resched(); 1639 goto more_rgrps; 1640 } 1641 out: 1642 return ret; 1643 } 1644 1645 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h) 1646 { 1647 if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0]))) 1648 return false; 1649 return true; 1650 } 1651 1652 /** 1653 * find_nonnull_ptr - find a non-null pointer given a metapath and height 1654 * @mp: starting metapath 1655 * @h: desired height to search 1656 * 1657 * Assumes the metapath is valid (with buffers) out to height h. 1658 * Returns: true if a non-null pointer was found in the metapath buffer 1659 * false if all remaining pointers are NULL in the buffer 1660 */ 1661 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp, 1662 unsigned int h, 1663 __u16 *end_list, unsigned int end_aligned) 1664 { 1665 struct buffer_head *bh = mp->mp_bh[h]; 1666 __be64 *first, *ptr, *end; 1667 1668 first = metaptr1(h, mp); 1669 ptr = first + mp->mp_list[h]; 1670 end = (__be64 *)(bh->b_data + bh->b_size); 1671 if (end_list && mp_eq_to_hgt(mp, end_list, h)) { 1672 bool keep_end = h < end_aligned; 1673 end = first + end_list[h] + keep_end; 1674 } 1675 1676 while (ptr < end) { 1677 if (*ptr) { /* if we have a non-null pointer */ 1678 mp->mp_list[h] = ptr - first; 1679 h++; 1680 if (h < GFS2_MAX_META_HEIGHT) 1681 mp->mp_list[h] = 0; 1682 return true; 1683 } 1684 ptr++; 1685 } 1686 return false; 1687 } 1688 1689 enum dealloc_states { 1690 DEALLOC_MP_FULL = 0, /* Strip a metapath with all buffers read in */ 1691 DEALLOC_MP_LOWER = 1, /* lower the metapath strip height */ 1692 DEALLOC_FILL_MP = 2, /* Fill in the metapath to the given height. */ 1693 DEALLOC_DONE = 3, /* process complete */ 1694 }; 1695 1696 static inline void 1697 metapointer_range(struct metapath *mp, int height, 1698 __u16 *start_list, unsigned int start_aligned, 1699 __u16 *end_list, unsigned int end_aligned, 1700 __be64 **start, __be64 **end) 1701 { 1702 struct buffer_head *bh = mp->mp_bh[height]; 1703 __be64 *first; 1704 1705 first = metaptr1(height, mp); 1706 *start = first; 1707 if (mp_eq_to_hgt(mp, start_list, height)) { 1708 bool keep_start = height < start_aligned; 1709 *start = first + start_list[height] + keep_start; 1710 } 1711 *end = (__be64 *)(bh->b_data + bh->b_size); 1712 if (end_list && mp_eq_to_hgt(mp, end_list, height)) { 1713 bool keep_end = height < end_aligned; 1714 *end = first + end_list[height] + keep_end; 1715 } 1716 } 1717 1718 static inline bool walk_done(struct gfs2_sbd *sdp, 1719 struct metapath *mp, int height, 1720 __u16 *end_list, unsigned int end_aligned) 1721 { 1722 __u16 end; 1723 1724 if (end_list) { 1725 bool keep_end = height < end_aligned; 1726 if (!mp_eq_to_hgt(mp, end_list, height)) 1727 return false; 1728 end = end_list[height] + keep_end; 1729 } else 1730 end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs; 1731 return mp->mp_list[height] >= end; 1732 } 1733 1734 /** 1735 * punch_hole - deallocate blocks in a file 1736 * @ip: inode to truncate 1737 * @offset: the start of the hole 1738 * @length: the size of the hole (or 0 for truncate) 1739 * 1740 * Punch a hole into a file or truncate a file at a given position. This 1741 * function operates in whole blocks (@offset and @length are rounded 1742 * accordingly); partially filled blocks must be cleared otherwise. 1743 * 1744 * This function works from the bottom up, and from the right to the left. In 1745 * other words, it strips off the highest layer (data) before stripping any of 1746 * the metadata. Doing it this way is best in case the operation is interrupted 1747 * by power failure, etc. The dinode is rewritten in every transaction to 1748 * guarantee integrity. 1749 */ 1750 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length) 1751 { 1752 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1753 u64 maxsize = sdp->sd_heightsize[ip->i_height]; 1754 struct metapath mp = {}; 1755 struct buffer_head *dibh, *bh; 1756 struct gfs2_holder rd_gh; 1757 unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift; 1758 u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift; 1759 __u16 start_list[GFS2_MAX_META_HEIGHT]; 1760 __u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL; 1761 unsigned int start_aligned, uninitialized_var(end_aligned); 1762 unsigned int strip_h = ip->i_height - 1; 1763 u32 btotal = 0; 1764 int ret, state; 1765 int mp_h; /* metapath buffers are read in to this height */ 1766 u64 prev_bnr = 0; 1767 __be64 *start, *end; 1768 1769 if (offset >= maxsize) { 1770 /* 1771 * The starting point lies beyond the allocated meta-data; 1772 * there are no blocks do deallocate. 1773 */ 1774 return 0; 1775 } 1776 1777 /* 1778 * The start position of the hole is defined by lblock, start_list, and 1779 * start_aligned. The end position of the hole is defined by lend, 1780 * end_list, and end_aligned. 1781 * 1782 * start_aligned and end_aligned define down to which height the start 1783 * and end positions are aligned to the metadata tree (i.e., the 1784 * position is a multiple of the metadata granularity at the height 1785 * above). This determines at which heights additional meta pointers 1786 * needs to be preserved for the remaining data. 1787 */ 1788 1789 if (length) { 1790 u64 end_offset = offset + length; 1791 u64 lend; 1792 1793 /* 1794 * Clip the end at the maximum file size for the given height: 1795 * that's how far the metadata goes; files bigger than that 1796 * will have additional layers of indirection. 1797 */ 1798 if (end_offset > maxsize) 1799 end_offset = maxsize; 1800 lend = end_offset >> bsize_shift; 1801 1802 if (lblock >= lend) 1803 return 0; 1804 1805 find_metapath(sdp, lend, &mp, ip->i_height); 1806 end_list = __end_list; 1807 memcpy(end_list, mp.mp_list, sizeof(mp.mp_list)); 1808 1809 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1810 if (end_list[mp_h]) 1811 break; 1812 } 1813 end_aligned = mp_h; 1814 } 1815 1816 find_metapath(sdp, lblock, &mp, ip->i_height); 1817 memcpy(start_list, mp.mp_list, sizeof(start_list)); 1818 1819 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1820 if (start_list[mp_h]) 1821 break; 1822 } 1823 start_aligned = mp_h; 1824 1825 ret = gfs2_meta_inode_buffer(ip, &dibh); 1826 if (ret) 1827 return ret; 1828 1829 mp.mp_bh[0] = dibh; 1830 ret = lookup_metapath(ip, &mp); 1831 if (ret) 1832 goto out_metapath; 1833 1834 /* issue read-ahead on metadata */ 1835 for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) { 1836 metapointer_range(&mp, mp_h, start_list, start_aligned, 1837 end_list, end_aligned, &start, &end); 1838 gfs2_metapath_ra(ip->i_gl, start, end); 1839 } 1840 1841 if (mp.mp_aheight == ip->i_height) 1842 state = DEALLOC_MP_FULL; /* We have a complete metapath */ 1843 else 1844 state = DEALLOC_FILL_MP; /* deal with partial metapath */ 1845 1846 ret = gfs2_rindex_update(sdp); 1847 if (ret) 1848 goto out_metapath; 1849 1850 ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE); 1851 if (ret) 1852 goto out_metapath; 1853 gfs2_holder_mark_uninitialized(&rd_gh); 1854 1855 mp_h = strip_h; 1856 1857 while (state != DEALLOC_DONE) { 1858 switch (state) { 1859 /* Truncate a full metapath at the given strip height. 1860 * Note that strip_h == mp_h in order to be in this state. */ 1861 case DEALLOC_MP_FULL: 1862 bh = mp.mp_bh[mp_h]; 1863 gfs2_assert_withdraw(sdp, bh); 1864 if (gfs2_assert_withdraw(sdp, 1865 prev_bnr != bh->b_blocknr)) { 1866 fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u," 1867 "s_h:%u, mp_h:%u\n", 1868 (unsigned long long)ip->i_no_addr, 1869 prev_bnr, ip->i_height, strip_h, mp_h); 1870 } 1871 prev_bnr = bh->b_blocknr; 1872 1873 if (gfs2_metatype_check(sdp, bh, 1874 (mp_h ? GFS2_METATYPE_IN : 1875 GFS2_METATYPE_DI))) { 1876 ret = -EIO; 1877 goto out; 1878 } 1879 1880 /* 1881 * Below, passing end_aligned as 0 gives us the 1882 * metapointer range excluding the end point: the end 1883 * point is the first metapath we must not deallocate! 1884 */ 1885 1886 metapointer_range(&mp, mp_h, start_list, start_aligned, 1887 end_list, 0 /* end_aligned */, 1888 &start, &end); 1889 ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h], 1890 start, end, 1891 mp_h != ip->i_height - 1, 1892 &btotal); 1893 1894 /* If we hit an error or just swept dinode buffer, 1895 just exit. */ 1896 if (ret || !mp_h) { 1897 state = DEALLOC_DONE; 1898 break; 1899 } 1900 state = DEALLOC_MP_LOWER; 1901 break; 1902 1903 /* lower the metapath strip height */ 1904 case DEALLOC_MP_LOWER: 1905 /* We're done with the current buffer, so release it, 1906 unless it's the dinode buffer. Then back up to the 1907 previous pointer. */ 1908 if (mp_h) { 1909 brelse(mp.mp_bh[mp_h]); 1910 mp.mp_bh[mp_h] = NULL; 1911 } 1912 /* If we can't get any lower in height, we've stripped 1913 off all we can. Next step is to back up and start 1914 stripping the previous level of metadata. */ 1915 if (mp_h == 0) { 1916 strip_h--; 1917 memcpy(mp.mp_list, start_list, sizeof(start_list)); 1918 mp_h = strip_h; 1919 state = DEALLOC_FILL_MP; 1920 break; 1921 } 1922 mp.mp_list[mp_h] = 0; 1923 mp_h--; /* search one metadata height down */ 1924 mp.mp_list[mp_h]++; 1925 if (walk_done(sdp, &mp, mp_h, end_list, end_aligned)) 1926 break; 1927 /* Here we've found a part of the metapath that is not 1928 * allocated. We need to search at that height for the 1929 * next non-null pointer. */ 1930 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) { 1931 state = DEALLOC_FILL_MP; 1932 mp_h++; 1933 } 1934 /* No more non-null pointers at this height. Back up 1935 to the previous height and try again. */ 1936 break; /* loop around in the same state */ 1937 1938 /* Fill the metapath with buffers to the given height. */ 1939 case DEALLOC_FILL_MP: 1940 /* Fill the buffers out to the current height. */ 1941 ret = fillup_metapath(ip, &mp, mp_h); 1942 if (ret < 0) 1943 goto out; 1944 1945 /* On the first pass, issue read-ahead on metadata. */ 1946 if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) { 1947 unsigned int height = mp.mp_aheight - 1; 1948 1949 /* No read-ahead for data blocks. */ 1950 if (mp.mp_aheight - 1 == strip_h) 1951 height--; 1952 1953 for (; height >= mp.mp_aheight - ret; height--) { 1954 metapointer_range(&mp, height, 1955 start_list, start_aligned, 1956 end_list, end_aligned, 1957 &start, &end); 1958 gfs2_metapath_ra(ip->i_gl, start, end); 1959 } 1960 } 1961 1962 /* If buffers found for the entire strip height */ 1963 if (mp.mp_aheight - 1 == strip_h) { 1964 state = DEALLOC_MP_FULL; 1965 break; 1966 } 1967 if (mp.mp_aheight < ip->i_height) /* We have a partial height */ 1968 mp_h = mp.mp_aheight - 1; 1969 1970 /* If we find a non-null block pointer, crawl a bit 1971 higher up in the metapath and try again, otherwise 1972 we need to look lower for a new starting point. */ 1973 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) 1974 mp_h++; 1975 else 1976 state = DEALLOC_MP_LOWER; 1977 break; 1978 } 1979 } 1980 1981 if (btotal) { 1982 if (current->journal_info == NULL) { 1983 ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + 1984 RES_QUOTA, 0); 1985 if (ret) 1986 goto out; 1987 down_write(&ip->i_rw_mutex); 1988 } 1989 gfs2_statfs_change(sdp, 0, +btotal, 0); 1990 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid, 1991 ip->i_inode.i_gid); 1992 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1993 gfs2_trans_add_meta(ip->i_gl, dibh); 1994 gfs2_dinode_out(ip, dibh->b_data); 1995 up_write(&ip->i_rw_mutex); 1996 gfs2_trans_end(sdp); 1997 } 1998 1999 out: 2000 if (gfs2_holder_initialized(&rd_gh)) 2001 gfs2_glock_dq_uninit(&rd_gh); 2002 if (current->journal_info) { 2003 up_write(&ip->i_rw_mutex); 2004 gfs2_trans_end(sdp); 2005 cond_resched(); 2006 } 2007 gfs2_quota_unhold(ip); 2008 out_metapath: 2009 release_metapath(&mp); 2010 return ret; 2011 } 2012 2013 static int trunc_end(struct gfs2_inode *ip) 2014 { 2015 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2016 struct buffer_head *dibh; 2017 int error; 2018 2019 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2020 if (error) 2021 return error; 2022 2023 down_write(&ip->i_rw_mutex); 2024 2025 error = gfs2_meta_inode_buffer(ip, &dibh); 2026 if (error) 2027 goto out; 2028 2029 if (!i_size_read(&ip->i_inode)) { 2030 ip->i_height = 0; 2031 ip->i_goal = ip->i_no_addr; 2032 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 2033 gfs2_ordered_del_inode(ip); 2034 } 2035 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2036 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG; 2037 2038 gfs2_trans_add_meta(ip->i_gl, dibh); 2039 gfs2_dinode_out(ip, dibh->b_data); 2040 brelse(dibh); 2041 2042 out: 2043 up_write(&ip->i_rw_mutex); 2044 gfs2_trans_end(sdp); 2045 return error; 2046 } 2047 2048 /** 2049 * do_shrink - make a file smaller 2050 * @inode: the inode 2051 * @newsize: the size to make the file 2052 * 2053 * Called with an exclusive lock on @inode. The @size must 2054 * be equal to or smaller than the current inode size. 2055 * 2056 * Returns: errno 2057 */ 2058 2059 static int do_shrink(struct inode *inode, u64 newsize) 2060 { 2061 struct gfs2_inode *ip = GFS2_I(inode); 2062 int error; 2063 2064 error = trunc_start(inode, newsize); 2065 if (error < 0) 2066 return error; 2067 if (gfs2_is_stuffed(ip)) 2068 return 0; 2069 2070 error = punch_hole(ip, newsize, 0); 2071 if (error == 0) 2072 error = trunc_end(ip); 2073 2074 return error; 2075 } 2076 2077 void gfs2_trim_blocks(struct inode *inode) 2078 { 2079 int ret; 2080 2081 ret = do_shrink(inode, inode->i_size); 2082 WARN_ON(ret != 0); 2083 } 2084 2085 /** 2086 * do_grow - Touch and update inode size 2087 * @inode: The inode 2088 * @size: The new size 2089 * 2090 * This function updates the timestamps on the inode and 2091 * may also increase the size of the inode. This function 2092 * must not be called with @size any smaller than the current 2093 * inode size. 2094 * 2095 * Although it is not strictly required to unstuff files here, 2096 * earlier versions of GFS2 have a bug in the stuffed file reading 2097 * code which will result in a buffer overrun if the size is larger 2098 * than the max stuffed file size. In order to prevent this from 2099 * occurring, such files are unstuffed, but in other cases we can 2100 * just update the inode size directly. 2101 * 2102 * Returns: 0 on success, or -ve on error 2103 */ 2104 2105 static int do_grow(struct inode *inode, u64 size) 2106 { 2107 struct gfs2_inode *ip = GFS2_I(inode); 2108 struct gfs2_sbd *sdp = GFS2_SB(inode); 2109 struct gfs2_alloc_parms ap = { .target = 1, }; 2110 struct buffer_head *dibh; 2111 int error; 2112 int unstuff = 0; 2113 2114 if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) { 2115 error = gfs2_quota_lock_check(ip, &ap); 2116 if (error) 2117 return error; 2118 2119 error = gfs2_inplace_reserve(ip, &ap); 2120 if (error) 2121 goto do_grow_qunlock; 2122 unstuff = 1; 2123 } 2124 2125 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT + 2126 (unstuff && 2127 gfs2_is_jdata(ip) ? RES_JDATA : 0) + 2128 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ? 2129 0 : RES_QUOTA), 0); 2130 if (error) 2131 goto do_grow_release; 2132 2133 if (unstuff) { 2134 error = gfs2_unstuff_dinode(ip, NULL); 2135 if (error) 2136 goto do_end_trans; 2137 } 2138 2139 error = gfs2_meta_inode_buffer(ip, &dibh); 2140 if (error) 2141 goto do_end_trans; 2142 2143 i_size_write(inode, size); 2144 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2145 gfs2_trans_add_meta(ip->i_gl, dibh); 2146 gfs2_dinode_out(ip, dibh->b_data); 2147 brelse(dibh); 2148 2149 do_end_trans: 2150 gfs2_trans_end(sdp); 2151 do_grow_release: 2152 if (unstuff) { 2153 gfs2_inplace_release(ip); 2154 do_grow_qunlock: 2155 gfs2_quota_unlock(ip); 2156 } 2157 return error; 2158 } 2159 2160 /** 2161 * gfs2_setattr_size - make a file a given size 2162 * @inode: the inode 2163 * @newsize: the size to make the file 2164 * 2165 * The file size can grow, shrink, or stay the same size. This 2166 * is called holding i_rwsem and an exclusive glock on the inode 2167 * in question. 2168 * 2169 * Returns: errno 2170 */ 2171 2172 int gfs2_setattr_size(struct inode *inode, u64 newsize) 2173 { 2174 struct gfs2_inode *ip = GFS2_I(inode); 2175 int ret; 2176 2177 BUG_ON(!S_ISREG(inode->i_mode)); 2178 2179 ret = inode_newsize_ok(inode, newsize); 2180 if (ret) 2181 return ret; 2182 2183 inode_dio_wait(inode); 2184 2185 ret = gfs2_rsqa_alloc(ip); 2186 if (ret) 2187 goto out; 2188 2189 if (newsize >= inode->i_size) { 2190 ret = do_grow(inode, newsize); 2191 goto out; 2192 } 2193 2194 ret = do_shrink(inode, newsize); 2195 out: 2196 gfs2_rsqa_delete(ip, NULL); 2197 return ret; 2198 } 2199 2200 int gfs2_truncatei_resume(struct gfs2_inode *ip) 2201 { 2202 int error; 2203 error = punch_hole(ip, i_size_read(&ip->i_inode), 0); 2204 if (!error) 2205 error = trunc_end(ip); 2206 return error; 2207 } 2208 2209 int gfs2_file_dealloc(struct gfs2_inode *ip) 2210 { 2211 return punch_hole(ip, 0, 0); 2212 } 2213 2214 /** 2215 * gfs2_free_journal_extents - Free cached journal bmap info 2216 * @jd: The journal 2217 * 2218 */ 2219 2220 void gfs2_free_journal_extents(struct gfs2_jdesc *jd) 2221 { 2222 struct gfs2_journal_extent *jext; 2223 2224 while(!list_empty(&jd->extent_list)) { 2225 jext = list_entry(jd->extent_list.next, struct gfs2_journal_extent, list); 2226 list_del(&jext->list); 2227 kfree(jext); 2228 } 2229 } 2230 2231 /** 2232 * gfs2_add_jextent - Add or merge a new extent to extent cache 2233 * @jd: The journal descriptor 2234 * @lblock: The logical block at start of new extent 2235 * @dblock: The physical block at start of new extent 2236 * @blocks: Size of extent in fs blocks 2237 * 2238 * Returns: 0 on success or -ENOMEM 2239 */ 2240 2241 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks) 2242 { 2243 struct gfs2_journal_extent *jext; 2244 2245 if (!list_empty(&jd->extent_list)) { 2246 jext = list_entry(jd->extent_list.prev, struct gfs2_journal_extent, list); 2247 if ((jext->dblock + jext->blocks) == dblock) { 2248 jext->blocks += blocks; 2249 return 0; 2250 } 2251 } 2252 2253 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS); 2254 if (jext == NULL) 2255 return -ENOMEM; 2256 jext->dblock = dblock; 2257 jext->lblock = lblock; 2258 jext->blocks = blocks; 2259 list_add_tail(&jext->list, &jd->extent_list); 2260 jd->nr_extents++; 2261 return 0; 2262 } 2263 2264 /** 2265 * gfs2_map_journal_extents - Cache journal bmap info 2266 * @sdp: The super block 2267 * @jd: The journal to map 2268 * 2269 * Create a reusable "extent" mapping from all logical 2270 * blocks to all physical blocks for the given journal. This will save 2271 * us time when writing journal blocks. Most journals will have only one 2272 * extent that maps all their logical blocks. That's because gfs2.mkfs 2273 * arranges the journal blocks sequentially to maximize performance. 2274 * So the extent would map the first block for the entire file length. 2275 * However, gfs2_jadd can happen while file activity is happening, so 2276 * those journals may not be sequential. Less likely is the case where 2277 * the users created their own journals by mounting the metafs and 2278 * laying it out. But it's still possible. These journals might have 2279 * several extents. 2280 * 2281 * Returns: 0 on success, or error on failure 2282 */ 2283 2284 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd) 2285 { 2286 u64 lblock = 0; 2287 u64 lblock_stop; 2288 struct gfs2_inode *ip = GFS2_I(jd->jd_inode); 2289 struct buffer_head bh; 2290 unsigned int shift = sdp->sd_sb.sb_bsize_shift; 2291 u64 size; 2292 int rc; 2293 ktime_t start, end; 2294 2295 start = ktime_get(); 2296 lblock_stop = i_size_read(jd->jd_inode) >> shift; 2297 size = (lblock_stop - lblock) << shift; 2298 jd->nr_extents = 0; 2299 WARN_ON(!list_empty(&jd->extent_list)); 2300 2301 do { 2302 bh.b_state = 0; 2303 bh.b_blocknr = 0; 2304 bh.b_size = size; 2305 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0); 2306 if (rc || !buffer_mapped(&bh)) 2307 goto fail; 2308 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift); 2309 if (rc) 2310 goto fail; 2311 size -= bh.b_size; 2312 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2313 } while(size > 0); 2314 2315 end = ktime_get(); 2316 fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid, 2317 jd->nr_extents, ktime_ms_delta(end, start)); 2318 return 0; 2319 2320 fail: 2321 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n", 2322 rc, jd->jd_jid, 2323 (unsigned long long)(i_size_read(jd->jd_inode) - size), 2324 jd->nr_extents); 2325 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n", 2326 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr, 2327 bh.b_state, (unsigned long long)bh.b_size); 2328 gfs2_free_journal_extents(jd); 2329 return rc; 2330 } 2331 2332 /** 2333 * gfs2_write_alloc_required - figure out if a write will require an allocation 2334 * @ip: the file being written to 2335 * @offset: the offset to write to 2336 * @len: the number of bytes being written 2337 * 2338 * Returns: 1 if an alloc is required, 0 otherwise 2339 */ 2340 2341 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset, 2342 unsigned int len) 2343 { 2344 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2345 struct buffer_head bh; 2346 unsigned int shift; 2347 u64 lblock, lblock_stop, size; 2348 u64 end_of_file; 2349 2350 if (!len) 2351 return 0; 2352 2353 if (gfs2_is_stuffed(ip)) { 2354 if (offset + len > gfs2_max_stuffed_size(ip)) 2355 return 1; 2356 return 0; 2357 } 2358 2359 shift = sdp->sd_sb.sb_bsize_shift; 2360 BUG_ON(gfs2_is_dir(ip)); 2361 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift; 2362 lblock = offset >> shift; 2363 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift; 2364 if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex)) 2365 return 1; 2366 2367 size = (lblock_stop - lblock) << shift; 2368 do { 2369 bh.b_state = 0; 2370 bh.b_size = size; 2371 gfs2_block_map(&ip->i_inode, lblock, &bh, 0); 2372 if (!buffer_mapped(&bh)) 2373 return 1; 2374 size -= bh.b_size; 2375 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2376 } while(size > 0); 2377 2378 return 0; 2379 } 2380 2381 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length) 2382 { 2383 struct gfs2_inode *ip = GFS2_I(inode); 2384 struct buffer_head *dibh; 2385 int error; 2386 2387 if (offset >= inode->i_size) 2388 return 0; 2389 if (offset + length > inode->i_size) 2390 length = inode->i_size - offset; 2391 2392 error = gfs2_meta_inode_buffer(ip, &dibh); 2393 if (error) 2394 return error; 2395 gfs2_trans_add_meta(ip->i_gl, dibh); 2396 memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0, 2397 length); 2398 brelse(dibh); 2399 return 0; 2400 } 2401 2402 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset, 2403 loff_t length) 2404 { 2405 struct gfs2_sbd *sdp = GFS2_SB(inode); 2406 loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 2407 int error; 2408 2409 while (length) { 2410 struct gfs2_trans *tr; 2411 loff_t chunk; 2412 unsigned int offs; 2413 2414 chunk = length; 2415 if (chunk > max_chunk) 2416 chunk = max_chunk; 2417 2418 offs = offset & ~PAGE_MASK; 2419 if (offs && chunk > PAGE_SIZE) 2420 chunk = offs + ((chunk - offs) & PAGE_MASK); 2421 2422 truncate_pagecache_range(inode, offset, chunk); 2423 offset += chunk; 2424 length -= chunk; 2425 2426 tr = current->journal_info; 2427 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 2428 continue; 2429 2430 gfs2_trans_end(sdp); 2431 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 2432 if (error) 2433 return error; 2434 } 2435 return 0; 2436 } 2437 2438 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length) 2439 { 2440 struct inode *inode = file_inode(file); 2441 struct gfs2_inode *ip = GFS2_I(inode); 2442 struct gfs2_sbd *sdp = GFS2_SB(inode); 2443 int error; 2444 2445 if (gfs2_is_jdata(ip)) 2446 error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA, 2447 GFS2_JTRUNC_REVOKES); 2448 else 2449 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2450 if (error) 2451 return error; 2452 2453 if (gfs2_is_stuffed(ip)) { 2454 error = stuffed_zero_range(inode, offset, length); 2455 if (error) 2456 goto out; 2457 } else { 2458 unsigned int start_off, end_len, blocksize; 2459 2460 blocksize = i_blocksize(inode); 2461 start_off = offset & (blocksize - 1); 2462 end_len = (offset + length) & (blocksize - 1); 2463 if (start_off) { 2464 unsigned int len = length; 2465 if (length > blocksize - start_off) 2466 len = blocksize - start_off; 2467 error = gfs2_block_zero_range(inode, offset, len); 2468 if (error) 2469 goto out; 2470 if (start_off + length < blocksize) 2471 end_len = 0; 2472 } 2473 if (end_len) { 2474 error = gfs2_block_zero_range(inode, 2475 offset + length - end_len, end_len); 2476 if (error) 2477 goto out; 2478 } 2479 } 2480 2481 if (gfs2_is_jdata(ip)) { 2482 BUG_ON(!current->journal_info); 2483 gfs2_journaled_truncate_range(inode, offset, length); 2484 } else 2485 truncate_pagecache_range(inode, offset, offset + length - 1); 2486 2487 file_update_time(file); 2488 mark_inode_dirty(inode); 2489 2490 if (current->journal_info) 2491 gfs2_trans_end(sdp); 2492 2493 if (!gfs2_is_stuffed(ip)) 2494 error = punch_hole(ip, offset, length); 2495 2496 out: 2497 if (current->journal_info) 2498 gfs2_trans_end(sdp); 2499 return error; 2500 } 2501