xref: /openbmc/linux/fs/gfs2/bmap.c (revision 9fa996c5f003beae0d8ca323caf06a2b73e471ec)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #include <linux/spinlock.h>
8 #include <linux/completion.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/gfs2_ondisk.h>
12 #include <linux/crc32.h>
13 #include <linux/iomap.h>
14 #include <linux/ktime.h>
15 
16 #include "gfs2.h"
17 #include "incore.h"
18 #include "bmap.h"
19 #include "glock.h"
20 #include "inode.h"
21 #include "meta_io.h"
22 #include "quota.h"
23 #include "rgrp.h"
24 #include "log.h"
25 #include "super.h"
26 #include "trans.h"
27 #include "dir.h"
28 #include "util.h"
29 #include "aops.h"
30 #include "trace_gfs2.h"
31 
32 /* This doesn't need to be that large as max 64 bit pointers in a 4k
33  * block is 512, so __u16 is fine for that. It saves stack space to
34  * keep it small.
35  */
36 struct metapath {
37 	struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT];
38 	__u16 mp_list[GFS2_MAX_META_HEIGHT];
39 	int mp_fheight; /* find_metapath height */
40 	int mp_aheight; /* actual height (lookup height) */
41 };
42 
43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length);
44 
45 /**
46  * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page
47  * @ip: the inode
48  * @dibh: the dinode buffer
49  * @block: the block number that was allocated
50  * @page: The (optional) page. This is looked up if @page is NULL
51  *
52  * Returns: errno
53  */
54 
55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh,
56 			       u64 block, struct page *page)
57 {
58 	struct inode *inode = &ip->i_inode;
59 	int release = 0;
60 
61 	if (!page || page->index) {
62 		page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
63 		if (!page)
64 			return -ENOMEM;
65 		release = 1;
66 	}
67 
68 	if (!PageUptodate(page)) {
69 		void *kaddr = kmap(page);
70 		u64 dsize = i_size_read(inode);
71 
72 		if (dsize > gfs2_max_stuffed_size(ip))
73 			dsize = gfs2_max_stuffed_size(ip);
74 
75 		memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
76 		memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
77 		kunmap(page);
78 
79 		SetPageUptodate(page);
80 	}
81 
82 	if (gfs2_is_jdata(ip)) {
83 		struct buffer_head *bh;
84 
85 		if (!page_has_buffers(page))
86 			create_empty_buffers(page, BIT(inode->i_blkbits),
87 					     BIT(BH_Uptodate));
88 
89 		bh = page_buffers(page);
90 		if (!buffer_mapped(bh))
91 			map_bh(bh, inode->i_sb, block);
92 
93 		set_buffer_uptodate(bh);
94 		gfs2_trans_add_data(ip->i_gl, bh);
95 	} else {
96 		set_page_dirty(page);
97 		gfs2_ordered_add_inode(ip);
98 	}
99 
100 	if (release) {
101 		unlock_page(page);
102 		put_page(page);
103 	}
104 
105 	return 0;
106 }
107 
108 /**
109  * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big
110  * @ip: The GFS2 inode to unstuff
111  * @page: The (optional) page. This is looked up if the @page is NULL
112  *
113  * This routine unstuffs a dinode and returns it to a "normal" state such
114  * that the height can be grown in the traditional way.
115  *
116  * Returns: errno
117  */
118 
119 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page)
120 {
121 	struct buffer_head *bh, *dibh;
122 	struct gfs2_dinode *di;
123 	u64 block = 0;
124 	int isdir = gfs2_is_dir(ip);
125 	int error;
126 
127 	down_write(&ip->i_rw_mutex);
128 
129 	error = gfs2_meta_inode_buffer(ip, &dibh);
130 	if (error)
131 		goto out;
132 
133 	if (i_size_read(&ip->i_inode)) {
134 		/* Get a free block, fill it with the stuffed data,
135 		   and write it out to disk */
136 
137 		unsigned int n = 1;
138 		error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL);
139 		if (error)
140 			goto out_brelse;
141 		if (isdir) {
142 			gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1);
143 			error = gfs2_dir_get_new_buffer(ip, block, &bh);
144 			if (error)
145 				goto out_brelse;
146 			gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header),
147 					      dibh, sizeof(struct gfs2_dinode));
148 			brelse(bh);
149 		} else {
150 			error = gfs2_unstuffer_page(ip, dibh, block, page);
151 			if (error)
152 				goto out_brelse;
153 		}
154 	}
155 
156 	/*  Set up the pointer to the new block  */
157 
158 	gfs2_trans_add_meta(ip->i_gl, dibh);
159 	di = (struct gfs2_dinode *)dibh->b_data;
160 	gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
161 
162 	if (i_size_read(&ip->i_inode)) {
163 		*(__be64 *)(di + 1) = cpu_to_be64(block);
164 		gfs2_add_inode_blocks(&ip->i_inode, 1);
165 		di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode));
166 	}
167 
168 	ip->i_height = 1;
169 	di->di_height = cpu_to_be16(1);
170 
171 out_brelse:
172 	brelse(dibh);
173 out:
174 	up_write(&ip->i_rw_mutex);
175 	return error;
176 }
177 
178 
179 /**
180  * find_metapath - Find path through the metadata tree
181  * @sdp: The superblock
182  * @block: The disk block to look up
183  * @mp: The metapath to return the result in
184  * @height: The pre-calculated height of the metadata tree
185  *
186  *   This routine returns a struct metapath structure that defines a path
187  *   through the metadata of inode "ip" to get to block "block".
188  *
189  *   Example:
190  *   Given:  "ip" is a height 3 file, "offset" is 101342453, and this is a
191  *   filesystem with a blocksize of 4096.
192  *
193  *   find_metapath() would return a struct metapath structure set to:
194  *   mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165.
195  *
196  *   That means that in order to get to the block containing the byte at
197  *   offset 101342453, we would load the indirect block pointed to by pointer
198  *   0 in the dinode.  We would then load the indirect block pointed to by
199  *   pointer 48 in that indirect block.  We would then load the data block
200  *   pointed to by pointer 165 in that indirect block.
201  *
202  *             ----------------------------------------
203  *             | Dinode |                             |
204  *             |        |                            4|
205  *             |        |0 1 2 3 4 5                 9|
206  *             |        |                            6|
207  *             ----------------------------------------
208  *                       |
209  *                       |
210  *                       V
211  *             ----------------------------------------
212  *             | Indirect Block                       |
213  *             |                                     5|
214  *             |            4 4 4 4 4 5 5            1|
215  *             |0           5 6 7 8 9 0 1            2|
216  *             ----------------------------------------
217  *                                |
218  *                                |
219  *                                V
220  *             ----------------------------------------
221  *             | Indirect Block                       |
222  *             |                         1 1 1 1 1   5|
223  *             |                         6 6 6 6 6   1|
224  *             |0                        3 4 5 6 7   2|
225  *             ----------------------------------------
226  *                                           |
227  *                                           |
228  *                                           V
229  *             ----------------------------------------
230  *             | Data block containing offset         |
231  *             |            101342453                 |
232  *             |                                      |
233  *             |                                      |
234  *             ----------------------------------------
235  *
236  */
237 
238 static void find_metapath(const struct gfs2_sbd *sdp, u64 block,
239 			  struct metapath *mp, unsigned int height)
240 {
241 	unsigned int i;
242 
243 	mp->mp_fheight = height;
244 	for (i = height; i--;)
245 		mp->mp_list[i] = do_div(block, sdp->sd_inptrs);
246 }
247 
248 static inline unsigned int metapath_branch_start(const struct metapath *mp)
249 {
250 	if (mp->mp_list[0] == 0)
251 		return 2;
252 	return 1;
253 }
254 
255 /**
256  * metaptr1 - Return the first possible metadata pointer in a metapath buffer
257  * @height: The metadata height (0 = dinode)
258  * @mp: The metapath
259  */
260 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp)
261 {
262 	struct buffer_head *bh = mp->mp_bh[height];
263 	if (height == 0)
264 		return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)));
265 	return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header)));
266 }
267 
268 /**
269  * metapointer - Return pointer to start of metadata in a buffer
270  * @height: The metadata height (0 = dinode)
271  * @mp: The metapath
272  *
273  * Return a pointer to the block number of the next height of the metadata
274  * tree given a buffer containing the pointer to the current height of the
275  * metadata tree.
276  */
277 
278 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp)
279 {
280 	__be64 *p = metaptr1(height, mp);
281 	return p + mp->mp_list[height];
282 }
283 
284 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp)
285 {
286 	const struct buffer_head *bh = mp->mp_bh[height];
287 	return (const __be64 *)(bh->b_data + bh->b_size);
288 }
289 
290 static void clone_metapath(struct metapath *clone, struct metapath *mp)
291 {
292 	unsigned int hgt;
293 
294 	*clone = *mp;
295 	for (hgt = 0; hgt < mp->mp_aheight; hgt++)
296 		get_bh(clone->mp_bh[hgt]);
297 }
298 
299 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end)
300 {
301 	const __be64 *t;
302 
303 	for (t = start; t < end; t++) {
304 		struct buffer_head *rabh;
305 
306 		if (!*t)
307 			continue;
308 
309 		rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE);
310 		if (trylock_buffer(rabh)) {
311 			if (!buffer_uptodate(rabh)) {
312 				rabh->b_end_io = end_buffer_read_sync;
313 				submit_bh(REQ_OP_READ,
314 					  REQ_RAHEAD | REQ_META | REQ_PRIO,
315 					  rabh);
316 				continue;
317 			}
318 			unlock_buffer(rabh);
319 		}
320 		brelse(rabh);
321 	}
322 }
323 
324 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp,
325 			     unsigned int x, unsigned int h)
326 {
327 	for (; x < h; x++) {
328 		__be64 *ptr = metapointer(x, mp);
329 		u64 dblock = be64_to_cpu(*ptr);
330 		int ret;
331 
332 		if (!dblock)
333 			break;
334 		ret = gfs2_meta_buffer(ip, GFS2_METATYPE_IN, dblock, &mp->mp_bh[x + 1]);
335 		if (ret)
336 			return ret;
337 	}
338 	mp->mp_aheight = x + 1;
339 	return 0;
340 }
341 
342 /**
343  * lookup_metapath - Walk the metadata tree to a specific point
344  * @ip: The inode
345  * @mp: The metapath
346  *
347  * Assumes that the inode's buffer has already been looked up and
348  * hooked onto mp->mp_bh[0] and that the metapath has been initialised
349  * by find_metapath().
350  *
351  * If this function encounters part of the tree which has not been
352  * allocated, it returns the current height of the tree at the point
353  * at which it found the unallocated block. Blocks which are found are
354  * added to the mp->mp_bh[] list.
355  *
356  * Returns: error
357  */
358 
359 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp)
360 {
361 	return __fillup_metapath(ip, mp, 0, ip->i_height - 1);
362 }
363 
364 /**
365  * fillup_metapath - fill up buffers for the metadata path to a specific height
366  * @ip: The inode
367  * @mp: The metapath
368  * @h: The height to which it should be mapped
369  *
370  * Similar to lookup_metapath, but does lookups for a range of heights
371  *
372  * Returns: error or the number of buffers filled
373  */
374 
375 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h)
376 {
377 	unsigned int x = 0;
378 	int ret;
379 
380 	if (h) {
381 		/* find the first buffer we need to look up. */
382 		for (x = h - 1; x > 0; x--) {
383 			if (mp->mp_bh[x])
384 				break;
385 		}
386 	}
387 	ret = __fillup_metapath(ip, mp, x, h);
388 	if (ret)
389 		return ret;
390 	return mp->mp_aheight - x - 1;
391 }
392 
393 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp)
394 {
395 	sector_t factor = 1, block = 0;
396 	int hgt;
397 
398 	for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) {
399 		if (hgt < mp->mp_aheight)
400 			block += mp->mp_list[hgt] * factor;
401 		factor *= sdp->sd_inptrs;
402 	}
403 	return block;
404 }
405 
406 static void release_metapath(struct metapath *mp)
407 {
408 	int i;
409 
410 	for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) {
411 		if (mp->mp_bh[i] == NULL)
412 			break;
413 		brelse(mp->mp_bh[i]);
414 		mp->mp_bh[i] = NULL;
415 	}
416 }
417 
418 /**
419  * gfs2_extent_length - Returns length of an extent of blocks
420  * @bh: The metadata block
421  * @ptr: Current position in @bh
422  * @limit: Max extent length to return
423  * @eob: Set to 1 if we hit "end of block"
424  *
425  * Returns: The length of the extent (minimum of one block)
426  */
427 
428 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob)
429 {
430 	const __be64 *end = (__be64 *)(bh->b_data + bh->b_size);
431 	const __be64 *first = ptr;
432 	u64 d = be64_to_cpu(*ptr);
433 
434 	*eob = 0;
435 	do {
436 		ptr++;
437 		if (ptr >= end)
438 			break;
439 		d++;
440 	} while(be64_to_cpu(*ptr) == d);
441 	if (ptr >= end)
442 		*eob = 1;
443 	return ptr - first;
444 }
445 
446 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE };
447 
448 /*
449  * gfs2_metadata_walker - walk an indirect block
450  * @mp: Metapath to indirect block
451  * @ptrs: Number of pointers to look at
452  *
453  * When returning WALK_FOLLOW, the walker must update @mp to point at the right
454  * indirect block to follow.
455  */
456 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp,
457 						   unsigned int ptrs);
458 
459 /*
460  * gfs2_walk_metadata - walk a tree of indirect blocks
461  * @inode: The inode
462  * @mp: Starting point of walk
463  * @max_len: Maximum number of blocks to walk
464  * @walker: Called during the walk
465  *
466  * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or
467  * past the end of metadata, and a negative error code otherwise.
468  */
469 
470 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp,
471 		u64 max_len, gfs2_metadata_walker walker)
472 {
473 	struct gfs2_inode *ip = GFS2_I(inode);
474 	struct gfs2_sbd *sdp = GFS2_SB(inode);
475 	u64 factor = 1;
476 	unsigned int hgt;
477 	int ret;
478 
479 	/*
480 	 * The walk starts in the lowest allocated indirect block, which may be
481 	 * before the position indicated by @mp.  Adjust @max_len accordingly
482 	 * to avoid a short walk.
483 	 */
484 	for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) {
485 		max_len += mp->mp_list[hgt] * factor;
486 		mp->mp_list[hgt] = 0;
487 		factor *= sdp->sd_inptrs;
488 	}
489 
490 	for (;;) {
491 		u16 start = mp->mp_list[hgt];
492 		enum walker_status status;
493 		unsigned int ptrs;
494 		u64 len;
495 
496 		/* Walk indirect block. */
497 		ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start;
498 		len = ptrs * factor;
499 		if (len > max_len)
500 			ptrs = DIV_ROUND_UP_ULL(max_len, factor);
501 		status = walker(mp, ptrs);
502 		switch (status) {
503 		case WALK_STOP:
504 			return 1;
505 		case WALK_FOLLOW:
506 			BUG_ON(mp->mp_aheight == mp->mp_fheight);
507 			ptrs = mp->mp_list[hgt] - start;
508 			len = ptrs * factor;
509 			break;
510 		case WALK_CONTINUE:
511 			break;
512 		}
513 		if (len >= max_len)
514 			break;
515 		max_len -= len;
516 		if (status == WALK_FOLLOW)
517 			goto fill_up_metapath;
518 
519 lower_metapath:
520 		/* Decrease height of metapath. */
521 		brelse(mp->mp_bh[hgt]);
522 		mp->mp_bh[hgt] = NULL;
523 		mp->mp_list[hgt] = 0;
524 		if (!hgt)
525 			break;
526 		hgt--;
527 		factor *= sdp->sd_inptrs;
528 
529 		/* Advance in metadata tree. */
530 		(mp->mp_list[hgt])++;
531 		if (hgt) {
532 			if (mp->mp_list[hgt] >= sdp->sd_inptrs)
533 				goto lower_metapath;
534 		} else {
535 			if (mp->mp_list[hgt] >= sdp->sd_diptrs)
536 				break;
537 		}
538 
539 fill_up_metapath:
540 		/* Increase height of metapath. */
541 		ret = fillup_metapath(ip, mp, ip->i_height - 1);
542 		if (ret < 0)
543 			return ret;
544 		hgt += ret;
545 		for (; ret; ret--)
546 			do_div(factor, sdp->sd_inptrs);
547 		mp->mp_aheight = hgt + 1;
548 	}
549 	return 0;
550 }
551 
552 static enum walker_status gfs2_hole_walker(struct metapath *mp,
553 					   unsigned int ptrs)
554 {
555 	const __be64 *start, *ptr, *end;
556 	unsigned int hgt;
557 
558 	hgt = mp->mp_aheight - 1;
559 	start = metapointer(hgt, mp);
560 	end = start + ptrs;
561 
562 	for (ptr = start; ptr < end; ptr++) {
563 		if (*ptr) {
564 			mp->mp_list[hgt] += ptr - start;
565 			if (mp->mp_aheight == mp->mp_fheight)
566 				return WALK_STOP;
567 			return WALK_FOLLOW;
568 		}
569 	}
570 	return WALK_CONTINUE;
571 }
572 
573 /**
574  * gfs2_hole_size - figure out the size of a hole
575  * @inode: The inode
576  * @lblock: The logical starting block number
577  * @len: How far to look (in blocks)
578  * @mp: The metapath at lblock
579  * @iomap: The iomap to store the hole size in
580  *
581  * This function modifies @mp.
582  *
583  * Returns: errno on error
584  */
585 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len,
586 			  struct metapath *mp, struct iomap *iomap)
587 {
588 	struct metapath clone;
589 	u64 hole_size;
590 	int ret;
591 
592 	clone_metapath(&clone, mp);
593 	ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker);
594 	if (ret < 0)
595 		goto out;
596 
597 	if (ret == 1)
598 		hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock;
599 	else
600 		hole_size = len;
601 	iomap->length = hole_size << inode->i_blkbits;
602 	ret = 0;
603 
604 out:
605 	release_metapath(&clone);
606 	return ret;
607 }
608 
609 static inline __be64 *gfs2_indirect_init(struct metapath *mp,
610 					 struct gfs2_glock *gl, unsigned int i,
611 					 unsigned offset, u64 bn)
612 {
613 	__be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data +
614 		       ((i > 1) ? sizeof(struct gfs2_meta_header) :
615 				 sizeof(struct gfs2_dinode)));
616 	BUG_ON(i < 1);
617 	BUG_ON(mp->mp_bh[i] != NULL);
618 	mp->mp_bh[i] = gfs2_meta_new(gl, bn);
619 	gfs2_trans_add_meta(gl, mp->mp_bh[i]);
620 	gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN);
621 	gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header));
622 	ptr += offset;
623 	*ptr = cpu_to_be64(bn);
624 	return ptr;
625 }
626 
627 enum alloc_state {
628 	ALLOC_DATA = 0,
629 	ALLOC_GROW_DEPTH = 1,
630 	ALLOC_GROW_HEIGHT = 2,
631 	/* ALLOC_UNSTUFF = 3,   TBD and rather complicated */
632 };
633 
634 /**
635  * __gfs2_iomap_alloc - Build a metadata tree of the requested height
636  * @inode: The GFS2 inode
637  * @iomap: The iomap structure
638  * @mp: The metapath, with proper height information calculated
639  *
640  * In this routine we may have to alloc:
641  *   i) Indirect blocks to grow the metadata tree height
642  *  ii) Indirect blocks to fill in lower part of the metadata tree
643  * iii) Data blocks
644  *
645  * This function is called after __gfs2_iomap_get, which works out the
646  * total number of blocks which we need via gfs2_alloc_size.
647  *
648  * We then do the actual allocation asking for an extent at a time (if
649  * enough contiguous free blocks are available, there will only be one
650  * allocation request per call) and uses the state machine to initialise
651  * the blocks in order.
652  *
653  * Right now, this function will allocate at most one indirect block
654  * worth of data -- with a default block size of 4K, that's slightly
655  * less than 2M.  If this limitation is ever removed to allow huge
656  * allocations, we would probably still want to limit the iomap size we
657  * return to avoid stalling other tasks during huge writes; the next
658  * iomap iteration would then find the blocks already allocated.
659  *
660  * Returns: errno on error
661  */
662 
663 static int __gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap,
664 			      struct metapath *mp)
665 {
666 	struct gfs2_inode *ip = GFS2_I(inode);
667 	struct gfs2_sbd *sdp = GFS2_SB(inode);
668 	struct buffer_head *dibh = mp->mp_bh[0];
669 	u64 bn;
670 	unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0;
671 	size_t dblks = iomap->length >> inode->i_blkbits;
672 	const unsigned end_of_metadata = mp->mp_fheight - 1;
673 	int ret;
674 	enum alloc_state state;
675 	__be64 *ptr;
676 	__be64 zero_bn = 0;
677 
678 	BUG_ON(mp->mp_aheight < 1);
679 	BUG_ON(dibh == NULL);
680 	BUG_ON(dblks < 1);
681 
682 	gfs2_trans_add_meta(ip->i_gl, dibh);
683 
684 	down_write(&ip->i_rw_mutex);
685 
686 	if (mp->mp_fheight == mp->mp_aheight) {
687 		/* Bottom indirect block exists */
688 		state = ALLOC_DATA;
689 	} else {
690 		/* Need to allocate indirect blocks */
691 		if (mp->mp_fheight == ip->i_height) {
692 			/* Writing into existing tree, extend tree down */
693 			iblks = mp->mp_fheight - mp->mp_aheight;
694 			state = ALLOC_GROW_DEPTH;
695 		} else {
696 			/* Building up tree height */
697 			state = ALLOC_GROW_HEIGHT;
698 			iblks = mp->mp_fheight - ip->i_height;
699 			branch_start = metapath_branch_start(mp);
700 			iblks += (mp->mp_fheight - branch_start);
701 		}
702 	}
703 
704 	/* start of the second part of the function (state machine) */
705 
706 	blks = dblks + iblks;
707 	i = mp->mp_aheight;
708 	do {
709 		n = blks - alloced;
710 		ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL);
711 		if (ret)
712 			goto out;
713 		alloced += n;
714 		if (state != ALLOC_DATA || gfs2_is_jdata(ip))
715 			gfs2_trans_remove_revoke(sdp, bn, n);
716 		switch (state) {
717 		/* Growing height of tree */
718 		case ALLOC_GROW_HEIGHT:
719 			if (i == 1) {
720 				ptr = (__be64 *)(dibh->b_data +
721 						 sizeof(struct gfs2_dinode));
722 				zero_bn = *ptr;
723 			}
724 			for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0;
725 			     i++, n--)
726 				gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++);
727 			if (i - 1 == mp->mp_fheight - ip->i_height) {
728 				i--;
729 				gfs2_buffer_copy_tail(mp->mp_bh[i],
730 						sizeof(struct gfs2_meta_header),
731 						dibh, sizeof(struct gfs2_dinode));
732 				gfs2_buffer_clear_tail(dibh,
733 						sizeof(struct gfs2_dinode) +
734 						sizeof(__be64));
735 				ptr = (__be64 *)(mp->mp_bh[i]->b_data +
736 					sizeof(struct gfs2_meta_header));
737 				*ptr = zero_bn;
738 				state = ALLOC_GROW_DEPTH;
739 				for(i = branch_start; i < mp->mp_fheight; i++) {
740 					if (mp->mp_bh[i] == NULL)
741 						break;
742 					brelse(mp->mp_bh[i]);
743 					mp->mp_bh[i] = NULL;
744 				}
745 				i = branch_start;
746 			}
747 			if (n == 0)
748 				break;
749 			fallthrough;	/* To branching from existing tree */
750 		case ALLOC_GROW_DEPTH:
751 			if (i > 1 && i < mp->mp_fheight)
752 				gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]);
753 			for (; i < mp->mp_fheight && n > 0; i++, n--)
754 				gfs2_indirect_init(mp, ip->i_gl, i,
755 						   mp->mp_list[i-1], bn++);
756 			if (i == mp->mp_fheight)
757 				state = ALLOC_DATA;
758 			if (n == 0)
759 				break;
760 			fallthrough;	/* To tree complete, adding data blocks */
761 		case ALLOC_DATA:
762 			BUG_ON(n > dblks);
763 			BUG_ON(mp->mp_bh[end_of_metadata] == NULL);
764 			gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]);
765 			dblks = n;
766 			ptr = metapointer(end_of_metadata, mp);
767 			iomap->addr = bn << inode->i_blkbits;
768 			iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW;
769 			while (n-- > 0)
770 				*ptr++ = cpu_to_be64(bn++);
771 			break;
772 		}
773 	} while (iomap->addr == IOMAP_NULL_ADDR);
774 
775 	iomap->type = IOMAP_MAPPED;
776 	iomap->length = (u64)dblks << inode->i_blkbits;
777 	ip->i_height = mp->mp_fheight;
778 	gfs2_add_inode_blocks(&ip->i_inode, alloced);
779 	gfs2_dinode_out(ip, dibh->b_data);
780 out:
781 	up_write(&ip->i_rw_mutex);
782 	return ret;
783 }
784 
785 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE
786 
787 /**
788  * gfs2_alloc_size - Compute the maximum allocation size
789  * @inode: The inode
790  * @mp: The metapath
791  * @size: Requested size in blocks
792  *
793  * Compute the maximum size of the next allocation at @mp.
794  *
795  * Returns: size in blocks
796  */
797 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size)
798 {
799 	struct gfs2_inode *ip = GFS2_I(inode);
800 	struct gfs2_sbd *sdp = GFS2_SB(inode);
801 	const __be64 *first, *ptr, *end;
802 
803 	/*
804 	 * For writes to stuffed files, this function is called twice via
805 	 * __gfs2_iomap_get, before and after unstuffing. The size we return the
806 	 * first time needs to be large enough to get the reservation and
807 	 * allocation sizes right.  The size we return the second time must
808 	 * be exact or else __gfs2_iomap_alloc won't do the right thing.
809 	 */
810 
811 	if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) {
812 		unsigned int maxsize = mp->mp_fheight > 1 ?
813 			sdp->sd_inptrs : sdp->sd_diptrs;
814 		maxsize -= mp->mp_list[mp->mp_fheight - 1];
815 		if (size > maxsize)
816 			size = maxsize;
817 		return size;
818 	}
819 
820 	first = metapointer(ip->i_height - 1, mp);
821 	end = metaend(ip->i_height - 1, mp);
822 	if (end - first > size)
823 		end = first + size;
824 	for (ptr = first; ptr < end; ptr++) {
825 		if (*ptr)
826 			break;
827 	}
828 	return ptr - first;
829 }
830 
831 /**
832  * __gfs2_iomap_get - Map blocks from an inode to disk blocks
833  * @inode: The inode
834  * @pos: Starting position in bytes
835  * @length: Length to map, in bytes
836  * @flags: iomap flags
837  * @iomap: The iomap structure
838  * @mp: The metapath
839  *
840  * Returns: errno
841  */
842 static int __gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
843 			    unsigned flags, struct iomap *iomap,
844 			    struct metapath *mp)
845 {
846 	struct gfs2_inode *ip = GFS2_I(inode);
847 	struct gfs2_sbd *sdp = GFS2_SB(inode);
848 	loff_t size = i_size_read(inode);
849 	__be64 *ptr;
850 	sector_t lblock;
851 	sector_t lblock_stop;
852 	int ret;
853 	int eob;
854 	u64 len;
855 	struct buffer_head *dibh = NULL, *bh;
856 	u8 height;
857 
858 	if (!length)
859 		return -EINVAL;
860 
861 	down_read(&ip->i_rw_mutex);
862 
863 	ret = gfs2_meta_inode_buffer(ip, &dibh);
864 	if (ret)
865 		goto unlock;
866 	mp->mp_bh[0] = dibh;
867 
868 	if (gfs2_is_stuffed(ip)) {
869 		if (flags & IOMAP_WRITE) {
870 			loff_t max_size = gfs2_max_stuffed_size(ip);
871 
872 			if (pos + length > max_size)
873 				goto unstuff;
874 			iomap->length = max_size;
875 		} else {
876 			if (pos >= size) {
877 				if (flags & IOMAP_REPORT) {
878 					ret = -ENOENT;
879 					goto unlock;
880 				} else {
881 					iomap->offset = pos;
882 					iomap->length = length;
883 					goto hole_found;
884 				}
885 			}
886 			iomap->length = size;
887 		}
888 		iomap->addr = (ip->i_no_addr << inode->i_blkbits) +
889 			      sizeof(struct gfs2_dinode);
890 		iomap->type = IOMAP_INLINE;
891 		iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode);
892 		goto out;
893 	}
894 
895 unstuff:
896 	lblock = pos >> inode->i_blkbits;
897 	iomap->offset = lblock << inode->i_blkbits;
898 	lblock_stop = (pos + length - 1) >> inode->i_blkbits;
899 	len = lblock_stop - lblock + 1;
900 	iomap->length = len << inode->i_blkbits;
901 
902 	height = ip->i_height;
903 	while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height])
904 		height++;
905 	find_metapath(sdp, lblock, mp, height);
906 	if (height > ip->i_height || gfs2_is_stuffed(ip))
907 		goto do_alloc;
908 
909 	ret = lookup_metapath(ip, mp);
910 	if (ret)
911 		goto unlock;
912 
913 	if (mp->mp_aheight != ip->i_height)
914 		goto do_alloc;
915 
916 	ptr = metapointer(ip->i_height - 1, mp);
917 	if (*ptr == 0)
918 		goto do_alloc;
919 
920 	bh = mp->mp_bh[ip->i_height - 1];
921 	len = gfs2_extent_length(bh, ptr, len, &eob);
922 
923 	iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits;
924 	iomap->length = len << inode->i_blkbits;
925 	iomap->type = IOMAP_MAPPED;
926 	iomap->flags |= IOMAP_F_MERGED;
927 	if (eob)
928 		iomap->flags |= IOMAP_F_GFS2_BOUNDARY;
929 
930 out:
931 	iomap->bdev = inode->i_sb->s_bdev;
932 unlock:
933 	up_read(&ip->i_rw_mutex);
934 	return ret;
935 
936 do_alloc:
937 	if (flags & IOMAP_REPORT) {
938 		if (pos >= size)
939 			ret = -ENOENT;
940 		else if (height == ip->i_height)
941 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
942 		else
943 			iomap->length = size - pos;
944 	} else if (flags & IOMAP_WRITE) {
945 		u64 alloc_size;
946 
947 		if (flags & IOMAP_DIRECT)
948 			goto out;  /* (see gfs2_file_direct_write) */
949 
950 		len = gfs2_alloc_size(inode, mp, len);
951 		alloc_size = len << inode->i_blkbits;
952 		if (alloc_size < iomap->length)
953 			iomap->length = alloc_size;
954 	} else {
955 		if (pos < size && height == ip->i_height)
956 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
957 	}
958 hole_found:
959 	iomap->addr = IOMAP_NULL_ADDR;
960 	iomap->type = IOMAP_HOLE;
961 	goto out;
962 }
963 
964 static int gfs2_write_lock(struct inode *inode)
965 {
966 	struct gfs2_inode *ip = GFS2_I(inode);
967 	struct gfs2_sbd *sdp = GFS2_SB(inode);
968 	int error;
969 
970 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
971 	error = gfs2_glock_nq(&ip->i_gh);
972 	if (error)
973 		goto out_uninit;
974 	if (&ip->i_inode == sdp->sd_rindex) {
975 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
976 
977 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
978 					   GL_NOCACHE, &m_ip->i_gh);
979 		if (error)
980 			goto out_unlock;
981 	}
982 	return 0;
983 
984 out_unlock:
985 	gfs2_glock_dq(&ip->i_gh);
986 out_uninit:
987 	gfs2_holder_uninit(&ip->i_gh);
988 	return error;
989 }
990 
991 static void gfs2_write_unlock(struct inode *inode)
992 {
993 	struct gfs2_inode *ip = GFS2_I(inode);
994 	struct gfs2_sbd *sdp = GFS2_SB(inode);
995 
996 	if (&ip->i_inode == sdp->sd_rindex) {
997 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
998 
999 		gfs2_glock_dq_uninit(&m_ip->i_gh);
1000 	}
1001 	gfs2_glock_dq_uninit(&ip->i_gh);
1002 }
1003 
1004 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos,
1005 				   unsigned len, struct iomap *iomap)
1006 {
1007 	unsigned int blockmask = i_blocksize(inode) - 1;
1008 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1009 	unsigned int blocks;
1010 
1011 	blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits;
1012 	return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0);
1013 }
1014 
1015 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos,
1016 				 unsigned copied, struct page *page,
1017 				 struct iomap *iomap)
1018 {
1019 	struct gfs2_trans *tr = current->journal_info;
1020 	struct gfs2_inode *ip = GFS2_I(inode);
1021 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1022 
1023 	if (page && !gfs2_is_stuffed(ip))
1024 		gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied);
1025 
1026 	if (tr->tr_num_buf_new)
1027 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1028 
1029 	gfs2_trans_end(sdp);
1030 }
1031 
1032 static const struct iomap_page_ops gfs2_iomap_page_ops = {
1033 	.page_prepare = gfs2_iomap_page_prepare,
1034 	.page_done = gfs2_iomap_page_done,
1035 };
1036 
1037 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos,
1038 				  loff_t length, unsigned flags,
1039 				  struct iomap *iomap,
1040 				  struct metapath *mp)
1041 {
1042 	struct gfs2_inode *ip = GFS2_I(inode);
1043 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1044 	bool unstuff;
1045 	int ret;
1046 
1047 	unstuff = gfs2_is_stuffed(ip) &&
1048 		  pos + length > gfs2_max_stuffed_size(ip);
1049 
1050 	if (unstuff || iomap->type == IOMAP_HOLE) {
1051 		unsigned int data_blocks, ind_blocks;
1052 		struct gfs2_alloc_parms ap = {};
1053 		unsigned int rblocks;
1054 		struct gfs2_trans *tr;
1055 
1056 		gfs2_write_calc_reserv(ip, iomap->length, &data_blocks,
1057 				       &ind_blocks);
1058 		ap.target = data_blocks + ind_blocks;
1059 		ret = gfs2_quota_lock_check(ip, &ap);
1060 		if (ret)
1061 			return ret;
1062 
1063 		ret = gfs2_inplace_reserve(ip, &ap);
1064 		if (ret)
1065 			goto out_qunlock;
1066 
1067 		rblocks = RES_DINODE + ind_blocks;
1068 		if (gfs2_is_jdata(ip))
1069 			rblocks += data_blocks;
1070 		if (ind_blocks || data_blocks)
1071 			rblocks += RES_STATFS + RES_QUOTA;
1072 		if (inode == sdp->sd_rindex)
1073 			rblocks += 2 * RES_STATFS;
1074 		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1075 
1076 		ret = gfs2_trans_begin(sdp, rblocks,
1077 				       iomap->length >> inode->i_blkbits);
1078 		if (ret)
1079 			goto out_trans_fail;
1080 
1081 		if (unstuff) {
1082 			ret = gfs2_unstuff_dinode(ip, NULL);
1083 			if (ret)
1084 				goto out_trans_end;
1085 			release_metapath(mp);
1086 			ret = __gfs2_iomap_get(inode, iomap->offset,
1087 					       iomap->length, flags, iomap, mp);
1088 			if (ret)
1089 				goto out_trans_end;
1090 		}
1091 
1092 		if (iomap->type == IOMAP_HOLE) {
1093 			ret = __gfs2_iomap_alloc(inode, iomap, mp);
1094 			if (ret) {
1095 				gfs2_trans_end(sdp);
1096 				gfs2_inplace_release(ip);
1097 				punch_hole(ip, iomap->offset, iomap->length);
1098 				goto out_qunlock;
1099 			}
1100 		}
1101 
1102 		tr = current->journal_info;
1103 		if (tr->tr_num_buf_new)
1104 			__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1105 
1106 		gfs2_trans_end(sdp);
1107 	}
1108 
1109 	if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip))
1110 		iomap->page_ops = &gfs2_iomap_page_ops;
1111 	return 0;
1112 
1113 out_trans_end:
1114 	gfs2_trans_end(sdp);
1115 out_trans_fail:
1116 	gfs2_inplace_release(ip);
1117 out_qunlock:
1118 	gfs2_quota_unlock(ip);
1119 	return ret;
1120 }
1121 
1122 static inline bool gfs2_iomap_need_write_lock(unsigned flags)
1123 {
1124 	return (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT);
1125 }
1126 
1127 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
1128 			    unsigned flags, struct iomap *iomap,
1129 			    struct iomap *srcmap)
1130 {
1131 	struct gfs2_inode *ip = GFS2_I(inode);
1132 	struct metapath mp = { .mp_aheight = 1, };
1133 	int ret;
1134 
1135 	if (gfs2_is_jdata(ip))
1136 		iomap->flags |= IOMAP_F_BUFFER_HEAD;
1137 
1138 	trace_gfs2_iomap_start(ip, pos, length, flags);
1139 	if (gfs2_iomap_need_write_lock(flags)) {
1140 		ret = gfs2_write_lock(inode);
1141 		if (ret)
1142 			goto out;
1143 	}
1144 
1145 	ret = __gfs2_iomap_get(inode, pos, length, flags, iomap, &mp);
1146 	if (ret)
1147 		goto out_unlock;
1148 
1149 	switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1150 	case IOMAP_WRITE:
1151 		if (flags & IOMAP_DIRECT) {
1152 			/*
1153 			 * Silently fall back to buffered I/O for stuffed files
1154 			 * or if we've got a hole (see gfs2_file_direct_write).
1155 			 */
1156 			if (iomap->type != IOMAP_MAPPED)
1157 				ret = -ENOTBLK;
1158 			goto out_unlock;
1159 		}
1160 		break;
1161 	case IOMAP_ZERO:
1162 		if (iomap->type == IOMAP_HOLE)
1163 			goto out_unlock;
1164 		break;
1165 	default:
1166 		goto out_unlock;
1167 	}
1168 
1169 	ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp);
1170 
1171 out_unlock:
1172 	if (ret && gfs2_iomap_need_write_lock(flags))
1173 		gfs2_write_unlock(inode);
1174 	release_metapath(&mp);
1175 out:
1176 	trace_gfs2_iomap_end(ip, iomap, ret);
1177 	return ret;
1178 }
1179 
1180 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length,
1181 			  ssize_t written, unsigned flags, struct iomap *iomap)
1182 {
1183 	struct gfs2_inode *ip = GFS2_I(inode);
1184 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1185 
1186 	switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1187 	case IOMAP_WRITE:
1188 		if (flags & IOMAP_DIRECT)
1189 			return 0;
1190 		break;
1191 	case IOMAP_ZERO:
1192 		 if (iomap->type == IOMAP_HOLE)
1193 			 return 0;
1194 		 break;
1195 	default:
1196 		 return 0;
1197 	}
1198 
1199 	if (!gfs2_is_stuffed(ip))
1200 		gfs2_ordered_add_inode(ip);
1201 
1202 	if (inode == sdp->sd_rindex)
1203 		adjust_fs_space(inode);
1204 
1205 	gfs2_inplace_release(ip);
1206 
1207 	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
1208 		gfs2_quota_unlock(ip);
1209 
1210 	if (length != written && (iomap->flags & IOMAP_F_NEW)) {
1211 		/* Deallocate blocks that were just allocated. */
1212 		loff_t blockmask = i_blocksize(inode) - 1;
1213 		loff_t end = (pos + length) & ~blockmask;
1214 
1215 		pos = (pos + written + blockmask) & ~blockmask;
1216 		if (pos < end) {
1217 			truncate_pagecache_range(inode, pos, end - 1);
1218 			punch_hole(ip, pos, end - pos);
1219 		}
1220 	}
1221 
1222 	if (unlikely(!written))
1223 		goto out_unlock;
1224 
1225 	if (iomap->flags & IOMAP_F_SIZE_CHANGED)
1226 		mark_inode_dirty(inode);
1227 	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
1228 
1229 out_unlock:
1230 	if (gfs2_iomap_need_write_lock(flags))
1231 		gfs2_write_unlock(inode);
1232 	return 0;
1233 }
1234 
1235 const struct iomap_ops gfs2_iomap_ops = {
1236 	.iomap_begin = gfs2_iomap_begin,
1237 	.iomap_end = gfs2_iomap_end,
1238 };
1239 
1240 /**
1241  * gfs2_block_map - Map one or more blocks of an inode to a disk block
1242  * @inode: The inode
1243  * @lblock: The logical block number
1244  * @bh_map: The bh to be mapped
1245  * @create: True if its ok to alloc blocks to satify the request
1246  *
1247  * The size of the requested mapping is defined in bh_map->b_size.
1248  *
1249  * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged
1250  * when @lblock is not mapped.  Sets buffer_mapped(bh_map) and
1251  * bh_map->b_size to indicate the size of the mapping when @lblock and
1252  * successive blocks are mapped, up to the requested size.
1253  *
1254  * Sets buffer_boundary() if a read of metadata will be required
1255  * before the next block can be mapped. Sets buffer_new() if new
1256  * blocks were allocated.
1257  *
1258  * Returns: errno
1259  */
1260 
1261 int gfs2_block_map(struct inode *inode, sector_t lblock,
1262 		   struct buffer_head *bh_map, int create)
1263 {
1264 	struct gfs2_inode *ip = GFS2_I(inode);
1265 	loff_t pos = (loff_t)lblock << inode->i_blkbits;
1266 	loff_t length = bh_map->b_size;
1267 	struct iomap iomap = { };
1268 	int ret;
1269 
1270 	clear_buffer_mapped(bh_map);
1271 	clear_buffer_new(bh_map);
1272 	clear_buffer_boundary(bh_map);
1273 	trace_gfs2_bmap(ip, bh_map, lblock, create, 1);
1274 
1275 	if (!create)
1276 		ret = gfs2_iomap_get(inode, pos, length, &iomap);
1277 	else
1278 		ret = gfs2_iomap_alloc(inode, pos, length, &iomap);
1279 	if (ret)
1280 		goto out;
1281 
1282 	if (iomap.length > bh_map->b_size) {
1283 		iomap.length = bh_map->b_size;
1284 		iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY;
1285 	}
1286 	if (iomap.addr != IOMAP_NULL_ADDR)
1287 		map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits);
1288 	bh_map->b_size = iomap.length;
1289 	if (iomap.flags & IOMAP_F_GFS2_BOUNDARY)
1290 		set_buffer_boundary(bh_map);
1291 	if (iomap.flags & IOMAP_F_NEW)
1292 		set_buffer_new(bh_map);
1293 
1294 out:
1295 	trace_gfs2_bmap(ip, bh_map, lblock, create, ret);
1296 	return ret;
1297 }
1298 
1299 int gfs2_get_extent(struct inode *inode, u64 lblock, u64 *dblock,
1300 		    unsigned int *extlen)
1301 {
1302 	unsigned int blkbits = inode->i_blkbits;
1303 	struct iomap iomap = { };
1304 	unsigned int len;
1305 	int ret;
1306 
1307 	ret = gfs2_iomap_get(inode, lblock << blkbits, *extlen << blkbits,
1308 			     &iomap);
1309 	if (ret)
1310 		return ret;
1311 	if (iomap.type != IOMAP_MAPPED)
1312 		return -EIO;
1313 	*dblock = iomap.addr >> blkbits;
1314 	len = iomap.length >> blkbits;
1315 	if (len < *extlen)
1316 		*extlen = len;
1317 	return 0;
1318 }
1319 
1320 int gfs2_alloc_extent(struct inode *inode, u64 lblock, u64 *dblock,
1321 		      unsigned int *extlen, bool *new)
1322 {
1323 	unsigned int blkbits = inode->i_blkbits;
1324 	struct iomap iomap = { };
1325 	unsigned int len;
1326 	int ret;
1327 
1328 	ret = gfs2_iomap_alloc(inode, lblock << blkbits, *extlen << blkbits,
1329 			       &iomap);
1330 	if (ret)
1331 		return ret;
1332 	if (iomap.type != IOMAP_MAPPED)
1333 		return -EIO;
1334 	*dblock = iomap.addr >> blkbits;
1335 	len = iomap.length >> blkbits;
1336 	if (len < *extlen)
1337 		*extlen = len;
1338 	*new = iomap.flags & IOMAP_F_NEW;
1339 	return 0;
1340 }
1341 
1342 /*
1343  * NOTE: Never call gfs2_block_zero_range with an open transaction because it
1344  * uses iomap write to perform its actions, which begin their own transactions
1345  * (iomap_begin, page_prepare, etc.)
1346  */
1347 static int gfs2_block_zero_range(struct inode *inode, loff_t from,
1348 				 unsigned int length)
1349 {
1350 	BUG_ON(current->journal_info);
1351 	return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops);
1352 }
1353 
1354 #define GFS2_JTRUNC_REVOKES 8192
1355 
1356 /**
1357  * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files
1358  * @inode: The inode being truncated
1359  * @oldsize: The original (larger) size
1360  * @newsize: The new smaller size
1361  *
1362  * With jdata files, we have to journal a revoke for each block which is
1363  * truncated. As a result, we need to split this into separate transactions
1364  * if the number of pages being truncated gets too large.
1365  */
1366 
1367 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize)
1368 {
1369 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1370 	u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
1371 	u64 chunk;
1372 	int error;
1373 
1374 	while (oldsize != newsize) {
1375 		struct gfs2_trans *tr;
1376 		unsigned int offs;
1377 
1378 		chunk = oldsize - newsize;
1379 		if (chunk > max_chunk)
1380 			chunk = max_chunk;
1381 
1382 		offs = oldsize & ~PAGE_MASK;
1383 		if (offs && chunk > PAGE_SIZE)
1384 			chunk = offs + ((chunk - offs) & PAGE_MASK);
1385 
1386 		truncate_pagecache(inode, oldsize - chunk);
1387 		oldsize -= chunk;
1388 
1389 		tr = current->journal_info;
1390 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
1391 			continue;
1392 
1393 		gfs2_trans_end(sdp);
1394 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
1395 		if (error)
1396 			return error;
1397 	}
1398 
1399 	return 0;
1400 }
1401 
1402 static int trunc_start(struct inode *inode, u64 newsize)
1403 {
1404 	struct gfs2_inode *ip = GFS2_I(inode);
1405 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1406 	struct buffer_head *dibh = NULL;
1407 	int journaled = gfs2_is_jdata(ip);
1408 	u64 oldsize = inode->i_size;
1409 	int error;
1410 
1411 	if (!gfs2_is_stuffed(ip)) {
1412 		unsigned int blocksize = i_blocksize(inode);
1413 		unsigned int offs = newsize & (blocksize - 1);
1414 		if (offs) {
1415 			error = gfs2_block_zero_range(inode, newsize,
1416 						      blocksize - offs);
1417 			if (error)
1418 				return error;
1419 		}
1420 	}
1421 	if (journaled)
1422 		error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES);
1423 	else
1424 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1425 	if (error)
1426 		return error;
1427 
1428 	error = gfs2_meta_inode_buffer(ip, &dibh);
1429 	if (error)
1430 		goto out;
1431 
1432 	gfs2_trans_add_meta(ip->i_gl, dibh);
1433 
1434 	if (gfs2_is_stuffed(ip))
1435 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize);
1436 	else
1437 		ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG;
1438 
1439 	i_size_write(inode, newsize);
1440 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1441 	gfs2_dinode_out(ip, dibh->b_data);
1442 
1443 	if (journaled)
1444 		error = gfs2_journaled_truncate(inode, oldsize, newsize);
1445 	else
1446 		truncate_pagecache(inode, newsize);
1447 
1448 out:
1449 	brelse(dibh);
1450 	if (current->journal_info)
1451 		gfs2_trans_end(sdp);
1452 	return error;
1453 }
1454 
1455 int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
1456 		   struct iomap *iomap)
1457 {
1458 	struct metapath mp = { .mp_aheight = 1, };
1459 	int ret;
1460 
1461 	ret = __gfs2_iomap_get(inode, pos, length, 0, iomap, &mp);
1462 	release_metapath(&mp);
1463 	return ret;
1464 }
1465 
1466 int gfs2_iomap_alloc(struct inode *inode, loff_t pos, loff_t length,
1467 		     struct iomap *iomap)
1468 {
1469 	struct metapath mp = { .mp_aheight = 1, };
1470 	int ret;
1471 
1472 	ret = __gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp);
1473 	if (!ret && iomap->type == IOMAP_HOLE)
1474 		ret = __gfs2_iomap_alloc(inode, iomap, &mp);
1475 	release_metapath(&mp);
1476 	return ret;
1477 }
1478 
1479 /**
1480  * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein
1481  * @ip: inode
1482  * @rd_gh: holder of resource group glock
1483  * @bh: buffer head to sweep
1484  * @start: starting point in bh
1485  * @end: end point in bh
1486  * @meta: true if bh points to metadata (rather than data)
1487  * @btotal: place to keep count of total blocks freed
1488  *
1489  * We sweep a metadata buffer (provided by the metapath) for blocks we need to
1490  * free, and free them all. However, we do it one rgrp at a time. If this
1491  * block has references to multiple rgrps, we break it into individual
1492  * transactions. This allows other processes to use the rgrps while we're
1493  * focused on a single one, for better concurrency / performance.
1494  * At every transaction boundary, we rewrite the inode into the journal.
1495  * That way the bitmaps are kept consistent with the inode and we can recover
1496  * if we're interrupted by power-outages.
1497  *
1498  * Returns: 0, or return code if an error occurred.
1499  *          *btotal has the total number of blocks freed
1500  */
1501 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh,
1502 			      struct buffer_head *bh, __be64 *start, __be64 *end,
1503 			      bool meta, u32 *btotal)
1504 {
1505 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1506 	struct gfs2_rgrpd *rgd;
1507 	struct gfs2_trans *tr;
1508 	__be64 *p;
1509 	int blks_outside_rgrp;
1510 	u64 bn, bstart, isize_blks;
1511 	s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */
1512 	int ret = 0;
1513 	bool buf_in_tr = false; /* buffer was added to transaction */
1514 
1515 more_rgrps:
1516 	rgd = NULL;
1517 	if (gfs2_holder_initialized(rd_gh)) {
1518 		rgd = gfs2_glock2rgrp(rd_gh->gh_gl);
1519 		gfs2_assert_withdraw(sdp,
1520 			     gfs2_glock_is_locked_by_me(rd_gh->gh_gl));
1521 	}
1522 	blks_outside_rgrp = 0;
1523 	bstart = 0;
1524 	blen = 0;
1525 
1526 	for (p = start; p < end; p++) {
1527 		if (!*p)
1528 			continue;
1529 		bn = be64_to_cpu(*p);
1530 
1531 		if (rgd) {
1532 			if (!rgrp_contains_block(rgd, bn)) {
1533 				blks_outside_rgrp++;
1534 				continue;
1535 			}
1536 		} else {
1537 			rgd = gfs2_blk2rgrpd(sdp, bn, true);
1538 			if (unlikely(!rgd)) {
1539 				ret = -EIO;
1540 				goto out;
1541 			}
1542 			ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1543 						 LM_FLAG_NODE_SCOPE, rd_gh);
1544 			if (ret)
1545 				goto out;
1546 
1547 			/* Must be done with the rgrp glock held: */
1548 			if (gfs2_rs_active(&ip->i_res) &&
1549 			    rgd == ip->i_res.rs_rgd)
1550 				gfs2_rs_deltree(&ip->i_res);
1551 		}
1552 
1553 		/* The size of our transactions will be unknown until we
1554 		   actually process all the metadata blocks that relate to
1555 		   the rgrp. So we estimate. We know it can't be more than
1556 		   the dinode's i_blocks and we don't want to exceed the
1557 		   journal flush threshold, sd_log_thresh2. */
1558 		if (current->journal_info == NULL) {
1559 			unsigned int jblocks_rqsted, revokes;
1560 
1561 			jblocks_rqsted = rgd->rd_length + RES_DINODE +
1562 				RES_INDIRECT;
1563 			isize_blks = gfs2_get_inode_blocks(&ip->i_inode);
1564 			if (isize_blks > atomic_read(&sdp->sd_log_thresh2))
1565 				jblocks_rqsted +=
1566 					atomic_read(&sdp->sd_log_thresh2);
1567 			else
1568 				jblocks_rqsted += isize_blks;
1569 			revokes = jblocks_rqsted;
1570 			if (meta)
1571 				revokes += end - start;
1572 			else if (ip->i_depth)
1573 				revokes += sdp->sd_inptrs;
1574 			ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes);
1575 			if (ret)
1576 				goto out_unlock;
1577 			down_write(&ip->i_rw_mutex);
1578 		}
1579 		/* check if we will exceed the transaction blocks requested */
1580 		tr = current->journal_info;
1581 		if (tr->tr_num_buf_new + RES_STATFS +
1582 		    RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) {
1583 			/* We set blks_outside_rgrp to ensure the loop will
1584 			   be repeated for the same rgrp, but with a new
1585 			   transaction. */
1586 			blks_outside_rgrp++;
1587 			/* This next part is tricky. If the buffer was added
1588 			   to the transaction, we've already set some block
1589 			   pointers to 0, so we better follow through and free
1590 			   them, or we will introduce corruption (so break).
1591 			   This may be impossible, or at least rare, but I
1592 			   decided to cover the case regardless.
1593 
1594 			   If the buffer was not added to the transaction
1595 			   (this call), doing so would exceed our transaction
1596 			   size, so we need to end the transaction and start a
1597 			   new one (so goto). */
1598 
1599 			if (buf_in_tr)
1600 				break;
1601 			goto out_unlock;
1602 		}
1603 
1604 		gfs2_trans_add_meta(ip->i_gl, bh);
1605 		buf_in_tr = true;
1606 		*p = 0;
1607 		if (bstart + blen == bn) {
1608 			blen++;
1609 			continue;
1610 		}
1611 		if (bstart) {
1612 			__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1613 			(*btotal) += blen;
1614 			gfs2_add_inode_blocks(&ip->i_inode, -blen);
1615 		}
1616 		bstart = bn;
1617 		blen = 1;
1618 	}
1619 	if (bstart) {
1620 		__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1621 		(*btotal) += blen;
1622 		gfs2_add_inode_blocks(&ip->i_inode, -blen);
1623 	}
1624 out_unlock:
1625 	if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks
1626 					    outside the rgrp we just processed,
1627 					    do it all over again. */
1628 		if (current->journal_info) {
1629 			struct buffer_head *dibh;
1630 
1631 			ret = gfs2_meta_inode_buffer(ip, &dibh);
1632 			if (ret)
1633 				goto out;
1634 
1635 			/* Every transaction boundary, we rewrite the dinode
1636 			   to keep its di_blocks current in case of failure. */
1637 			ip->i_inode.i_mtime = ip->i_inode.i_ctime =
1638 				current_time(&ip->i_inode);
1639 			gfs2_trans_add_meta(ip->i_gl, dibh);
1640 			gfs2_dinode_out(ip, dibh->b_data);
1641 			brelse(dibh);
1642 			up_write(&ip->i_rw_mutex);
1643 			gfs2_trans_end(sdp);
1644 			buf_in_tr = false;
1645 		}
1646 		gfs2_glock_dq_uninit(rd_gh);
1647 		cond_resched();
1648 		goto more_rgrps;
1649 	}
1650 out:
1651 	return ret;
1652 }
1653 
1654 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h)
1655 {
1656 	if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0])))
1657 		return false;
1658 	return true;
1659 }
1660 
1661 /**
1662  * find_nonnull_ptr - find a non-null pointer given a metapath and height
1663  * @sdp: The superblock
1664  * @mp: starting metapath
1665  * @h: desired height to search
1666  * @end_list: See punch_hole().
1667  * @end_aligned: See punch_hole().
1668  *
1669  * Assumes the metapath is valid (with buffers) out to height h.
1670  * Returns: true if a non-null pointer was found in the metapath buffer
1671  *          false if all remaining pointers are NULL in the buffer
1672  */
1673 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp,
1674 			     unsigned int h,
1675 			     __u16 *end_list, unsigned int end_aligned)
1676 {
1677 	struct buffer_head *bh = mp->mp_bh[h];
1678 	__be64 *first, *ptr, *end;
1679 
1680 	first = metaptr1(h, mp);
1681 	ptr = first + mp->mp_list[h];
1682 	end = (__be64 *)(bh->b_data + bh->b_size);
1683 	if (end_list && mp_eq_to_hgt(mp, end_list, h)) {
1684 		bool keep_end = h < end_aligned;
1685 		end = first + end_list[h] + keep_end;
1686 	}
1687 
1688 	while (ptr < end) {
1689 		if (*ptr) { /* if we have a non-null pointer */
1690 			mp->mp_list[h] = ptr - first;
1691 			h++;
1692 			if (h < GFS2_MAX_META_HEIGHT)
1693 				mp->mp_list[h] = 0;
1694 			return true;
1695 		}
1696 		ptr++;
1697 	}
1698 	return false;
1699 }
1700 
1701 enum dealloc_states {
1702 	DEALLOC_MP_FULL = 0,    /* Strip a metapath with all buffers read in */
1703 	DEALLOC_MP_LOWER = 1,   /* lower the metapath strip height */
1704 	DEALLOC_FILL_MP = 2,  /* Fill in the metapath to the given height. */
1705 	DEALLOC_DONE = 3,       /* process complete */
1706 };
1707 
1708 static inline void
1709 metapointer_range(struct metapath *mp, int height,
1710 		  __u16 *start_list, unsigned int start_aligned,
1711 		  __u16 *end_list, unsigned int end_aligned,
1712 		  __be64 **start, __be64 **end)
1713 {
1714 	struct buffer_head *bh = mp->mp_bh[height];
1715 	__be64 *first;
1716 
1717 	first = metaptr1(height, mp);
1718 	*start = first;
1719 	if (mp_eq_to_hgt(mp, start_list, height)) {
1720 		bool keep_start = height < start_aligned;
1721 		*start = first + start_list[height] + keep_start;
1722 	}
1723 	*end = (__be64 *)(bh->b_data + bh->b_size);
1724 	if (end_list && mp_eq_to_hgt(mp, end_list, height)) {
1725 		bool keep_end = height < end_aligned;
1726 		*end = first + end_list[height] + keep_end;
1727 	}
1728 }
1729 
1730 static inline bool walk_done(struct gfs2_sbd *sdp,
1731 			     struct metapath *mp, int height,
1732 			     __u16 *end_list, unsigned int end_aligned)
1733 {
1734 	__u16 end;
1735 
1736 	if (end_list) {
1737 		bool keep_end = height < end_aligned;
1738 		if (!mp_eq_to_hgt(mp, end_list, height))
1739 			return false;
1740 		end = end_list[height] + keep_end;
1741 	} else
1742 		end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs;
1743 	return mp->mp_list[height] >= end;
1744 }
1745 
1746 /**
1747  * punch_hole - deallocate blocks in a file
1748  * @ip: inode to truncate
1749  * @offset: the start of the hole
1750  * @length: the size of the hole (or 0 for truncate)
1751  *
1752  * Punch a hole into a file or truncate a file at a given position.  This
1753  * function operates in whole blocks (@offset and @length are rounded
1754  * accordingly); partially filled blocks must be cleared otherwise.
1755  *
1756  * This function works from the bottom up, and from the right to the left. In
1757  * other words, it strips off the highest layer (data) before stripping any of
1758  * the metadata. Doing it this way is best in case the operation is interrupted
1759  * by power failure, etc.  The dinode is rewritten in every transaction to
1760  * guarantee integrity.
1761  */
1762 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length)
1763 {
1764 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1765 	u64 maxsize = sdp->sd_heightsize[ip->i_height];
1766 	struct metapath mp = {};
1767 	struct buffer_head *dibh, *bh;
1768 	struct gfs2_holder rd_gh;
1769 	unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift;
1770 	u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift;
1771 	__u16 start_list[GFS2_MAX_META_HEIGHT];
1772 	__u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL;
1773 	unsigned int start_aligned, end_aligned;
1774 	unsigned int strip_h = ip->i_height - 1;
1775 	u32 btotal = 0;
1776 	int ret, state;
1777 	int mp_h; /* metapath buffers are read in to this height */
1778 	u64 prev_bnr = 0;
1779 	__be64 *start, *end;
1780 
1781 	if (offset >= maxsize) {
1782 		/*
1783 		 * The starting point lies beyond the allocated meta-data;
1784 		 * there are no blocks do deallocate.
1785 		 */
1786 		return 0;
1787 	}
1788 
1789 	/*
1790 	 * The start position of the hole is defined by lblock, start_list, and
1791 	 * start_aligned.  The end position of the hole is defined by lend,
1792 	 * end_list, and end_aligned.
1793 	 *
1794 	 * start_aligned and end_aligned define down to which height the start
1795 	 * and end positions are aligned to the metadata tree (i.e., the
1796 	 * position is a multiple of the metadata granularity at the height
1797 	 * above).  This determines at which heights additional meta pointers
1798 	 * needs to be preserved for the remaining data.
1799 	 */
1800 
1801 	if (length) {
1802 		u64 end_offset = offset + length;
1803 		u64 lend;
1804 
1805 		/*
1806 		 * Clip the end at the maximum file size for the given height:
1807 		 * that's how far the metadata goes; files bigger than that
1808 		 * will have additional layers of indirection.
1809 		 */
1810 		if (end_offset > maxsize)
1811 			end_offset = maxsize;
1812 		lend = end_offset >> bsize_shift;
1813 
1814 		if (lblock >= lend)
1815 			return 0;
1816 
1817 		find_metapath(sdp, lend, &mp, ip->i_height);
1818 		end_list = __end_list;
1819 		memcpy(end_list, mp.mp_list, sizeof(mp.mp_list));
1820 
1821 		for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1822 			if (end_list[mp_h])
1823 				break;
1824 		}
1825 		end_aligned = mp_h;
1826 	}
1827 
1828 	find_metapath(sdp, lblock, &mp, ip->i_height);
1829 	memcpy(start_list, mp.mp_list, sizeof(start_list));
1830 
1831 	for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1832 		if (start_list[mp_h])
1833 			break;
1834 	}
1835 	start_aligned = mp_h;
1836 
1837 	ret = gfs2_meta_inode_buffer(ip, &dibh);
1838 	if (ret)
1839 		return ret;
1840 
1841 	mp.mp_bh[0] = dibh;
1842 	ret = lookup_metapath(ip, &mp);
1843 	if (ret)
1844 		goto out_metapath;
1845 
1846 	/* issue read-ahead on metadata */
1847 	for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) {
1848 		metapointer_range(&mp, mp_h, start_list, start_aligned,
1849 				  end_list, end_aligned, &start, &end);
1850 		gfs2_metapath_ra(ip->i_gl, start, end);
1851 	}
1852 
1853 	if (mp.mp_aheight == ip->i_height)
1854 		state = DEALLOC_MP_FULL; /* We have a complete metapath */
1855 	else
1856 		state = DEALLOC_FILL_MP; /* deal with partial metapath */
1857 
1858 	ret = gfs2_rindex_update(sdp);
1859 	if (ret)
1860 		goto out_metapath;
1861 
1862 	ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
1863 	if (ret)
1864 		goto out_metapath;
1865 	gfs2_holder_mark_uninitialized(&rd_gh);
1866 
1867 	mp_h = strip_h;
1868 
1869 	while (state != DEALLOC_DONE) {
1870 		switch (state) {
1871 		/* Truncate a full metapath at the given strip height.
1872 		 * Note that strip_h == mp_h in order to be in this state. */
1873 		case DEALLOC_MP_FULL:
1874 			bh = mp.mp_bh[mp_h];
1875 			gfs2_assert_withdraw(sdp, bh);
1876 			if (gfs2_assert_withdraw(sdp,
1877 						 prev_bnr != bh->b_blocknr)) {
1878 				fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u,"
1879 					 "s_h:%u, mp_h:%u\n",
1880 				       (unsigned long long)ip->i_no_addr,
1881 				       prev_bnr, ip->i_height, strip_h, mp_h);
1882 			}
1883 			prev_bnr = bh->b_blocknr;
1884 
1885 			if (gfs2_metatype_check(sdp, bh,
1886 						(mp_h ? GFS2_METATYPE_IN :
1887 							GFS2_METATYPE_DI))) {
1888 				ret = -EIO;
1889 				goto out;
1890 			}
1891 
1892 			/*
1893 			 * Below, passing end_aligned as 0 gives us the
1894 			 * metapointer range excluding the end point: the end
1895 			 * point is the first metapath we must not deallocate!
1896 			 */
1897 
1898 			metapointer_range(&mp, mp_h, start_list, start_aligned,
1899 					  end_list, 0 /* end_aligned */,
1900 					  &start, &end);
1901 			ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h],
1902 						 start, end,
1903 						 mp_h != ip->i_height - 1,
1904 						 &btotal);
1905 
1906 			/* If we hit an error or just swept dinode buffer,
1907 			   just exit. */
1908 			if (ret || !mp_h) {
1909 				state = DEALLOC_DONE;
1910 				break;
1911 			}
1912 			state = DEALLOC_MP_LOWER;
1913 			break;
1914 
1915 		/* lower the metapath strip height */
1916 		case DEALLOC_MP_LOWER:
1917 			/* We're done with the current buffer, so release it,
1918 			   unless it's the dinode buffer. Then back up to the
1919 			   previous pointer. */
1920 			if (mp_h) {
1921 				brelse(mp.mp_bh[mp_h]);
1922 				mp.mp_bh[mp_h] = NULL;
1923 			}
1924 			/* If we can't get any lower in height, we've stripped
1925 			   off all we can. Next step is to back up and start
1926 			   stripping the previous level of metadata. */
1927 			if (mp_h == 0) {
1928 				strip_h--;
1929 				memcpy(mp.mp_list, start_list, sizeof(start_list));
1930 				mp_h = strip_h;
1931 				state = DEALLOC_FILL_MP;
1932 				break;
1933 			}
1934 			mp.mp_list[mp_h] = 0;
1935 			mp_h--; /* search one metadata height down */
1936 			mp.mp_list[mp_h]++;
1937 			if (walk_done(sdp, &mp, mp_h, end_list, end_aligned))
1938 				break;
1939 			/* Here we've found a part of the metapath that is not
1940 			 * allocated. We need to search at that height for the
1941 			 * next non-null pointer. */
1942 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) {
1943 				state = DEALLOC_FILL_MP;
1944 				mp_h++;
1945 			}
1946 			/* No more non-null pointers at this height. Back up
1947 			   to the previous height and try again. */
1948 			break; /* loop around in the same state */
1949 
1950 		/* Fill the metapath with buffers to the given height. */
1951 		case DEALLOC_FILL_MP:
1952 			/* Fill the buffers out to the current height. */
1953 			ret = fillup_metapath(ip, &mp, mp_h);
1954 			if (ret < 0)
1955 				goto out;
1956 
1957 			/* On the first pass, issue read-ahead on metadata. */
1958 			if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) {
1959 				unsigned int height = mp.mp_aheight - 1;
1960 
1961 				/* No read-ahead for data blocks. */
1962 				if (mp.mp_aheight - 1 == strip_h)
1963 					height--;
1964 
1965 				for (; height >= mp.mp_aheight - ret; height--) {
1966 					metapointer_range(&mp, height,
1967 							  start_list, start_aligned,
1968 							  end_list, end_aligned,
1969 							  &start, &end);
1970 					gfs2_metapath_ra(ip->i_gl, start, end);
1971 				}
1972 			}
1973 
1974 			/* If buffers found for the entire strip height */
1975 			if (mp.mp_aheight - 1 == strip_h) {
1976 				state = DEALLOC_MP_FULL;
1977 				break;
1978 			}
1979 			if (mp.mp_aheight < ip->i_height) /* We have a partial height */
1980 				mp_h = mp.mp_aheight - 1;
1981 
1982 			/* If we find a non-null block pointer, crawl a bit
1983 			   higher up in the metapath and try again, otherwise
1984 			   we need to look lower for a new starting point. */
1985 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned))
1986 				mp_h++;
1987 			else
1988 				state = DEALLOC_MP_LOWER;
1989 			break;
1990 		}
1991 	}
1992 
1993 	if (btotal) {
1994 		if (current->journal_info == NULL) {
1995 			ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS +
1996 					       RES_QUOTA, 0);
1997 			if (ret)
1998 				goto out;
1999 			down_write(&ip->i_rw_mutex);
2000 		}
2001 		gfs2_statfs_change(sdp, 0, +btotal, 0);
2002 		gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid,
2003 				  ip->i_inode.i_gid);
2004 		ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2005 		gfs2_trans_add_meta(ip->i_gl, dibh);
2006 		gfs2_dinode_out(ip, dibh->b_data);
2007 		up_write(&ip->i_rw_mutex);
2008 		gfs2_trans_end(sdp);
2009 	}
2010 
2011 out:
2012 	if (gfs2_holder_initialized(&rd_gh))
2013 		gfs2_glock_dq_uninit(&rd_gh);
2014 	if (current->journal_info) {
2015 		up_write(&ip->i_rw_mutex);
2016 		gfs2_trans_end(sdp);
2017 		cond_resched();
2018 	}
2019 	gfs2_quota_unhold(ip);
2020 out_metapath:
2021 	release_metapath(&mp);
2022 	return ret;
2023 }
2024 
2025 static int trunc_end(struct gfs2_inode *ip)
2026 {
2027 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2028 	struct buffer_head *dibh;
2029 	int error;
2030 
2031 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2032 	if (error)
2033 		return error;
2034 
2035 	down_write(&ip->i_rw_mutex);
2036 
2037 	error = gfs2_meta_inode_buffer(ip, &dibh);
2038 	if (error)
2039 		goto out;
2040 
2041 	if (!i_size_read(&ip->i_inode)) {
2042 		ip->i_height = 0;
2043 		ip->i_goal = ip->i_no_addr;
2044 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
2045 		gfs2_ordered_del_inode(ip);
2046 	}
2047 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2048 	ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG;
2049 
2050 	gfs2_trans_add_meta(ip->i_gl, dibh);
2051 	gfs2_dinode_out(ip, dibh->b_data);
2052 	brelse(dibh);
2053 
2054 out:
2055 	up_write(&ip->i_rw_mutex);
2056 	gfs2_trans_end(sdp);
2057 	return error;
2058 }
2059 
2060 /**
2061  * do_shrink - make a file smaller
2062  * @inode: the inode
2063  * @newsize: the size to make the file
2064  *
2065  * Called with an exclusive lock on @inode. The @size must
2066  * be equal to or smaller than the current inode size.
2067  *
2068  * Returns: errno
2069  */
2070 
2071 static int do_shrink(struct inode *inode, u64 newsize)
2072 {
2073 	struct gfs2_inode *ip = GFS2_I(inode);
2074 	int error;
2075 
2076 	error = trunc_start(inode, newsize);
2077 	if (error < 0)
2078 		return error;
2079 	if (gfs2_is_stuffed(ip))
2080 		return 0;
2081 
2082 	error = punch_hole(ip, newsize, 0);
2083 	if (error == 0)
2084 		error = trunc_end(ip);
2085 
2086 	return error;
2087 }
2088 
2089 void gfs2_trim_blocks(struct inode *inode)
2090 {
2091 	int ret;
2092 
2093 	ret = do_shrink(inode, inode->i_size);
2094 	WARN_ON(ret != 0);
2095 }
2096 
2097 /**
2098  * do_grow - Touch and update inode size
2099  * @inode: The inode
2100  * @size: The new size
2101  *
2102  * This function updates the timestamps on the inode and
2103  * may also increase the size of the inode. This function
2104  * must not be called with @size any smaller than the current
2105  * inode size.
2106  *
2107  * Although it is not strictly required to unstuff files here,
2108  * earlier versions of GFS2 have a bug in the stuffed file reading
2109  * code which will result in a buffer overrun if the size is larger
2110  * than the max stuffed file size. In order to prevent this from
2111  * occurring, such files are unstuffed, but in other cases we can
2112  * just update the inode size directly.
2113  *
2114  * Returns: 0 on success, or -ve on error
2115  */
2116 
2117 static int do_grow(struct inode *inode, u64 size)
2118 {
2119 	struct gfs2_inode *ip = GFS2_I(inode);
2120 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2121 	struct gfs2_alloc_parms ap = { .target = 1, };
2122 	struct buffer_head *dibh;
2123 	int error;
2124 	int unstuff = 0;
2125 
2126 	if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) {
2127 		error = gfs2_quota_lock_check(ip, &ap);
2128 		if (error)
2129 			return error;
2130 
2131 		error = gfs2_inplace_reserve(ip, &ap);
2132 		if (error)
2133 			goto do_grow_qunlock;
2134 		unstuff = 1;
2135 	}
2136 
2137 	error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT +
2138 				 (unstuff &&
2139 				  gfs2_is_jdata(ip) ? RES_JDATA : 0) +
2140 				 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ?
2141 				  0 : RES_QUOTA), 0);
2142 	if (error)
2143 		goto do_grow_release;
2144 
2145 	if (unstuff) {
2146 		error = gfs2_unstuff_dinode(ip, NULL);
2147 		if (error)
2148 			goto do_end_trans;
2149 	}
2150 
2151 	error = gfs2_meta_inode_buffer(ip, &dibh);
2152 	if (error)
2153 		goto do_end_trans;
2154 
2155 	truncate_setsize(inode, size);
2156 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2157 	gfs2_trans_add_meta(ip->i_gl, dibh);
2158 	gfs2_dinode_out(ip, dibh->b_data);
2159 	brelse(dibh);
2160 
2161 do_end_trans:
2162 	gfs2_trans_end(sdp);
2163 do_grow_release:
2164 	if (unstuff) {
2165 		gfs2_inplace_release(ip);
2166 do_grow_qunlock:
2167 		gfs2_quota_unlock(ip);
2168 	}
2169 	return error;
2170 }
2171 
2172 /**
2173  * gfs2_setattr_size - make a file a given size
2174  * @inode: the inode
2175  * @newsize: the size to make the file
2176  *
2177  * The file size can grow, shrink, or stay the same size. This
2178  * is called holding i_rwsem and an exclusive glock on the inode
2179  * in question.
2180  *
2181  * Returns: errno
2182  */
2183 
2184 int gfs2_setattr_size(struct inode *inode, u64 newsize)
2185 {
2186 	struct gfs2_inode *ip = GFS2_I(inode);
2187 	int ret;
2188 
2189 	BUG_ON(!S_ISREG(inode->i_mode));
2190 
2191 	ret = inode_newsize_ok(inode, newsize);
2192 	if (ret)
2193 		return ret;
2194 
2195 	inode_dio_wait(inode);
2196 
2197 	ret = gfs2_qa_get(ip);
2198 	if (ret)
2199 		goto out;
2200 
2201 	if (newsize >= inode->i_size) {
2202 		ret = do_grow(inode, newsize);
2203 		goto out;
2204 	}
2205 
2206 	ret = do_shrink(inode, newsize);
2207 out:
2208 	gfs2_rs_delete(ip, NULL);
2209 	gfs2_qa_put(ip);
2210 	return ret;
2211 }
2212 
2213 int gfs2_truncatei_resume(struct gfs2_inode *ip)
2214 {
2215 	int error;
2216 	error = punch_hole(ip, i_size_read(&ip->i_inode), 0);
2217 	if (!error)
2218 		error = trunc_end(ip);
2219 	return error;
2220 }
2221 
2222 int gfs2_file_dealloc(struct gfs2_inode *ip)
2223 {
2224 	return punch_hole(ip, 0, 0);
2225 }
2226 
2227 /**
2228  * gfs2_free_journal_extents - Free cached journal bmap info
2229  * @jd: The journal
2230  *
2231  */
2232 
2233 void gfs2_free_journal_extents(struct gfs2_jdesc *jd)
2234 {
2235 	struct gfs2_journal_extent *jext;
2236 
2237 	while(!list_empty(&jd->extent_list)) {
2238 		jext = list_first_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2239 		list_del(&jext->list);
2240 		kfree(jext);
2241 	}
2242 }
2243 
2244 /**
2245  * gfs2_add_jextent - Add or merge a new extent to extent cache
2246  * @jd: The journal descriptor
2247  * @lblock: The logical block at start of new extent
2248  * @dblock: The physical block at start of new extent
2249  * @blocks: Size of extent in fs blocks
2250  *
2251  * Returns: 0 on success or -ENOMEM
2252  */
2253 
2254 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks)
2255 {
2256 	struct gfs2_journal_extent *jext;
2257 
2258 	if (!list_empty(&jd->extent_list)) {
2259 		jext = list_last_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2260 		if ((jext->dblock + jext->blocks) == dblock) {
2261 			jext->blocks += blocks;
2262 			return 0;
2263 		}
2264 	}
2265 
2266 	jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS);
2267 	if (jext == NULL)
2268 		return -ENOMEM;
2269 	jext->dblock = dblock;
2270 	jext->lblock = lblock;
2271 	jext->blocks = blocks;
2272 	list_add_tail(&jext->list, &jd->extent_list);
2273 	jd->nr_extents++;
2274 	return 0;
2275 }
2276 
2277 /**
2278  * gfs2_map_journal_extents - Cache journal bmap info
2279  * @sdp: The super block
2280  * @jd: The journal to map
2281  *
2282  * Create a reusable "extent" mapping from all logical
2283  * blocks to all physical blocks for the given journal.  This will save
2284  * us time when writing journal blocks.  Most journals will have only one
2285  * extent that maps all their logical blocks.  That's because gfs2.mkfs
2286  * arranges the journal blocks sequentially to maximize performance.
2287  * So the extent would map the first block for the entire file length.
2288  * However, gfs2_jadd can happen while file activity is happening, so
2289  * those journals may not be sequential.  Less likely is the case where
2290  * the users created their own journals by mounting the metafs and
2291  * laying it out.  But it's still possible.  These journals might have
2292  * several extents.
2293  *
2294  * Returns: 0 on success, or error on failure
2295  */
2296 
2297 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd)
2298 {
2299 	u64 lblock = 0;
2300 	u64 lblock_stop;
2301 	struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
2302 	struct buffer_head bh;
2303 	unsigned int shift = sdp->sd_sb.sb_bsize_shift;
2304 	u64 size;
2305 	int rc;
2306 	ktime_t start, end;
2307 
2308 	start = ktime_get();
2309 	lblock_stop = i_size_read(jd->jd_inode) >> shift;
2310 	size = (lblock_stop - lblock) << shift;
2311 	jd->nr_extents = 0;
2312 	WARN_ON(!list_empty(&jd->extent_list));
2313 
2314 	do {
2315 		bh.b_state = 0;
2316 		bh.b_blocknr = 0;
2317 		bh.b_size = size;
2318 		rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0);
2319 		if (rc || !buffer_mapped(&bh))
2320 			goto fail;
2321 		rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift);
2322 		if (rc)
2323 			goto fail;
2324 		size -= bh.b_size;
2325 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2326 	} while(size > 0);
2327 
2328 	end = ktime_get();
2329 	fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid,
2330 		jd->nr_extents, ktime_ms_delta(end, start));
2331 	return 0;
2332 
2333 fail:
2334 	fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n",
2335 		rc, jd->jd_jid,
2336 		(unsigned long long)(i_size_read(jd->jd_inode) - size),
2337 		jd->nr_extents);
2338 	fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n",
2339 		rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr,
2340 		bh.b_state, (unsigned long long)bh.b_size);
2341 	gfs2_free_journal_extents(jd);
2342 	return rc;
2343 }
2344 
2345 /**
2346  * gfs2_write_alloc_required - figure out if a write will require an allocation
2347  * @ip: the file being written to
2348  * @offset: the offset to write to
2349  * @len: the number of bytes being written
2350  *
2351  * Returns: 1 if an alloc is required, 0 otherwise
2352  */
2353 
2354 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset,
2355 			      unsigned int len)
2356 {
2357 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2358 	struct buffer_head bh;
2359 	unsigned int shift;
2360 	u64 lblock, lblock_stop, size;
2361 	u64 end_of_file;
2362 
2363 	if (!len)
2364 		return 0;
2365 
2366 	if (gfs2_is_stuffed(ip)) {
2367 		if (offset + len > gfs2_max_stuffed_size(ip))
2368 			return 1;
2369 		return 0;
2370 	}
2371 
2372 	shift = sdp->sd_sb.sb_bsize_shift;
2373 	BUG_ON(gfs2_is_dir(ip));
2374 	end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift;
2375 	lblock = offset >> shift;
2376 	lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift;
2377 	if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex))
2378 		return 1;
2379 
2380 	size = (lblock_stop - lblock) << shift;
2381 	do {
2382 		bh.b_state = 0;
2383 		bh.b_size = size;
2384 		gfs2_block_map(&ip->i_inode, lblock, &bh, 0);
2385 		if (!buffer_mapped(&bh))
2386 			return 1;
2387 		size -= bh.b_size;
2388 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2389 	} while(size > 0);
2390 
2391 	return 0;
2392 }
2393 
2394 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length)
2395 {
2396 	struct gfs2_inode *ip = GFS2_I(inode);
2397 	struct buffer_head *dibh;
2398 	int error;
2399 
2400 	if (offset >= inode->i_size)
2401 		return 0;
2402 	if (offset + length > inode->i_size)
2403 		length = inode->i_size - offset;
2404 
2405 	error = gfs2_meta_inode_buffer(ip, &dibh);
2406 	if (error)
2407 		return error;
2408 	gfs2_trans_add_meta(ip->i_gl, dibh);
2409 	memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0,
2410 	       length);
2411 	brelse(dibh);
2412 	return 0;
2413 }
2414 
2415 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset,
2416 					 loff_t length)
2417 {
2418 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2419 	loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
2420 	int error;
2421 
2422 	while (length) {
2423 		struct gfs2_trans *tr;
2424 		loff_t chunk;
2425 		unsigned int offs;
2426 
2427 		chunk = length;
2428 		if (chunk > max_chunk)
2429 			chunk = max_chunk;
2430 
2431 		offs = offset & ~PAGE_MASK;
2432 		if (offs && chunk > PAGE_SIZE)
2433 			chunk = offs + ((chunk - offs) & PAGE_MASK);
2434 
2435 		truncate_pagecache_range(inode, offset, chunk);
2436 		offset += chunk;
2437 		length -= chunk;
2438 
2439 		tr = current->journal_info;
2440 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
2441 			continue;
2442 
2443 		gfs2_trans_end(sdp);
2444 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
2445 		if (error)
2446 			return error;
2447 	}
2448 	return 0;
2449 }
2450 
2451 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length)
2452 {
2453 	struct inode *inode = file_inode(file);
2454 	struct gfs2_inode *ip = GFS2_I(inode);
2455 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2456 	unsigned int blocksize = i_blocksize(inode);
2457 	loff_t start, end;
2458 	int error;
2459 
2460 	if (!gfs2_is_stuffed(ip)) {
2461 		unsigned int start_off, end_len;
2462 
2463 		start_off = offset & (blocksize - 1);
2464 		end_len = (offset + length) & (blocksize - 1);
2465 		if (start_off) {
2466 			unsigned int len = length;
2467 			if (length > blocksize - start_off)
2468 				len = blocksize - start_off;
2469 			error = gfs2_block_zero_range(inode, offset, len);
2470 			if (error)
2471 				goto out;
2472 			if (start_off + length < blocksize)
2473 				end_len = 0;
2474 		}
2475 		if (end_len) {
2476 			error = gfs2_block_zero_range(inode,
2477 				offset + length - end_len, end_len);
2478 			if (error)
2479 				goto out;
2480 		}
2481 	}
2482 
2483 	start = round_down(offset, blocksize);
2484 	end = round_up(offset + length, blocksize) - 1;
2485 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
2486 	if (error)
2487 		return error;
2488 
2489 	if (gfs2_is_jdata(ip))
2490 		error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA,
2491 					 GFS2_JTRUNC_REVOKES);
2492 	else
2493 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2494 	if (error)
2495 		return error;
2496 
2497 	if (gfs2_is_stuffed(ip)) {
2498 		error = stuffed_zero_range(inode, offset, length);
2499 		if (error)
2500 			goto out;
2501 	}
2502 
2503 	if (gfs2_is_jdata(ip)) {
2504 		BUG_ON(!current->journal_info);
2505 		gfs2_journaled_truncate_range(inode, offset, length);
2506 	} else
2507 		truncate_pagecache_range(inode, offset, offset + length - 1);
2508 
2509 	file_update_time(file);
2510 	mark_inode_dirty(inode);
2511 
2512 	if (current->journal_info)
2513 		gfs2_trans_end(sdp);
2514 
2515 	if (!gfs2_is_stuffed(ip))
2516 		error = punch_hole(ip, offset, length);
2517 
2518 out:
2519 	if (current->journal_info)
2520 		gfs2_trans_end(sdp);
2521 	return error;
2522 }
2523 
2524 static int gfs2_map_blocks(struct iomap_writepage_ctx *wpc, struct inode *inode,
2525 		loff_t offset)
2526 {
2527 	int ret;
2528 
2529 	if (WARN_ON_ONCE(gfs2_is_stuffed(GFS2_I(inode))))
2530 		return -EIO;
2531 
2532 	if (offset >= wpc->iomap.offset &&
2533 	    offset < wpc->iomap.offset + wpc->iomap.length)
2534 		return 0;
2535 
2536 	memset(&wpc->iomap, 0, sizeof(wpc->iomap));
2537 	ret = gfs2_iomap_get(inode, offset, INT_MAX, &wpc->iomap);
2538 	return ret;
2539 }
2540 
2541 const struct iomap_writeback_ops gfs2_writeback_ops = {
2542 	.map_blocks		= gfs2_map_blocks,
2543 };
2544