1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #include <linux/spinlock.h> 11 #include <linux/completion.h> 12 #include <linux/buffer_head.h> 13 #include <linux/blkdev.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/crc32.h> 16 #include <linux/iomap.h> 17 18 #include "gfs2.h" 19 #include "incore.h" 20 #include "bmap.h" 21 #include "glock.h" 22 #include "inode.h" 23 #include "meta_io.h" 24 #include "quota.h" 25 #include "rgrp.h" 26 #include "log.h" 27 #include "super.h" 28 #include "trans.h" 29 #include "dir.h" 30 #include "util.h" 31 #include "aops.h" 32 #include "trace_gfs2.h" 33 34 /* This doesn't need to be that large as max 64 bit pointers in a 4k 35 * block is 512, so __u16 is fine for that. It saves stack space to 36 * keep it small. 37 */ 38 struct metapath { 39 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT]; 40 __u16 mp_list[GFS2_MAX_META_HEIGHT]; 41 int mp_fheight; /* find_metapath height */ 42 int mp_aheight; /* actual height (lookup height) */ 43 }; 44 45 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length); 46 47 /** 48 * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page 49 * @ip: the inode 50 * @dibh: the dinode buffer 51 * @block: the block number that was allocated 52 * @page: The (optional) page. This is looked up if @page is NULL 53 * 54 * Returns: errno 55 */ 56 57 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh, 58 u64 block, struct page *page) 59 { 60 struct inode *inode = &ip->i_inode; 61 struct buffer_head *bh; 62 int release = 0; 63 64 if (!page || page->index) { 65 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 66 if (!page) 67 return -ENOMEM; 68 release = 1; 69 } 70 71 if (!PageUptodate(page)) { 72 void *kaddr = kmap(page); 73 u64 dsize = i_size_read(inode); 74 75 if (dsize > gfs2_max_stuffed_size(ip)) 76 dsize = gfs2_max_stuffed_size(ip); 77 78 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 79 memset(kaddr + dsize, 0, PAGE_SIZE - dsize); 80 kunmap(page); 81 82 SetPageUptodate(page); 83 } 84 85 if (!page_has_buffers(page)) 86 create_empty_buffers(page, BIT(inode->i_blkbits), 87 BIT(BH_Uptodate)); 88 89 bh = page_buffers(page); 90 91 if (!buffer_mapped(bh)) 92 map_bh(bh, inode->i_sb, block); 93 94 set_buffer_uptodate(bh); 95 if (gfs2_is_jdata(ip)) 96 gfs2_trans_add_data(ip->i_gl, bh); 97 else { 98 mark_buffer_dirty(bh); 99 gfs2_ordered_add_inode(ip); 100 } 101 102 if (release) { 103 unlock_page(page); 104 put_page(page); 105 } 106 107 return 0; 108 } 109 110 /** 111 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big 112 * @ip: The GFS2 inode to unstuff 113 * @page: The (optional) page. This is looked up if the @page is NULL 114 * 115 * This routine unstuffs a dinode and returns it to a "normal" state such 116 * that the height can be grown in the traditional way. 117 * 118 * Returns: errno 119 */ 120 121 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page) 122 { 123 struct buffer_head *bh, *dibh; 124 struct gfs2_dinode *di; 125 u64 block = 0; 126 int isdir = gfs2_is_dir(ip); 127 int error; 128 129 down_write(&ip->i_rw_mutex); 130 131 error = gfs2_meta_inode_buffer(ip, &dibh); 132 if (error) 133 goto out; 134 135 if (i_size_read(&ip->i_inode)) { 136 /* Get a free block, fill it with the stuffed data, 137 and write it out to disk */ 138 139 unsigned int n = 1; 140 error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL); 141 if (error) 142 goto out_brelse; 143 if (isdir) { 144 gfs2_trans_add_unrevoke(GFS2_SB(&ip->i_inode), block, 1); 145 error = gfs2_dir_get_new_buffer(ip, block, &bh); 146 if (error) 147 goto out_brelse; 148 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header), 149 dibh, sizeof(struct gfs2_dinode)); 150 brelse(bh); 151 } else { 152 error = gfs2_unstuffer_page(ip, dibh, block, page); 153 if (error) 154 goto out_brelse; 155 } 156 } 157 158 /* Set up the pointer to the new block */ 159 160 gfs2_trans_add_meta(ip->i_gl, dibh); 161 di = (struct gfs2_dinode *)dibh->b_data; 162 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 163 164 if (i_size_read(&ip->i_inode)) { 165 *(__be64 *)(di + 1) = cpu_to_be64(block); 166 gfs2_add_inode_blocks(&ip->i_inode, 1); 167 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode)); 168 } 169 170 ip->i_height = 1; 171 di->di_height = cpu_to_be16(1); 172 173 out_brelse: 174 brelse(dibh); 175 out: 176 up_write(&ip->i_rw_mutex); 177 return error; 178 } 179 180 181 /** 182 * find_metapath - Find path through the metadata tree 183 * @sdp: The superblock 184 * @block: The disk block to look up 185 * @mp: The metapath to return the result in 186 * @height: The pre-calculated height of the metadata tree 187 * 188 * This routine returns a struct metapath structure that defines a path 189 * through the metadata of inode "ip" to get to block "block". 190 * 191 * Example: 192 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a 193 * filesystem with a blocksize of 4096. 194 * 195 * find_metapath() would return a struct metapath structure set to: 196 * mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165. 197 * 198 * That means that in order to get to the block containing the byte at 199 * offset 101342453, we would load the indirect block pointed to by pointer 200 * 0 in the dinode. We would then load the indirect block pointed to by 201 * pointer 48 in that indirect block. We would then load the data block 202 * pointed to by pointer 165 in that indirect block. 203 * 204 * ---------------------------------------- 205 * | Dinode | | 206 * | | 4| 207 * | |0 1 2 3 4 5 9| 208 * | | 6| 209 * ---------------------------------------- 210 * | 211 * | 212 * V 213 * ---------------------------------------- 214 * | Indirect Block | 215 * | 5| 216 * | 4 4 4 4 4 5 5 1| 217 * |0 5 6 7 8 9 0 1 2| 218 * ---------------------------------------- 219 * | 220 * | 221 * V 222 * ---------------------------------------- 223 * | Indirect Block | 224 * | 1 1 1 1 1 5| 225 * | 6 6 6 6 6 1| 226 * |0 3 4 5 6 7 2| 227 * ---------------------------------------- 228 * | 229 * | 230 * V 231 * ---------------------------------------- 232 * | Data block containing offset | 233 * | 101342453 | 234 * | | 235 * | | 236 * ---------------------------------------- 237 * 238 */ 239 240 static void find_metapath(const struct gfs2_sbd *sdp, u64 block, 241 struct metapath *mp, unsigned int height) 242 { 243 unsigned int i; 244 245 mp->mp_fheight = height; 246 for (i = height; i--;) 247 mp->mp_list[i] = do_div(block, sdp->sd_inptrs); 248 } 249 250 static inline unsigned int metapath_branch_start(const struct metapath *mp) 251 { 252 if (mp->mp_list[0] == 0) 253 return 2; 254 return 1; 255 } 256 257 /** 258 * metaptr1 - Return the first possible metadata pointer in a metapath buffer 259 * @height: The metadata height (0 = dinode) 260 * @mp: The metapath 261 */ 262 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp) 263 { 264 struct buffer_head *bh = mp->mp_bh[height]; 265 if (height == 0) 266 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode))); 267 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header))); 268 } 269 270 /** 271 * metapointer - Return pointer to start of metadata in a buffer 272 * @height: The metadata height (0 = dinode) 273 * @mp: The metapath 274 * 275 * Return a pointer to the block number of the next height of the metadata 276 * tree given a buffer containing the pointer to the current height of the 277 * metadata tree. 278 */ 279 280 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp) 281 { 282 __be64 *p = metaptr1(height, mp); 283 return p + mp->mp_list[height]; 284 } 285 286 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp) 287 { 288 const struct buffer_head *bh = mp->mp_bh[height]; 289 return (const __be64 *)(bh->b_data + bh->b_size); 290 } 291 292 static void clone_metapath(struct metapath *clone, struct metapath *mp) 293 { 294 unsigned int hgt; 295 296 *clone = *mp; 297 for (hgt = 0; hgt < mp->mp_aheight; hgt++) 298 get_bh(clone->mp_bh[hgt]); 299 } 300 301 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end) 302 { 303 const __be64 *t; 304 305 for (t = start; t < end; t++) { 306 struct buffer_head *rabh; 307 308 if (!*t) 309 continue; 310 311 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE); 312 if (trylock_buffer(rabh)) { 313 if (!buffer_uptodate(rabh)) { 314 rabh->b_end_io = end_buffer_read_sync; 315 submit_bh(REQ_OP_READ, 316 REQ_RAHEAD | REQ_META | REQ_PRIO, 317 rabh); 318 continue; 319 } 320 unlock_buffer(rabh); 321 } 322 brelse(rabh); 323 } 324 } 325 326 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, 327 unsigned int x, unsigned int h) 328 { 329 for (; x < h; x++) { 330 __be64 *ptr = metapointer(x, mp); 331 u64 dblock = be64_to_cpu(*ptr); 332 int ret; 333 334 if (!dblock) 335 break; 336 ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]); 337 if (ret) 338 return ret; 339 } 340 mp->mp_aheight = x + 1; 341 return 0; 342 } 343 344 /** 345 * lookup_metapath - Walk the metadata tree to a specific point 346 * @ip: The inode 347 * @mp: The metapath 348 * 349 * Assumes that the inode's buffer has already been looked up and 350 * hooked onto mp->mp_bh[0] and that the metapath has been initialised 351 * by find_metapath(). 352 * 353 * If this function encounters part of the tree which has not been 354 * allocated, it returns the current height of the tree at the point 355 * at which it found the unallocated block. Blocks which are found are 356 * added to the mp->mp_bh[] list. 357 * 358 * Returns: error 359 */ 360 361 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp) 362 { 363 return __fillup_metapath(ip, mp, 0, ip->i_height - 1); 364 } 365 366 /** 367 * fillup_metapath - fill up buffers for the metadata path to a specific height 368 * @ip: The inode 369 * @mp: The metapath 370 * @h: The height to which it should be mapped 371 * 372 * Similar to lookup_metapath, but does lookups for a range of heights 373 * 374 * Returns: error or the number of buffers filled 375 */ 376 377 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h) 378 { 379 unsigned int x = 0; 380 int ret; 381 382 if (h) { 383 /* find the first buffer we need to look up. */ 384 for (x = h - 1; x > 0; x--) { 385 if (mp->mp_bh[x]) 386 break; 387 } 388 } 389 ret = __fillup_metapath(ip, mp, x, h); 390 if (ret) 391 return ret; 392 return mp->mp_aheight - x - 1; 393 } 394 395 static void release_metapath(struct metapath *mp) 396 { 397 int i; 398 399 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) { 400 if (mp->mp_bh[i] == NULL) 401 break; 402 brelse(mp->mp_bh[i]); 403 mp->mp_bh[i] = NULL; 404 } 405 } 406 407 /** 408 * gfs2_extent_length - Returns length of an extent of blocks 409 * @bh: The metadata block 410 * @ptr: Current position in @bh 411 * @limit: Max extent length to return 412 * @eob: Set to 1 if we hit "end of block" 413 * 414 * Returns: The length of the extent (minimum of one block) 415 */ 416 417 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob) 418 { 419 const __be64 *end = (__be64 *)(bh->b_data + bh->b_size); 420 const __be64 *first = ptr; 421 u64 d = be64_to_cpu(*ptr); 422 423 *eob = 0; 424 do { 425 ptr++; 426 if (ptr >= end) 427 break; 428 d++; 429 } while(be64_to_cpu(*ptr) == d); 430 if (ptr >= end) 431 *eob = 1; 432 return ptr - first; 433 } 434 435 typedef const __be64 *(*gfs2_metadata_walker)( 436 struct metapath *mp, 437 const __be64 *start, const __be64 *end, 438 u64 factor, void *data); 439 440 #define WALK_STOP ((__be64 *)0) 441 #define WALK_NEXT ((__be64 *)1) 442 443 static int gfs2_walk_metadata(struct inode *inode, sector_t lblock, 444 u64 len, struct metapath *mp, gfs2_metadata_walker walker, 445 void *data) 446 { 447 struct metapath clone; 448 struct gfs2_inode *ip = GFS2_I(inode); 449 struct gfs2_sbd *sdp = GFS2_SB(inode); 450 const __be64 *start, *end, *ptr; 451 u64 factor = 1; 452 unsigned int hgt; 453 int ret = 0; 454 455 for (hgt = ip->i_height - 1; hgt >= mp->mp_aheight; hgt--) 456 factor *= sdp->sd_inptrs; 457 458 for (;;) { 459 u64 step; 460 461 /* Walk indirect block. */ 462 start = metapointer(hgt, mp); 463 end = metaend(hgt, mp); 464 465 step = (end - start) * factor; 466 if (step > len) 467 end = start + DIV_ROUND_UP_ULL(len, factor); 468 469 ptr = walker(mp, start, end, factor, data); 470 if (ptr == WALK_STOP) 471 break; 472 if (step >= len) 473 break; 474 len -= step; 475 if (ptr != WALK_NEXT) { 476 BUG_ON(!*ptr); 477 mp->mp_list[hgt] += ptr - start; 478 goto fill_up_metapath; 479 } 480 481 lower_metapath: 482 /* Decrease height of metapath. */ 483 if (mp != &clone) { 484 clone_metapath(&clone, mp); 485 mp = &clone; 486 } 487 brelse(mp->mp_bh[hgt]); 488 mp->mp_bh[hgt] = NULL; 489 if (!hgt) 490 break; 491 hgt--; 492 factor *= sdp->sd_inptrs; 493 494 /* Advance in metadata tree. */ 495 (mp->mp_list[hgt])++; 496 start = metapointer(hgt, mp); 497 end = metaend(hgt, mp); 498 if (start >= end) { 499 mp->mp_list[hgt] = 0; 500 if (!hgt) 501 break; 502 goto lower_metapath; 503 } 504 505 fill_up_metapath: 506 /* Increase height of metapath. */ 507 if (mp != &clone) { 508 clone_metapath(&clone, mp); 509 mp = &clone; 510 } 511 ret = fillup_metapath(ip, mp, ip->i_height - 1); 512 if (ret < 0) 513 break; 514 hgt += ret; 515 for (; ret; ret--) 516 do_div(factor, sdp->sd_inptrs); 517 mp->mp_aheight = hgt + 1; 518 } 519 if (mp == &clone) 520 release_metapath(mp); 521 return ret; 522 } 523 524 struct gfs2_hole_walker_args { 525 u64 blocks; 526 }; 527 528 static const __be64 *gfs2_hole_walker(struct metapath *mp, 529 const __be64 *start, const __be64 *end, 530 u64 factor, void *data) 531 { 532 struct gfs2_hole_walker_args *args = data; 533 const __be64 *ptr; 534 535 for (ptr = start; ptr < end; ptr++) { 536 if (*ptr) { 537 args->blocks += (ptr - start) * factor; 538 if (mp->mp_aheight == mp->mp_fheight) 539 return WALK_STOP; 540 return ptr; /* increase height */ 541 } 542 } 543 args->blocks += (end - start) * factor; 544 return WALK_NEXT; 545 } 546 547 /** 548 * gfs2_hole_size - figure out the size of a hole 549 * @inode: The inode 550 * @lblock: The logical starting block number 551 * @len: How far to look (in blocks) 552 * @mp: The metapath at lblock 553 * @iomap: The iomap to store the hole size in 554 * 555 * This function modifies @mp. 556 * 557 * Returns: errno on error 558 */ 559 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len, 560 struct metapath *mp, struct iomap *iomap) 561 { 562 struct gfs2_hole_walker_args args = { }; 563 int ret = 0; 564 565 ret = gfs2_walk_metadata(inode, lblock, len, mp, gfs2_hole_walker, &args); 566 if (!ret) 567 iomap->length = args.blocks << inode->i_blkbits; 568 return ret; 569 } 570 571 static inline __be64 *gfs2_indirect_init(struct metapath *mp, 572 struct gfs2_glock *gl, unsigned int i, 573 unsigned offset, u64 bn) 574 { 575 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data + 576 ((i > 1) ? sizeof(struct gfs2_meta_header) : 577 sizeof(struct gfs2_dinode))); 578 BUG_ON(i < 1); 579 BUG_ON(mp->mp_bh[i] != NULL); 580 mp->mp_bh[i] = gfs2_meta_new(gl, bn); 581 gfs2_trans_add_meta(gl, mp->mp_bh[i]); 582 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN); 583 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header)); 584 ptr += offset; 585 *ptr = cpu_to_be64(bn); 586 return ptr; 587 } 588 589 enum alloc_state { 590 ALLOC_DATA = 0, 591 ALLOC_GROW_DEPTH = 1, 592 ALLOC_GROW_HEIGHT = 2, 593 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */ 594 }; 595 596 /** 597 * gfs2_iomap_alloc - Build a metadata tree of the requested height 598 * @inode: The GFS2 inode 599 * @iomap: The iomap structure 600 * @flags: iomap flags 601 * @mp: The metapath, with proper height information calculated 602 * 603 * In this routine we may have to alloc: 604 * i) Indirect blocks to grow the metadata tree height 605 * ii) Indirect blocks to fill in lower part of the metadata tree 606 * iii) Data blocks 607 * 608 * This function is called after gfs2_iomap_get, which works out the 609 * total number of blocks which we need via gfs2_alloc_size. 610 * 611 * We then do the actual allocation asking for an extent at a time (if 612 * enough contiguous free blocks are available, there will only be one 613 * allocation request per call) and uses the state machine to initialise 614 * the blocks in order. 615 * 616 * Right now, this function will allocate at most one indirect block 617 * worth of data -- with a default block size of 4K, that's slightly 618 * less than 2M. If this limitation is ever removed to allow huge 619 * allocations, we would probably still want to limit the iomap size we 620 * return to avoid stalling other tasks during huge writes; the next 621 * iomap iteration would then find the blocks already allocated. 622 * 623 * Returns: errno on error 624 */ 625 626 static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap, 627 unsigned flags, struct metapath *mp) 628 { 629 struct gfs2_inode *ip = GFS2_I(inode); 630 struct gfs2_sbd *sdp = GFS2_SB(inode); 631 struct buffer_head *dibh = mp->mp_bh[0]; 632 u64 bn; 633 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0; 634 size_t dblks = iomap->length >> inode->i_blkbits; 635 const unsigned end_of_metadata = mp->mp_fheight - 1; 636 int ret; 637 enum alloc_state state; 638 __be64 *ptr; 639 __be64 zero_bn = 0; 640 641 BUG_ON(mp->mp_aheight < 1); 642 BUG_ON(dibh == NULL); 643 BUG_ON(dblks < 1); 644 645 gfs2_trans_add_meta(ip->i_gl, dibh); 646 647 down_write(&ip->i_rw_mutex); 648 649 if (mp->mp_fheight == mp->mp_aheight) { 650 /* Bottom indirect block exists */ 651 state = ALLOC_DATA; 652 } else { 653 /* Need to allocate indirect blocks */ 654 if (mp->mp_fheight == ip->i_height) { 655 /* Writing into existing tree, extend tree down */ 656 iblks = mp->mp_fheight - mp->mp_aheight; 657 state = ALLOC_GROW_DEPTH; 658 } else { 659 /* Building up tree height */ 660 state = ALLOC_GROW_HEIGHT; 661 iblks = mp->mp_fheight - ip->i_height; 662 branch_start = metapath_branch_start(mp); 663 iblks += (mp->mp_fheight - branch_start); 664 } 665 } 666 667 /* start of the second part of the function (state machine) */ 668 669 blks = dblks + iblks; 670 i = mp->mp_aheight; 671 do { 672 n = blks - alloced; 673 ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL); 674 if (ret) 675 goto out; 676 alloced += n; 677 if (state != ALLOC_DATA || gfs2_is_jdata(ip)) 678 gfs2_trans_add_unrevoke(sdp, bn, n); 679 switch (state) { 680 /* Growing height of tree */ 681 case ALLOC_GROW_HEIGHT: 682 if (i == 1) { 683 ptr = (__be64 *)(dibh->b_data + 684 sizeof(struct gfs2_dinode)); 685 zero_bn = *ptr; 686 } 687 for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0; 688 i++, n--) 689 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++); 690 if (i - 1 == mp->mp_fheight - ip->i_height) { 691 i--; 692 gfs2_buffer_copy_tail(mp->mp_bh[i], 693 sizeof(struct gfs2_meta_header), 694 dibh, sizeof(struct gfs2_dinode)); 695 gfs2_buffer_clear_tail(dibh, 696 sizeof(struct gfs2_dinode) + 697 sizeof(__be64)); 698 ptr = (__be64 *)(mp->mp_bh[i]->b_data + 699 sizeof(struct gfs2_meta_header)); 700 *ptr = zero_bn; 701 state = ALLOC_GROW_DEPTH; 702 for(i = branch_start; i < mp->mp_fheight; i++) { 703 if (mp->mp_bh[i] == NULL) 704 break; 705 brelse(mp->mp_bh[i]); 706 mp->mp_bh[i] = NULL; 707 } 708 i = branch_start; 709 } 710 if (n == 0) 711 break; 712 /* Branching from existing tree */ 713 case ALLOC_GROW_DEPTH: 714 if (i > 1 && i < mp->mp_fheight) 715 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]); 716 for (; i < mp->mp_fheight && n > 0; i++, n--) 717 gfs2_indirect_init(mp, ip->i_gl, i, 718 mp->mp_list[i-1], bn++); 719 if (i == mp->mp_fheight) 720 state = ALLOC_DATA; 721 if (n == 0) 722 break; 723 /* Tree complete, adding data blocks */ 724 case ALLOC_DATA: 725 BUG_ON(n > dblks); 726 BUG_ON(mp->mp_bh[end_of_metadata] == NULL); 727 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]); 728 dblks = n; 729 ptr = metapointer(end_of_metadata, mp); 730 iomap->addr = bn << inode->i_blkbits; 731 iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW; 732 while (n-- > 0) 733 *ptr++ = cpu_to_be64(bn++); 734 break; 735 } 736 } while (iomap->addr == IOMAP_NULL_ADDR); 737 738 iomap->type = IOMAP_MAPPED; 739 iomap->length = (u64)dblks << inode->i_blkbits; 740 ip->i_height = mp->mp_fheight; 741 gfs2_add_inode_blocks(&ip->i_inode, alloced); 742 gfs2_dinode_out(ip, dibh->b_data); 743 out: 744 up_write(&ip->i_rw_mutex); 745 return ret; 746 } 747 748 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE 749 750 /** 751 * gfs2_alloc_size - Compute the maximum allocation size 752 * @inode: The inode 753 * @mp: The metapath 754 * @size: Requested size in blocks 755 * 756 * Compute the maximum size of the next allocation at @mp. 757 * 758 * Returns: size in blocks 759 */ 760 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size) 761 { 762 struct gfs2_inode *ip = GFS2_I(inode); 763 struct gfs2_sbd *sdp = GFS2_SB(inode); 764 const __be64 *first, *ptr, *end; 765 766 /* 767 * For writes to stuffed files, this function is called twice via 768 * gfs2_iomap_get, before and after unstuffing. The size we return the 769 * first time needs to be large enough to get the reservation and 770 * allocation sizes right. The size we return the second time must 771 * be exact or else gfs2_iomap_alloc won't do the right thing. 772 */ 773 774 if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) { 775 unsigned int maxsize = mp->mp_fheight > 1 ? 776 sdp->sd_inptrs : sdp->sd_diptrs; 777 maxsize -= mp->mp_list[mp->mp_fheight - 1]; 778 if (size > maxsize) 779 size = maxsize; 780 return size; 781 } 782 783 first = metapointer(ip->i_height - 1, mp); 784 end = metaend(ip->i_height - 1, mp); 785 if (end - first > size) 786 end = first + size; 787 for (ptr = first; ptr < end; ptr++) { 788 if (*ptr) 789 break; 790 } 791 return ptr - first; 792 } 793 794 /** 795 * gfs2_iomap_get - Map blocks from an inode to disk blocks 796 * @inode: The inode 797 * @pos: Starting position in bytes 798 * @length: Length to map, in bytes 799 * @flags: iomap flags 800 * @iomap: The iomap structure 801 * @mp: The metapath 802 * 803 * Returns: errno 804 */ 805 static int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length, 806 unsigned flags, struct iomap *iomap, 807 struct metapath *mp) 808 { 809 struct gfs2_inode *ip = GFS2_I(inode); 810 struct gfs2_sbd *sdp = GFS2_SB(inode); 811 loff_t size = i_size_read(inode); 812 __be64 *ptr; 813 sector_t lblock; 814 sector_t lblock_stop; 815 int ret; 816 int eob; 817 u64 len; 818 struct buffer_head *dibh = NULL, *bh; 819 u8 height; 820 821 if (!length) 822 return -EINVAL; 823 824 down_read(&ip->i_rw_mutex); 825 826 ret = gfs2_meta_inode_buffer(ip, &dibh); 827 if (ret) 828 goto unlock; 829 iomap->private = dibh; 830 831 if (gfs2_is_stuffed(ip)) { 832 if (flags & IOMAP_WRITE) { 833 loff_t max_size = gfs2_max_stuffed_size(ip); 834 835 if (pos + length > max_size) 836 goto unstuff; 837 iomap->length = max_size; 838 } else { 839 if (pos >= size) { 840 if (flags & IOMAP_REPORT) { 841 ret = -ENOENT; 842 goto unlock; 843 } else { 844 /* report a hole */ 845 iomap->offset = pos; 846 iomap->length = length; 847 goto do_alloc; 848 } 849 } 850 iomap->length = size; 851 } 852 iomap->addr = (ip->i_no_addr << inode->i_blkbits) + 853 sizeof(struct gfs2_dinode); 854 iomap->type = IOMAP_INLINE; 855 iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode); 856 goto out; 857 } 858 859 unstuff: 860 lblock = pos >> inode->i_blkbits; 861 iomap->offset = lblock << inode->i_blkbits; 862 lblock_stop = (pos + length - 1) >> inode->i_blkbits; 863 len = lblock_stop - lblock + 1; 864 iomap->length = len << inode->i_blkbits; 865 866 get_bh(dibh); 867 mp->mp_bh[0] = dibh; 868 869 height = ip->i_height; 870 while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height]) 871 height++; 872 find_metapath(sdp, lblock, mp, height); 873 if (height > ip->i_height || gfs2_is_stuffed(ip)) 874 goto do_alloc; 875 876 ret = lookup_metapath(ip, mp); 877 if (ret) 878 goto unlock; 879 880 if (mp->mp_aheight != ip->i_height) 881 goto do_alloc; 882 883 ptr = metapointer(ip->i_height - 1, mp); 884 if (*ptr == 0) 885 goto do_alloc; 886 887 bh = mp->mp_bh[ip->i_height - 1]; 888 len = gfs2_extent_length(bh, ptr, len, &eob); 889 890 iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits; 891 iomap->length = len << inode->i_blkbits; 892 iomap->type = IOMAP_MAPPED; 893 iomap->flags |= IOMAP_F_MERGED; 894 if (eob) 895 iomap->flags |= IOMAP_F_GFS2_BOUNDARY; 896 897 out: 898 iomap->bdev = inode->i_sb->s_bdev; 899 unlock: 900 up_read(&ip->i_rw_mutex); 901 if (ret && dibh) 902 brelse(dibh); 903 return ret; 904 905 do_alloc: 906 iomap->addr = IOMAP_NULL_ADDR; 907 iomap->type = IOMAP_HOLE; 908 if (flags & IOMAP_REPORT) { 909 if (pos >= size) 910 ret = -ENOENT; 911 else if (height == ip->i_height) 912 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 913 else 914 iomap->length = size - pos; 915 } else if (flags & IOMAP_WRITE) { 916 u64 alloc_size; 917 918 if (flags & IOMAP_DIRECT) 919 goto out; /* (see gfs2_file_direct_write) */ 920 921 len = gfs2_alloc_size(inode, mp, len); 922 alloc_size = len << inode->i_blkbits; 923 if (alloc_size < iomap->length) 924 iomap->length = alloc_size; 925 } else { 926 if (pos < size && height == ip->i_height) 927 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 928 } 929 goto out; 930 } 931 932 static int gfs2_write_lock(struct inode *inode) 933 { 934 struct gfs2_inode *ip = GFS2_I(inode); 935 struct gfs2_sbd *sdp = GFS2_SB(inode); 936 int error; 937 938 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh); 939 error = gfs2_glock_nq(&ip->i_gh); 940 if (error) 941 goto out_uninit; 942 if (&ip->i_inode == sdp->sd_rindex) { 943 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 944 945 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE, 946 GL_NOCACHE, &m_ip->i_gh); 947 if (error) 948 goto out_unlock; 949 } 950 return 0; 951 952 out_unlock: 953 gfs2_glock_dq(&ip->i_gh); 954 out_uninit: 955 gfs2_holder_uninit(&ip->i_gh); 956 return error; 957 } 958 959 static void gfs2_write_unlock(struct inode *inode) 960 { 961 struct gfs2_inode *ip = GFS2_I(inode); 962 struct gfs2_sbd *sdp = GFS2_SB(inode); 963 964 if (&ip->i_inode == sdp->sd_rindex) { 965 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 966 967 gfs2_glock_dq_uninit(&m_ip->i_gh); 968 } 969 gfs2_glock_dq_uninit(&ip->i_gh); 970 } 971 972 static void gfs2_iomap_journaled_page_done(struct inode *inode, loff_t pos, 973 unsigned copied, struct page *page, 974 struct iomap *iomap) 975 { 976 struct gfs2_inode *ip = GFS2_I(inode); 977 978 gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied); 979 } 980 981 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos, 982 loff_t length, unsigned flags, 983 struct iomap *iomap) 984 { 985 struct metapath mp = { .mp_aheight = 1, }; 986 struct gfs2_inode *ip = GFS2_I(inode); 987 struct gfs2_sbd *sdp = GFS2_SB(inode); 988 unsigned int data_blocks = 0, ind_blocks = 0, rblocks; 989 bool unstuff, alloc_required; 990 int ret; 991 992 ret = gfs2_write_lock(inode); 993 if (ret) 994 return ret; 995 996 unstuff = gfs2_is_stuffed(ip) && 997 pos + length > gfs2_max_stuffed_size(ip); 998 999 ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp); 1000 if (ret) 1001 goto out_release; 1002 1003 alloc_required = unstuff || iomap->type == IOMAP_HOLE; 1004 1005 if (alloc_required || gfs2_is_jdata(ip)) 1006 gfs2_write_calc_reserv(ip, iomap->length, &data_blocks, 1007 &ind_blocks); 1008 1009 if (alloc_required) { 1010 struct gfs2_alloc_parms ap = { 1011 .target = data_blocks + ind_blocks 1012 }; 1013 1014 ret = gfs2_quota_lock_check(ip, &ap); 1015 if (ret) 1016 goto out_release; 1017 1018 ret = gfs2_inplace_reserve(ip, &ap); 1019 if (ret) 1020 goto out_qunlock; 1021 } 1022 1023 rblocks = RES_DINODE + ind_blocks; 1024 if (gfs2_is_jdata(ip)) 1025 rblocks += data_blocks; 1026 if (ind_blocks || data_blocks) 1027 rblocks += RES_STATFS + RES_QUOTA; 1028 if (inode == sdp->sd_rindex) 1029 rblocks += 2 * RES_STATFS; 1030 if (alloc_required) 1031 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 1032 1033 ret = gfs2_trans_begin(sdp, rblocks, iomap->length >> inode->i_blkbits); 1034 if (ret) 1035 goto out_trans_fail; 1036 1037 if (unstuff) { 1038 ret = gfs2_unstuff_dinode(ip, NULL); 1039 if (ret) 1040 goto out_trans_end; 1041 release_metapath(&mp); 1042 brelse(iomap->private); 1043 iomap->private = NULL; 1044 ret = gfs2_iomap_get(inode, iomap->offset, iomap->length, 1045 flags, iomap, &mp); 1046 if (ret) 1047 goto out_trans_end; 1048 } 1049 1050 if (iomap->type == IOMAP_HOLE) { 1051 ret = gfs2_iomap_alloc(inode, iomap, flags, &mp); 1052 if (ret) { 1053 gfs2_trans_end(sdp); 1054 gfs2_inplace_release(ip); 1055 punch_hole(ip, iomap->offset, iomap->length); 1056 goto out_qunlock; 1057 } 1058 } 1059 release_metapath(&mp); 1060 if (!gfs2_is_stuffed(ip) && gfs2_is_jdata(ip)) 1061 iomap->page_done = gfs2_iomap_journaled_page_done; 1062 return 0; 1063 1064 out_trans_end: 1065 gfs2_trans_end(sdp); 1066 out_trans_fail: 1067 if (alloc_required) 1068 gfs2_inplace_release(ip); 1069 out_qunlock: 1070 if (alloc_required) 1071 gfs2_quota_unlock(ip); 1072 out_release: 1073 if (iomap->private) 1074 brelse(iomap->private); 1075 release_metapath(&mp); 1076 gfs2_write_unlock(inode); 1077 return ret; 1078 } 1079 1080 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length, 1081 unsigned flags, struct iomap *iomap) 1082 { 1083 struct gfs2_inode *ip = GFS2_I(inode); 1084 struct metapath mp = { .mp_aheight = 1, }; 1085 int ret; 1086 1087 iomap->flags |= IOMAP_F_BUFFER_HEAD; 1088 1089 trace_gfs2_iomap_start(ip, pos, length, flags); 1090 if ((flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT)) { 1091 ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap); 1092 } else { 1093 ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp); 1094 release_metapath(&mp); 1095 /* 1096 * Silently fall back to buffered I/O for stuffed files or if 1097 * we've hot a hole (see gfs2_file_direct_write). 1098 */ 1099 if ((flags & IOMAP_WRITE) && (flags & IOMAP_DIRECT) && 1100 iomap->type != IOMAP_MAPPED) 1101 ret = -ENOTBLK; 1102 } 1103 trace_gfs2_iomap_end(ip, iomap, ret); 1104 return ret; 1105 } 1106 1107 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length, 1108 ssize_t written, unsigned flags, struct iomap *iomap) 1109 { 1110 struct gfs2_inode *ip = GFS2_I(inode); 1111 struct gfs2_sbd *sdp = GFS2_SB(inode); 1112 struct gfs2_trans *tr = current->journal_info; 1113 struct buffer_head *dibh = iomap->private; 1114 1115 if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) != IOMAP_WRITE) 1116 goto out; 1117 1118 if (iomap->type != IOMAP_INLINE) { 1119 gfs2_ordered_add_inode(ip); 1120 1121 if (tr->tr_num_buf_new) 1122 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1123 else 1124 gfs2_trans_add_meta(ip->i_gl, dibh); 1125 } 1126 1127 if (inode == sdp->sd_rindex) { 1128 adjust_fs_space(inode); 1129 sdp->sd_rindex_uptodate = 0; 1130 } 1131 1132 gfs2_trans_end(sdp); 1133 gfs2_inplace_release(ip); 1134 1135 if (length != written && (iomap->flags & IOMAP_F_NEW)) { 1136 /* Deallocate blocks that were just allocated. */ 1137 loff_t blockmask = i_blocksize(inode) - 1; 1138 loff_t end = (pos + length) & ~blockmask; 1139 1140 pos = (pos + written + blockmask) & ~blockmask; 1141 if (pos < end) { 1142 truncate_pagecache_range(inode, pos, end - 1); 1143 punch_hole(ip, pos, end - pos); 1144 } 1145 } 1146 1147 if (ip->i_qadata && ip->i_qadata->qa_qd_num) 1148 gfs2_quota_unlock(ip); 1149 gfs2_write_unlock(inode); 1150 1151 out: 1152 if (dibh) 1153 brelse(dibh); 1154 return 0; 1155 } 1156 1157 const struct iomap_ops gfs2_iomap_ops = { 1158 .iomap_begin = gfs2_iomap_begin, 1159 .iomap_end = gfs2_iomap_end, 1160 }; 1161 1162 /** 1163 * gfs2_block_map - Map one or more blocks of an inode to a disk block 1164 * @inode: The inode 1165 * @lblock: The logical block number 1166 * @bh_map: The bh to be mapped 1167 * @create: True if its ok to alloc blocks to satify the request 1168 * 1169 * The size of the requested mapping is defined in bh_map->b_size. 1170 * 1171 * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged 1172 * when @lblock is not mapped. Sets buffer_mapped(bh_map) and 1173 * bh_map->b_size to indicate the size of the mapping when @lblock and 1174 * successive blocks are mapped, up to the requested size. 1175 * 1176 * Sets buffer_boundary() if a read of metadata will be required 1177 * before the next block can be mapped. Sets buffer_new() if new 1178 * blocks were allocated. 1179 * 1180 * Returns: errno 1181 */ 1182 1183 int gfs2_block_map(struct inode *inode, sector_t lblock, 1184 struct buffer_head *bh_map, int create) 1185 { 1186 struct gfs2_inode *ip = GFS2_I(inode); 1187 loff_t pos = (loff_t)lblock << inode->i_blkbits; 1188 loff_t length = bh_map->b_size; 1189 struct metapath mp = { .mp_aheight = 1, }; 1190 struct iomap iomap = { }; 1191 int ret; 1192 1193 clear_buffer_mapped(bh_map); 1194 clear_buffer_new(bh_map); 1195 clear_buffer_boundary(bh_map); 1196 trace_gfs2_bmap(ip, bh_map, lblock, create, 1); 1197 1198 if (create) { 1199 ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, &iomap, &mp); 1200 if (!ret && iomap.type == IOMAP_HOLE) 1201 ret = gfs2_iomap_alloc(inode, &iomap, IOMAP_WRITE, &mp); 1202 release_metapath(&mp); 1203 } else { 1204 ret = gfs2_iomap_get(inode, pos, length, 0, &iomap, &mp); 1205 release_metapath(&mp); 1206 } 1207 if (ret) 1208 goto out; 1209 1210 if (iomap.length > bh_map->b_size) { 1211 iomap.length = bh_map->b_size; 1212 iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY; 1213 } 1214 if (iomap.addr != IOMAP_NULL_ADDR) 1215 map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits); 1216 bh_map->b_size = iomap.length; 1217 if (iomap.flags & IOMAP_F_GFS2_BOUNDARY) 1218 set_buffer_boundary(bh_map); 1219 if (iomap.flags & IOMAP_F_NEW) 1220 set_buffer_new(bh_map); 1221 1222 out: 1223 trace_gfs2_bmap(ip, bh_map, lblock, create, ret); 1224 return ret; 1225 } 1226 1227 /* 1228 * Deprecated: do not use in new code 1229 */ 1230 int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen) 1231 { 1232 struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 }; 1233 int ret; 1234 int create = *new; 1235 1236 BUG_ON(!extlen); 1237 BUG_ON(!dblock); 1238 BUG_ON(!new); 1239 1240 bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5)); 1241 ret = gfs2_block_map(inode, lblock, &bh, create); 1242 *extlen = bh.b_size >> inode->i_blkbits; 1243 *dblock = bh.b_blocknr; 1244 if (buffer_new(&bh)) 1245 *new = 1; 1246 else 1247 *new = 0; 1248 return ret; 1249 } 1250 1251 /** 1252 * gfs2_block_zero_range - Deal with zeroing out data 1253 * 1254 * This is partly borrowed from ext3. 1255 */ 1256 static int gfs2_block_zero_range(struct inode *inode, loff_t from, 1257 unsigned int length) 1258 { 1259 struct address_space *mapping = inode->i_mapping; 1260 struct gfs2_inode *ip = GFS2_I(inode); 1261 unsigned long index = from >> PAGE_SHIFT; 1262 unsigned offset = from & (PAGE_SIZE-1); 1263 unsigned blocksize, iblock, pos; 1264 struct buffer_head *bh; 1265 struct page *page; 1266 int err; 1267 1268 page = find_or_create_page(mapping, index, GFP_NOFS); 1269 if (!page) 1270 return 0; 1271 1272 blocksize = inode->i_sb->s_blocksize; 1273 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 1274 1275 if (!page_has_buffers(page)) 1276 create_empty_buffers(page, blocksize, 0); 1277 1278 /* Find the buffer that contains "offset" */ 1279 bh = page_buffers(page); 1280 pos = blocksize; 1281 while (offset >= pos) { 1282 bh = bh->b_this_page; 1283 iblock++; 1284 pos += blocksize; 1285 } 1286 1287 err = 0; 1288 1289 if (!buffer_mapped(bh)) { 1290 gfs2_block_map(inode, iblock, bh, 0); 1291 /* unmapped? It's a hole - nothing to do */ 1292 if (!buffer_mapped(bh)) 1293 goto unlock; 1294 } 1295 1296 /* Ok, it's mapped. Make sure it's up-to-date */ 1297 if (PageUptodate(page)) 1298 set_buffer_uptodate(bh); 1299 1300 if (!buffer_uptodate(bh)) { 1301 err = -EIO; 1302 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1303 wait_on_buffer(bh); 1304 /* Uhhuh. Read error. Complain and punt. */ 1305 if (!buffer_uptodate(bh)) 1306 goto unlock; 1307 err = 0; 1308 } 1309 1310 if (gfs2_is_jdata(ip)) 1311 gfs2_trans_add_data(ip->i_gl, bh); 1312 else 1313 gfs2_ordered_add_inode(ip); 1314 1315 zero_user(page, offset, length); 1316 mark_buffer_dirty(bh); 1317 unlock: 1318 unlock_page(page); 1319 put_page(page); 1320 return err; 1321 } 1322 1323 #define GFS2_JTRUNC_REVOKES 8192 1324 1325 /** 1326 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files 1327 * @inode: The inode being truncated 1328 * @oldsize: The original (larger) size 1329 * @newsize: The new smaller size 1330 * 1331 * With jdata files, we have to journal a revoke for each block which is 1332 * truncated. As a result, we need to split this into separate transactions 1333 * if the number of pages being truncated gets too large. 1334 */ 1335 1336 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize) 1337 { 1338 struct gfs2_sbd *sdp = GFS2_SB(inode); 1339 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 1340 u64 chunk; 1341 int error; 1342 1343 while (oldsize != newsize) { 1344 struct gfs2_trans *tr; 1345 unsigned int offs; 1346 1347 chunk = oldsize - newsize; 1348 if (chunk > max_chunk) 1349 chunk = max_chunk; 1350 1351 offs = oldsize & ~PAGE_MASK; 1352 if (offs && chunk > PAGE_SIZE) 1353 chunk = offs + ((chunk - offs) & PAGE_MASK); 1354 1355 truncate_pagecache(inode, oldsize - chunk); 1356 oldsize -= chunk; 1357 1358 tr = current->journal_info; 1359 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 1360 continue; 1361 1362 gfs2_trans_end(sdp); 1363 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 1364 if (error) 1365 return error; 1366 } 1367 1368 return 0; 1369 } 1370 1371 static int trunc_start(struct inode *inode, u64 newsize) 1372 { 1373 struct gfs2_inode *ip = GFS2_I(inode); 1374 struct gfs2_sbd *sdp = GFS2_SB(inode); 1375 struct buffer_head *dibh = NULL; 1376 int journaled = gfs2_is_jdata(ip); 1377 u64 oldsize = inode->i_size; 1378 int error; 1379 1380 if (journaled) 1381 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES); 1382 else 1383 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1384 if (error) 1385 return error; 1386 1387 error = gfs2_meta_inode_buffer(ip, &dibh); 1388 if (error) 1389 goto out; 1390 1391 gfs2_trans_add_meta(ip->i_gl, dibh); 1392 1393 if (gfs2_is_stuffed(ip)) { 1394 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize); 1395 } else { 1396 unsigned int blocksize = i_blocksize(inode); 1397 unsigned int offs = newsize & (blocksize - 1); 1398 if (offs) { 1399 error = gfs2_block_zero_range(inode, newsize, 1400 blocksize - offs); 1401 if (error) 1402 goto out; 1403 } 1404 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG; 1405 } 1406 1407 i_size_write(inode, newsize); 1408 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1409 gfs2_dinode_out(ip, dibh->b_data); 1410 1411 if (journaled) 1412 error = gfs2_journaled_truncate(inode, oldsize, newsize); 1413 else 1414 truncate_pagecache(inode, newsize); 1415 1416 out: 1417 brelse(dibh); 1418 if (current->journal_info) 1419 gfs2_trans_end(sdp); 1420 return error; 1421 } 1422 1423 int gfs2_iomap_get_alloc(struct inode *inode, loff_t pos, loff_t length, 1424 struct iomap *iomap) 1425 { 1426 struct metapath mp = { .mp_aheight = 1, }; 1427 int ret; 1428 1429 ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp); 1430 if (!ret && iomap->type == IOMAP_HOLE) 1431 ret = gfs2_iomap_alloc(inode, iomap, IOMAP_WRITE, &mp); 1432 release_metapath(&mp); 1433 return ret; 1434 } 1435 1436 /** 1437 * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein 1438 * @ip: inode 1439 * @rg_gh: holder of resource group glock 1440 * @bh: buffer head to sweep 1441 * @start: starting point in bh 1442 * @end: end point in bh 1443 * @meta: true if bh points to metadata (rather than data) 1444 * @btotal: place to keep count of total blocks freed 1445 * 1446 * We sweep a metadata buffer (provided by the metapath) for blocks we need to 1447 * free, and free them all. However, we do it one rgrp at a time. If this 1448 * block has references to multiple rgrps, we break it into individual 1449 * transactions. This allows other processes to use the rgrps while we're 1450 * focused on a single one, for better concurrency / performance. 1451 * At every transaction boundary, we rewrite the inode into the journal. 1452 * That way the bitmaps are kept consistent with the inode and we can recover 1453 * if we're interrupted by power-outages. 1454 * 1455 * Returns: 0, or return code if an error occurred. 1456 * *btotal has the total number of blocks freed 1457 */ 1458 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh, 1459 struct buffer_head *bh, __be64 *start, __be64 *end, 1460 bool meta, u32 *btotal) 1461 { 1462 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1463 struct gfs2_rgrpd *rgd; 1464 struct gfs2_trans *tr; 1465 __be64 *p; 1466 int blks_outside_rgrp; 1467 u64 bn, bstart, isize_blks; 1468 s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */ 1469 int ret = 0; 1470 bool buf_in_tr = false; /* buffer was added to transaction */ 1471 1472 more_rgrps: 1473 rgd = NULL; 1474 if (gfs2_holder_initialized(rd_gh)) { 1475 rgd = gfs2_glock2rgrp(rd_gh->gh_gl); 1476 gfs2_assert_withdraw(sdp, 1477 gfs2_glock_is_locked_by_me(rd_gh->gh_gl)); 1478 } 1479 blks_outside_rgrp = 0; 1480 bstart = 0; 1481 blen = 0; 1482 1483 for (p = start; p < end; p++) { 1484 if (!*p) 1485 continue; 1486 bn = be64_to_cpu(*p); 1487 1488 if (rgd) { 1489 if (!rgrp_contains_block(rgd, bn)) { 1490 blks_outside_rgrp++; 1491 continue; 1492 } 1493 } else { 1494 rgd = gfs2_blk2rgrpd(sdp, bn, true); 1495 if (unlikely(!rgd)) { 1496 ret = -EIO; 1497 goto out; 1498 } 1499 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 1500 0, rd_gh); 1501 if (ret) 1502 goto out; 1503 1504 /* Must be done with the rgrp glock held: */ 1505 if (gfs2_rs_active(&ip->i_res) && 1506 rgd == ip->i_res.rs_rbm.rgd) 1507 gfs2_rs_deltree(&ip->i_res); 1508 } 1509 1510 /* The size of our transactions will be unknown until we 1511 actually process all the metadata blocks that relate to 1512 the rgrp. So we estimate. We know it can't be more than 1513 the dinode's i_blocks and we don't want to exceed the 1514 journal flush threshold, sd_log_thresh2. */ 1515 if (current->journal_info == NULL) { 1516 unsigned int jblocks_rqsted, revokes; 1517 1518 jblocks_rqsted = rgd->rd_length + RES_DINODE + 1519 RES_INDIRECT; 1520 isize_blks = gfs2_get_inode_blocks(&ip->i_inode); 1521 if (isize_blks > atomic_read(&sdp->sd_log_thresh2)) 1522 jblocks_rqsted += 1523 atomic_read(&sdp->sd_log_thresh2); 1524 else 1525 jblocks_rqsted += isize_blks; 1526 revokes = jblocks_rqsted; 1527 if (meta) 1528 revokes += end - start; 1529 else if (ip->i_depth) 1530 revokes += sdp->sd_inptrs; 1531 ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes); 1532 if (ret) 1533 goto out_unlock; 1534 down_write(&ip->i_rw_mutex); 1535 } 1536 /* check if we will exceed the transaction blocks requested */ 1537 tr = current->journal_info; 1538 if (tr->tr_num_buf_new + RES_STATFS + 1539 RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) { 1540 /* We set blks_outside_rgrp to ensure the loop will 1541 be repeated for the same rgrp, but with a new 1542 transaction. */ 1543 blks_outside_rgrp++; 1544 /* This next part is tricky. If the buffer was added 1545 to the transaction, we've already set some block 1546 pointers to 0, so we better follow through and free 1547 them, or we will introduce corruption (so break). 1548 This may be impossible, or at least rare, but I 1549 decided to cover the case regardless. 1550 1551 If the buffer was not added to the transaction 1552 (this call), doing so would exceed our transaction 1553 size, so we need to end the transaction and start a 1554 new one (so goto). */ 1555 1556 if (buf_in_tr) 1557 break; 1558 goto out_unlock; 1559 } 1560 1561 gfs2_trans_add_meta(ip->i_gl, bh); 1562 buf_in_tr = true; 1563 *p = 0; 1564 if (bstart + blen == bn) { 1565 blen++; 1566 continue; 1567 } 1568 if (bstart) { 1569 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1570 (*btotal) += blen; 1571 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1572 } 1573 bstart = bn; 1574 blen = 1; 1575 } 1576 if (bstart) { 1577 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1578 (*btotal) += blen; 1579 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1580 } 1581 out_unlock: 1582 if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks 1583 outside the rgrp we just processed, 1584 do it all over again. */ 1585 if (current->journal_info) { 1586 struct buffer_head *dibh; 1587 1588 ret = gfs2_meta_inode_buffer(ip, &dibh); 1589 if (ret) 1590 goto out; 1591 1592 /* Every transaction boundary, we rewrite the dinode 1593 to keep its di_blocks current in case of failure. */ 1594 ip->i_inode.i_mtime = ip->i_inode.i_ctime = 1595 current_time(&ip->i_inode); 1596 gfs2_trans_add_meta(ip->i_gl, dibh); 1597 gfs2_dinode_out(ip, dibh->b_data); 1598 brelse(dibh); 1599 up_write(&ip->i_rw_mutex); 1600 gfs2_trans_end(sdp); 1601 } 1602 gfs2_glock_dq_uninit(rd_gh); 1603 cond_resched(); 1604 goto more_rgrps; 1605 } 1606 out: 1607 return ret; 1608 } 1609 1610 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h) 1611 { 1612 if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0]))) 1613 return false; 1614 return true; 1615 } 1616 1617 /** 1618 * find_nonnull_ptr - find a non-null pointer given a metapath and height 1619 * @mp: starting metapath 1620 * @h: desired height to search 1621 * 1622 * Assumes the metapath is valid (with buffers) out to height h. 1623 * Returns: true if a non-null pointer was found in the metapath buffer 1624 * false if all remaining pointers are NULL in the buffer 1625 */ 1626 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp, 1627 unsigned int h, 1628 __u16 *end_list, unsigned int end_aligned) 1629 { 1630 struct buffer_head *bh = mp->mp_bh[h]; 1631 __be64 *first, *ptr, *end; 1632 1633 first = metaptr1(h, mp); 1634 ptr = first + mp->mp_list[h]; 1635 end = (__be64 *)(bh->b_data + bh->b_size); 1636 if (end_list && mp_eq_to_hgt(mp, end_list, h)) { 1637 bool keep_end = h < end_aligned; 1638 end = first + end_list[h] + keep_end; 1639 } 1640 1641 while (ptr < end) { 1642 if (*ptr) { /* if we have a non-null pointer */ 1643 mp->mp_list[h] = ptr - first; 1644 h++; 1645 if (h < GFS2_MAX_META_HEIGHT) 1646 mp->mp_list[h] = 0; 1647 return true; 1648 } 1649 ptr++; 1650 } 1651 return false; 1652 } 1653 1654 enum dealloc_states { 1655 DEALLOC_MP_FULL = 0, /* Strip a metapath with all buffers read in */ 1656 DEALLOC_MP_LOWER = 1, /* lower the metapath strip height */ 1657 DEALLOC_FILL_MP = 2, /* Fill in the metapath to the given height. */ 1658 DEALLOC_DONE = 3, /* process complete */ 1659 }; 1660 1661 static inline void 1662 metapointer_range(struct metapath *mp, int height, 1663 __u16 *start_list, unsigned int start_aligned, 1664 __u16 *end_list, unsigned int end_aligned, 1665 __be64 **start, __be64 **end) 1666 { 1667 struct buffer_head *bh = mp->mp_bh[height]; 1668 __be64 *first; 1669 1670 first = metaptr1(height, mp); 1671 *start = first; 1672 if (mp_eq_to_hgt(mp, start_list, height)) { 1673 bool keep_start = height < start_aligned; 1674 *start = first + start_list[height] + keep_start; 1675 } 1676 *end = (__be64 *)(bh->b_data + bh->b_size); 1677 if (end_list && mp_eq_to_hgt(mp, end_list, height)) { 1678 bool keep_end = height < end_aligned; 1679 *end = first + end_list[height] + keep_end; 1680 } 1681 } 1682 1683 static inline bool walk_done(struct gfs2_sbd *sdp, 1684 struct metapath *mp, int height, 1685 __u16 *end_list, unsigned int end_aligned) 1686 { 1687 __u16 end; 1688 1689 if (end_list) { 1690 bool keep_end = height < end_aligned; 1691 if (!mp_eq_to_hgt(mp, end_list, height)) 1692 return false; 1693 end = end_list[height] + keep_end; 1694 } else 1695 end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs; 1696 return mp->mp_list[height] >= end; 1697 } 1698 1699 /** 1700 * punch_hole - deallocate blocks in a file 1701 * @ip: inode to truncate 1702 * @offset: the start of the hole 1703 * @length: the size of the hole (or 0 for truncate) 1704 * 1705 * Punch a hole into a file or truncate a file at a given position. This 1706 * function operates in whole blocks (@offset and @length are rounded 1707 * accordingly); partially filled blocks must be cleared otherwise. 1708 * 1709 * This function works from the bottom up, and from the right to the left. In 1710 * other words, it strips off the highest layer (data) before stripping any of 1711 * the metadata. Doing it this way is best in case the operation is interrupted 1712 * by power failure, etc. The dinode is rewritten in every transaction to 1713 * guarantee integrity. 1714 */ 1715 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length) 1716 { 1717 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1718 u64 maxsize = sdp->sd_heightsize[ip->i_height]; 1719 struct metapath mp = {}; 1720 struct buffer_head *dibh, *bh; 1721 struct gfs2_holder rd_gh; 1722 unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift; 1723 u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift; 1724 __u16 start_list[GFS2_MAX_META_HEIGHT]; 1725 __u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL; 1726 unsigned int start_aligned, uninitialized_var(end_aligned); 1727 unsigned int strip_h = ip->i_height - 1; 1728 u32 btotal = 0; 1729 int ret, state; 1730 int mp_h; /* metapath buffers are read in to this height */ 1731 u64 prev_bnr = 0; 1732 __be64 *start, *end; 1733 1734 if (offset >= maxsize) { 1735 /* 1736 * The starting point lies beyond the allocated meta-data; 1737 * there are no blocks do deallocate. 1738 */ 1739 return 0; 1740 } 1741 1742 /* 1743 * The start position of the hole is defined by lblock, start_list, and 1744 * start_aligned. The end position of the hole is defined by lend, 1745 * end_list, and end_aligned. 1746 * 1747 * start_aligned and end_aligned define down to which height the start 1748 * and end positions are aligned to the metadata tree (i.e., the 1749 * position is a multiple of the metadata granularity at the height 1750 * above). This determines at which heights additional meta pointers 1751 * needs to be preserved for the remaining data. 1752 */ 1753 1754 if (length) { 1755 u64 end_offset = offset + length; 1756 u64 lend; 1757 1758 /* 1759 * Clip the end at the maximum file size for the given height: 1760 * that's how far the metadata goes; files bigger than that 1761 * will have additional layers of indirection. 1762 */ 1763 if (end_offset > maxsize) 1764 end_offset = maxsize; 1765 lend = end_offset >> bsize_shift; 1766 1767 if (lblock >= lend) 1768 return 0; 1769 1770 find_metapath(sdp, lend, &mp, ip->i_height); 1771 end_list = __end_list; 1772 memcpy(end_list, mp.mp_list, sizeof(mp.mp_list)); 1773 1774 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1775 if (end_list[mp_h]) 1776 break; 1777 } 1778 end_aligned = mp_h; 1779 } 1780 1781 find_metapath(sdp, lblock, &mp, ip->i_height); 1782 memcpy(start_list, mp.mp_list, sizeof(start_list)); 1783 1784 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1785 if (start_list[mp_h]) 1786 break; 1787 } 1788 start_aligned = mp_h; 1789 1790 ret = gfs2_meta_inode_buffer(ip, &dibh); 1791 if (ret) 1792 return ret; 1793 1794 mp.mp_bh[0] = dibh; 1795 ret = lookup_metapath(ip, &mp); 1796 if (ret) 1797 goto out_metapath; 1798 1799 /* issue read-ahead on metadata */ 1800 for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) { 1801 metapointer_range(&mp, mp_h, start_list, start_aligned, 1802 end_list, end_aligned, &start, &end); 1803 gfs2_metapath_ra(ip->i_gl, start, end); 1804 } 1805 1806 if (mp.mp_aheight == ip->i_height) 1807 state = DEALLOC_MP_FULL; /* We have a complete metapath */ 1808 else 1809 state = DEALLOC_FILL_MP; /* deal with partial metapath */ 1810 1811 ret = gfs2_rindex_update(sdp); 1812 if (ret) 1813 goto out_metapath; 1814 1815 ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE); 1816 if (ret) 1817 goto out_metapath; 1818 gfs2_holder_mark_uninitialized(&rd_gh); 1819 1820 mp_h = strip_h; 1821 1822 while (state != DEALLOC_DONE) { 1823 switch (state) { 1824 /* Truncate a full metapath at the given strip height. 1825 * Note that strip_h == mp_h in order to be in this state. */ 1826 case DEALLOC_MP_FULL: 1827 bh = mp.mp_bh[mp_h]; 1828 gfs2_assert_withdraw(sdp, bh); 1829 if (gfs2_assert_withdraw(sdp, 1830 prev_bnr != bh->b_blocknr)) { 1831 printk(KERN_EMERG "GFS2: fsid=%s:inode %llu, " 1832 "block:%llu, i_h:%u, s_h:%u, mp_h:%u\n", 1833 sdp->sd_fsname, 1834 (unsigned long long)ip->i_no_addr, 1835 prev_bnr, ip->i_height, strip_h, mp_h); 1836 } 1837 prev_bnr = bh->b_blocknr; 1838 1839 if (gfs2_metatype_check(sdp, bh, 1840 (mp_h ? GFS2_METATYPE_IN : 1841 GFS2_METATYPE_DI))) { 1842 ret = -EIO; 1843 goto out; 1844 } 1845 1846 /* 1847 * Below, passing end_aligned as 0 gives us the 1848 * metapointer range excluding the end point: the end 1849 * point is the first metapath we must not deallocate! 1850 */ 1851 1852 metapointer_range(&mp, mp_h, start_list, start_aligned, 1853 end_list, 0 /* end_aligned */, 1854 &start, &end); 1855 ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h], 1856 start, end, 1857 mp_h != ip->i_height - 1, 1858 &btotal); 1859 1860 /* If we hit an error or just swept dinode buffer, 1861 just exit. */ 1862 if (ret || !mp_h) { 1863 state = DEALLOC_DONE; 1864 break; 1865 } 1866 state = DEALLOC_MP_LOWER; 1867 break; 1868 1869 /* lower the metapath strip height */ 1870 case DEALLOC_MP_LOWER: 1871 /* We're done with the current buffer, so release it, 1872 unless it's the dinode buffer. Then back up to the 1873 previous pointer. */ 1874 if (mp_h) { 1875 brelse(mp.mp_bh[mp_h]); 1876 mp.mp_bh[mp_h] = NULL; 1877 } 1878 /* If we can't get any lower in height, we've stripped 1879 off all we can. Next step is to back up and start 1880 stripping the previous level of metadata. */ 1881 if (mp_h == 0) { 1882 strip_h--; 1883 memcpy(mp.mp_list, start_list, sizeof(start_list)); 1884 mp_h = strip_h; 1885 state = DEALLOC_FILL_MP; 1886 break; 1887 } 1888 mp.mp_list[mp_h] = 0; 1889 mp_h--; /* search one metadata height down */ 1890 mp.mp_list[mp_h]++; 1891 if (walk_done(sdp, &mp, mp_h, end_list, end_aligned)) 1892 break; 1893 /* Here we've found a part of the metapath that is not 1894 * allocated. We need to search at that height for the 1895 * next non-null pointer. */ 1896 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) { 1897 state = DEALLOC_FILL_MP; 1898 mp_h++; 1899 } 1900 /* No more non-null pointers at this height. Back up 1901 to the previous height and try again. */ 1902 break; /* loop around in the same state */ 1903 1904 /* Fill the metapath with buffers to the given height. */ 1905 case DEALLOC_FILL_MP: 1906 /* Fill the buffers out to the current height. */ 1907 ret = fillup_metapath(ip, &mp, mp_h); 1908 if (ret < 0) 1909 goto out; 1910 1911 /* issue read-ahead on metadata */ 1912 if (mp.mp_aheight > 1) { 1913 for (; ret > 1; ret--) { 1914 metapointer_range(&mp, mp.mp_aheight - ret, 1915 start_list, start_aligned, 1916 end_list, end_aligned, 1917 &start, &end); 1918 gfs2_metapath_ra(ip->i_gl, start, end); 1919 } 1920 } 1921 1922 /* If buffers found for the entire strip height */ 1923 if (mp.mp_aheight - 1 == strip_h) { 1924 state = DEALLOC_MP_FULL; 1925 break; 1926 } 1927 if (mp.mp_aheight < ip->i_height) /* We have a partial height */ 1928 mp_h = mp.mp_aheight - 1; 1929 1930 /* If we find a non-null block pointer, crawl a bit 1931 higher up in the metapath and try again, otherwise 1932 we need to look lower for a new starting point. */ 1933 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) 1934 mp_h++; 1935 else 1936 state = DEALLOC_MP_LOWER; 1937 break; 1938 } 1939 } 1940 1941 if (btotal) { 1942 if (current->journal_info == NULL) { 1943 ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + 1944 RES_QUOTA, 0); 1945 if (ret) 1946 goto out; 1947 down_write(&ip->i_rw_mutex); 1948 } 1949 gfs2_statfs_change(sdp, 0, +btotal, 0); 1950 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid, 1951 ip->i_inode.i_gid); 1952 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1953 gfs2_trans_add_meta(ip->i_gl, dibh); 1954 gfs2_dinode_out(ip, dibh->b_data); 1955 up_write(&ip->i_rw_mutex); 1956 gfs2_trans_end(sdp); 1957 } 1958 1959 out: 1960 if (gfs2_holder_initialized(&rd_gh)) 1961 gfs2_glock_dq_uninit(&rd_gh); 1962 if (current->journal_info) { 1963 up_write(&ip->i_rw_mutex); 1964 gfs2_trans_end(sdp); 1965 cond_resched(); 1966 } 1967 gfs2_quota_unhold(ip); 1968 out_metapath: 1969 release_metapath(&mp); 1970 return ret; 1971 } 1972 1973 static int trunc_end(struct gfs2_inode *ip) 1974 { 1975 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1976 struct buffer_head *dibh; 1977 int error; 1978 1979 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1980 if (error) 1981 return error; 1982 1983 down_write(&ip->i_rw_mutex); 1984 1985 error = gfs2_meta_inode_buffer(ip, &dibh); 1986 if (error) 1987 goto out; 1988 1989 if (!i_size_read(&ip->i_inode)) { 1990 ip->i_height = 0; 1991 ip->i_goal = ip->i_no_addr; 1992 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 1993 gfs2_ordered_del_inode(ip); 1994 } 1995 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1996 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG; 1997 1998 gfs2_trans_add_meta(ip->i_gl, dibh); 1999 gfs2_dinode_out(ip, dibh->b_data); 2000 brelse(dibh); 2001 2002 out: 2003 up_write(&ip->i_rw_mutex); 2004 gfs2_trans_end(sdp); 2005 return error; 2006 } 2007 2008 /** 2009 * do_shrink - make a file smaller 2010 * @inode: the inode 2011 * @newsize: the size to make the file 2012 * 2013 * Called with an exclusive lock on @inode. The @size must 2014 * be equal to or smaller than the current inode size. 2015 * 2016 * Returns: errno 2017 */ 2018 2019 static int do_shrink(struct inode *inode, u64 newsize) 2020 { 2021 struct gfs2_inode *ip = GFS2_I(inode); 2022 int error; 2023 2024 error = trunc_start(inode, newsize); 2025 if (error < 0) 2026 return error; 2027 if (gfs2_is_stuffed(ip)) 2028 return 0; 2029 2030 error = punch_hole(ip, newsize, 0); 2031 if (error == 0) 2032 error = trunc_end(ip); 2033 2034 return error; 2035 } 2036 2037 void gfs2_trim_blocks(struct inode *inode) 2038 { 2039 int ret; 2040 2041 ret = do_shrink(inode, inode->i_size); 2042 WARN_ON(ret != 0); 2043 } 2044 2045 /** 2046 * do_grow - Touch and update inode size 2047 * @inode: The inode 2048 * @size: The new size 2049 * 2050 * This function updates the timestamps on the inode and 2051 * may also increase the size of the inode. This function 2052 * must not be called with @size any smaller than the current 2053 * inode size. 2054 * 2055 * Although it is not strictly required to unstuff files here, 2056 * earlier versions of GFS2 have a bug in the stuffed file reading 2057 * code which will result in a buffer overrun if the size is larger 2058 * than the max stuffed file size. In order to prevent this from 2059 * occurring, such files are unstuffed, but in other cases we can 2060 * just update the inode size directly. 2061 * 2062 * Returns: 0 on success, or -ve on error 2063 */ 2064 2065 static int do_grow(struct inode *inode, u64 size) 2066 { 2067 struct gfs2_inode *ip = GFS2_I(inode); 2068 struct gfs2_sbd *sdp = GFS2_SB(inode); 2069 struct gfs2_alloc_parms ap = { .target = 1, }; 2070 struct buffer_head *dibh; 2071 int error; 2072 int unstuff = 0; 2073 2074 if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) { 2075 error = gfs2_quota_lock_check(ip, &ap); 2076 if (error) 2077 return error; 2078 2079 error = gfs2_inplace_reserve(ip, &ap); 2080 if (error) 2081 goto do_grow_qunlock; 2082 unstuff = 1; 2083 } 2084 2085 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT + 2086 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ? 2087 0 : RES_QUOTA), 0); 2088 if (error) 2089 goto do_grow_release; 2090 2091 if (unstuff) { 2092 error = gfs2_unstuff_dinode(ip, NULL); 2093 if (error) 2094 goto do_end_trans; 2095 } 2096 2097 error = gfs2_meta_inode_buffer(ip, &dibh); 2098 if (error) 2099 goto do_end_trans; 2100 2101 i_size_write(inode, size); 2102 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2103 gfs2_trans_add_meta(ip->i_gl, dibh); 2104 gfs2_dinode_out(ip, dibh->b_data); 2105 brelse(dibh); 2106 2107 do_end_trans: 2108 gfs2_trans_end(sdp); 2109 do_grow_release: 2110 if (unstuff) { 2111 gfs2_inplace_release(ip); 2112 do_grow_qunlock: 2113 gfs2_quota_unlock(ip); 2114 } 2115 return error; 2116 } 2117 2118 /** 2119 * gfs2_setattr_size - make a file a given size 2120 * @inode: the inode 2121 * @newsize: the size to make the file 2122 * 2123 * The file size can grow, shrink, or stay the same size. This 2124 * is called holding i_rwsem and an exclusive glock on the inode 2125 * in question. 2126 * 2127 * Returns: errno 2128 */ 2129 2130 int gfs2_setattr_size(struct inode *inode, u64 newsize) 2131 { 2132 struct gfs2_inode *ip = GFS2_I(inode); 2133 int ret; 2134 2135 BUG_ON(!S_ISREG(inode->i_mode)); 2136 2137 ret = inode_newsize_ok(inode, newsize); 2138 if (ret) 2139 return ret; 2140 2141 inode_dio_wait(inode); 2142 2143 ret = gfs2_rsqa_alloc(ip); 2144 if (ret) 2145 goto out; 2146 2147 if (newsize >= inode->i_size) { 2148 ret = do_grow(inode, newsize); 2149 goto out; 2150 } 2151 2152 ret = do_shrink(inode, newsize); 2153 out: 2154 gfs2_rsqa_delete(ip, NULL); 2155 return ret; 2156 } 2157 2158 int gfs2_truncatei_resume(struct gfs2_inode *ip) 2159 { 2160 int error; 2161 error = punch_hole(ip, i_size_read(&ip->i_inode), 0); 2162 if (!error) 2163 error = trunc_end(ip); 2164 return error; 2165 } 2166 2167 int gfs2_file_dealloc(struct gfs2_inode *ip) 2168 { 2169 return punch_hole(ip, 0, 0); 2170 } 2171 2172 /** 2173 * gfs2_free_journal_extents - Free cached journal bmap info 2174 * @jd: The journal 2175 * 2176 */ 2177 2178 void gfs2_free_journal_extents(struct gfs2_jdesc *jd) 2179 { 2180 struct gfs2_journal_extent *jext; 2181 2182 while(!list_empty(&jd->extent_list)) { 2183 jext = list_entry(jd->extent_list.next, struct gfs2_journal_extent, list); 2184 list_del(&jext->list); 2185 kfree(jext); 2186 } 2187 } 2188 2189 /** 2190 * gfs2_add_jextent - Add or merge a new extent to extent cache 2191 * @jd: The journal descriptor 2192 * @lblock: The logical block at start of new extent 2193 * @dblock: The physical block at start of new extent 2194 * @blocks: Size of extent in fs blocks 2195 * 2196 * Returns: 0 on success or -ENOMEM 2197 */ 2198 2199 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks) 2200 { 2201 struct gfs2_journal_extent *jext; 2202 2203 if (!list_empty(&jd->extent_list)) { 2204 jext = list_entry(jd->extent_list.prev, struct gfs2_journal_extent, list); 2205 if ((jext->dblock + jext->blocks) == dblock) { 2206 jext->blocks += blocks; 2207 return 0; 2208 } 2209 } 2210 2211 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS); 2212 if (jext == NULL) 2213 return -ENOMEM; 2214 jext->dblock = dblock; 2215 jext->lblock = lblock; 2216 jext->blocks = blocks; 2217 list_add_tail(&jext->list, &jd->extent_list); 2218 jd->nr_extents++; 2219 return 0; 2220 } 2221 2222 /** 2223 * gfs2_map_journal_extents - Cache journal bmap info 2224 * @sdp: The super block 2225 * @jd: The journal to map 2226 * 2227 * Create a reusable "extent" mapping from all logical 2228 * blocks to all physical blocks for the given journal. This will save 2229 * us time when writing journal blocks. Most journals will have only one 2230 * extent that maps all their logical blocks. That's because gfs2.mkfs 2231 * arranges the journal blocks sequentially to maximize performance. 2232 * So the extent would map the first block for the entire file length. 2233 * However, gfs2_jadd can happen while file activity is happening, so 2234 * those journals may not be sequential. Less likely is the case where 2235 * the users created their own journals by mounting the metafs and 2236 * laying it out. But it's still possible. These journals might have 2237 * several extents. 2238 * 2239 * Returns: 0 on success, or error on failure 2240 */ 2241 2242 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd) 2243 { 2244 u64 lblock = 0; 2245 u64 lblock_stop; 2246 struct gfs2_inode *ip = GFS2_I(jd->jd_inode); 2247 struct buffer_head bh; 2248 unsigned int shift = sdp->sd_sb.sb_bsize_shift; 2249 u64 size; 2250 int rc; 2251 2252 lblock_stop = i_size_read(jd->jd_inode) >> shift; 2253 size = (lblock_stop - lblock) << shift; 2254 jd->nr_extents = 0; 2255 WARN_ON(!list_empty(&jd->extent_list)); 2256 2257 do { 2258 bh.b_state = 0; 2259 bh.b_blocknr = 0; 2260 bh.b_size = size; 2261 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0); 2262 if (rc || !buffer_mapped(&bh)) 2263 goto fail; 2264 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift); 2265 if (rc) 2266 goto fail; 2267 size -= bh.b_size; 2268 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2269 } while(size > 0); 2270 2271 fs_info(sdp, "journal %d mapped with %u extents\n", jd->jd_jid, 2272 jd->nr_extents); 2273 return 0; 2274 2275 fail: 2276 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n", 2277 rc, jd->jd_jid, 2278 (unsigned long long)(i_size_read(jd->jd_inode) - size), 2279 jd->nr_extents); 2280 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n", 2281 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr, 2282 bh.b_state, (unsigned long long)bh.b_size); 2283 gfs2_free_journal_extents(jd); 2284 return rc; 2285 } 2286 2287 /** 2288 * gfs2_write_alloc_required - figure out if a write will require an allocation 2289 * @ip: the file being written to 2290 * @offset: the offset to write to 2291 * @len: the number of bytes being written 2292 * 2293 * Returns: 1 if an alloc is required, 0 otherwise 2294 */ 2295 2296 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset, 2297 unsigned int len) 2298 { 2299 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2300 struct buffer_head bh; 2301 unsigned int shift; 2302 u64 lblock, lblock_stop, size; 2303 u64 end_of_file; 2304 2305 if (!len) 2306 return 0; 2307 2308 if (gfs2_is_stuffed(ip)) { 2309 if (offset + len > gfs2_max_stuffed_size(ip)) 2310 return 1; 2311 return 0; 2312 } 2313 2314 shift = sdp->sd_sb.sb_bsize_shift; 2315 BUG_ON(gfs2_is_dir(ip)); 2316 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift; 2317 lblock = offset >> shift; 2318 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift; 2319 if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex)) 2320 return 1; 2321 2322 size = (lblock_stop - lblock) << shift; 2323 do { 2324 bh.b_state = 0; 2325 bh.b_size = size; 2326 gfs2_block_map(&ip->i_inode, lblock, &bh, 0); 2327 if (!buffer_mapped(&bh)) 2328 return 1; 2329 size -= bh.b_size; 2330 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2331 } while(size > 0); 2332 2333 return 0; 2334 } 2335 2336 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length) 2337 { 2338 struct gfs2_inode *ip = GFS2_I(inode); 2339 struct buffer_head *dibh; 2340 int error; 2341 2342 if (offset >= inode->i_size) 2343 return 0; 2344 if (offset + length > inode->i_size) 2345 length = inode->i_size - offset; 2346 2347 error = gfs2_meta_inode_buffer(ip, &dibh); 2348 if (error) 2349 return error; 2350 gfs2_trans_add_meta(ip->i_gl, dibh); 2351 memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0, 2352 length); 2353 brelse(dibh); 2354 return 0; 2355 } 2356 2357 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset, 2358 loff_t length) 2359 { 2360 struct gfs2_sbd *sdp = GFS2_SB(inode); 2361 loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 2362 int error; 2363 2364 while (length) { 2365 struct gfs2_trans *tr; 2366 loff_t chunk; 2367 unsigned int offs; 2368 2369 chunk = length; 2370 if (chunk > max_chunk) 2371 chunk = max_chunk; 2372 2373 offs = offset & ~PAGE_MASK; 2374 if (offs && chunk > PAGE_SIZE) 2375 chunk = offs + ((chunk - offs) & PAGE_MASK); 2376 2377 truncate_pagecache_range(inode, offset, chunk); 2378 offset += chunk; 2379 length -= chunk; 2380 2381 tr = current->journal_info; 2382 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 2383 continue; 2384 2385 gfs2_trans_end(sdp); 2386 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 2387 if (error) 2388 return error; 2389 } 2390 return 0; 2391 } 2392 2393 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length) 2394 { 2395 struct inode *inode = file_inode(file); 2396 struct gfs2_inode *ip = GFS2_I(inode); 2397 struct gfs2_sbd *sdp = GFS2_SB(inode); 2398 int error; 2399 2400 if (gfs2_is_jdata(ip)) 2401 error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA, 2402 GFS2_JTRUNC_REVOKES); 2403 else 2404 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2405 if (error) 2406 return error; 2407 2408 if (gfs2_is_stuffed(ip)) { 2409 error = stuffed_zero_range(inode, offset, length); 2410 if (error) 2411 goto out; 2412 } else { 2413 unsigned int start_off, end_len, blocksize; 2414 2415 blocksize = i_blocksize(inode); 2416 start_off = offset & (blocksize - 1); 2417 end_len = (offset + length) & (blocksize - 1); 2418 if (start_off) { 2419 unsigned int len = length; 2420 if (length > blocksize - start_off) 2421 len = blocksize - start_off; 2422 error = gfs2_block_zero_range(inode, offset, len); 2423 if (error) 2424 goto out; 2425 if (start_off + length < blocksize) 2426 end_len = 0; 2427 } 2428 if (end_len) { 2429 error = gfs2_block_zero_range(inode, 2430 offset + length - end_len, end_len); 2431 if (error) 2432 goto out; 2433 } 2434 } 2435 2436 if (gfs2_is_jdata(ip)) { 2437 BUG_ON(!current->journal_info); 2438 gfs2_journaled_truncate_range(inode, offset, length); 2439 } else 2440 truncate_pagecache_range(inode, offset, offset + length - 1); 2441 2442 file_update_time(file); 2443 mark_inode_dirty(inode); 2444 2445 if (current->journal_info) 2446 gfs2_trans_end(sdp); 2447 2448 if (!gfs2_is_stuffed(ip)) 2449 error = punch_hole(ip, offset, length); 2450 2451 out: 2452 if (current->journal_info) 2453 gfs2_trans_end(sdp); 2454 return error; 2455 } 2456