xref: /openbmc/linux/fs/gfs2/bmap.c (revision 9134211f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #include <linux/spinlock.h>
8 #include <linux/completion.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/gfs2_ondisk.h>
12 #include <linux/crc32.h>
13 #include <linux/iomap.h>
14 #include <linux/ktime.h>
15 
16 #include "gfs2.h"
17 #include "incore.h"
18 #include "bmap.h"
19 #include "glock.h"
20 #include "inode.h"
21 #include "meta_io.h"
22 #include "quota.h"
23 #include "rgrp.h"
24 #include "log.h"
25 #include "super.h"
26 #include "trans.h"
27 #include "dir.h"
28 #include "util.h"
29 #include "aops.h"
30 #include "trace_gfs2.h"
31 
32 /* This doesn't need to be that large as max 64 bit pointers in a 4k
33  * block is 512, so __u16 is fine for that. It saves stack space to
34  * keep it small.
35  */
36 struct metapath {
37 	struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT];
38 	__u16 mp_list[GFS2_MAX_META_HEIGHT];
39 	int mp_fheight; /* find_metapath height */
40 	int mp_aheight; /* actual height (lookup height) */
41 };
42 
43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length);
44 
45 /**
46  * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page
47  * @ip: the inode
48  * @dibh: the dinode buffer
49  * @block: the block number that was allocated
50  * @page: The (optional) page. This is looked up if @page is NULL
51  *
52  * Returns: errno
53  */
54 
55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh,
56 			       u64 block, struct page *page)
57 {
58 	struct inode *inode = &ip->i_inode;
59 
60 	if (!PageUptodate(page)) {
61 		void *kaddr = kmap(page);
62 		u64 dsize = i_size_read(inode);
63 
64 		memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
65 		memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
66 		kunmap(page);
67 
68 		SetPageUptodate(page);
69 	}
70 
71 	if (gfs2_is_jdata(ip)) {
72 		struct buffer_head *bh;
73 
74 		if (!page_has_buffers(page))
75 			create_empty_buffers(page, BIT(inode->i_blkbits),
76 					     BIT(BH_Uptodate));
77 
78 		bh = page_buffers(page);
79 		if (!buffer_mapped(bh))
80 			map_bh(bh, inode->i_sb, block);
81 
82 		set_buffer_uptodate(bh);
83 		gfs2_trans_add_data(ip->i_gl, bh);
84 	} else {
85 		set_page_dirty(page);
86 		gfs2_ordered_add_inode(ip);
87 	}
88 
89 	return 0;
90 }
91 
92 static int __gfs2_unstuff_inode(struct gfs2_inode *ip, struct page *page)
93 {
94 	struct buffer_head *bh, *dibh;
95 	struct gfs2_dinode *di;
96 	u64 block = 0;
97 	int isdir = gfs2_is_dir(ip);
98 	int error;
99 
100 	error = gfs2_meta_inode_buffer(ip, &dibh);
101 	if (error)
102 		return error;
103 
104 	if (i_size_read(&ip->i_inode)) {
105 		/* Get a free block, fill it with the stuffed data,
106 		   and write it out to disk */
107 
108 		unsigned int n = 1;
109 		error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL);
110 		if (error)
111 			goto out_brelse;
112 		if (isdir) {
113 			gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1);
114 			error = gfs2_dir_get_new_buffer(ip, block, &bh);
115 			if (error)
116 				goto out_brelse;
117 			gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header),
118 					      dibh, sizeof(struct gfs2_dinode));
119 			brelse(bh);
120 		} else {
121 			error = gfs2_unstuffer_page(ip, dibh, block, page);
122 			if (error)
123 				goto out_brelse;
124 		}
125 	}
126 
127 	/*  Set up the pointer to the new block  */
128 
129 	gfs2_trans_add_meta(ip->i_gl, dibh);
130 	di = (struct gfs2_dinode *)dibh->b_data;
131 	gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
132 
133 	if (i_size_read(&ip->i_inode)) {
134 		*(__be64 *)(di + 1) = cpu_to_be64(block);
135 		gfs2_add_inode_blocks(&ip->i_inode, 1);
136 		di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode));
137 	}
138 
139 	ip->i_height = 1;
140 	di->di_height = cpu_to_be16(1);
141 
142 out_brelse:
143 	brelse(dibh);
144 	return error;
145 }
146 
147 /**
148  * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big
149  * @ip: The GFS2 inode to unstuff
150  *
151  * This routine unstuffs a dinode and returns it to a "normal" state such
152  * that the height can be grown in the traditional way.
153  *
154  * Returns: errno
155  */
156 
157 int gfs2_unstuff_dinode(struct gfs2_inode *ip)
158 {
159 	struct inode *inode = &ip->i_inode;
160 	struct page *page;
161 	int error;
162 
163 	down_write(&ip->i_rw_mutex);
164 	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
165 	error = -ENOMEM;
166 	if (!page)
167 		goto out;
168 	error = __gfs2_unstuff_inode(ip, page);
169 	unlock_page(page);
170 	put_page(page);
171 out:
172 	up_write(&ip->i_rw_mutex);
173 	return error;
174 }
175 
176 /**
177  * find_metapath - Find path through the metadata tree
178  * @sdp: The superblock
179  * @block: The disk block to look up
180  * @mp: The metapath to return the result in
181  * @height: The pre-calculated height of the metadata tree
182  *
183  *   This routine returns a struct metapath structure that defines a path
184  *   through the metadata of inode "ip" to get to block "block".
185  *
186  *   Example:
187  *   Given:  "ip" is a height 3 file, "offset" is 101342453, and this is a
188  *   filesystem with a blocksize of 4096.
189  *
190  *   find_metapath() would return a struct metapath structure set to:
191  *   mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165.
192  *
193  *   That means that in order to get to the block containing the byte at
194  *   offset 101342453, we would load the indirect block pointed to by pointer
195  *   0 in the dinode.  We would then load the indirect block pointed to by
196  *   pointer 48 in that indirect block.  We would then load the data block
197  *   pointed to by pointer 165 in that indirect block.
198  *
199  *             ----------------------------------------
200  *             | Dinode |                             |
201  *             |        |                            4|
202  *             |        |0 1 2 3 4 5                 9|
203  *             |        |                            6|
204  *             ----------------------------------------
205  *                       |
206  *                       |
207  *                       V
208  *             ----------------------------------------
209  *             | Indirect Block                       |
210  *             |                                     5|
211  *             |            4 4 4 4 4 5 5            1|
212  *             |0           5 6 7 8 9 0 1            2|
213  *             ----------------------------------------
214  *                                |
215  *                                |
216  *                                V
217  *             ----------------------------------------
218  *             | Indirect Block                       |
219  *             |                         1 1 1 1 1   5|
220  *             |                         6 6 6 6 6   1|
221  *             |0                        3 4 5 6 7   2|
222  *             ----------------------------------------
223  *                                           |
224  *                                           |
225  *                                           V
226  *             ----------------------------------------
227  *             | Data block containing offset         |
228  *             |            101342453                 |
229  *             |                                      |
230  *             |                                      |
231  *             ----------------------------------------
232  *
233  */
234 
235 static void find_metapath(const struct gfs2_sbd *sdp, u64 block,
236 			  struct metapath *mp, unsigned int height)
237 {
238 	unsigned int i;
239 
240 	mp->mp_fheight = height;
241 	for (i = height; i--;)
242 		mp->mp_list[i] = do_div(block, sdp->sd_inptrs);
243 }
244 
245 static inline unsigned int metapath_branch_start(const struct metapath *mp)
246 {
247 	if (mp->mp_list[0] == 0)
248 		return 2;
249 	return 1;
250 }
251 
252 /**
253  * metaptr1 - Return the first possible metadata pointer in a metapath buffer
254  * @height: The metadata height (0 = dinode)
255  * @mp: The metapath
256  */
257 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp)
258 {
259 	struct buffer_head *bh = mp->mp_bh[height];
260 	if (height == 0)
261 		return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)));
262 	return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header)));
263 }
264 
265 /**
266  * metapointer - Return pointer to start of metadata in a buffer
267  * @height: The metadata height (0 = dinode)
268  * @mp: The metapath
269  *
270  * Return a pointer to the block number of the next height of the metadata
271  * tree given a buffer containing the pointer to the current height of the
272  * metadata tree.
273  */
274 
275 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp)
276 {
277 	__be64 *p = metaptr1(height, mp);
278 	return p + mp->mp_list[height];
279 }
280 
281 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp)
282 {
283 	const struct buffer_head *bh = mp->mp_bh[height];
284 	return (const __be64 *)(bh->b_data + bh->b_size);
285 }
286 
287 static void clone_metapath(struct metapath *clone, struct metapath *mp)
288 {
289 	unsigned int hgt;
290 
291 	*clone = *mp;
292 	for (hgt = 0; hgt < mp->mp_aheight; hgt++)
293 		get_bh(clone->mp_bh[hgt]);
294 }
295 
296 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end)
297 {
298 	const __be64 *t;
299 
300 	for (t = start; t < end; t++) {
301 		struct buffer_head *rabh;
302 
303 		if (!*t)
304 			continue;
305 
306 		rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE);
307 		if (trylock_buffer(rabh)) {
308 			if (!buffer_uptodate(rabh)) {
309 				rabh->b_end_io = end_buffer_read_sync;
310 				submit_bh(REQ_OP_READ | REQ_RAHEAD | REQ_META |
311 					  REQ_PRIO, rabh);
312 				continue;
313 			}
314 			unlock_buffer(rabh);
315 		}
316 		brelse(rabh);
317 	}
318 }
319 
320 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp,
321 			     unsigned int x, unsigned int h)
322 {
323 	for (; x < h; x++) {
324 		__be64 *ptr = metapointer(x, mp);
325 		u64 dblock = be64_to_cpu(*ptr);
326 		int ret;
327 
328 		if (!dblock)
329 			break;
330 		ret = gfs2_meta_buffer(ip, GFS2_METATYPE_IN, dblock, &mp->mp_bh[x + 1]);
331 		if (ret)
332 			return ret;
333 	}
334 	mp->mp_aheight = x + 1;
335 	return 0;
336 }
337 
338 /**
339  * lookup_metapath - Walk the metadata tree to a specific point
340  * @ip: The inode
341  * @mp: The metapath
342  *
343  * Assumes that the inode's buffer has already been looked up and
344  * hooked onto mp->mp_bh[0] and that the metapath has been initialised
345  * by find_metapath().
346  *
347  * If this function encounters part of the tree which has not been
348  * allocated, it returns the current height of the tree at the point
349  * at which it found the unallocated block. Blocks which are found are
350  * added to the mp->mp_bh[] list.
351  *
352  * Returns: error
353  */
354 
355 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp)
356 {
357 	return __fillup_metapath(ip, mp, 0, ip->i_height - 1);
358 }
359 
360 /**
361  * fillup_metapath - fill up buffers for the metadata path to a specific height
362  * @ip: The inode
363  * @mp: The metapath
364  * @h: The height to which it should be mapped
365  *
366  * Similar to lookup_metapath, but does lookups for a range of heights
367  *
368  * Returns: error or the number of buffers filled
369  */
370 
371 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h)
372 {
373 	unsigned int x = 0;
374 	int ret;
375 
376 	if (h) {
377 		/* find the first buffer we need to look up. */
378 		for (x = h - 1; x > 0; x--) {
379 			if (mp->mp_bh[x])
380 				break;
381 		}
382 	}
383 	ret = __fillup_metapath(ip, mp, x, h);
384 	if (ret)
385 		return ret;
386 	return mp->mp_aheight - x - 1;
387 }
388 
389 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp)
390 {
391 	sector_t factor = 1, block = 0;
392 	int hgt;
393 
394 	for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) {
395 		if (hgt < mp->mp_aheight)
396 			block += mp->mp_list[hgt] * factor;
397 		factor *= sdp->sd_inptrs;
398 	}
399 	return block;
400 }
401 
402 static void release_metapath(struct metapath *mp)
403 {
404 	int i;
405 
406 	for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) {
407 		if (mp->mp_bh[i] == NULL)
408 			break;
409 		brelse(mp->mp_bh[i]);
410 		mp->mp_bh[i] = NULL;
411 	}
412 }
413 
414 /**
415  * gfs2_extent_length - Returns length of an extent of blocks
416  * @bh: The metadata block
417  * @ptr: Current position in @bh
418  * @limit: Max extent length to return
419  * @eob: Set to 1 if we hit "end of block"
420  *
421  * Returns: The length of the extent (minimum of one block)
422  */
423 
424 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob)
425 {
426 	const __be64 *end = (__be64 *)(bh->b_data + bh->b_size);
427 	const __be64 *first = ptr;
428 	u64 d = be64_to_cpu(*ptr);
429 
430 	*eob = 0;
431 	do {
432 		ptr++;
433 		if (ptr >= end)
434 			break;
435 		d++;
436 	} while(be64_to_cpu(*ptr) == d);
437 	if (ptr >= end)
438 		*eob = 1;
439 	return ptr - first;
440 }
441 
442 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE };
443 
444 /*
445  * gfs2_metadata_walker - walk an indirect block
446  * @mp: Metapath to indirect block
447  * @ptrs: Number of pointers to look at
448  *
449  * When returning WALK_FOLLOW, the walker must update @mp to point at the right
450  * indirect block to follow.
451  */
452 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp,
453 						   unsigned int ptrs);
454 
455 /*
456  * gfs2_walk_metadata - walk a tree of indirect blocks
457  * @inode: The inode
458  * @mp: Starting point of walk
459  * @max_len: Maximum number of blocks to walk
460  * @walker: Called during the walk
461  *
462  * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or
463  * past the end of metadata, and a negative error code otherwise.
464  */
465 
466 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp,
467 		u64 max_len, gfs2_metadata_walker walker)
468 {
469 	struct gfs2_inode *ip = GFS2_I(inode);
470 	struct gfs2_sbd *sdp = GFS2_SB(inode);
471 	u64 factor = 1;
472 	unsigned int hgt;
473 	int ret;
474 
475 	/*
476 	 * The walk starts in the lowest allocated indirect block, which may be
477 	 * before the position indicated by @mp.  Adjust @max_len accordingly
478 	 * to avoid a short walk.
479 	 */
480 	for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) {
481 		max_len += mp->mp_list[hgt] * factor;
482 		mp->mp_list[hgt] = 0;
483 		factor *= sdp->sd_inptrs;
484 	}
485 
486 	for (;;) {
487 		u16 start = mp->mp_list[hgt];
488 		enum walker_status status;
489 		unsigned int ptrs;
490 		u64 len;
491 
492 		/* Walk indirect block. */
493 		ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start;
494 		len = ptrs * factor;
495 		if (len > max_len)
496 			ptrs = DIV_ROUND_UP_ULL(max_len, factor);
497 		status = walker(mp, ptrs);
498 		switch (status) {
499 		case WALK_STOP:
500 			return 1;
501 		case WALK_FOLLOW:
502 			BUG_ON(mp->mp_aheight == mp->mp_fheight);
503 			ptrs = mp->mp_list[hgt] - start;
504 			len = ptrs * factor;
505 			break;
506 		case WALK_CONTINUE:
507 			break;
508 		}
509 		if (len >= max_len)
510 			break;
511 		max_len -= len;
512 		if (status == WALK_FOLLOW)
513 			goto fill_up_metapath;
514 
515 lower_metapath:
516 		/* Decrease height of metapath. */
517 		brelse(mp->mp_bh[hgt]);
518 		mp->mp_bh[hgt] = NULL;
519 		mp->mp_list[hgt] = 0;
520 		if (!hgt)
521 			break;
522 		hgt--;
523 		factor *= sdp->sd_inptrs;
524 
525 		/* Advance in metadata tree. */
526 		(mp->mp_list[hgt])++;
527 		if (hgt) {
528 			if (mp->mp_list[hgt] >= sdp->sd_inptrs)
529 				goto lower_metapath;
530 		} else {
531 			if (mp->mp_list[hgt] >= sdp->sd_diptrs)
532 				break;
533 		}
534 
535 fill_up_metapath:
536 		/* Increase height of metapath. */
537 		ret = fillup_metapath(ip, mp, ip->i_height - 1);
538 		if (ret < 0)
539 			return ret;
540 		hgt += ret;
541 		for (; ret; ret--)
542 			do_div(factor, sdp->sd_inptrs);
543 		mp->mp_aheight = hgt + 1;
544 	}
545 	return 0;
546 }
547 
548 static enum walker_status gfs2_hole_walker(struct metapath *mp,
549 					   unsigned int ptrs)
550 {
551 	const __be64 *start, *ptr, *end;
552 	unsigned int hgt;
553 
554 	hgt = mp->mp_aheight - 1;
555 	start = metapointer(hgt, mp);
556 	end = start + ptrs;
557 
558 	for (ptr = start; ptr < end; ptr++) {
559 		if (*ptr) {
560 			mp->mp_list[hgt] += ptr - start;
561 			if (mp->mp_aheight == mp->mp_fheight)
562 				return WALK_STOP;
563 			return WALK_FOLLOW;
564 		}
565 	}
566 	return WALK_CONTINUE;
567 }
568 
569 /**
570  * gfs2_hole_size - figure out the size of a hole
571  * @inode: The inode
572  * @lblock: The logical starting block number
573  * @len: How far to look (in blocks)
574  * @mp: The metapath at lblock
575  * @iomap: The iomap to store the hole size in
576  *
577  * This function modifies @mp.
578  *
579  * Returns: errno on error
580  */
581 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len,
582 			  struct metapath *mp, struct iomap *iomap)
583 {
584 	struct metapath clone;
585 	u64 hole_size;
586 	int ret;
587 
588 	clone_metapath(&clone, mp);
589 	ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker);
590 	if (ret < 0)
591 		goto out;
592 
593 	if (ret == 1)
594 		hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock;
595 	else
596 		hole_size = len;
597 	iomap->length = hole_size << inode->i_blkbits;
598 	ret = 0;
599 
600 out:
601 	release_metapath(&clone);
602 	return ret;
603 }
604 
605 static inline void gfs2_indirect_init(struct metapath *mp,
606 				      struct gfs2_glock *gl, unsigned int i,
607 				      unsigned offset, u64 bn)
608 {
609 	__be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data +
610 		       ((i > 1) ? sizeof(struct gfs2_meta_header) :
611 				 sizeof(struct gfs2_dinode)));
612 	BUG_ON(i < 1);
613 	BUG_ON(mp->mp_bh[i] != NULL);
614 	mp->mp_bh[i] = gfs2_meta_new(gl, bn);
615 	gfs2_trans_add_meta(gl, mp->mp_bh[i]);
616 	gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN);
617 	gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header));
618 	ptr += offset;
619 	*ptr = cpu_to_be64(bn);
620 }
621 
622 enum alloc_state {
623 	ALLOC_DATA = 0,
624 	ALLOC_GROW_DEPTH = 1,
625 	ALLOC_GROW_HEIGHT = 2,
626 	/* ALLOC_UNSTUFF = 3,   TBD and rather complicated */
627 };
628 
629 /**
630  * __gfs2_iomap_alloc - Build a metadata tree of the requested height
631  * @inode: The GFS2 inode
632  * @iomap: The iomap structure
633  * @mp: The metapath, with proper height information calculated
634  *
635  * In this routine we may have to alloc:
636  *   i) Indirect blocks to grow the metadata tree height
637  *  ii) Indirect blocks to fill in lower part of the metadata tree
638  * iii) Data blocks
639  *
640  * This function is called after __gfs2_iomap_get, which works out the
641  * total number of blocks which we need via gfs2_alloc_size.
642  *
643  * We then do the actual allocation asking for an extent at a time (if
644  * enough contiguous free blocks are available, there will only be one
645  * allocation request per call) and uses the state machine to initialise
646  * the blocks in order.
647  *
648  * Right now, this function will allocate at most one indirect block
649  * worth of data -- with a default block size of 4K, that's slightly
650  * less than 2M.  If this limitation is ever removed to allow huge
651  * allocations, we would probably still want to limit the iomap size we
652  * return to avoid stalling other tasks during huge writes; the next
653  * iomap iteration would then find the blocks already allocated.
654  *
655  * Returns: errno on error
656  */
657 
658 static int __gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap,
659 			      struct metapath *mp)
660 {
661 	struct gfs2_inode *ip = GFS2_I(inode);
662 	struct gfs2_sbd *sdp = GFS2_SB(inode);
663 	struct buffer_head *dibh = mp->mp_bh[0];
664 	u64 bn;
665 	unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0;
666 	size_t dblks = iomap->length >> inode->i_blkbits;
667 	const unsigned end_of_metadata = mp->mp_fheight - 1;
668 	int ret;
669 	enum alloc_state state;
670 	__be64 *ptr;
671 	__be64 zero_bn = 0;
672 
673 	BUG_ON(mp->mp_aheight < 1);
674 	BUG_ON(dibh == NULL);
675 	BUG_ON(dblks < 1);
676 
677 	gfs2_trans_add_meta(ip->i_gl, dibh);
678 
679 	down_write(&ip->i_rw_mutex);
680 
681 	if (mp->mp_fheight == mp->mp_aheight) {
682 		/* Bottom indirect block exists */
683 		state = ALLOC_DATA;
684 	} else {
685 		/* Need to allocate indirect blocks */
686 		if (mp->mp_fheight == ip->i_height) {
687 			/* Writing into existing tree, extend tree down */
688 			iblks = mp->mp_fheight - mp->mp_aheight;
689 			state = ALLOC_GROW_DEPTH;
690 		} else {
691 			/* Building up tree height */
692 			state = ALLOC_GROW_HEIGHT;
693 			iblks = mp->mp_fheight - ip->i_height;
694 			branch_start = metapath_branch_start(mp);
695 			iblks += (mp->mp_fheight - branch_start);
696 		}
697 	}
698 
699 	/* start of the second part of the function (state machine) */
700 
701 	blks = dblks + iblks;
702 	i = mp->mp_aheight;
703 	do {
704 		n = blks - alloced;
705 		ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL);
706 		if (ret)
707 			goto out;
708 		alloced += n;
709 		if (state != ALLOC_DATA || gfs2_is_jdata(ip))
710 			gfs2_trans_remove_revoke(sdp, bn, n);
711 		switch (state) {
712 		/* Growing height of tree */
713 		case ALLOC_GROW_HEIGHT:
714 			if (i == 1) {
715 				ptr = (__be64 *)(dibh->b_data +
716 						 sizeof(struct gfs2_dinode));
717 				zero_bn = *ptr;
718 			}
719 			for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0;
720 			     i++, n--)
721 				gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++);
722 			if (i - 1 == mp->mp_fheight - ip->i_height) {
723 				i--;
724 				gfs2_buffer_copy_tail(mp->mp_bh[i],
725 						sizeof(struct gfs2_meta_header),
726 						dibh, sizeof(struct gfs2_dinode));
727 				gfs2_buffer_clear_tail(dibh,
728 						sizeof(struct gfs2_dinode) +
729 						sizeof(__be64));
730 				ptr = (__be64 *)(mp->mp_bh[i]->b_data +
731 					sizeof(struct gfs2_meta_header));
732 				*ptr = zero_bn;
733 				state = ALLOC_GROW_DEPTH;
734 				for(i = branch_start; i < mp->mp_fheight; i++) {
735 					if (mp->mp_bh[i] == NULL)
736 						break;
737 					brelse(mp->mp_bh[i]);
738 					mp->mp_bh[i] = NULL;
739 				}
740 				i = branch_start;
741 			}
742 			if (n == 0)
743 				break;
744 			fallthrough;	/* To branching from existing tree */
745 		case ALLOC_GROW_DEPTH:
746 			if (i > 1 && i < mp->mp_fheight)
747 				gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]);
748 			for (; i < mp->mp_fheight && n > 0; i++, n--)
749 				gfs2_indirect_init(mp, ip->i_gl, i,
750 						   mp->mp_list[i-1], bn++);
751 			if (i == mp->mp_fheight)
752 				state = ALLOC_DATA;
753 			if (n == 0)
754 				break;
755 			fallthrough;	/* To tree complete, adding data blocks */
756 		case ALLOC_DATA:
757 			BUG_ON(n > dblks);
758 			BUG_ON(mp->mp_bh[end_of_metadata] == NULL);
759 			gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]);
760 			dblks = n;
761 			ptr = metapointer(end_of_metadata, mp);
762 			iomap->addr = bn << inode->i_blkbits;
763 			iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW;
764 			while (n-- > 0)
765 				*ptr++ = cpu_to_be64(bn++);
766 			break;
767 		}
768 	} while (iomap->addr == IOMAP_NULL_ADDR);
769 
770 	iomap->type = IOMAP_MAPPED;
771 	iomap->length = (u64)dblks << inode->i_blkbits;
772 	ip->i_height = mp->mp_fheight;
773 	gfs2_add_inode_blocks(&ip->i_inode, alloced);
774 	gfs2_dinode_out(ip, dibh->b_data);
775 out:
776 	up_write(&ip->i_rw_mutex);
777 	return ret;
778 }
779 
780 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE
781 
782 /**
783  * gfs2_alloc_size - Compute the maximum allocation size
784  * @inode: The inode
785  * @mp: The metapath
786  * @size: Requested size in blocks
787  *
788  * Compute the maximum size of the next allocation at @mp.
789  *
790  * Returns: size in blocks
791  */
792 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size)
793 {
794 	struct gfs2_inode *ip = GFS2_I(inode);
795 	struct gfs2_sbd *sdp = GFS2_SB(inode);
796 	const __be64 *first, *ptr, *end;
797 
798 	/*
799 	 * For writes to stuffed files, this function is called twice via
800 	 * __gfs2_iomap_get, before and after unstuffing. The size we return the
801 	 * first time needs to be large enough to get the reservation and
802 	 * allocation sizes right.  The size we return the second time must
803 	 * be exact or else __gfs2_iomap_alloc won't do the right thing.
804 	 */
805 
806 	if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) {
807 		unsigned int maxsize = mp->mp_fheight > 1 ?
808 			sdp->sd_inptrs : sdp->sd_diptrs;
809 		maxsize -= mp->mp_list[mp->mp_fheight - 1];
810 		if (size > maxsize)
811 			size = maxsize;
812 		return size;
813 	}
814 
815 	first = metapointer(ip->i_height - 1, mp);
816 	end = metaend(ip->i_height - 1, mp);
817 	if (end - first > size)
818 		end = first + size;
819 	for (ptr = first; ptr < end; ptr++) {
820 		if (*ptr)
821 			break;
822 	}
823 	return ptr - first;
824 }
825 
826 /**
827  * __gfs2_iomap_get - Map blocks from an inode to disk blocks
828  * @inode: The inode
829  * @pos: Starting position in bytes
830  * @length: Length to map, in bytes
831  * @flags: iomap flags
832  * @iomap: The iomap structure
833  * @mp: The metapath
834  *
835  * Returns: errno
836  */
837 static int __gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
838 			    unsigned flags, struct iomap *iomap,
839 			    struct metapath *mp)
840 {
841 	struct gfs2_inode *ip = GFS2_I(inode);
842 	struct gfs2_sbd *sdp = GFS2_SB(inode);
843 	loff_t size = i_size_read(inode);
844 	__be64 *ptr;
845 	sector_t lblock;
846 	sector_t lblock_stop;
847 	int ret;
848 	int eob;
849 	u64 len;
850 	struct buffer_head *dibh = NULL, *bh;
851 	u8 height;
852 
853 	if (!length)
854 		return -EINVAL;
855 
856 	down_read(&ip->i_rw_mutex);
857 
858 	ret = gfs2_meta_inode_buffer(ip, &dibh);
859 	if (ret)
860 		goto unlock;
861 	mp->mp_bh[0] = dibh;
862 
863 	if (gfs2_is_stuffed(ip)) {
864 		if (flags & IOMAP_WRITE) {
865 			loff_t max_size = gfs2_max_stuffed_size(ip);
866 
867 			if (pos + length > max_size)
868 				goto unstuff;
869 			iomap->length = max_size;
870 		} else {
871 			if (pos >= size) {
872 				if (flags & IOMAP_REPORT) {
873 					ret = -ENOENT;
874 					goto unlock;
875 				} else {
876 					iomap->offset = pos;
877 					iomap->length = length;
878 					goto hole_found;
879 				}
880 			}
881 			iomap->length = size;
882 		}
883 		iomap->addr = (ip->i_no_addr << inode->i_blkbits) +
884 			      sizeof(struct gfs2_dinode);
885 		iomap->type = IOMAP_INLINE;
886 		iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode);
887 		goto out;
888 	}
889 
890 unstuff:
891 	lblock = pos >> inode->i_blkbits;
892 	iomap->offset = lblock << inode->i_blkbits;
893 	lblock_stop = (pos + length - 1) >> inode->i_blkbits;
894 	len = lblock_stop - lblock + 1;
895 	iomap->length = len << inode->i_blkbits;
896 
897 	height = ip->i_height;
898 	while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height])
899 		height++;
900 	find_metapath(sdp, lblock, mp, height);
901 	if (height > ip->i_height || gfs2_is_stuffed(ip))
902 		goto do_alloc;
903 
904 	ret = lookup_metapath(ip, mp);
905 	if (ret)
906 		goto unlock;
907 
908 	if (mp->mp_aheight != ip->i_height)
909 		goto do_alloc;
910 
911 	ptr = metapointer(ip->i_height - 1, mp);
912 	if (*ptr == 0)
913 		goto do_alloc;
914 
915 	bh = mp->mp_bh[ip->i_height - 1];
916 	len = gfs2_extent_length(bh, ptr, len, &eob);
917 
918 	iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits;
919 	iomap->length = len << inode->i_blkbits;
920 	iomap->type = IOMAP_MAPPED;
921 	iomap->flags |= IOMAP_F_MERGED;
922 	if (eob)
923 		iomap->flags |= IOMAP_F_GFS2_BOUNDARY;
924 
925 out:
926 	iomap->bdev = inode->i_sb->s_bdev;
927 unlock:
928 	up_read(&ip->i_rw_mutex);
929 	return ret;
930 
931 do_alloc:
932 	if (flags & IOMAP_REPORT) {
933 		if (pos >= size)
934 			ret = -ENOENT;
935 		else if (height == ip->i_height)
936 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
937 		else
938 			iomap->length = size - iomap->offset;
939 	} else if (flags & IOMAP_WRITE) {
940 		u64 alloc_size;
941 
942 		if (flags & IOMAP_DIRECT)
943 			goto out;  /* (see gfs2_file_direct_write) */
944 
945 		len = gfs2_alloc_size(inode, mp, len);
946 		alloc_size = len << inode->i_blkbits;
947 		if (alloc_size < iomap->length)
948 			iomap->length = alloc_size;
949 	} else {
950 		if (pos < size && height == ip->i_height)
951 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
952 	}
953 hole_found:
954 	iomap->addr = IOMAP_NULL_ADDR;
955 	iomap->type = IOMAP_HOLE;
956 	goto out;
957 }
958 
959 static struct folio *
960 gfs2_iomap_get_folio(struct iomap_iter *iter, loff_t pos, unsigned len)
961 {
962 	struct inode *inode = iter->inode;
963 	unsigned int blockmask = i_blocksize(inode) - 1;
964 	struct gfs2_sbd *sdp = GFS2_SB(inode);
965 	unsigned int blocks;
966 	struct folio *folio;
967 	int status;
968 
969 	blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits;
970 	status = gfs2_trans_begin(sdp, RES_DINODE + blocks, 0);
971 	if (status)
972 		return ERR_PTR(status);
973 
974 	folio = iomap_get_folio(iter, pos);
975 	if (IS_ERR(folio))
976 		gfs2_trans_end(sdp);
977 	return folio;
978 }
979 
980 static void gfs2_iomap_put_folio(struct inode *inode, loff_t pos,
981 				 unsigned copied, struct folio *folio)
982 {
983 	struct gfs2_trans *tr = current->journal_info;
984 	struct gfs2_inode *ip = GFS2_I(inode);
985 	struct gfs2_sbd *sdp = GFS2_SB(inode);
986 
987 	if (!gfs2_is_stuffed(ip))
988 		gfs2_trans_add_databufs(ip, folio, offset_in_folio(folio, pos),
989 					copied);
990 
991 	folio_unlock(folio);
992 	folio_put(folio);
993 
994 	if (tr->tr_num_buf_new)
995 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
996 
997 	gfs2_trans_end(sdp);
998 }
999 
1000 static const struct iomap_folio_ops gfs2_iomap_folio_ops = {
1001 	.get_folio = gfs2_iomap_get_folio,
1002 	.put_folio = gfs2_iomap_put_folio,
1003 };
1004 
1005 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos,
1006 				  loff_t length, unsigned flags,
1007 				  struct iomap *iomap,
1008 				  struct metapath *mp)
1009 {
1010 	struct gfs2_inode *ip = GFS2_I(inode);
1011 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1012 	bool unstuff;
1013 	int ret;
1014 
1015 	unstuff = gfs2_is_stuffed(ip) &&
1016 		  pos + length > gfs2_max_stuffed_size(ip);
1017 
1018 	if (unstuff || iomap->type == IOMAP_HOLE) {
1019 		unsigned int data_blocks, ind_blocks;
1020 		struct gfs2_alloc_parms ap = {};
1021 		unsigned int rblocks;
1022 		struct gfs2_trans *tr;
1023 
1024 		gfs2_write_calc_reserv(ip, iomap->length, &data_blocks,
1025 				       &ind_blocks);
1026 		ap.target = data_blocks + ind_blocks;
1027 		ret = gfs2_quota_lock_check(ip, &ap);
1028 		if (ret)
1029 			return ret;
1030 
1031 		ret = gfs2_inplace_reserve(ip, &ap);
1032 		if (ret)
1033 			goto out_qunlock;
1034 
1035 		rblocks = RES_DINODE + ind_blocks;
1036 		if (gfs2_is_jdata(ip))
1037 			rblocks += data_blocks;
1038 		if (ind_blocks || data_blocks)
1039 			rblocks += RES_STATFS + RES_QUOTA;
1040 		if (inode == sdp->sd_rindex)
1041 			rblocks += 2 * RES_STATFS;
1042 		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1043 
1044 		ret = gfs2_trans_begin(sdp, rblocks,
1045 				       iomap->length >> inode->i_blkbits);
1046 		if (ret)
1047 			goto out_trans_fail;
1048 
1049 		if (unstuff) {
1050 			ret = gfs2_unstuff_dinode(ip);
1051 			if (ret)
1052 				goto out_trans_end;
1053 			release_metapath(mp);
1054 			ret = __gfs2_iomap_get(inode, iomap->offset,
1055 					       iomap->length, flags, iomap, mp);
1056 			if (ret)
1057 				goto out_trans_end;
1058 		}
1059 
1060 		if (iomap->type == IOMAP_HOLE) {
1061 			ret = __gfs2_iomap_alloc(inode, iomap, mp);
1062 			if (ret) {
1063 				gfs2_trans_end(sdp);
1064 				gfs2_inplace_release(ip);
1065 				punch_hole(ip, iomap->offset, iomap->length);
1066 				goto out_qunlock;
1067 			}
1068 		}
1069 
1070 		tr = current->journal_info;
1071 		if (tr->tr_num_buf_new)
1072 			__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1073 
1074 		gfs2_trans_end(sdp);
1075 	}
1076 
1077 	if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip))
1078 		iomap->folio_ops = &gfs2_iomap_folio_ops;
1079 	return 0;
1080 
1081 out_trans_end:
1082 	gfs2_trans_end(sdp);
1083 out_trans_fail:
1084 	gfs2_inplace_release(ip);
1085 out_qunlock:
1086 	gfs2_quota_unlock(ip);
1087 	return ret;
1088 }
1089 
1090 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
1091 			    unsigned flags, struct iomap *iomap,
1092 			    struct iomap *srcmap)
1093 {
1094 	struct gfs2_inode *ip = GFS2_I(inode);
1095 	struct metapath mp = { .mp_aheight = 1, };
1096 	int ret;
1097 
1098 	if (gfs2_is_jdata(ip))
1099 		iomap->flags |= IOMAP_F_BUFFER_HEAD;
1100 
1101 	trace_gfs2_iomap_start(ip, pos, length, flags);
1102 	ret = __gfs2_iomap_get(inode, pos, length, flags, iomap, &mp);
1103 	if (ret)
1104 		goto out_unlock;
1105 
1106 	switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1107 	case IOMAP_WRITE:
1108 		if (flags & IOMAP_DIRECT) {
1109 			/*
1110 			 * Silently fall back to buffered I/O for stuffed files
1111 			 * or if we've got a hole (see gfs2_file_direct_write).
1112 			 */
1113 			if (iomap->type != IOMAP_MAPPED)
1114 				ret = -ENOTBLK;
1115 			goto out_unlock;
1116 		}
1117 		break;
1118 	case IOMAP_ZERO:
1119 		if (iomap->type == IOMAP_HOLE)
1120 			goto out_unlock;
1121 		break;
1122 	default:
1123 		goto out_unlock;
1124 	}
1125 
1126 	ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp);
1127 
1128 out_unlock:
1129 	release_metapath(&mp);
1130 	trace_gfs2_iomap_end(ip, iomap, ret);
1131 	return ret;
1132 }
1133 
1134 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length,
1135 			  ssize_t written, unsigned flags, struct iomap *iomap)
1136 {
1137 	struct gfs2_inode *ip = GFS2_I(inode);
1138 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1139 
1140 	switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1141 	case IOMAP_WRITE:
1142 		if (flags & IOMAP_DIRECT)
1143 			return 0;
1144 		break;
1145 	case IOMAP_ZERO:
1146 		 if (iomap->type == IOMAP_HOLE)
1147 			 return 0;
1148 		 break;
1149 	default:
1150 		 return 0;
1151 	}
1152 
1153 	if (!gfs2_is_stuffed(ip))
1154 		gfs2_ordered_add_inode(ip);
1155 
1156 	if (inode == sdp->sd_rindex)
1157 		adjust_fs_space(inode);
1158 
1159 	gfs2_inplace_release(ip);
1160 
1161 	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
1162 		gfs2_quota_unlock(ip);
1163 
1164 	if (length != written && (iomap->flags & IOMAP_F_NEW)) {
1165 		/* Deallocate blocks that were just allocated. */
1166 		loff_t hstart = round_up(pos + written, i_blocksize(inode));
1167 		loff_t hend = iomap->offset + iomap->length;
1168 
1169 		if (hstart < hend) {
1170 			truncate_pagecache_range(inode, hstart, hend - 1);
1171 			punch_hole(ip, hstart, hend - hstart);
1172 		}
1173 	}
1174 
1175 	if (unlikely(!written))
1176 		return 0;
1177 
1178 	if (iomap->flags & IOMAP_F_SIZE_CHANGED)
1179 		mark_inode_dirty(inode);
1180 	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
1181 	return 0;
1182 }
1183 
1184 const struct iomap_ops gfs2_iomap_ops = {
1185 	.iomap_begin = gfs2_iomap_begin,
1186 	.iomap_end = gfs2_iomap_end,
1187 };
1188 
1189 /**
1190  * gfs2_block_map - Map one or more blocks of an inode to a disk block
1191  * @inode: The inode
1192  * @lblock: The logical block number
1193  * @bh_map: The bh to be mapped
1194  * @create: True if its ok to alloc blocks to satify the request
1195  *
1196  * The size of the requested mapping is defined in bh_map->b_size.
1197  *
1198  * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged
1199  * when @lblock is not mapped.  Sets buffer_mapped(bh_map) and
1200  * bh_map->b_size to indicate the size of the mapping when @lblock and
1201  * successive blocks are mapped, up to the requested size.
1202  *
1203  * Sets buffer_boundary() if a read of metadata will be required
1204  * before the next block can be mapped. Sets buffer_new() if new
1205  * blocks were allocated.
1206  *
1207  * Returns: errno
1208  */
1209 
1210 int gfs2_block_map(struct inode *inode, sector_t lblock,
1211 		   struct buffer_head *bh_map, int create)
1212 {
1213 	struct gfs2_inode *ip = GFS2_I(inode);
1214 	loff_t pos = (loff_t)lblock << inode->i_blkbits;
1215 	loff_t length = bh_map->b_size;
1216 	struct iomap iomap = { };
1217 	int ret;
1218 
1219 	clear_buffer_mapped(bh_map);
1220 	clear_buffer_new(bh_map);
1221 	clear_buffer_boundary(bh_map);
1222 	trace_gfs2_bmap(ip, bh_map, lblock, create, 1);
1223 
1224 	if (!create)
1225 		ret = gfs2_iomap_get(inode, pos, length, &iomap);
1226 	else
1227 		ret = gfs2_iomap_alloc(inode, pos, length, &iomap);
1228 	if (ret)
1229 		goto out;
1230 
1231 	if (iomap.length > bh_map->b_size) {
1232 		iomap.length = bh_map->b_size;
1233 		iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY;
1234 	}
1235 	if (iomap.addr != IOMAP_NULL_ADDR)
1236 		map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits);
1237 	bh_map->b_size = iomap.length;
1238 	if (iomap.flags & IOMAP_F_GFS2_BOUNDARY)
1239 		set_buffer_boundary(bh_map);
1240 	if (iomap.flags & IOMAP_F_NEW)
1241 		set_buffer_new(bh_map);
1242 
1243 out:
1244 	trace_gfs2_bmap(ip, bh_map, lblock, create, ret);
1245 	return ret;
1246 }
1247 
1248 int gfs2_get_extent(struct inode *inode, u64 lblock, u64 *dblock,
1249 		    unsigned int *extlen)
1250 {
1251 	unsigned int blkbits = inode->i_blkbits;
1252 	struct iomap iomap = { };
1253 	unsigned int len;
1254 	int ret;
1255 
1256 	ret = gfs2_iomap_get(inode, lblock << blkbits, *extlen << blkbits,
1257 			     &iomap);
1258 	if (ret)
1259 		return ret;
1260 	if (iomap.type != IOMAP_MAPPED)
1261 		return -EIO;
1262 	*dblock = iomap.addr >> blkbits;
1263 	len = iomap.length >> blkbits;
1264 	if (len < *extlen)
1265 		*extlen = len;
1266 	return 0;
1267 }
1268 
1269 int gfs2_alloc_extent(struct inode *inode, u64 lblock, u64 *dblock,
1270 		      unsigned int *extlen, bool *new)
1271 {
1272 	unsigned int blkbits = inode->i_blkbits;
1273 	struct iomap iomap = { };
1274 	unsigned int len;
1275 	int ret;
1276 
1277 	ret = gfs2_iomap_alloc(inode, lblock << blkbits, *extlen << blkbits,
1278 			       &iomap);
1279 	if (ret)
1280 		return ret;
1281 	if (iomap.type != IOMAP_MAPPED)
1282 		return -EIO;
1283 	*dblock = iomap.addr >> blkbits;
1284 	len = iomap.length >> blkbits;
1285 	if (len < *extlen)
1286 		*extlen = len;
1287 	*new = iomap.flags & IOMAP_F_NEW;
1288 	return 0;
1289 }
1290 
1291 /*
1292  * NOTE: Never call gfs2_block_zero_range with an open transaction because it
1293  * uses iomap write to perform its actions, which begin their own transactions
1294  * (iomap_begin, get_folio, etc.)
1295  */
1296 static int gfs2_block_zero_range(struct inode *inode, loff_t from,
1297 				 unsigned int length)
1298 {
1299 	BUG_ON(current->journal_info);
1300 	return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops);
1301 }
1302 
1303 #define GFS2_JTRUNC_REVOKES 8192
1304 
1305 /**
1306  * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files
1307  * @inode: The inode being truncated
1308  * @oldsize: The original (larger) size
1309  * @newsize: The new smaller size
1310  *
1311  * With jdata files, we have to journal a revoke for each block which is
1312  * truncated. As a result, we need to split this into separate transactions
1313  * if the number of pages being truncated gets too large.
1314  */
1315 
1316 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize)
1317 {
1318 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1319 	u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
1320 	u64 chunk;
1321 	int error;
1322 
1323 	while (oldsize != newsize) {
1324 		struct gfs2_trans *tr;
1325 		unsigned int offs;
1326 
1327 		chunk = oldsize - newsize;
1328 		if (chunk > max_chunk)
1329 			chunk = max_chunk;
1330 
1331 		offs = oldsize & ~PAGE_MASK;
1332 		if (offs && chunk > PAGE_SIZE)
1333 			chunk = offs + ((chunk - offs) & PAGE_MASK);
1334 
1335 		truncate_pagecache(inode, oldsize - chunk);
1336 		oldsize -= chunk;
1337 
1338 		tr = current->journal_info;
1339 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
1340 			continue;
1341 
1342 		gfs2_trans_end(sdp);
1343 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
1344 		if (error)
1345 			return error;
1346 	}
1347 
1348 	return 0;
1349 }
1350 
1351 static int trunc_start(struct inode *inode, u64 newsize)
1352 {
1353 	struct gfs2_inode *ip = GFS2_I(inode);
1354 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1355 	struct buffer_head *dibh = NULL;
1356 	int journaled = gfs2_is_jdata(ip);
1357 	u64 oldsize = inode->i_size;
1358 	int error;
1359 
1360 	if (!gfs2_is_stuffed(ip)) {
1361 		unsigned int blocksize = i_blocksize(inode);
1362 		unsigned int offs = newsize & (blocksize - 1);
1363 		if (offs) {
1364 			error = gfs2_block_zero_range(inode, newsize,
1365 						      blocksize - offs);
1366 			if (error)
1367 				return error;
1368 		}
1369 	}
1370 	if (journaled)
1371 		error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES);
1372 	else
1373 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1374 	if (error)
1375 		return error;
1376 
1377 	error = gfs2_meta_inode_buffer(ip, &dibh);
1378 	if (error)
1379 		goto out;
1380 
1381 	gfs2_trans_add_meta(ip->i_gl, dibh);
1382 
1383 	if (gfs2_is_stuffed(ip))
1384 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize);
1385 	else
1386 		ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG;
1387 
1388 	i_size_write(inode, newsize);
1389 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1390 	gfs2_dinode_out(ip, dibh->b_data);
1391 
1392 	if (journaled)
1393 		error = gfs2_journaled_truncate(inode, oldsize, newsize);
1394 	else
1395 		truncate_pagecache(inode, newsize);
1396 
1397 out:
1398 	brelse(dibh);
1399 	if (current->journal_info)
1400 		gfs2_trans_end(sdp);
1401 	return error;
1402 }
1403 
1404 int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
1405 		   struct iomap *iomap)
1406 {
1407 	struct metapath mp = { .mp_aheight = 1, };
1408 	int ret;
1409 
1410 	ret = __gfs2_iomap_get(inode, pos, length, 0, iomap, &mp);
1411 	release_metapath(&mp);
1412 	return ret;
1413 }
1414 
1415 int gfs2_iomap_alloc(struct inode *inode, loff_t pos, loff_t length,
1416 		     struct iomap *iomap)
1417 {
1418 	struct metapath mp = { .mp_aheight = 1, };
1419 	int ret;
1420 
1421 	ret = __gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp);
1422 	if (!ret && iomap->type == IOMAP_HOLE)
1423 		ret = __gfs2_iomap_alloc(inode, iomap, &mp);
1424 	release_metapath(&mp);
1425 	return ret;
1426 }
1427 
1428 /**
1429  * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein
1430  * @ip: inode
1431  * @rd_gh: holder of resource group glock
1432  * @bh: buffer head to sweep
1433  * @start: starting point in bh
1434  * @end: end point in bh
1435  * @meta: true if bh points to metadata (rather than data)
1436  * @btotal: place to keep count of total blocks freed
1437  *
1438  * We sweep a metadata buffer (provided by the metapath) for blocks we need to
1439  * free, and free them all. However, we do it one rgrp at a time. If this
1440  * block has references to multiple rgrps, we break it into individual
1441  * transactions. This allows other processes to use the rgrps while we're
1442  * focused on a single one, for better concurrency / performance.
1443  * At every transaction boundary, we rewrite the inode into the journal.
1444  * That way the bitmaps are kept consistent with the inode and we can recover
1445  * if we're interrupted by power-outages.
1446  *
1447  * Returns: 0, or return code if an error occurred.
1448  *          *btotal has the total number of blocks freed
1449  */
1450 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh,
1451 			      struct buffer_head *bh, __be64 *start, __be64 *end,
1452 			      bool meta, u32 *btotal)
1453 {
1454 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1455 	struct gfs2_rgrpd *rgd;
1456 	struct gfs2_trans *tr;
1457 	__be64 *p;
1458 	int blks_outside_rgrp;
1459 	u64 bn, bstart, isize_blks;
1460 	s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */
1461 	int ret = 0;
1462 	bool buf_in_tr = false; /* buffer was added to transaction */
1463 
1464 more_rgrps:
1465 	rgd = NULL;
1466 	if (gfs2_holder_initialized(rd_gh)) {
1467 		rgd = gfs2_glock2rgrp(rd_gh->gh_gl);
1468 		gfs2_assert_withdraw(sdp,
1469 			     gfs2_glock_is_locked_by_me(rd_gh->gh_gl));
1470 	}
1471 	blks_outside_rgrp = 0;
1472 	bstart = 0;
1473 	blen = 0;
1474 
1475 	for (p = start; p < end; p++) {
1476 		if (!*p)
1477 			continue;
1478 		bn = be64_to_cpu(*p);
1479 
1480 		if (rgd) {
1481 			if (!rgrp_contains_block(rgd, bn)) {
1482 				blks_outside_rgrp++;
1483 				continue;
1484 			}
1485 		} else {
1486 			rgd = gfs2_blk2rgrpd(sdp, bn, true);
1487 			if (unlikely(!rgd)) {
1488 				ret = -EIO;
1489 				goto out;
1490 			}
1491 			ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1492 						 LM_FLAG_NODE_SCOPE, rd_gh);
1493 			if (ret)
1494 				goto out;
1495 
1496 			/* Must be done with the rgrp glock held: */
1497 			if (gfs2_rs_active(&ip->i_res) &&
1498 			    rgd == ip->i_res.rs_rgd)
1499 				gfs2_rs_deltree(&ip->i_res);
1500 		}
1501 
1502 		/* The size of our transactions will be unknown until we
1503 		   actually process all the metadata blocks that relate to
1504 		   the rgrp. So we estimate. We know it can't be more than
1505 		   the dinode's i_blocks and we don't want to exceed the
1506 		   journal flush threshold, sd_log_thresh2. */
1507 		if (current->journal_info == NULL) {
1508 			unsigned int jblocks_rqsted, revokes;
1509 
1510 			jblocks_rqsted = rgd->rd_length + RES_DINODE +
1511 				RES_INDIRECT;
1512 			isize_blks = gfs2_get_inode_blocks(&ip->i_inode);
1513 			if (isize_blks > atomic_read(&sdp->sd_log_thresh2))
1514 				jblocks_rqsted +=
1515 					atomic_read(&sdp->sd_log_thresh2);
1516 			else
1517 				jblocks_rqsted += isize_blks;
1518 			revokes = jblocks_rqsted;
1519 			if (meta)
1520 				revokes += end - start;
1521 			else if (ip->i_depth)
1522 				revokes += sdp->sd_inptrs;
1523 			ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes);
1524 			if (ret)
1525 				goto out_unlock;
1526 			down_write(&ip->i_rw_mutex);
1527 		}
1528 		/* check if we will exceed the transaction blocks requested */
1529 		tr = current->journal_info;
1530 		if (tr->tr_num_buf_new + RES_STATFS +
1531 		    RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) {
1532 			/* We set blks_outside_rgrp to ensure the loop will
1533 			   be repeated for the same rgrp, but with a new
1534 			   transaction. */
1535 			blks_outside_rgrp++;
1536 			/* This next part is tricky. If the buffer was added
1537 			   to the transaction, we've already set some block
1538 			   pointers to 0, so we better follow through and free
1539 			   them, or we will introduce corruption (so break).
1540 			   This may be impossible, or at least rare, but I
1541 			   decided to cover the case regardless.
1542 
1543 			   If the buffer was not added to the transaction
1544 			   (this call), doing so would exceed our transaction
1545 			   size, so we need to end the transaction and start a
1546 			   new one (so goto). */
1547 
1548 			if (buf_in_tr)
1549 				break;
1550 			goto out_unlock;
1551 		}
1552 
1553 		gfs2_trans_add_meta(ip->i_gl, bh);
1554 		buf_in_tr = true;
1555 		*p = 0;
1556 		if (bstart + blen == bn) {
1557 			blen++;
1558 			continue;
1559 		}
1560 		if (bstart) {
1561 			__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1562 			(*btotal) += blen;
1563 			gfs2_add_inode_blocks(&ip->i_inode, -blen);
1564 		}
1565 		bstart = bn;
1566 		blen = 1;
1567 	}
1568 	if (bstart) {
1569 		__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1570 		(*btotal) += blen;
1571 		gfs2_add_inode_blocks(&ip->i_inode, -blen);
1572 	}
1573 out_unlock:
1574 	if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks
1575 					    outside the rgrp we just processed,
1576 					    do it all over again. */
1577 		if (current->journal_info) {
1578 			struct buffer_head *dibh;
1579 
1580 			ret = gfs2_meta_inode_buffer(ip, &dibh);
1581 			if (ret)
1582 				goto out;
1583 
1584 			/* Every transaction boundary, we rewrite the dinode
1585 			   to keep its di_blocks current in case of failure. */
1586 			ip->i_inode.i_mtime = ip->i_inode.i_ctime =
1587 				current_time(&ip->i_inode);
1588 			gfs2_trans_add_meta(ip->i_gl, dibh);
1589 			gfs2_dinode_out(ip, dibh->b_data);
1590 			brelse(dibh);
1591 			up_write(&ip->i_rw_mutex);
1592 			gfs2_trans_end(sdp);
1593 			buf_in_tr = false;
1594 		}
1595 		gfs2_glock_dq_uninit(rd_gh);
1596 		cond_resched();
1597 		goto more_rgrps;
1598 	}
1599 out:
1600 	return ret;
1601 }
1602 
1603 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h)
1604 {
1605 	if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0])))
1606 		return false;
1607 	return true;
1608 }
1609 
1610 /**
1611  * find_nonnull_ptr - find a non-null pointer given a metapath and height
1612  * @sdp: The superblock
1613  * @mp: starting metapath
1614  * @h: desired height to search
1615  * @end_list: See punch_hole().
1616  * @end_aligned: See punch_hole().
1617  *
1618  * Assumes the metapath is valid (with buffers) out to height h.
1619  * Returns: true if a non-null pointer was found in the metapath buffer
1620  *          false if all remaining pointers are NULL in the buffer
1621  */
1622 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp,
1623 			     unsigned int h,
1624 			     __u16 *end_list, unsigned int end_aligned)
1625 {
1626 	struct buffer_head *bh = mp->mp_bh[h];
1627 	__be64 *first, *ptr, *end;
1628 
1629 	first = metaptr1(h, mp);
1630 	ptr = first + mp->mp_list[h];
1631 	end = (__be64 *)(bh->b_data + bh->b_size);
1632 	if (end_list && mp_eq_to_hgt(mp, end_list, h)) {
1633 		bool keep_end = h < end_aligned;
1634 		end = first + end_list[h] + keep_end;
1635 	}
1636 
1637 	while (ptr < end) {
1638 		if (*ptr) { /* if we have a non-null pointer */
1639 			mp->mp_list[h] = ptr - first;
1640 			h++;
1641 			if (h < GFS2_MAX_META_HEIGHT)
1642 				mp->mp_list[h] = 0;
1643 			return true;
1644 		}
1645 		ptr++;
1646 	}
1647 	return false;
1648 }
1649 
1650 enum dealloc_states {
1651 	DEALLOC_MP_FULL = 0,    /* Strip a metapath with all buffers read in */
1652 	DEALLOC_MP_LOWER = 1,   /* lower the metapath strip height */
1653 	DEALLOC_FILL_MP = 2,  /* Fill in the metapath to the given height. */
1654 	DEALLOC_DONE = 3,       /* process complete */
1655 };
1656 
1657 static inline void
1658 metapointer_range(struct metapath *mp, int height,
1659 		  __u16 *start_list, unsigned int start_aligned,
1660 		  __u16 *end_list, unsigned int end_aligned,
1661 		  __be64 **start, __be64 **end)
1662 {
1663 	struct buffer_head *bh = mp->mp_bh[height];
1664 	__be64 *first;
1665 
1666 	first = metaptr1(height, mp);
1667 	*start = first;
1668 	if (mp_eq_to_hgt(mp, start_list, height)) {
1669 		bool keep_start = height < start_aligned;
1670 		*start = first + start_list[height] + keep_start;
1671 	}
1672 	*end = (__be64 *)(bh->b_data + bh->b_size);
1673 	if (end_list && mp_eq_to_hgt(mp, end_list, height)) {
1674 		bool keep_end = height < end_aligned;
1675 		*end = first + end_list[height] + keep_end;
1676 	}
1677 }
1678 
1679 static inline bool walk_done(struct gfs2_sbd *sdp,
1680 			     struct metapath *mp, int height,
1681 			     __u16 *end_list, unsigned int end_aligned)
1682 {
1683 	__u16 end;
1684 
1685 	if (end_list) {
1686 		bool keep_end = height < end_aligned;
1687 		if (!mp_eq_to_hgt(mp, end_list, height))
1688 			return false;
1689 		end = end_list[height] + keep_end;
1690 	} else
1691 		end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs;
1692 	return mp->mp_list[height] >= end;
1693 }
1694 
1695 /**
1696  * punch_hole - deallocate blocks in a file
1697  * @ip: inode to truncate
1698  * @offset: the start of the hole
1699  * @length: the size of the hole (or 0 for truncate)
1700  *
1701  * Punch a hole into a file or truncate a file at a given position.  This
1702  * function operates in whole blocks (@offset and @length are rounded
1703  * accordingly); partially filled blocks must be cleared otherwise.
1704  *
1705  * This function works from the bottom up, and from the right to the left. In
1706  * other words, it strips off the highest layer (data) before stripping any of
1707  * the metadata. Doing it this way is best in case the operation is interrupted
1708  * by power failure, etc.  The dinode is rewritten in every transaction to
1709  * guarantee integrity.
1710  */
1711 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length)
1712 {
1713 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1714 	u64 maxsize = sdp->sd_heightsize[ip->i_height];
1715 	struct metapath mp = {};
1716 	struct buffer_head *dibh, *bh;
1717 	struct gfs2_holder rd_gh;
1718 	unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift;
1719 	u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift;
1720 	__u16 start_list[GFS2_MAX_META_HEIGHT];
1721 	__u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL;
1722 	unsigned int start_aligned, end_aligned;
1723 	unsigned int strip_h = ip->i_height - 1;
1724 	u32 btotal = 0;
1725 	int ret, state;
1726 	int mp_h; /* metapath buffers are read in to this height */
1727 	u64 prev_bnr = 0;
1728 	__be64 *start, *end;
1729 
1730 	if (offset >= maxsize) {
1731 		/*
1732 		 * The starting point lies beyond the allocated metadata;
1733 		 * there are no blocks to deallocate.
1734 		 */
1735 		return 0;
1736 	}
1737 
1738 	/*
1739 	 * The start position of the hole is defined by lblock, start_list, and
1740 	 * start_aligned.  The end position of the hole is defined by lend,
1741 	 * end_list, and end_aligned.
1742 	 *
1743 	 * start_aligned and end_aligned define down to which height the start
1744 	 * and end positions are aligned to the metadata tree (i.e., the
1745 	 * position is a multiple of the metadata granularity at the height
1746 	 * above).  This determines at which heights additional meta pointers
1747 	 * needs to be preserved for the remaining data.
1748 	 */
1749 
1750 	if (length) {
1751 		u64 end_offset = offset + length;
1752 		u64 lend;
1753 
1754 		/*
1755 		 * Clip the end at the maximum file size for the given height:
1756 		 * that's how far the metadata goes; files bigger than that
1757 		 * will have additional layers of indirection.
1758 		 */
1759 		if (end_offset > maxsize)
1760 			end_offset = maxsize;
1761 		lend = end_offset >> bsize_shift;
1762 
1763 		if (lblock >= lend)
1764 			return 0;
1765 
1766 		find_metapath(sdp, lend, &mp, ip->i_height);
1767 		end_list = __end_list;
1768 		memcpy(end_list, mp.mp_list, sizeof(mp.mp_list));
1769 
1770 		for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1771 			if (end_list[mp_h])
1772 				break;
1773 		}
1774 		end_aligned = mp_h;
1775 	}
1776 
1777 	find_metapath(sdp, lblock, &mp, ip->i_height);
1778 	memcpy(start_list, mp.mp_list, sizeof(start_list));
1779 
1780 	for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1781 		if (start_list[mp_h])
1782 			break;
1783 	}
1784 	start_aligned = mp_h;
1785 
1786 	ret = gfs2_meta_inode_buffer(ip, &dibh);
1787 	if (ret)
1788 		return ret;
1789 
1790 	mp.mp_bh[0] = dibh;
1791 	ret = lookup_metapath(ip, &mp);
1792 	if (ret)
1793 		goto out_metapath;
1794 
1795 	/* issue read-ahead on metadata */
1796 	for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) {
1797 		metapointer_range(&mp, mp_h, start_list, start_aligned,
1798 				  end_list, end_aligned, &start, &end);
1799 		gfs2_metapath_ra(ip->i_gl, start, end);
1800 	}
1801 
1802 	if (mp.mp_aheight == ip->i_height)
1803 		state = DEALLOC_MP_FULL; /* We have a complete metapath */
1804 	else
1805 		state = DEALLOC_FILL_MP; /* deal with partial metapath */
1806 
1807 	ret = gfs2_rindex_update(sdp);
1808 	if (ret)
1809 		goto out_metapath;
1810 
1811 	ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
1812 	if (ret)
1813 		goto out_metapath;
1814 	gfs2_holder_mark_uninitialized(&rd_gh);
1815 
1816 	mp_h = strip_h;
1817 
1818 	while (state != DEALLOC_DONE) {
1819 		switch (state) {
1820 		/* Truncate a full metapath at the given strip height.
1821 		 * Note that strip_h == mp_h in order to be in this state. */
1822 		case DEALLOC_MP_FULL:
1823 			bh = mp.mp_bh[mp_h];
1824 			gfs2_assert_withdraw(sdp, bh);
1825 			if (gfs2_assert_withdraw(sdp,
1826 						 prev_bnr != bh->b_blocknr)) {
1827 				fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u,"
1828 					 "s_h:%u, mp_h:%u\n",
1829 				       (unsigned long long)ip->i_no_addr,
1830 				       prev_bnr, ip->i_height, strip_h, mp_h);
1831 			}
1832 			prev_bnr = bh->b_blocknr;
1833 
1834 			if (gfs2_metatype_check(sdp, bh,
1835 						(mp_h ? GFS2_METATYPE_IN :
1836 							GFS2_METATYPE_DI))) {
1837 				ret = -EIO;
1838 				goto out;
1839 			}
1840 
1841 			/*
1842 			 * Below, passing end_aligned as 0 gives us the
1843 			 * metapointer range excluding the end point: the end
1844 			 * point is the first metapath we must not deallocate!
1845 			 */
1846 
1847 			metapointer_range(&mp, mp_h, start_list, start_aligned,
1848 					  end_list, 0 /* end_aligned */,
1849 					  &start, &end);
1850 			ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h],
1851 						 start, end,
1852 						 mp_h != ip->i_height - 1,
1853 						 &btotal);
1854 
1855 			/* If we hit an error or just swept dinode buffer,
1856 			   just exit. */
1857 			if (ret || !mp_h) {
1858 				state = DEALLOC_DONE;
1859 				break;
1860 			}
1861 			state = DEALLOC_MP_LOWER;
1862 			break;
1863 
1864 		/* lower the metapath strip height */
1865 		case DEALLOC_MP_LOWER:
1866 			/* We're done with the current buffer, so release it,
1867 			   unless it's the dinode buffer. Then back up to the
1868 			   previous pointer. */
1869 			if (mp_h) {
1870 				brelse(mp.mp_bh[mp_h]);
1871 				mp.mp_bh[mp_h] = NULL;
1872 			}
1873 			/* If we can't get any lower in height, we've stripped
1874 			   off all we can. Next step is to back up and start
1875 			   stripping the previous level of metadata. */
1876 			if (mp_h == 0) {
1877 				strip_h--;
1878 				memcpy(mp.mp_list, start_list, sizeof(start_list));
1879 				mp_h = strip_h;
1880 				state = DEALLOC_FILL_MP;
1881 				break;
1882 			}
1883 			mp.mp_list[mp_h] = 0;
1884 			mp_h--; /* search one metadata height down */
1885 			mp.mp_list[mp_h]++;
1886 			if (walk_done(sdp, &mp, mp_h, end_list, end_aligned))
1887 				break;
1888 			/* Here we've found a part of the metapath that is not
1889 			 * allocated. We need to search at that height for the
1890 			 * next non-null pointer. */
1891 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) {
1892 				state = DEALLOC_FILL_MP;
1893 				mp_h++;
1894 			}
1895 			/* No more non-null pointers at this height. Back up
1896 			   to the previous height and try again. */
1897 			break; /* loop around in the same state */
1898 
1899 		/* Fill the metapath with buffers to the given height. */
1900 		case DEALLOC_FILL_MP:
1901 			/* Fill the buffers out to the current height. */
1902 			ret = fillup_metapath(ip, &mp, mp_h);
1903 			if (ret < 0)
1904 				goto out;
1905 
1906 			/* On the first pass, issue read-ahead on metadata. */
1907 			if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) {
1908 				unsigned int height = mp.mp_aheight - 1;
1909 
1910 				/* No read-ahead for data blocks. */
1911 				if (mp.mp_aheight - 1 == strip_h)
1912 					height--;
1913 
1914 				for (; height >= mp.mp_aheight - ret; height--) {
1915 					metapointer_range(&mp, height,
1916 							  start_list, start_aligned,
1917 							  end_list, end_aligned,
1918 							  &start, &end);
1919 					gfs2_metapath_ra(ip->i_gl, start, end);
1920 				}
1921 			}
1922 
1923 			/* If buffers found for the entire strip height */
1924 			if (mp.mp_aheight - 1 == strip_h) {
1925 				state = DEALLOC_MP_FULL;
1926 				break;
1927 			}
1928 			if (mp.mp_aheight < ip->i_height) /* We have a partial height */
1929 				mp_h = mp.mp_aheight - 1;
1930 
1931 			/* If we find a non-null block pointer, crawl a bit
1932 			   higher up in the metapath and try again, otherwise
1933 			   we need to look lower for a new starting point. */
1934 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned))
1935 				mp_h++;
1936 			else
1937 				state = DEALLOC_MP_LOWER;
1938 			break;
1939 		}
1940 	}
1941 
1942 	if (btotal) {
1943 		if (current->journal_info == NULL) {
1944 			ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS +
1945 					       RES_QUOTA, 0);
1946 			if (ret)
1947 				goto out;
1948 			down_write(&ip->i_rw_mutex);
1949 		}
1950 		gfs2_statfs_change(sdp, 0, +btotal, 0);
1951 		gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid,
1952 				  ip->i_inode.i_gid);
1953 		ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1954 		gfs2_trans_add_meta(ip->i_gl, dibh);
1955 		gfs2_dinode_out(ip, dibh->b_data);
1956 		up_write(&ip->i_rw_mutex);
1957 		gfs2_trans_end(sdp);
1958 	}
1959 
1960 out:
1961 	if (gfs2_holder_initialized(&rd_gh))
1962 		gfs2_glock_dq_uninit(&rd_gh);
1963 	if (current->journal_info) {
1964 		up_write(&ip->i_rw_mutex);
1965 		gfs2_trans_end(sdp);
1966 		cond_resched();
1967 	}
1968 	gfs2_quota_unhold(ip);
1969 out_metapath:
1970 	release_metapath(&mp);
1971 	return ret;
1972 }
1973 
1974 static int trunc_end(struct gfs2_inode *ip)
1975 {
1976 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1977 	struct buffer_head *dibh;
1978 	int error;
1979 
1980 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1981 	if (error)
1982 		return error;
1983 
1984 	down_write(&ip->i_rw_mutex);
1985 
1986 	error = gfs2_meta_inode_buffer(ip, &dibh);
1987 	if (error)
1988 		goto out;
1989 
1990 	if (!i_size_read(&ip->i_inode)) {
1991 		ip->i_height = 0;
1992 		ip->i_goal = ip->i_no_addr;
1993 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
1994 		gfs2_ordered_del_inode(ip);
1995 	}
1996 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1997 	ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG;
1998 
1999 	gfs2_trans_add_meta(ip->i_gl, dibh);
2000 	gfs2_dinode_out(ip, dibh->b_data);
2001 	brelse(dibh);
2002 
2003 out:
2004 	up_write(&ip->i_rw_mutex);
2005 	gfs2_trans_end(sdp);
2006 	return error;
2007 }
2008 
2009 /**
2010  * do_shrink - make a file smaller
2011  * @inode: the inode
2012  * @newsize: the size to make the file
2013  *
2014  * Called with an exclusive lock on @inode. The @size must
2015  * be equal to or smaller than the current inode size.
2016  *
2017  * Returns: errno
2018  */
2019 
2020 static int do_shrink(struct inode *inode, u64 newsize)
2021 {
2022 	struct gfs2_inode *ip = GFS2_I(inode);
2023 	int error;
2024 
2025 	error = trunc_start(inode, newsize);
2026 	if (error < 0)
2027 		return error;
2028 	if (gfs2_is_stuffed(ip))
2029 		return 0;
2030 
2031 	error = punch_hole(ip, newsize, 0);
2032 	if (error == 0)
2033 		error = trunc_end(ip);
2034 
2035 	return error;
2036 }
2037 
2038 /**
2039  * do_grow - Touch and update inode size
2040  * @inode: The inode
2041  * @size: The new size
2042  *
2043  * This function updates the timestamps on the inode and
2044  * may also increase the size of the inode. This function
2045  * must not be called with @size any smaller than the current
2046  * inode size.
2047  *
2048  * Although it is not strictly required to unstuff files here,
2049  * earlier versions of GFS2 have a bug in the stuffed file reading
2050  * code which will result in a buffer overrun if the size is larger
2051  * than the max stuffed file size. In order to prevent this from
2052  * occurring, such files are unstuffed, but in other cases we can
2053  * just update the inode size directly.
2054  *
2055  * Returns: 0 on success, or -ve on error
2056  */
2057 
2058 static int do_grow(struct inode *inode, u64 size)
2059 {
2060 	struct gfs2_inode *ip = GFS2_I(inode);
2061 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2062 	struct gfs2_alloc_parms ap = { .target = 1, };
2063 	struct buffer_head *dibh;
2064 	int error;
2065 	int unstuff = 0;
2066 
2067 	if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) {
2068 		error = gfs2_quota_lock_check(ip, &ap);
2069 		if (error)
2070 			return error;
2071 
2072 		error = gfs2_inplace_reserve(ip, &ap);
2073 		if (error)
2074 			goto do_grow_qunlock;
2075 		unstuff = 1;
2076 	}
2077 
2078 	error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT +
2079 				 (unstuff &&
2080 				  gfs2_is_jdata(ip) ? RES_JDATA : 0) +
2081 				 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ?
2082 				  0 : RES_QUOTA), 0);
2083 	if (error)
2084 		goto do_grow_release;
2085 
2086 	if (unstuff) {
2087 		error = gfs2_unstuff_dinode(ip);
2088 		if (error)
2089 			goto do_end_trans;
2090 	}
2091 
2092 	error = gfs2_meta_inode_buffer(ip, &dibh);
2093 	if (error)
2094 		goto do_end_trans;
2095 
2096 	truncate_setsize(inode, size);
2097 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2098 	gfs2_trans_add_meta(ip->i_gl, dibh);
2099 	gfs2_dinode_out(ip, dibh->b_data);
2100 	brelse(dibh);
2101 
2102 do_end_trans:
2103 	gfs2_trans_end(sdp);
2104 do_grow_release:
2105 	if (unstuff) {
2106 		gfs2_inplace_release(ip);
2107 do_grow_qunlock:
2108 		gfs2_quota_unlock(ip);
2109 	}
2110 	return error;
2111 }
2112 
2113 /**
2114  * gfs2_setattr_size - make a file a given size
2115  * @inode: the inode
2116  * @newsize: the size to make the file
2117  *
2118  * The file size can grow, shrink, or stay the same size. This
2119  * is called holding i_rwsem and an exclusive glock on the inode
2120  * in question.
2121  *
2122  * Returns: errno
2123  */
2124 
2125 int gfs2_setattr_size(struct inode *inode, u64 newsize)
2126 {
2127 	struct gfs2_inode *ip = GFS2_I(inode);
2128 	int ret;
2129 
2130 	BUG_ON(!S_ISREG(inode->i_mode));
2131 
2132 	ret = inode_newsize_ok(inode, newsize);
2133 	if (ret)
2134 		return ret;
2135 
2136 	inode_dio_wait(inode);
2137 
2138 	ret = gfs2_qa_get(ip);
2139 	if (ret)
2140 		goto out;
2141 
2142 	if (newsize >= inode->i_size) {
2143 		ret = do_grow(inode, newsize);
2144 		goto out;
2145 	}
2146 
2147 	ret = do_shrink(inode, newsize);
2148 out:
2149 	gfs2_rs_delete(ip);
2150 	gfs2_qa_put(ip);
2151 	return ret;
2152 }
2153 
2154 int gfs2_truncatei_resume(struct gfs2_inode *ip)
2155 {
2156 	int error;
2157 	error = punch_hole(ip, i_size_read(&ip->i_inode), 0);
2158 	if (!error)
2159 		error = trunc_end(ip);
2160 	return error;
2161 }
2162 
2163 int gfs2_file_dealloc(struct gfs2_inode *ip)
2164 {
2165 	return punch_hole(ip, 0, 0);
2166 }
2167 
2168 /**
2169  * gfs2_free_journal_extents - Free cached journal bmap info
2170  * @jd: The journal
2171  *
2172  */
2173 
2174 void gfs2_free_journal_extents(struct gfs2_jdesc *jd)
2175 {
2176 	struct gfs2_journal_extent *jext;
2177 
2178 	while(!list_empty(&jd->extent_list)) {
2179 		jext = list_first_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2180 		list_del(&jext->list);
2181 		kfree(jext);
2182 	}
2183 }
2184 
2185 /**
2186  * gfs2_add_jextent - Add or merge a new extent to extent cache
2187  * @jd: The journal descriptor
2188  * @lblock: The logical block at start of new extent
2189  * @dblock: The physical block at start of new extent
2190  * @blocks: Size of extent in fs blocks
2191  *
2192  * Returns: 0 on success or -ENOMEM
2193  */
2194 
2195 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks)
2196 {
2197 	struct gfs2_journal_extent *jext;
2198 
2199 	if (!list_empty(&jd->extent_list)) {
2200 		jext = list_last_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2201 		if ((jext->dblock + jext->blocks) == dblock) {
2202 			jext->blocks += blocks;
2203 			return 0;
2204 		}
2205 	}
2206 
2207 	jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS);
2208 	if (jext == NULL)
2209 		return -ENOMEM;
2210 	jext->dblock = dblock;
2211 	jext->lblock = lblock;
2212 	jext->blocks = blocks;
2213 	list_add_tail(&jext->list, &jd->extent_list);
2214 	jd->nr_extents++;
2215 	return 0;
2216 }
2217 
2218 /**
2219  * gfs2_map_journal_extents - Cache journal bmap info
2220  * @sdp: The super block
2221  * @jd: The journal to map
2222  *
2223  * Create a reusable "extent" mapping from all logical
2224  * blocks to all physical blocks for the given journal.  This will save
2225  * us time when writing journal blocks.  Most journals will have only one
2226  * extent that maps all their logical blocks.  That's because gfs2.mkfs
2227  * arranges the journal blocks sequentially to maximize performance.
2228  * So the extent would map the first block for the entire file length.
2229  * However, gfs2_jadd can happen while file activity is happening, so
2230  * those journals may not be sequential.  Less likely is the case where
2231  * the users created their own journals by mounting the metafs and
2232  * laying it out.  But it's still possible.  These journals might have
2233  * several extents.
2234  *
2235  * Returns: 0 on success, or error on failure
2236  */
2237 
2238 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd)
2239 {
2240 	u64 lblock = 0;
2241 	u64 lblock_stop;
2242 	struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
2243 	struct buffer_head bh;
2244 	unsigned int shift = sdp->sd_sb.sb_bsize_shift;
2245 	u64 size;
2246 	int rc;
2247 	ktime_t start, end;
2248 
2249 	start = ktime_get();
2250 	lblock_stop = i_size_read(jd->jd_inode) >> shift;
2251 	size = (lblock_stop - lblock) << shift;
2252 	jd->nr_extents = 0;
2253 	WARN_ON(!list_empty(&jd->extent_list));
2254 
2255 	do {
2256 		bh.b_state = 0;
2257 		bh.b_blocknr = 0;
2258 		bh.b_size = size;
2259 		rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0);
2260 		if (rc || !buffer_mapped(&bh))
2261 			goto fail;
2262 		rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift);
2263 		if (rc)
2264 			goto fail;
2265 		size -= bh.b_size;
2266 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2267 	} while(size > 0);
2268 
2269 	end = ktime_get();
2270 	fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid,
2271 		jd->nr_extents, ktime_ms_delta(end, start));
2272 	return 0;
2273 
2274 fail:
2275 	fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n",
2276 		rc, jd->jd_jid,
2277 		(unsigned long long)(i_size_read(jd->jd_inode) - size),
2278 		jd->nr_extents);
2279 	fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n",
2280 		rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr,
2281 		bh.b_state, (unsigned long long)bh.b_size);
2282 	gfs2_free_journal_extents(jd);
2283 	return rc;
2284 }
2285 
2286 /**
2287  * gfs2_write_alloc_required - figure out if a write will require an allocation
2288  * @ip: the file being written to
2289  * @offset: the offset to write to
2290  * @len: the number of bytes being written
2291  *
2292  * Returns: 1 if an alloc is required, 0 otherwise
2293  */
2294 
2295 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset,
2296 			      unsigned int len)
2297 {
2298 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2299 	struct buffer_head bh;
2300 	unsigned int shift;
2301 	u64 lblock, lblock_stop, size;
2302 	u64 end_of_file;
2303 
2304 	if (!len)
2305 		return 0;
2306 
2307 	if (gfs2_is_stuffed(ip)) {
2308 		if (offset + len > gfs2_max_stuffed_size(ip))
2309 			return 1;
2310 		return 0;
2311 	}
2312 
2313 	shift = sdp->sd_sb.sb_bsize_shift;
2314 	BUG_ON(gfs2_is_dir(ip));
2315 	end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift;
2316 	lblock = offset >> shift;
2317 	lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift;
2318 	if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex))
2319 		return 1;
2320 
2321 	size = (lblock_stop - lblock) << shift;
2322 	do {
2323 		bh.b_state = 0;
2324 		bh.b_size = size;
2325 		gfs2_block_map(&ip->i_inode, lblock, &bh, 0);
2326 		if (!buffer_mapped(&bh))
2327 			return 1;
2328 		size -= bh.b_size;
2329 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2330 	} while(size > 0);
2331 
2332 	return 0;
2333 }
2334 
2335 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length)
2336 {
2337 	struct gfs2_inode *ip = GFS2_I(inode);
2338 	struct buffer_head *dibh;
2339 	int error;
2340 
2341 	if (offset >= inode->i_size)
2342 		return 0;
2343 	if (offset + length > inode->i_size)
2344 		length = inode->i_size - offset;
2345 
2346 	error = gfs2_meta_inode_buffer(ip, &dibh);
2347 	if (error)
2348 		return error;
2349 	gfs2_trans_add_meta(ip->i_gl, dibh);
2350 	memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0,
2351 	       length);
2352 	brelse(dibh);
2353 	return 0;
2354 }
2355 
2356 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset,
2357 					 loff_t length)
2358 {
2359 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2360 	loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
2361 	int error;
2362 
2363 	while (length) {
2364 		struct gfs2_trans *tr;
2365 		loff_t chunk;
2366 		unsigned int offs;
2367 
2368 		chunk = length;
2369 		if (chunk > max_chunk)
2370 			chunk = max_chunk;
2371 
2372 		offs = offset & ~PAGE_MASK;
2373 		if (offs && chunk > PAGE_SIZE)
2374 			chunk = offs + ((chunk - offs) & PAGE_MASK);
2375 
2376 		truncate_pagecache_range(inode, offset, chunk);
2377 		offset += chunk;
2378 		length -= chunk;
2379 
2380 		tr = current->journal_info;
2381 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
2382 			continue;
2383 
2384 		gfs2_trans_end(sdp);
2385 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
2386 		if (error)
2387 			return error;
2388 	}
2389 	return 0;
2390 }
2391 
2392 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length)
2393 {
2394 	struct inode *inode = file_inode(file);
2395 	struct gfs2_inode *ip = GFS2_I(inode);
2396 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2397 	unsigned int blocksize = i_blocksize(inode);
2398 	loff_t start, end;
2399 	int error;
2400 
2401 	if (!gfs2_is_stuffed(ip)) {
2402 		unsigned int start_off, end_len;
2403 
2404 		start_off = offset & (blocksize - 1);
2405 		end_len = (offset + length) & (blocksize - 1);
2406 		if (start_off) {
2407 			unsigned int len = length;
2408 			if (length > blocksize - start_off)
2409 				len = blocksize - start_off;
2410 			error = gfs2_block_zero_range(inode, offset, len);
2411 			if (error)
2412 				goto out;
2413 			if (start_off + length < blocksize)
2414 				end_len = 0;
2415 		}
2416 		if (end_len) {
2417 			error = gfs2_block_zero_range(inode,
2418 				offset + length - end_len, end_len);
2419 			if (error)
2420 				goto out;
2421 		}
2422 	}
2423 
2424 	start = round_down(offset, blocksize);
2425 	end = round_up(offset + length, blocksize) - 1;
2426 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
2427 	if (error)
2428 		return error;
2429 
2430 	if (gfs2_is_jdata(ip))
2431 		error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA,
2432 					 GFS2_JTRUNC_REVOKES);
2433 	else
2434 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2435 	if (error)
2436 		return error;
2437 
2438 	if (gfs2_is_stuffed(ip)) {
2439 		error = stuffed_zero_range(inode, offset, length);
2440 		if (error)
2441 			goto out;
2442 	}
2443 
2444 	if (gfs2_is_jdata(ip)) {
2445 		BUG_ON(!current->journal_info);
2446 		gfs2_journaled_truncate_range(inode, offset, length);
2447 	} else
2448 		truncate_pagecache_range(inode, offset, offset + length - 1);
2449 
2450 	file_update_time(file);
2451 	mark_inode_dirty(inode);
2452 
2453 	if (current->journal_info)
2454 		gfs2_trans_end(sdp);
2455 
2456 	if (!gfs2_is_stuffed(ip))
2457 		error = punch_hole(ip, offset, length);
2458 
2459 out:
2460 	if (current->journal_info)
2461 		gfs2_trans_end(sdp);
2462 	return error;
2463 }
2464 
2465 static int gfs2_map_blocks(struct iomap_writepage_ctx *wpc, struct inode *inode,
2466 		loff_t offset)
2467 {
2468 	int ret;
2469 
2470 	if (WARN_ON_ONCE(gfs2_is_stuffed(GFS2_I(inode))))
2471 		return -EIO;
2472 
2473 	if (offset >= wpc->iomap.offset &&
2474 	    offset < wpc->iomap.offset + wpc->iomap.length)
2475 		return 0;
2476 
2477 	memset(&wpc->iomap, 0, sizeof(wpc->iomap));
2478 	ret = gfs2_iomap_get(inode, offset, INT_MAX, &wpc->iomap);
2479 	return ret;
2480 }
2481 
2482 const struct iomap_writeback_ops gfs2_writeback_ops = {
2483 	.map_blocks		= gfs2_map_blocks,
2484 };
2485