xref: /openbmc/linux/fs/gfs2/bmap.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #include <linux/spinlock.h>
8 #include <linux/completion.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/gfs2_ondisk.h>
12 #include <linux/crc32.h>
13 #include <linux/iomap.h>
14 #include <linux/ktime.h>
15 
16 #include "gfs2.h"
17 #include "incore.h"
18 #include "bmap.h"
19 #include "glock.h"
20 #include "inode.h"
21 #include "meta_io.h"
22 #include "quota.h"
23 #include "rgrp.h"
24 #include "log.h"
25 #include "super.h"
26 #include "trans.h"
27 #include "dir.h"
28 #include "util.h"
29 #include "aops.h"
30 #include "trace_gfs2.h"
31 
32 /* This doesn't need to be that large as max 64 bit pointers in a 4k
33  * block is 512, so __u16 is fine for that. It saves stack space to
34  * keep it small.
35  */
36 struct metapath {
37 	struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT];
38 	__u16 mp_list[GFS2_MAX_META_HEIGHT];
39 	int mp_fheight; /* find_metapath height */
40 	int mp_aheight; /* actual height (lookup height) */
41 };
42 
43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length);
44 
45 /**
46  * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page
47  * @ip: the inode
48  * @dibh: the dinode buffer
49  * @block: the block number that was allocated
50  * @page: The (optional) page. This is looked up if @page is NULL
51  *
52  * Returns: errno
53  */
54 
55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh,
56 			       u64 block, struct page *page)
57 {
58 	struct inode *inode = &ip->i_inode;
59 	struct buffer_head *bh;
60 	int release = 0;
61 
62 	if (!page || page->index) {
63 		page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
64 		if (!page)
65 			return -ENOMEM;
66 		release = 1;
67 	}
68 
69 	if (!PageUptodate(page)) {
70 		void *kaddr = kmap(page);
71 		u64 dsize = i_size_read(inode);
72 
73 		if (dsize > gfs2_max_stuffed_size(ip))
74 			dsize = gfs2_max_stuffed_size(ip);
75 
76 		memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
77 		memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
78 		kunmap(page);
79 
80 		SetPageUptodate(page);
81 	}
82 
83 	if (!page_has_buffers(page))
84 		create_empty_buffers(page, BIT(inode->i_blkbits),
85 				     BIT(BH_Uptodate));
86 
87 	bh = page_buffers(page);
88 
89 	if (!buffer_mapped(bh))
90 		map_bh(bh, inode->i_sb, block);
91 
92 	set_buffer_uptodate(bh);
93 	if (gfs2_is_jdata(ip))
94 		gfs2_trans_add_data(ip->i_gl, bh);
95 	else {
96 		mark_buffer_dirty(bh);
97 		gfs2_ordered_add_inode(ip);
98 	}
99 
100 	if (release) {
101 		unlock_page(page);
102 		put_page(page);
103 	}
104 
105 	return 0;
106 }
107 
108 /**
109  * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big
110  * @ip: The GFS2 inode to unstuff
111  * @page: The (optional) page. This is looked up if the @page is NULL
112  *
113  * This routine unstuffs a dinode and returns it to a "normal" state such
114  * that the height can be grown in the traditional way.
115  *
116  * Returns: errno
117  */
118 
119 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page)
120 {
121 	struct buffer_head *bh, *dibh;
122 	struct gfs2_dinode *di;
123 	u64 block = 0;
124 	int isdir = gfs2_is_dir(ip);
125 	int error;
126 
127 	down_write(&ip->i_rw_mutex);
128 
129 	error = gfs2_meta_inode_buffer(ip, &dibh);
130 	if (error)
131 		goto out;
132 
133 	if (i_size_read(&ip->i_inode)) {
134 		/* Get a free block, fill it with the stuffed data,
135 		   and write it out to disk */
136 
137 		unsigned int n = 1;
138 		error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL);
139 		if (error)
140 			goto out_brelse;
141 		if (isdir) {
142 			gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1);
143 			error = gfs2_dir_get_new_buffer(ip, block, &bh);
144 			if (error)
145 				goto out_brelse;
146 			gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header),
147 					      dibh, sizeof(struct gfs2_dinode));
148 			brelse(bh);
149 		} else {
150 			error = gfs2_unstuffer_page(ip, dibh, block, page);
151 			if (error)
152 				goto out_brelse;
153 		}
154 	}
155 
156 	/*  Set up the pointer to the new block  */
157 
158 	gfs2_trans_add_meta(ip->i_gl, dibh);
159 	di = (struct gfs2_dinode *)dibh->b_data;
160 	gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
161 
162 	if (i_size_read(&ip->i_inode)) {
163 		*(__be64 *)(di + 1) = cpu_to_be64(block);
164 		gfs2_add_inode_blocks(&ip->i_inode, 1);
165 		di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode));
166 	}
167 
168 	ip->i_height = 1;
169 	di->di_height = cpu_to_be16(1);
170 
171 out_brelse:
172 	brelse(dibh);
173 out:
174 	up_write(&ip->i_rw_mutex);
175 	return error;
176 }
177 
178 
179 /**
180  * find_metapath - Find path through the metadata tree
181  * @sdp: The superblock
182  * @block: The disk block to look up
183  * @mp: The metapath to return the result in
184  * @height: The pre-calculated height of the metadata tree
185  *
186  *   This routine returns a struct metapath structure that defines a path
187  *   through the metadata of inode "ip" to get to block "block".
188  *
189  *   Example:
190  *   Given:  "ip" is a height 3 file, "offset" is 101342453, and this is a
191  *   filesystem with a blocksize of 4096.
192  *
193  *   find_metapath() would return a struct metapath structure set to:
194  *   mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165.
195  *
196  *   That means that in order to get to the block containing the byte at
197  *   offset 101342453, we would load the indirect block pointed to by pointer
198  *   0 in the dinode.  We would then load the indirect block pointed to by
199  *   pointer 48 in that indirect block.  We would then load the data block
200  *   pointed to by pointer 165 in that indirect block.
201  *
202  *             ----------------------------------------
203  *             | Dinode |                             |
204  *             |        |                            4|
205  *             |        |0 1 2 3 4 5                 9|
206  *             |        |                            6|
207  *             ----------------------------------------
208  *                       |
209  *                       |
210  *                       V
211  *             ----------------------------------------
212  *             | Indirect Block                       |
213  *             |                                     5|
214  *             |            4 4 4 4 4 5 5            1|
215  *             |0           5 6 7 8 9 0 1            2|
216  *             ----------------------------------------
217  *                                |
218  *                                |
219  *                                V
220  *             ----------------------------------------
221  *             | Indirect Block                       |
222  *             |                         1 1 1 1 1   5|
223  *             |                         6 6 6 6 6   1|
224  *             |0                        3 4 5 6 7   2|
225  *             ----------------------------------------
226  *                                           |
227  *                                           |
228  *                                           V
229  *             ----------------------------------------
230  *             | Data block containing offset         |
231  *             |            101342453                 |
232  *             |                                      |
233  *             |                                      |
234  *             ----------------------------------------
235  *
236  */
237 
238 static void find_metapath(const struct gfs2_sbd *sdp, u64 block,
239 			  struct metapath *mp, unsigned int height)
240 {
241 	unsigned int i;
242 
243 	mp->mp_fheight = height;
244 	for (i = height; i--;)
245 		mp->mp_list[i] = do_div(block, sdp->sd_inptrs);
246 }
247 
248 static inline unsigned int metapath_branch_start(const struct metapath *mp)
249 {
250 	if (mp->mp_list[0] == 0)
251 		return 2;
252 	return 1;
253 }
254 
255 /**
256  * metaptr1 - Return the first possible metadata pointer in a metapath buffer
257  * @height: The metadata height (0 = dinode)
258  * @mp: The metapath
259  */
260 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp)
261 {
262 	struct buffer_head *bh = mp->mp_bh[height];
263 	if (height == 0)
264 		return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)));
265 	return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header)));
266 }
267 
268 /**
269  * metapointer - Return pointer to start of metadata in a buffer
270  * @height: The metadata height (0 = dinode)
271  * @mp: The metapath
272  *
273  * Return a pointer to the block number of the next height of the metadata
274  * tree given a buffer containing the pointer to the current height of the
275  * metadata tree.
276  */
277 
278 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp)
279 {
280 	__be64 *p = metaptr1(height, mp);
281 	return p + mp->mp_list[height];
282 }
283 
284 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp)
285 {
286 	const struct buffer_head *bh = mp->mp_bh[height];
287 	return (const __be64 *)(bh->b_data + bh->b_size);
288 }
289 
290 static void clone_metapath(struct metapath *clone, struct metapath *mp)
291 {
292 	unsigned int hgt;
293 
294 	*clone = *mp;
295 	for (hgt = 0; hgt < mp->mp_aheight; hgt++)
296 		get_bh(clone->mp_bh[hgt]);
297 }
298 
299 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end)
300 {
301 	const __be64 *t;
302 
303 	for (t = start; t < end; t++) {
304 		struct buffer_head *rabh;
305 
306 		if (!*t)
307 			continue;
308 
309 		rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE);
310 		if (trylock_buffer(rabh)) {
311 			if (!buffer_uptodate(rabh)) {
312 				rabh->b_end_io = end_buffer_read_sync;
313 				submit_bh(REQ_OP_READ,
314 					  REQ_RAHEAD | REQ_META | REQ_PRIO,
315 					  rabh);
316 				continue;
317 			}
318 			unlock_buffer(rabh);
319 		}
320 		brelse(rabh);
321 	}
322 }
323 
324 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp,
325 			     unsigned int x, unsigned int h)
326 {
327 	for (; x < h; x++) {
328 		__be64 *ptr = metapointer(x, mp);
329 		u64 dblock = be64_to_cpu(*ptr);
330 		int ret;
331 
332 		if (!dblock)
333 			break;
334 		ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]);
335 		if (ret)
336 			return ret;
337 	}
338 	mp->mp_aheight = x + 1;
339 	return 0;
340 }
341 
342 /**
343  * lookup_metapath - Walk the metadata tree to a specific point
344  * @ip: The inode
345  * @mp: The metapath
346  *
347  * Assumes that the inode's buffer has already been looked up and
348  * hooked onto mp->mp_bh[0] and that the metapath has been initialised
349  * by find_metapath().
350  *
351  * If this function encounters part of the tree which has not been
352  * allocated, it returns the current height of the tree at the point
353  * at which it found the unallocated block. Blocks which are found are
354  * added to the mp->mp_bh[] list.
355  *
356  * Returns: error
357  */
358 
359 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp)
360 {
361 	return __fillup_metapath(ip, mp, 0, ip->i_height - 1);
362 }
363 
364 /**
365  * fillup_metapath - fill up buffers for the metadata path to a specific height
366  * @ip: The inode
367  * @mp: The metapath
368  * @h: The height to which it should be mapped
369  *
370  * Similar to lookup_metapath, but does lookups for a range of heights
371  *
372  * Returns: error or the number of buffers filled
373  */
374 
375 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h)
376 {
377 	unsigned int x = 0;
378 	int ret;
379 
380 	if (h) {
381 		/* find the first buffer we need to look up. */
382 		for (x = h - 1; x > 0; x--) {
383 			if (mp->mp_bh[x])
384 				break;
385 		}
386 	}
387 	ret = __fillup_metapath(ip, mp, x, h);
388 	if (ret)
389 		return ret;
390 	return mp->mp_aheight - x - 1;
391 }
392 
393 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp)
394 {
395 	sector_t factor = 1, block = 0;
396 	int hgt;
397 
398 	for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) {
399 		if (hgt < mp->mp_aheight)
400 			block += mp->mp_list[hgt] * factor;
401 		factor *= sdp->sd_inptrs;
402 	}
403 	return block;
404 }
405 
406 static void release_metapath(struct metapath *mp)
407 {
408 	int i;
409 
410 	for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) {
411 		if (mp->mp_bh[i] == NULL)
412 			break;
413 		brelse(mp->mp_bh[i]);
414 		mp->mp_bh[i] = NULL;
415 	}
416 }
417 
418 /**
419  * gfs2_extent_length - Returns length of an extent of blocks
420  * @bh: The metadata block
421  * @ptr: Current position in @bh
422  * @limit: Max extent length to return
423  * @eob: Set to 1 if we hit "end of block"
424  *
425  * Returns: The length of the extent (minimum of one block)
426  */
427 
428 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob)
429 {
430 	const __be64 *end = (__be64 *)(bh->b_data + bh->b_size);
431 	const __be64 *first = ptr;
432 	u64 d = be64_to_cpu(*ptr);
433 
434 	*eob = 0;
435 	do {
436 		ptr++;
437 		if (ptr >= end)
438 			break;
439 		d++;
440 	} while(be64_to_cpu(*ptr) == d);
441 	if (ptr >= end)
442 		*eob = 1;
443 	return ptr - first;
444 }
445 
446 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE };
447 
448 /*
449  * gfs2_metadata_walker - walk an indirect block
450  * @mp: Metapath to indirect block
451  * @ptrs: Number of pointers to look at
452  *
453  * When returning WALK_FOLLOW, the walker must update @mp to point at the right
454  * indirect block to follow.
455  */
456 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp,
457 						   unsigned int ptrs);
458 
459 /*
460  * gfs2_walk_metadata - walk a tree of indirect blocks
461  * @inode: The inode
462  * @mp: Starting point of walk
463  * @max_len: Maximum number of blocks to walk
464  * @walker: Called during the walk
465  *
466  * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or
467  * past the end of metadata, and a negative error code otherwise.
468  */
469 
470 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp,
471 		u64 max_len, gfs2_metadata_walker walker)
472 {
473 	struct gfs2_inode *ip = GFS2_I(inode);
474 	struct gfs2_sbd *sdp = GFS2_SB(inode);
475 	u64 factor = 1;
476 	unsigned int hgt;
477 	int ret;
478 
479 	/*
480 	 * The walk starts in the lowest allocated indirect block, which may be
481 	 * before the position indicated by @mp.  Adjust @max_len accordingly
482 	 * to avoid a short walk.
483 	 */
484 	for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) {
485 		max_len += mp->mp_list[hgt] * factor;
486 		mp->mp_list[hgt] = 0;
487 		factor *= sdp->sd_inptrs;
488 	}
489 
490 	for (;;) {
491 		u16 start = mp->mp_list[hgt];
492 		enum walker_status status;
493 		unsigned int ptrs;
494 		u64 len;
495 
496 		/* Walk indirect block. */
497 		ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start;
498 		len = ptrs * factor;
499 		if (len > max_len)
500 			ptrs = DIV_ROUND_UP_ULL(max_len, factor);
501 		status = walker(mp, ptrs);
502 		switch (status) {
503 		case WALK_STOP:
504 			return 1;
505 		case WALK_FOLLOW:
506 			BUG_ON(mp->mp_aheight == mp->mp_fheight);
507 			ptrs = mp->mp_list[hgt] - start;
508 			len = ptrs * factor;
509 			break;
510 		case WALK_CONTINUE:
511 			break;
512 		}
513 		if (len >= max_len)
514 			break;
515 		max_len -= len;
516 		if (status == WALK_FOLLOW)
517 			goto fill_up_metapath;
518 
519 lower_metapath:
520 		/* Decrease height of metapath. */
521 		brelse(mp->mp_bh[hgt]);
522 		mp->mp_bh[hgt] = NULL;
523 		mp->mp_list[hgt] = 0;
524 		if (!hgt)
525 			break;
526 		hgt--;
527 		factor *= sdp->sd_inptrs;
528 
529 		/* Advance in metadata tree. */
530 		(mp->mp_list[hgt])++;
531 		if (mp->mp_list[hgt] >= sdp->sd_inptrs) {
532 			if (!hgt)
533 				break;
534 			goto lower_metapath;
535 		}
536 
537 fill_up_metapath:
538 		/* Increase height of metapath. */
539 		ret = fillup_metapath(ip, mp, ip->i_height - 1);
540 		if (ret < 0)
541 			return ret;
542 		hgt += ret;
543 		for (; ret; ret--)
544 			do_div(factor, sdp->sd_inptrs);
545 		mp->mp_aheight = hgt + 1;
546 	}
547 	return 0;
548 }
549 
550 static enum walker_status gfs2_hole_walker(struct metapath *mp,
551 					   unsigned int ptrs)
552 {
553 	const __be64 *start, *ptr, *end;
554 	unsigned int hgt;
555 
556 	hgt = mp->mp_aheight - 1;
557 	start = metapointer(hgt, mp);
558 	end = start + ptrs;
559 
560 	for (ptr = start; ptr < end; ptr++) {
561 		if (*ptr) {
562 			mp->mp_list[hgt] += ptr - start;
563 			if (mp->mp_aheight == mp->mp_fheight)
564 				return WALK_STOP;
565 			return WALK_FOLLOW;
566 		}
567 	}
568 	return WALK_CONTINUE;
569 }
570 
571 /**
572  * gfs2_hole_size - figure out the size of a hole
573  * @inode: The inode
574  * @lblock: The logical starting block number
575  * @len: How far to look (in blocks)
576  * @mp: The metapath at lblock
577  * @iomap: The iomap to store the hole size in
578  *
579  * This function modifies @mp.
580  *
581  * Returns: errno on error
582  */
583 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len,
584 			  struct metapath *mp, struct iomap *iomap)
585 {
586 	struct metapath clone;
587 	u64 hole_size;
588 	int ret;
589 
590 	clone_metapath(&clone, mp);
591 	ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker);
592 	if (ret < 0)
593 		goto out;
594 
595 	if (ret == 1)
596 		hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock;
597 	else
598 		hole_size = len;
599 	iomap->length = hole_size << inode->i_blkbits;
600 	ret = 0;
601 
602 out:
603 	release_metapath(&clone);
604 	return ret;
605 }
606 
607 static inline __be64 *gfs2_indirect_init(struct metapath *mp,
608 					 struct gfs2_glock *gl, unsigned int i,
609 					 unsigned offset, u64 bn)
610 {
611 	__be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data +
612 		       ((i > 1) ? sizeof(struct gfs2_meta_header) :
613 				 sizeof(struct gfs2_dinode)));
614 	BUG_ON(i < 1);
615 	BUG_ON(mp->mp_bh[i] != NULL);
616 	mp->mp_bh[i] = gfs2_meta_new(gl, bn);
617 	gfs2_trans_add_meta(gl, mp->mp_bh[i]);
618 	gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN);
619 	gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header));
620 	ptr += offset;
621 	*ptr = cpu_to_be64(bn);
622 	return ptr;
623 }
624 
625 enum alloc_state {
626 	ALLOC_DATA = 0,
627 	ALLOC_GROW_DEPTH = 1,
628 	ALLOC_GROW_HEIGHT = 2,
629 	/* ALLOC_UNSTUFF = 3,   TBD and rather complicated */
630 };
631 
632 /**
633  * gfs2_iomap_alloc - Build a metadata tree of the requested height
634  * @inode: The GFS2 inode
635  * @iomap: The iomap structure
636  * @mp: The metapath, with proper height information calculated
637  *
638  * In this routine we may have to alloc:
639  *   i) Indirect blocks to grow the metadata tree height
640  *  ii) Indirect blocks to fill in lower part of the metadata tree
641  * iii) Data blocks
642  *
643  * This function is called after gfs2_iomap_get, which works out the
644  * total number of blocks which we need via gfs2_alloc_size.
645  *
646  * We then do the actual allocation asking for an extent at a time (if
647  * enough contiguous free blocks are available, there will only be one
648  * allocation request per call) and uses the state machine to initialise
649  * the blocks in order.
650  *
651  * Right now, this function will allocate at most one indirect block
652  * worth of data -- with a default block size of 4K, that's slightly
653  * less than 2M.  If this limitation is ever removed to allow huge
654  * allocations, we would probably still want to limit the iomap size we
655  * return to avoid stalling other tasks during huge writes; the next
656  * iomap iteration would then find the blocks already allocated.
657  *
658  * Returns: errno on error
659  */
660 
661 static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap,
662 			    struct metapath *mp)
663 {
664 	struct gfs2_inode *ip = GFS2_I(inode);
665 	struct gfs2_sbd *sdp = GFS2_SB(inode);
666 	struct buffer_head *dibh = mp->mp_bh[0];
667 	u64 bn;
668 	unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0;
669 	size_t dblks = iomap->length >> inode->i_blkbits;
670 	const unsigned end_of_metadata = mp->mp_fheight - 1;
671 	int ret;
672 	enum alloc_state state;
673 	__be64 *ptr;
674 	__be64 zero_bn = 0;
675 
676 	BUG_ON(mp->mp_aheight < 1);
677 	BUG_ON(dibh == NULL);
678 	BUG_ON(dblks < 1);
679 
680 	gfs2_trans_add_meta(ip->i_gl, dibh);
681 
682 	down_write(&ip->i_rw_mutex);
683 
684 	if (mp->mp_fheight == mp->mp_aheight) {
685 		/* Bottom indirect block exists */
686 		state = ALLOC_DATA;
687 	} else {
688 		/* Need to allocate indirect blocks */
689 		if (mp->mp_fheight == ip->i_height) {
690 			/* Writing into existing tree, extend tree down */
691 			iblks = mp->mp_fheight - mp->mp_aheight;
692 			state = ALLOC_GROW_DEPTH;
693 		} else {
694 			/* Building up tree height */
695 			state = ALLOC_GROW_HEIGHT;
696 			iblks = mp->mp_fheight - ip->i_height;
697 			branch_start = metapath_branch_start(mp);
698 			iblks += (mp->mp_fheight - branch_start);
699 		}
700 	}
701 
702 	/* start of the second part of the function (state machine) */
703 
704 	blks = dblks + iblks;
705 	i = mp->mp_aheight;
706 	do {
707 		n = blks - alloced;
708 		ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL);
709 		if (ret)
710 			goto out;
711 		alloced += n;
712 		if (state != ALLOC_DATA || gfs2_is_jdata(ip))
713 			gfs2_trans_remove_revoke(sdp, bn, n);
714 		switch (state) {
715 		/* Growing height of tree */
716 		case ALLOC_GROW_HEIGHT:
717 			if (i == 1) {
718 				ptr = (__be64 *)(dibh->b_data +
719 						 sizeof(struct gfs2_dinode));
720 				zero_bn = *ptr;
721 			}
722 			for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0;
723 			     i++, n--)
724 				gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++);
725 			if (i - 1 == mp->mp_fheight - ip->i_height) {
726 				i--;
727 				gfs2_buffer_copy_tail(mp->mp_bh[i],
728 						sizeof(struct gfs2_meta_header),
729 						dibh, sizeof(struct gfs2_dinode));
730 				gfs2_buffer_clear_tail(dibh,
731 						sizeof(struct gfs2_dinode) +
732 						sizeof(__be64));
733 				ptr = (__be64 *)(mp->mp_bh[i]->b_data +
734 					sizeof(struct gfs2_meta_header));
735 				*ptr = zero_bn;
736 				state = ALLOC_GROW_DEPTH;
737 				for(i = branch_start; i < mp->mp_fheight; i++) {
738 					if (mp->mp_bh[i] == NULL)
739 						break;
740 					brelse(mp->mp_bh[i]);
741 					mp->mp_bh[i] = NULL;
742 				}
743 				i = branch_start;
744 			}
745 			if (n == 0)
746 				break;
747 		/* fall through - To branching from existing tree */
748 		case ALLOC_GROW_DEPTH:
749 			if (i > 1 && i < mp->mp_fheight)
750 				gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]);
751 			for (; i < mp->mp_fheight && n > 0; i++, n--)
752 				gfs2_indirect_init(mp, ip->i_gl, i,
753 						   mp->mp_list[i-1], bn++);
754 			if (i == mp->mp_fheight)
755 				state = ALLOC_DATA;
756 			if (n == 0)
757 				break;
758 		/* fall through - To tree complete, adding data blocks */
759 		case ALLOC_DATA:
760 			BUG_ON(n > dblks);
761 			BUG_ON(mp->mp_bh[end_of_metadata] == NULL);
762 			gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]);
763 			dblks = n;
764 			ptr = metapointer(end_of_metadata, mp);
765 			iomap->addr = bn << inode->i_blkbits;
766 			iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW;
767 			while (n-- > 0)
768 				*ptr++ = cpu_to_be64(bn++);
769 			break;
770 		}
771 	} while (iomap->addr == IOMAP_NULL_ADDR);
772 
773 	iomap->type = IOMAP_MAPPED;
774 	iomap->length = (u64)dblks << inode->i_blkbits;
775 	ip->i_height = mp->mp_fheight;
776 	gfs2_add_inode_blocks(&ip->i_inode, alloced);
777 	gfs2_dinode_out(ip, dibh->b_data);
778 out:
779 	up_write(&ip->i_rw_mutex);
780 	return ret;
781 }
782 
783 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE
784 
785 /**
786  * gfs2_alloc_size - Compute the maximum allocation size
787  * @inode: The inode
788  * @mp: The metapath
789  * @size: Requested size in blocks
790  *
791  * Compute the maximum size of the next allocation at @mp.
792  *
793  * Returns: size in blocks
794  */
795 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size)
796 {
797 	struct gfs2_inode *ip = GFS2_I(inode);
798 	struct gfs2_sbd *sdp = GFS2_SB(inode);
799 	const __be64 *first, *ptr, *end;
800 
801 	/*
802 	 * For writes to stuffed files, this function is called twice via
803 	 * gfs2_iomap_get, before and after unstuffing. The size we return the
804 	 * first time needs to be large enough to get the reservation and
805 	 * allocation sizes right.  The size we return the second time must
806 	 * be exact or else gfs2_iomap_alloc won't do the right thing.
807 	 */
808 
809 	if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) {
810 		unsigned int maxsize = mp->mp_fheight > 1 ?
811 			sdp->sd_inptrs : sdp->sd_diptrs;
812 		maxsize -= mp->mp_list[mp->mp_fheight - 1];
813 		if (size > maxsize)
814 			size = maxsize;
815 		return size;
816 	}
817 
818 	first = metapointer(ip->i_height - 1, mp);
819 	end = metaend(ip->i_height - 1, mp);
820 	if (end - first > size)
821 		end = first + size;
822 	for (ptr = first; ptr < end; ptr++) {
823 		if (*ptr)
824 			break;
825 	}
826 	return ptr - first;
827 }
828 
829 /**
830  * gfs2_iomap_get - Map blocks from an inode to disk blocks
831  * @inode: The inode
832  * @pos: Starting position in bytes
833  * @length: Length to map, in bytes
834  * @flags: iomap flags
835  * @iomap: The iomap structure
836  * @mp: The metapath
837  *
838  * Returns: errno
839  */
840 static int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
841 			  unsigned flags, struct iomap *iomap,
842 			  struct metapath *mp)
843 {
844 	struct gfs2_inode *ip = GFS2_I(inode);
845 	struct gfs2_sbd *sdp = GFS2_SB(inode);
846 	loff_t size = i_size_read(inode);
847 	__be64 *ptr;
848 	sector_t lblock;
849 	sector_t lblock_stop;
850 	int ret;
851 	int eob;
852 	u64 len;
853 	struct buffer_head *dibh = NULL, *bh;
854 	u8 height;
855 
856 	if (!length)
857 		return -EINVAL;
858 
859 	down_read(&ip->i_rw_mutex);
860 
861 	ret = gfs2_meta_inode_buffer(ip, &dibh);
862 	if (ret)
863 		goto unlock;
864 	mp->mp_bh[0] = dibh;
865 
866 	if (gfs2_is_stuffed(ip)) {
867 		if (flags & IOMAP_WRITE) {
868 			loff_t max_size = gfs2_max_stuffed_size(ip);
869 
870 			if (pos + length > max_size)
871 				goto unstuff;
872 			iomap->length = max_size;
873 		} else {
874 			if (pos >= size) {
875 				if (flags & IOMAP_REPORT) {
876 					ret = -ENOENT;
877 					goto unlock;
878 				} else {
879 					/* report a hole */
880 					iomap->offset = pos;
881 					iomap->length = length;
882 					goto do_alloc;
883 				}
884 			}
885 			iomap->length = size;
886 		}
887 		iomap->addr = (ip->i_no_addr << inode->i_blkbits) +
888 			      sizeof(struct gfs2_dinode);
889 		iomap->type = IOMAP_INLINE;
890 		iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode);
891 		goto out;
892 	}
893 
894 unstuff:
895 	lblock = pos >> inode->i_blkbits;
896 	iomap->offset = lblock << inode->i_blkbits;
897 	lblock_stop = (pos + length - 1) >> inode->i_blkbits;
898 	len = lblock_stop - lblock + 1;
899 	iomap->length = len << inode->i_blkbits;
900 
901 	height = ip->i_height;
902 	while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height])
903 		height++;
904 	find_metapath(sdp, lblock, mp, height);
905 	if (height > ip->i_height || gfs2_is_stuffed(ip))
906 		goto do_alloc;
907 
908 	ret = lookup_metapath(ip, mp);
909 	if (ret)
910 		goto unlock;
911 
912 	if (mp->mp_aheight != ip->i_height)
913 		goto do_alloc;
914 
915 	ptr = metapointer(ip->i_height - 1, mp);
916 	if (*ptr == 0)
917 		goto do_alloc;
918 
919 	bh = mp->mp_bh[ip->i_height - 1];
920 	len = gfs2_extent_length(bh, ptr, len, &eob);
921 
922 	iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits;
923 	iomap->length = len << inode->i_blkbits;
924 	iomap->type = IOMAP_MAPPED;
925 	iomap->flags |= IOMAP_F_MERGED;
926 	if (eob)
927 		iomap->flags |= IOMAP_F_GFS2_BOUNDARY;
928 
929 out:
930 	iomap->bdev = inode->i_sb->s_bdev;
931 unlock:
932 	up_read(&ip->i_rw_mutex);
933 	return ret;
934 
935 do_alloc:
936 	iomap->addr = IOMAP_NULL_ADDR;
937 	iomap->type = IOMAP_HOLE;
938 	if (flags & IOMAP_REPORT) {
939 		if (pos >= size)
940 			ret = -ENOENT;
941 		else if (height == ip->i_height)
942 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
943 		else
944 			iomap->length = size - pos;
945 	} else if (flags & IOMAP_WRITE) {
946 		u64 alloc_size;
947 
948 		if (flags & IOMAP_DIRECT)
949 			goto out;  /* (see gfs2_file_direct_write) */
950 
951 		len = gfs2_alloc_size(inode, mp, len);
952 		alloc_size = len << inode->i_blkbits;
953 		if (alloc_size < iomap->length)
954 			iomap->length = alloc_size;
955 	} else {
956 		if (pos < size && height == ip->i_height)
957 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
958 	}
959 	goto out;
960 }
961 
962 /**
963  * gfs2_lblk_to_dblk - convert logical block to disk block
964  * @inode: the inode of the file we're mapping
965  * @lblock: the block relative to the start of the file
966  * @dblock: the returned dblock, if no error
967  *
968  * This function maps a single block from a file logical block (relative to
969  * the start of the file) to a file system absolute block using iomap.
970  *
971  * Returns: the absolute file system block, or an error
972  */
973 int gfs2_lblk_to_dblk(struct inode *inode, u32 lblock, u64 *dblock)
974 {
975 	struct iomap iomap = { };
976 	struct metapath mp = { .mp_aheight = 1, };
977 	loff_t pos = (loff_t)lblock << inode->i_blkbits;
978 	int ret;
979 
980 	ret = gfs2_iomap_get(inode, pos, i_blocksize(inode), 0, &iomap, &mp);
981 	release_metapath(&mp);
982 	if (ret == 0)
983 		*dblock = iomap.addr >> inode->i_blkbits;
984 
985 	return ret;
986 }
987 
988 static int gfs2_write_lock(struct inode *inode)
989 {
990 	struct gfs2_inode *ip = GFS2_I(inode);
991 	struct gfs2_sbd *sdp = GFS2_SB(inode);
992 	int error;
993 
994 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
995 	error = gfs2_glock_nq(&ip->i_gh);
996 	if (error)
997 		goto out_uninit;
998 	if (&ip->i_inode == sdp->sd_rindex) {
999 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
1000 
1001 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
1002 					   GL_NOCACHE, &m_ip->i_gh);
1003 		if (error)
1004 			goto out_unlock;
1005 	}
1006 	return 0;
1007 
1008 out_unlock:
1009 	gfs2_glock_dq(&ip->i_gh);
1010 out_uninit:
1011 	gfs2_holder_uninit(&ip->i_gh);
1012 	return error;
1013 }
1014 
1015 static void gfs2_write_unlock(struct inode *inode)
1016 {
1017 	struct gfs2_inode *ip = GFS2_I(inode);
1018 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1019 
1020 	if (&ip->i_inode == sdp->sd_rindex) {
1021 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
1022 
1023 		gfs2_glock_dq_uninit(&m_ip->i_gh);
1024 	}
1025 	gfs2_glock_dq_uninit(&ip->i_gh);
1026 }
1027 
1028 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos,
1029 				   unsigned len, struct iomap *iomap)
1030 {
1031 	unsigned int blockmask = i_blocksize(inode) - 1;
1032 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1033 	unsigned int blocks;
1034 
1035 	blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits;
1036 	return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0);
1037 }
1038 
1039 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos,
1040 				 unsigned copied, struct page *page,
1041 				 struct iomap *iomap)
1042 {
1043 	struct gfs2_trans *tr = current->journal_info;
1044 	struct gfs2_inode *ip = GFS2_I(inode);
1045 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1046 
1047 	if (page && !gfs2_is_stuffed(ip))
1048 		gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied);
1049 
1050 	if (tr->tr_num_buf_new)
1051 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1052 
1053 	gfs2_trans_end(sdp);
1054 }
1055 
1056 static const struct iomap_page_ops gfs2_iomap_page_ops = {
1057 	.page_prepare = gfs2_iomap_page_prepare,
1058 	.page_done = gfs2_iomap_page_done,
1059 };
1060 
1061 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos,
1062 				  loff_t length, unsigned flags,
1063 				  struct iomap *iomap,
1064 				  struct metapath *mp)
1065 {
1066 	struct gfs2_inode *ip = GFS2_I(inode);
1067 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1068 	bool unstuff;
1069 	int ret;
1070 
1071 	unstuff = gfs2_is_stuffed(ip) &&
1072 		  pos + length > gfs2_max_stuffed_size(ip);
1073 
1074 	if (unstuff || iomap->type == IOMAP_HOLE) {
1075 		unsigned int data_blocks, ind_blocks;
1076 		struct gfs2_alloc_parms ap = {};
1077 		unsigned int rblocks;
1078 		struct gfs2_trans *tr;
1079 
1080 		gfs2_write_calc_reserv(ip, iomap->length, &data_blocks,
1081 				       &ind_blocks);
1082 		ap.target = data_blocks + ind_blocks;
1083 		ret = gfs2_quota_lock_check(ip, &ap);
1084 		if (ret)
1085 			return ret;
1086 
1087 		ret = gfs2_inplace_reserve(ip, &ap);
1088 		if (ret)
1089 			goto out_qunlock;
1090 
1091 		rblocks = RES_DINODE + ind_blocks;
1092 		if (gfs2_is_jdata(ip))
1093 			rblocks += data_blocks;
1094 		if (ind_blocks || data_blocks)
1095 			rblocks += RES_STATFS + RES_QUOTA;
1096 		if (inode == sdp->sd_rindex)
1097 			rblocks += 2 * RES_STATFS;
1098 		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1099 
1100 		ret = gfs2_trans_begin(sdp, rblocks,
1101 				       iomap->length >> inode->i_blkbits);
1102 		if (ret)
1103 			goto out_trans_fail;
1104 
1105 		if (unstuff) {
1106 			ret = gfs2_unstuff_dinode(ip, NULL);
1107 			if (ret)
1108 				goto out_trans_end;
1109 			release_metapath(mp);
1110 			ret = gfs2_iomap_get(inode, iomap->offset,
1111 					     iomap->length, flags, iomap, mp);
1112 			if (ret)
1113 				goto out_trans_end;
1114 		}
1115 
1116 		if (iomap->type == IOMAP_HOLE) {
1117 			ret = gfs2_iomap_alloc(inode, iomap, mp);
1118 			if (ret) {
1119 				gfs2_trans_end(sdp);
1120 				gfs2_inplace_release(ip);
1121 				punch_hole(ip, iomap->offset, iomap->length);
1122 				goto out_qunlock;
1123 			}
1124 		}
1125 
1126 		tr = current->journal_info;
1127 		if (tr->tr_num_buf_new)
1128 			__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1129 
1130 		gfs2_trans_end(sdp);
1131 	}
1132 
1133 	if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip))
1134 		iomap->page_ops = &gfs2_iomap_page_ops;
1135 	return 0;
1136 
1137 out_trans_end:
1138 	gfs2_trans_end(sdp);
1139 out_trans_fail:
1140 	gfs2_inplace_release(ip);
1141 out_qunlock:
1142 	gfs2_quota_unlock(ip);
1143 	return ret;
1144 }
1145 
1146 static inline bool gfs2_iomap_need_write_lock(unsigned flags)
1147 {
1148 	return (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT);
1149 }
1150 
1151 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
1152 			    unsigned flags, struct iomap *iomap,
1153 			    struct iomap *srcmap)
1154 {
1155 	struct gfs2_inode *ip = GFS2_I(inode);
1156 	struct metapath mp = { .mp_aheight = 1, };
1157 	int ret;
1158 
1159 	iomap->flags |= IOMAP_F_BUFFER_HEAD;
1160 
1161 	trace_gfs2_iomap_start(ip, pos, length, flags);
1162 	if (gfs2_iomap_need_write_lock(flags)) {
1163 		ret = gfs2_write_lock(inode);
1164 		if (ret)
1165 			goto out;
1166 	}
1167 
1168 	ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp);
1169 	if (ret)
1170 		goto out_unlock;
1171 
1172 	switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1173 	case IOMAP_WRITE:
1174 		if (flags & IOMAP_DIRECT) {
1175 			/*
1176 			 * Silently fall back to buffered I/O for stuffed files
1177 			 * or if we've got a hole (see gfs2_file_direct_write).
1178 			 */
1179 			if (iomap->type != IOMAP_MAPPED)
1180 				ret = -ENOTBLK;
1181 			goto out_unlock;
1182 		}
1183 		break;
1184 	case IOMAP_ZERO:
1185 		if (iomap->type == IOMAP_HOLE)
1186 			goto out_unlock;
1187 		break;
1188 	default:
1189 		goto out_unlock;
1190 	}
1191 
1192 	ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp);
1193 
1194 out_unlock:
1195 	if (ret && gfs2_iomap_need_write_lock(flags))
1196 		gfs2_write_unlock(inode);
1197 	release_metapath(&mp);
1198 out:
1199 	trace_gfs2_iomap_end(ip, iomap, ret);
1200 	return ret;
1201 }
1202 
1203 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length,
1204 			  ssize_t written, unsigned flags, struct iomap *iomap)
1205 {
1206 	struct gfs2_inode *ip = GFS2_I(inode);
1207 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1208 
1209 	switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1210 	case IOMAP_WRITE:
1211 		if (flags & IOMAP_DIRECT)
1212 			return 0;
1213 		break;
1214 	case IOMAP_ZERO:
1215 		 if (iomap->type == IOMAP_HOLE)
1216 			 return 0;
1217 		 break;
1218 	default:
1219 		 return 0;
1220 	}
1221 
1222 	if (!gfs2_is_stuffed(ip))
1223 		gfs2_ordered_add_inode(ip);
1224 
1225 	if (inode == sdp->sd_rindex)
1226 		adjust_fs_space(inode);
1227 
1228 	gfs2_inplace_release(ip);
1229 
1230 	if (length != written && (iomap->flags & IOMAP_F_NEW)) {
1231 		/* Deallocate blocks that were just allocated. */
1232 		loff_t blockmask = i_blocksize(inode) - 1;
1233 		loff_t end = (pos + length) & ~blockmask;
1234 
1235 		pos = (pos + written + blockmask) & ~blockmask;
1236 		if (pos < end) {
1237 			truncate_pagecache_range(inode, pos, end - 1);
1238 			punch_hole(ip, pos, end - pos);
1239 		}
1240 	}
1241 
1242 	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
1243 		gfs2_quota_unlock(ip);
1244 
1245 	if (unlikely(!written))
1246 		goto out_unlock;
1247 
1248 	if (iomap->flags & IOMAP_F_SIZE_CHANGED)
1249 		mark_inode_dirty(inode);
1250 	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
1251 
1252 out_unlock:
1253 	if (gfs2_iomap_need_write_lock(flags))
1254 		gfs2_write_unlock(inode);
1255 	return 0;
1256 }
1257 
1258 const struct iomap_ops gfs2_iomap_ops = {
1259 	.iomap_begin = gfs2_iomap_begin,
1260 	.iomap_end = gfs2_iomap_end,
1261 };
1262 
1263 /**
1264  * gfs2_block_map - Map one or more blocks of an inode to a disk block
1265  * @inode: The inode
1266  * @lblock: The logical block number
1267  * @bh_map: The bh to be mapped
1268  * @create: True if its ok to alloc blocks to satify the request
1269  *
1270  * The size of the requested mapping is defined in bh_map->b_size.
1271  *
1272  * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged
1273  * when @lblock is not mapped.  Sets buffer_mapped(bh_map) and
1274  * bh_map->b_size to indicate the size of the mapping when @lblock and
1275  * successive blocks are mapped, up to the requested size.
1276  *
1277  * Sets buffer_boundary() if a read of metadata will be required
1278  * before the next block can be mapped. Sets buffer_new() if new
1279  * blocks were allocated.
1280  *
1281  * Returns: errno
1282  */
1283 
1284 int gfs2_block_map(struct inode *inode, sector_t lblock,
1285 		   struct buffer_head *bh_map, int create)
1286 {
1287 	struct gfs2_inode *ip = GFS2_I(inode);
1288 	loff_t pos = (loff_t)lblock << inode->i_blkbits;
1289 	loff_t length = bh_map->b_size;
1290 	struct metapath mp = { .mp_aheight = 1, };
1291 	struct iomap iomap = { };
1292 	int ret;
1293 
1294 	clear_buffer_mapped(bh_map);
1295 	clear_buffer_new(bh_map);
1296 	clear_buffer_boundary(bh_map);
1297 	trace_gfs2_bmap(ip, bh_map, lblock, create, 1);
1298 
1299 	if (create) {
1300 		ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, &iomap, &mp);
1301 		if (!ret && iomap.type == IOMAP_HOLE)
1302 			ret = gfs2_iomap_alloc(inode, &iomap, &mp);
1303 		release_metapath(&mp);
1304 	} else {
1305 		ret = gfs2_iomap_get(inode, pos, length, 0, &iomap, &mp);
1306 		release_metapath(&mp);
1307 	}
1308 	if (ret)
1309 		goto out;
1310 
1311 	if (iomap.length > bh_map->b_size) {
1312 		iomap.length = bh_map->b_size;
1313 		iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY;
1314 	}
1315 	if (iomap.addr != IOMAP_NULL_ADDR)
1316 		map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits);
1317 	bh_map->b_size = iomap.length;
1318 	if (iomap.flags & IOMAP_F_GFS2_BOUNDARY)
1319 		set_buffer_boundary(bh_map);
1320 	if (iomap.flags & IOMAP_F_NEW)
1321 		set_buffer_new(bh_map);
1322 
1323 out:
1324 	trace_gfs2_bmap(ip, bh_map, lblock, create, ret);
1325 	return ret;
1326 }
1327 
1328 /*
1329  * Deprecated: do not use in new code
1330  */
1331 int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen)
1332 {
1333 	struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 };
1334 	int ret;
1335 	int create = *new;
1336 
1337 	BUG_ON(!extlen);
1338 	BUG_ON(!dblock);
1339 	BUG_ON(!new);
1340 
1341 	bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5));
1342 	ret = gfs2_block_map(inode, lblock, &bh, create);
1343 	*extlen = bh.b_size >> inode->i_blkbits;
1344 	*dblock = bh.b_blocknr;
1345 	if (buffer_new(&bh))
1346 		*new = 1;
1347 	else
1348 		*new = 0;
1349 	return ret;
1350 }
1351 
1352 static int gfs2_block_zero_range(struct inode *inode, loff_t from,
1353 				 unsigned int length)
1354 {
1355 	return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops);
1356 }
1357 
1358 #define GFS2_JTRUNC_REVOKES 8192
1359 
1360 /**
1361  * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files
1362  * @inode: The inode being truncated
1363  * @oldsize: The original (larger) size
1364  * @newsize: The new smaller size
1365  *
1366  * With jdata files, we have to journal a revoke for each block which is
1367  * truncated. As a result, we need to split this into separate transactions
1368  * if the number of pages being truncated gets too large.
1369  */
1370 
1371 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize)
1372 {
1373 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1374 	u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
1375 	u64 chunk;
1376 	int error;
1377 
1378 	while (oldsize != newsize) {
1379 		struct gfs2_trans *tr;
1380 		unsigned int offs;
1381 
1382 		chunk = oldsize - newsize;
1383 		if (chunk > max_chunk)
1384 			chunk = max_chunk;
1385 
1386 		offs = oldsize & ~PAGE_MASK;
1387 		if (offs && chunk > PAGE_SIZE)
1388 			chunk = offs + ((chunk - offs) & PAGE_MASK);
1389 
1390 		truncate_pagecache(inode, oldsize - chunk);
1391 		oldsize -= chunk;
1392 
1393 		tr = current->journal_info;
1394 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
1395 			continue;
1396 
1397 		gfs2_trans_end(sdp);
1398 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
1399 		if (error)
1400 			return error;
1401 	}
1402 
1403 	return 0;
1404 }
1405 
1406 static int trunc_start(struct inode *inode, u64 newsize)
1407 {
1408 	struct gfs2_inode *ip = GFS2_I(inode);
1409 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1410 	struct buffer_head *dibh = NULL;
1411 	int journaled = gfs2_is_jdata(ip);
1412 	u64 oldsize = inode->i_size;
1413 	int error;
1414 
1415 	if (journaled)
1416 		error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES);
1417 	else
1418 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1419 	if (error)
1420 		return error;
1421 
1422 	error = gfs2_meta_inode_buffer(ip, &dibh);
1423 	if (error)
1424 		goto out;
1425 
1426 	gfs2_trans_add_meta(ip->i_gl, dibh);
1427 
1428 	if (gfs2_is_stuffed(ip)) {
1429 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize);
1430 	} else {
1431 		unsigned int blocksize = i_blocksize(inode);
1432 		unsigned int offs = newsize & (blocksize - 1);
1433 		if (offs) {
1434 			error = gfs2_block_zero_range(inode, newsize,
1435 						      blocksize - offs);
1436 			if (error)
1437 				goto out;
1438 		}
1439 		ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG;
1440 	}
1441 
1442 	i_size_write(inode, newsize);
1443 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1444 	gfs2_dinode_out(ip, dibh->b_data);
1445 
1446 	if (journaled)
1447 		error = gfs2_journaled_truncate(inode, oldsize, newsize);
1448 	else
1449 		truncate_pagecache(inode, newsize);
1450 
1451 out:
1452 	brelse(dibh);
1453 	if (current->journal_info)
1454 		gfs2_trans_end(sdp);
1455 	return error;
1456 }
1457 
1458 int gfs2_iomap_get_alloc(struct inode *inode, loff_t pos, loff_t length,
1459 			 struct iomap *iomap)
1460 {
1461 	struct metapath mp = { .mp_aheight = 1, };
1462 	int ret;
1463 
1464 	ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp);
1465 	if (!ret && iomap->type == IOMAP_HOLE)
1466 		ret = gfs2_iomap_alloc(inode, iomap, &mp);
1467 	release_metapath(&mp);
1468 	return ret;
1469 }
1470 
1471 /**
1472  * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein
1473  * @ip: inode
1474  * @rg_gh: holder of resource group glock
1475  * @bh: buffer head to sweep
1476  * @start: starting point in bh
1477  * @end: end point in bh
1478  * @meta: true if bh points to metadata (rather than data)
1479  * @btotal: place to keep count of total blocks freed
1480  *
1481  * We sweep a metadata buffer (provided by the metapath) for blocks we need to
1482  * free, and free them all. However, we do it one rgrp at a time. If this
1483  * block has references to multiple rgrps, we break it into individual
1484  * transactions. This allows other processes to use the rgrps while we're
1485  * focused on a single one, for better concurrency / performance.
1486  * At every transaction boundary, we rewrite the inode into the journal.
1487  * That way the bitmaps are kept consistent with the inode and we can recover
1488  * if we're interrupted by power-outages.
1489  *
1490  * Returns: 0, or return code if an error occurred.
1491  *          *btotal has the total number of blocks freed
1492  */
1493 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh,
1494 			      struct buffer_head *bh, __be64 *start, __be64 *end,
1495 			      bool meta, u32 *btotal)
1496 {
1497 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1498 	struct gfs2_rgrpd *rgd;
1499 	struct gfs2_trans *tr;
1500 	__be64 *p;
1501 	int blks_outside_rgrp;
1502 	u64 bn, bstart, isize_blks;
1503 	s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */
1504 	int ret = 0;
1505 	bool buf_in_tr = false; /* buffer was added to transaction */
1506 
1507 more_rgrps:
1508 	rgd = NULL;
1509 	if (gfs2_holder_initialized(rd_gh)) {
1510 		rgd = gfs2_glock2rgrp(rd_gh->gh_gl);
1511 		gfs2_assert_withdraw(sdp,
1512 			     gfs2_glock_is_locked_by_me(rd_gh->gh_gl));
1513 	}
1514 	blks_outside_rgrp = 0;
1515 	bstart = 0;
1516 	blen = 0;
1517 
1518 	for (p = start; p < end; p++) {
1519 		if (!*p)
1520 			continue;
1521 		bn = be64_to_cpu(*p);
1522 
1523 		if (rgd) {
1524 			if (!rgrp_contains_block(rgd, bn)) {
1525 				blks_outside_rgrp++;
1526 				continue;
1527 			}
1528 		} else {
1529 			rgd = gfs2_blk2rgrpd(sdp, bn, true);
1530 			if (unlikely(!rgd)) {
1531 				ret = -EIO;
1532 				goto out;
1533 			}
1534 			ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1535 						 0, rd_gh);
1536 			if (ret)
1537 				goto out;
1538 
1539 			/* Must be done with the rgrp glock held: */
1540 			if (gfs2_rs_active(&ip->i_res) &&
1541 			    rgd == ip->i_res.rs_rbm.rgd)
1542 				gfs2_rs_deltree(&ip->i_res);
1543 		}
1544 
1545 		/* The size of our transactions will be unknown until we
1546 		   actually process all the metadata blocks that relate to
1547 		   the rgrp. So we estimate. We know it can't be more than
1548 		   the dinode's i_blocks and we don't want to exceed the
1549 		   journal flush threshold, sd_log_thresh2. */
1550 		if (current->journal_info == NULL) {
1551 			unsigned int jblocks_rqsted, revokes;
1552 
1553 			jblocks_rqsted = rgd->rd_length + RES_DINODE +
1554 				RES_INDIRECT;
1555 			isize_blks = gfs2_get_inode_blocks(&ip->i_inode);
1556 			if (isize_blks > atomic_read(&sdp->sd_log_thresh2))
1557 				jblocks_rqsted +=
1558 					atomic_read(&sdp->sd_log_thresh2);
1559 			else
1560 				jblocks_rqsted += isize_blks;
1561 			revokes = jblocks_rqsted;
1562 			if (meta)
1563 				revokes += end - start;
1564 			else if (ip->i_depth)
1565 				revokes += sdp->sd_inptrs;
1566 			ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes);
1567 			if (ret)
1568 				goto out_unlock;
1569 			down_write(&ip->i_rw_mutex);
1570 		}
1571 		/* check if we will exceed the transaction blocks requested */
1572 		tr = current->journal_info;
1573 		if (tr->tr_num_buf_new + RES_STATFS +
1574 		    RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) {
1575 			/* We set blks_outside_rgrp to ensure the loop will
1576 			   be repeated for the same rgrp, but with a new
1577 			   transaction. */
1578 			blks_outside_rgrp++;
1579 			/* This next part is tricky. If the buffer was added
1580 			   to the transaction, we've already set some block
1581 			   pointers to 0, so we better follow through and free
1582 			   them, or we will introduce corruption (so break).
1583 			   This may be impossible, or at least rare, but I
1584 			   decided to cover the case regardless.
1585 
1586 			   If the buffer was not added to the transaction
1587 			   (this call), doing so would exceed our transaction
1588 			   size, so we need to end the transaction and start a
1589 			   new one (so goto). */
1590 
1591 			if (buf_in_tr)
1592 				break;
1593 			goto out_unlock;
1594 		}
1595 
1596 		gfs2_trans_add_meta(ip->i_gl, bh);
1597 		buf_in_tr = true;
1598 		*p = 0;
1599 		if (bstart + blen == bn) {
1600 			blen++;
1601 			continue;
1602 		}
1603 		if (bstart) {
1604 			__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1605 			(*btotal) += blen;
1606 			gfs2_add_inode_blocks(&ip->i_inode, -blen);
1607 		}
1608 		bstart = bn;
1609 		blen = 1;
1610 	}
1611 	if (bstart) {
1612 		__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1613 		(*btotal) += blen;
1614 		gfs2_add_inode_blocks(&ip->i_inode, -blen);
1615 	}
1616 out_unlock:
1617 	if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks
1618 					    outside the rgrp we just processed,
1619 					    do it all over again. */
1620 		if (current->journal_info) {
1621 			struct buffer_head *dibh;
1622 
1623 			ret = gfs2_meta_inode_buffer(ip, &dibh);
1624 			if (ret)
1625 				goto out;
1626 
1627 			/* Every transaction boundary, we rewrite the dinode
1628 			   to keep its di_blocks current in case of failure. */
1629 			ip->i_inode.i_mtime = ip->i_inode.i_ctime =
1630 				current_time(&ip->i_inode);
1631 			gfs2_trans_add_meta(ip->i_gl, dibh);
1632 			gfs2_dinode_out(ip, dibh->b_data);
1633 			brelse(dibh);
1634 			up_write(&ip->i_rw_mutex);
1635 			gfs2_trans_end(sdp);
1636 			buf_in_tr = false;
1637 		}
1638 		gfs2_glock_dq_uninit(rd_gh);
1639 		cond_resched();
1640 		goto more_rgrps;
1641 	}
1642 out:
1643 	return ret;
1644 }
1645 
1646 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h)
1647 {
1648 	if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0])))
1649 		return false;
1650 	return true;
1651 }
1652 
1653 /**
1654  * find_nonnull_ptr - find a non-null pointer given a metapath and height
1655  * @mp: starting metapath
1656  * @h: desired height to search
1657  *
1658  * Assumes the metapath is valid (with buffers) out to height h.
1659  * Returns: true if a non-null pointer was found in the metapath buffer
1660  *          false if all remaining pointers are NULL in the buffer
1661  */
1662 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp,
1663 			     unsigned int h,
1664 			     __u16 *end_list, unsigned int end_aligned)
1665 {
1666 	struct buffer_head *bh = mp->mp_bh[h];
1667 	__be64 *first, *ptr, *end;
1668 
1669 	first = metaptr1(h, mp);
1670 	ptr = first + mp->mp_list[h];
1671 	end = (__be64 *)(bh->b_data + bh->b_size);
1672 	if (end_list && mp_eq_to_hgt(mp, end_list, h)) {
1673 		bool keep_end = h < end_aligned;
1674 		end = first + end_list[h] + keep_end;
1675 	}
1676 
1677 	while (ptr < end) {
1678 		if (*ptr) { /* if we have a non-null pointer */
1679 			mp->mp_list[h] = ptr - first;
1680 			h++;
1681 			if (h < GFS2_MAX_META_HEIGHT)
1682 				mp->mp_list[h] = 0;
1683 			return true;
1684 		}
1685 		ptr++;
1686 	}
1687 	return false;
1688 }
1689 
1690 enum dealloc_states {
1691 	DEALLOC_MP_FULL = 0,    /* Strip a metapath with all buffers read in */
1692 	DEALLOC_MP_LOWER = 1,   /* lower the metapath strip height */
1693 	DEALLOC_FILL_MP = 2,  /* Fill in the metapath to the given height. */
1694 	DEALLOC_DONE = 3,       /* process complete */
1695 };
1696 
1697 static inline void
1698 metapointer_range(struct metapath *mp, int height,
1699 		  __u16 *start_list, unsigned int start_aligned,
1700 		  __u16 *end_list, unsigned int end_aligned,
1701 		  __be64 **start, __be64 **end)
1702 {
1703 	struct buffer_head *bh = mp->mp_bh[height];
1704 	__be64 *first;
1705 
1706 	first = metaptr1(height, mp);
1707 	*start = first;
1708 	if (mp_eq_to_hgt(mp, start_list, height)) {
1709 		bool keep_start = height < start_aligned;
1710 		*start = first + start_list[height] + keep_start;
1711 	}
1712 	*end = (__be64 *)(bh->b_data + bh->b_size);
1713 	if (end_list && mp_eq_to_hgt(mp, end_list, height)) {
1714 		bool keep_end = height < end_aligned;
1715 		*end = first + end_list[height] + keep_end;
1716 	}
1717 }
1718 
1719 static inline bool walk_done(struct gfs2_sbd *sdp,
1720 			     struct metapath *mp, int height,
1721 			     __u16 *end_list, unsigned int end_aligned)
1722 {
1723 	__u16 end;
1724 
1725 	if (end_list) {
1726 		bool keep_end = height < end_aligned;
1727 		if (!mp_eq_to_hgt(mp, end_list, height))
1728 			return false;
1729 		end = end_list[height] + keep_end;
1730 	} else
1731 		end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs;
1732 	return mp->mp_list[height] >= end;
1733 }
1734 
1735 /**
1736  * punch_hole - deallocate blocks in a file
1737  * @ip: inode to truncate
1738  * @offset: the start of the hole
1739  * @length: the size of the hole (or 0 for truncate)
1740  *
1741  * Punch a hole into a file or truncate a file at a given position.  This
1742  * function operates in whole blocks (@offset and @length are rounded
1743  * accordingly); partially filled blocks must be cleared otherwise.
1744  *
1745  * This function works from the bottom up, and from the right to the left. In
1746  * other words, it strips off the highest layer (data) before stripping any of
1747  * the metadata. Doing it this way is best in case the operation is interrupted
1748  * by power failure, etc.  The dinode is rewritten in every transaction to
1749  * guarantee integrity.
1750  */
1751 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length)
1752 {
1753 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1754 	u64 maxsize = sdp->sd_heightsize[ip->i_height];
1755 	struct metapath mp = {};
1756 	struct buffer_head *dibh, *bh;
1757 	struct gfs2_holder rd_gh;
1758 	unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift;
1759 	u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift;
1760 	__u16 start_list[GFS2_MAX_META_HEIGHT];
1761 	__u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL;
1762 	unsigned int start_aligned, uninitialized_var(end_aligned);
1763 	unsigned int strip_h = ip->i_height - 1;
1764 	u32 btotal = 0;
1765 	int ret, state;
1766 	int mp_h; /* metapath buffers are read in to this height */
1767 	u64 prev_bnr = 0;
1768 	__be64 *start, *end;
1769 
1770 	if (offset >= maxsize) {
1771 		/*
1772 		 * The starting point lies beyond the allocated meta-data;
1773 		 * there are no blocks do deallocate.
1774 		 */
1775 		return 0;
1776 	}
1777 
1778 	/*
1779 	 * The start position of the hole is defined by lblock, start_list, and
1780 	 * start_aligned.  The end position of the hole is defined by lend,
1781 	 * end_list, and end_aligned.
1782 	 *
1783 	 * start_aligned and end_aligned define down to which height the start
1784 	 * and end positions are aligned to the metadata tree (i.e., the
1785 	 * position is a multiple of the metadata granularity at the height
1786 	 * above).  This determines at which heights additional meta pointers
1787 	 * needs to be preserved for the remaining data.
1788 	 */
1789 
1790 	if (length) {
1791 		u64 end_offset = offset + length;
1792 		u64 lend;
1793 
1794 		/*
1795 		 * Clip the end at the maximum file size for the given height:
1796 		 * that's how far the metadata goes; files bigger than that
1797 		 * will have additional layers of indirection.
1798 		 */
1799 		if (end_offset > maxsize)
1800 			end_offset = maxsize;
1801 		lend = end_offset >> bsize_shift;
1802 
1803 		if (lblock >= lend)
1804 			return 0;
1805 
1806 		find_metapath(sdp, lend, &mp, ip->i_height);
1807 		end_list = __end_list;
1808 		memcpy(end_list, mp.mp_list, sizeof(mp.mp_list));
1809 
1810 		for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1811 			if (end_list[mp_h])
1812 				break;
1813 		}
1814 		end_aligned = mp_h;
1815 	}
1816 
1817 	find_metapath(sdp, lblock, &mp, ip->i_height);
1818 	memcpy(start_list, mp.mp_list, sizeof(start_list));
1819 
1820 	for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1821 		if (start_list[mp_h])
1822 			break;
1823 	}
1824 	start_aligned = mp_h;
1825 
1826 	ret = gfs2_meta_inode_buffer(ip, &dibh);
1827 	if (ret)
1828 		return ret;
1829 
1830 	mp.mp_bh[0] = dibh;
1831 	ret = lookup_metapath(ip, &mp);
1832 	if (ret)
1833 		goto out_metapath;
1834 
1835 	/* issue read-ahead on metadata */
1836 	for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) {
1837 		metapointer_range(&mp, mp_h, start_list, start_aligned,
1838 				  end_list, end_aligned, &start, &end);
1839 		gfs2_metapath_ra(ip->i_gl, start, end);
1840 	}
1841 
1842 	if (mp.mp_aheight == ip->i_height)
1843 		state = DEALLOC_MP_FULL; /* We have a complete metapath */
1844 	else
1845 		state = DEALLOC_FILL_MP; /* deal with partial metapath */
1846 
1847 	ret = gfs2_rindex_update(sdp);
1848 	if (ret)
1849 		goto out_metapath;
1850 
1851 	ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
1852 	if (ret)
1853 		goto out_metapath;
1854 	gfs2_holder_mark_uninitialized(&rd_gh);
1855 
1856 	mp_h = strip_h;
1857 
1858 	while (state != DEALLOC_DONE) {
1859 		switch (state) {
1860 		/* Truncate a full metapath at the given strip height.
1861 		 * Note that strip_h == mp_h in order to be in this state. */
1862 		case DEALLOC_MP_FULL:
1863 			bh = mp.mp_bh[mp_h];
1864 			gfs2_assert_withdraw(sdp, bh);
1865 			if (gfs2_assert_withdraw(sdp,
1866 						 prev_bnr != bh->b_blocknr)) {
1867 				fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u,"
1868 					 "s_h:%u, mp_h:%u\n",
1869 				       (unsigned long long)ip->i_no_addr,
1870 				       prev_bnr, ip->i_height, strip_h, mp_h);
1871 			}
1872 			prev_bnr = bh->b_blocknr;
1873 
1874 			if (gfs2_metatype_check(sdp, bh,
1875 						(mp_h ? GFS2_METATYPE_IN :
1876 							GFS2_METATYPE_DI))) {
1877 				ret = -EIO;
1878 				goto out;
1879 			}
1880 
1881 			/*
1882 			 * Below, passing end_aligned as 0 gives us the
1883 			 * metapointer range excluding the end point: the end
1884 			 * point is the first metapath we must not deallocate!
1885 			 */
1886 
1887 			metapointer_range(&mp, mp_h, start_list, start_aligned,
1888 					  end_list, 0 /* end_aligned */,
1889 					  &start, &end);
1890 			ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h],
1891 						 start, end,
1892 						 mp_h != ip->i_height - 1,
1893 						 &btotal);
1894 
1895 			/* If we hit an error or just swept dinode buffer,
1896 			   just exit. */
1897 			if (ret || !mp_h) {
1898 				state = DEALLOC_DONE;
1899 				break;
1900 			}
1901 			state = DEALLOC_MP_LOWER;
1902 			break;
1903 
1904 		/* lower the metapath strip height */
1905 		case DEALLOC_MP_LOWER:
1906 			/* We're done with the current buffer, so release it,
1907 			   unless it's the dinode buffer. Then back up to the
1908 			   previous pointer. */
1909 			if (mp_h) {
1910 				brelse(mp.mp_bh[mp_h]);
1911 				mp.mp_bh[mp_h] = NULL;
1912 			}
1913 			/* If we can't get any lower in height, we've stripped
1914 			   off all we can. Next step is to back up and start
1915 			   stripping the previous level of metadata. */
1916 			if (mp_h == 0) {
1917 				strip_h--;
1918 				memcpy(mp.mp_list, start_list, sizeof(start_list));
1919 				mp_h = strip_h;
1920 				state = DEALLOC_FILL_MP;
1921 				break;
1922 			}
1923 			mp.mp_list[mp_h] = 0;
1924 			mp_h--; /* search one metadata height down */
1925 			mp.mp_list[mp_h]++;
1926 			if (walk_done(sdp, &mp, mp_h, end_list, end_aligned))
1927 				break;
1928 			/* Here we've found a part of the metapath that is not
1929 			 * allocated. We need to search at that height for the
1930 			 * next non-null pointer. */
1931 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) {
1932 				state = DEALLOC_FILL_MP;
1933 				mp_h++;
1934 			}
1935 			/* No more non-null pointers at this height. Back up
1936 			   to the previous height and try again. */
1937 			break; /* loop around in the same state */
1938 
1939 		/* Fill the metapath with buffers to the given height. */
1940 		case DEALLOC_FILL_MP:
1941 			/* Fill the buffers out to the current height. */
1942 			ret = fillup_metapath(ip, &mp, mp_h);
1943 			if (ret < 0)
1944 				goto out;
1945 
1946 			/* On the first pass, issue read-ahead on metadata. */
1947 			if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) {
1948 				unsigned int height = mp.mp_aheight - 1;
1949 
1950 				/* No read-ahead for data blocks. */
1951 				if (mp.mp_aheight - 1 == strip_h)
1952 					height--;
1953 
1954 				for (; height >= mp.mp_aheight - ret; height--) {
1955 					metapointer_range(&mp, height,
1956 							  start_list, start_aligned,
1957 							  end_list, end_aligned,
1958 							  &start, &end);
1959 					gfs2_metapath_ra(ip->i_gl, start, end);
1960 				}
1961 			}
1962 
1963 			/* If buffers found for the entire strip height */
1964 			if (mp.mp_aheight - 1 == strip_h) {
1965 				state = DEALLOC_MP_FULL;
1966 				break;
1967 			}
1968 			if (mp.mp_aheight < ip->i_height) /* We have a partial height */
1969 				mp_h = mp.mp_aheight - 1;
1970 
1971 			/* If we find a non-null block pointer, crawl a bit
1972 			   higher up in the metapath and try again, otherwise
1973 			   we need to look lower for a new starting point. */
1974 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned))
1975 				mp_h++;
1976 			else
1977 				state = DEALLOC_MP_LOWER;
1978 			break;
1979 		}
1980 	}
1981 
1982 	if (btotal) {
1983 		if (current->journal_info == NULL) {
1984 			ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS +
1985 					       RES_QUOTA, 0);
1986 			if (ret)
1987 				goto out;
1988 			down_write(&ip->i_rw_mutex);
1989 		}
1990 		gfs2_statfs_change(sdp, 0, +btotal, 0);
1991 		gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid,
1992 				  ip->i_inode.i_gid);
1993 		ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1994 		gfs2_trans_add_meta(ip->i_gl, dibh);
1995 		gfs2_dinode_out(ip, dibh->b_data);
1996 		up_write(&ip->i_rw_mutex);
1997 		gfs2_trans_end(sdp);
1998 	}
1999 
2000 out:
2001 	if (gfs2_holder_initialized(&rd_gh))
2002 		gfs2_glock_dq_uninit(&rd_gh);
2003 	if (current->journal_info) {
2004 		up_write(&ip->i_rw_mutex);
2005 		gfs2_trans_end(sdp);
2006 		cond_resched();
2007 	}
2008 	gfs2_quota_unhold(ip);
2009 out_metapath:
2010 	release_metapath(&mp);
2011 	return ret;
2012 }
2013 
2014 static int trunc_end(struct gfs2_inode *ip)
2015 {
2016 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2017 	struct buffer_head *dibh;
2018 	int error;
2019 
2020 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2021 	if (error)
2022 		return error;
2023 
2024 	down_write(&ip->i_rw_mutex);
2025 
2026 	error = gfs2_meta_inode_buffer(ip, &dibh);
2027 	if (error)
2028 		goto out;
2029 
2030 	if (!i_size_read(&ip->i_inode)) {
2031 		ip->i_height = 0;
2032 		ip->i_goal = ip->i_no_addr;
2033 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
2034 		gfs2_ordered_del_inode(ip);
2035 	}
2036 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2037 	ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG;
2038 
2039 	gfs2_trans_add_meta(ip->i_gl, dibh);
2040 	gfs2_dinode_out(ip, dibh->b_data);
2041 	brelse(dibh);
2042 
2043 out:
2044 	up_write(&ip->i_rw_mutex);
2045 	gfs2_trans_end(sdp);
2046 	return error;
2047 }
2048 
2049 /**
2050  * do_shrink - make a file smaller
2051  * @inode: the inode
2052  * @newsize: the size to make the file
2053  *
2054  * Called with an exclusive lock on @inode. The @size must
2055  * be equal to or smaller than the current inode size.
2056  *
2057  * Returns: errno
2058  */
2059 
2060 static int do_shrink(struct inode *inode, u64 newsize)
2061 {
2062 	struct gfs2_inode *ip = GFS2_I(inode);
2063 	int error;
2064 
2065 	error = trunc_start(inode, newsize);
2066 	if (error < 0)
2067 		return error;
2068 	if (gfs2_is_stuffed(ip))
2069 		return 0;
2070 
2071 	error = punch_hole(ip, newsize, 0);
2072 	if (error == 0)
2073 		error = trunc_end(ip);
2074 
2075 	return error;
2076 }
2077 
2078 void gfs2_trim_blocks(struct inode *inode)
2079 {
2080 	int ret;
2081 
2082 	ret = do_shrink(inode, inode->i_size);
2083 	WARN_ON(ret != 0);
2084 }
2085 
2086 /**
2087  * do_grow - Touch and update inode size
2088  * @inode: The inode
2089  * @size: The new size
2090  *
2091  * This function updates the timestamps on the inode and
2092  * may also increase the size of the inode. This function
2093  * must not be called with @size any smaller than the current
2094  * inode size.
2095  *
2096  * Although it is not strictly required to unstuff files here,
2097  * earlier versions of GFS2 have a bug in the stuffed file reading
2098  * code which will result in a buffer overrun if the size is larger
2099  * than the max stuffed file size. In order to prevent this from
2100  * occurring, such files are unstuffed, but in other cases we can
2101  * just update the inode size directly.
2102  *
2103  * Returns: 0 on success, or -ve on error
2104  */
2105 
2106 static int do_grow(struct inode *inode, u64 size)
2107 {
2108 	struct gfs2_inode *ip = GFS2_I(inode);
2109 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2110 	struct gfs2_alloc_parms ap = { .target = 1, };
2111 	struct buffer_head *dibh;
2112 	int error;
2113 	int unstuff = 0;
2114 
2115 	if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) {
2116 		error = gfs2_quota_lock_check(ip, &ap);
2117 		if (error)
2118 			return error;
2119 
2120 		error = gfs2_inplace_reserve(ip, &ap);
2121 		if (error)
2122 			goto do_grow_qunlock;
2123 		unstuff = 1;
2124 	}
2125 
2126 	error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT +
2127 				 (unstuff &&
2128 				  gfs2_is_jdata(ip) ? RES_JDATA : 0) +
2129 				 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ?
2130 				  0 : RES_QUOTA), 0);
2131 	if (error)
2132 		goto do_grow_release;
2133 
2134 	if (unstuff) {
2135 		error = gfs2_unstuff_dinode(ip, NULL);
2136 		if (error)
2137 			goto do_end_trans;
2138 	}
2139 
2140 	error = gfs2_meta_inode_buffer(ip, &dibh);
2141 	if (error)
2142 		goto do_end_trans;
2143 
2144 	truncate_setsize(inode, size);
2145 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2146 	gfs2_trans_add_meta(ip->i_gl, dibh);
2147 	gfs2_dinode_out(ip, dibh->b_data);
2148 	brelse(dibh);
2149 
2150 do_end_trans:
2151 	gfs2_trans_end(sdp);
2152 do_grow_release:
2153 	if (unstuff) {
2154 		gfs2_inplace_release(ip);
2155 do_grow_qunlock:
2156 		gfs2_quota_unlock(ip);
2157 	}
2158 	return error;
2159 }
2160 
2161 /**
2162  * gfs2_setattr_size - make a file a given size
2163  * @inode: the inode
2164  * @newsize: the size to make the file
2165  *
2166  * The file size can grow, shrink, or stay the same size. This
2167  * is called holding i_rwsem and an exclusive glock on the inode
2168  * in question.
2169  *
2170  * Returns: errno
2171  */
2172 
2173 int gfs2_setattr_size(struct inode *inode, u64 newsize)
2174 {
2175 	struct gfs2_inode *ip = GFS2_I(inode);
2176 	int ret;
2177 
2178 	BUG_ON(!S_ISREG(inode->i_mode));
2179 
2180 	ret = inode_newsize_ok(inode, newsize);
2181 	if (ret)
2182 		return ret;
2183 
2184 	inode_dio_wait(inode);
2185 
2186 	ret = gfs2_rsqa_alloc(ip);
2187 	if (ret)
2188 		goto out;
2189 
2190 	if (newsize >= inode->i_size) {
2191 		ret = do_grow(inode, newsize);
2192 		goto out;
2193 	}
2194 
2195 	ret = do_shrink(inode, newsize);
2196 out:
2197 	gfs2_rsqa_delete(ip, NULL);
2198 	return ret;
2199 }
2200 
2201 int gfs2_truncatei_resume(struct gfs2_inode *ip)
2202 {
2203 	int error;
2204 	error = punch_hole(ip, i_size_read(&ip->i_inode), 0);
2205 	if (!error)
2206 		error = trunc_end(ip);
2207 	return error;
2208 }
2209 
2210 int gfs2_file_dealloc(struct gfs2_inode *ip)
2211 {
2212 	return punch_hole(ip, 0, 0);
2213 }
2214 
2215 /**
2216  * gfs2_free_journal_extents - Free cached journal bmap info
2217  * @jd: The journal
2218  *
2219  */
2220 
2221 void gfs2_free_journal_extents(struct gfs2_jdesc *jd)
2222 {
2223 	struct gfs2_journal_extent *jext;
2224 
2225 	while(!list_empty(&jd->extent_list)) {
2226 		jext = list_entry(jd->extent_list.next, struct gfs2_journal_extent, list);
2227 		list_del(&jext->list);
2228 		kfree(jext);
2229 	}
2230 }
2231 
2232 /**
2233  * gfs2_add_jextent - Add or merge a new extent to extent cache
2234  * @jd: The journal descriptor
2235  * @lblock: The logical block at start of new extent
2236  * @dblock: The physical block at start of new extent
2237  * @blocks: Size of extent in fs blocks
2238  *
2239  * Returns: 0 on success or -ENOMEM
2240  */
2241 
2242 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks)
2243 {
2244 	struct gfs2_journal_extent *jext;
2245 
2246 	if (!list_empty(&jd->extent_list)) {
2247 		jext = list_entry(jd->extent_list.prev, struct gfs2_journal_extent, list);
2248 		if ((jext->dblock + jext->blocks) == dblock) {
2249 			jext->blocks += blocks;
2250 			return 0;
2251 		}
2252 	}
2253 
2254 	jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS);
2255 	if (jext == NULL)
2256 		return -ENOMEM;
2257 	jext->dblock = dblock;
2258 	jext->lblock = lblock;
2259 	jext->blocks = blocks;
2260 	list_add_tail(&jext->list, &jd->extent_list);
2261 	jd->nr_extents++;
2262 	return 0;
2263 }
2264 
2265 /**
2266  * gfs2_map_journal_extents - Cache journal bmap info
2267  * @sdp: The super block
2268  * @jd: The journal to map
2269  *
2270  * Create a reusable "extent" mapping from all logical
2271  * blocks to all physical blocks for the given journal.  This will save
2272  * us time when writing journal blocks.  Most journals will have only one
2273  * extent that maps all their logical blocks.  That's because gfs2.mkfs
2274  * arranges the journal blocks sequentially to maximize performance.
2275  * So the extent would map the first block for the entire file length.
2276  * However, gfs2_jadd can happen while file activity is happening, so
2277  * those journals may not be sequential.  Less likely is the case where
2278  * the users created their own journals by mounting the metafs and
2279  * laying it out.  But it's still possible.  These journals might have
2280  * several extents.
2281  *
2282  * Returns: 0 on success, or error on failure
2283  */
2284 
2285 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd)
2286 {
2287 	u64 lblock = 0;
2288 	u64 lblock_stop;
2289 	struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
2290 	struct buffer_head bh;
2291 	unsigned int shift = sdp->sd_sb.sb_bsize_shift;
2292 	u64 size;
2293 	int rc;
2294 	ktime_t start, end;
2295 
2296 	start = ktime_get();
2297 	lblock_stop = i_size_read(jd->jd_inode) >> shift;
2298 	size = (lblock_stop - lblock) << shift;
2299 	jd->nr_extents = 0;
2300 	WARN_ON(!list_empty(&jd->extent_list));
2301 
2302 	do {
2303 		bh.b_state = 0;
2304 		bh.b_blocknr = 0;
2305 		bh.b_size = size;
2306 		rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0);
2307 		if (rc || !buffer_mapped(&bh))
2308 			goto fail;
2309 		rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift);
2310 		if (rc)
2311 			goto fail;
2312 		size -= bh.b_size;
2313 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2314 	} while(size > 0);
2315 
2316 	end = ktime_get();
2317 	fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid,
2318 		jd->nr_extents, ktime_ms_delta(end, start));
2319 	return 0;
2320 
2321 fail:
2322 	fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n",
2323 		rc, jd->jd_jid,
2324 		(unsigned long long)(i_size_read(jd->jd_inode) - size),
2325 		jd->nr_extents);
2326 	fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n",
2327 		rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr,
2328 		bh.b_state, (unsigned long long)bh.b_size);
2329 	gfs2_free_journal_extents(jd);
2330 	return rc;
2331 }
2332 
2333 /**
2334  * gfs2_write_alloc_required - figure out if a write will require an allocation
2335  * @ip: the file being written to
2336  * @offset: the offset to write to
2337  * @len: the number of bytes being written
2338  *
2339  * Returns: 1 if an alloc is required, 0 otherwise
2340  */
2341 
2342 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset,
2343 			      unsigned int len)
2344 {
2345 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2346 	struct buffer_head bh;
2347 	unsigned int shift;
2348 	u64 lblock, lblock_stop, size;
2349 	u64 end_of_file;
2350 
2351 	if (!len)
2352 		return 0;
2353 
2354 	if (gfs2_is_stuffed(ip)) {
2355 		if (offset + len > gfs2_max_stuffed_size(ip))
2356 			return 1;
2357 		return 0;
2358 	}
2359 
2360 	shift = sdp->sd_sb.sb_bsize_shift;
2361 	BUG_ON(gfs2_is_dir(ip));
2362 	end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift;
2363 	lblock = offset >> shift;
2364 	lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift;
2365 	if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex))
2366 		return 1;
2367 
2368 	size = (lblock_stop - lblock) << shift;
2369 	do {
2370 		bh.b_state = 0;
2371 		bh.b_size = size;
2372 		gfs2_block_map(&ip->i_inode, lblock, &bh, 0);
2373 		if (!buffer_mapped(&bh))
2374 			return 1;
2375 		size -= bh.b_size;
2376 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2377 	} while(size > 0);
2378 
2379 	return 0;
2380 }
2381 
2382 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length)
2383 {
2384 	struct gfs2_inode *ip = GFS2_I(inode);
2385 	struct buffer_head *dibh;
2386 	int error;
2387 
2388 	if (offset >= inode->i_size)
2389 		return 0;
2390 	if (offset + length > inode->i_size)
2391 		length = inode->i_size - offset;
2392 
2393 	error = gfs2_meta_inode_buffer(ip, &dibh);
2394 	if (error)
2395 		return error;
2396 	gfs2_trans_add_meta(ip->i_gl, dibh);
2397 	memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0,
2398 	       length);
2399 	brelse(dibh);
2400 	return 0;
2401 }
2402 
2403 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset,
2404 					 loff_t length)
2405 {
2406 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2407 	loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
2408 	int error;
2409 
2410 	while (length) {
2411 		struct gfs2_trans *tr;
2412 		loff_t chunk;
2413 		unsigned int offs;
2414 
2415 		chunk = length;
2416 		if (chunk > max_chunk)
2417 			chunk = max_chunk;
2418 
2419 		offs = offset & ~PAGE_MASK;
2420 		if (offs && chunk > PAGE_SIZE)
2421 			chunk = offs + ((chunk - offs) & PAGE_MASK);
2422 
2423 		truncate_pagecache_range(inode, offset, chunk);
2424 		offset += chunk;
2425 		length -= chunk;
2426 
2427 		tr = current->journal_info;
2428 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
2429 			continue;
2430 
2431 		gfs2_trans_end(sdp);
2432 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
2433 		if (error)
2434 			return error;
2435 	}
2436 	return 0;
2437 }
2438 
2439 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length)
2440 {
2441 	struct inode *inode = file_inode(file);
2442 	struct gfs2_inode *ip = GFS2_I(inode);
2443 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2444 	unsigned int blocksize = i_blocksize(inode);
2445 	loff_t start, end;
2446 	int error;
2447 
2448 	start = round_down(offset, blocksize);
2449 	end = round_up(offset + length, blocksize) - 1;
2450 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
2451 	if (error)
2452 		return error;
2453 
2454 	if (gfs2_is_jdata(ip))
2455 		error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA,
2456 					 GFS2_JTRUNC_REVOKES);
2457 	else
2458 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2459 	if (error)
2460 		return error;
2461 
2462 	if (gfs2_is_stuffed(ip)) {
2463 		error = stuffed_zero_range(inode, offset, length);
2464 		if (error)
2465 			goto out;
2466 	} else {
2467 		unsigned int start_off, end_len;
2468 
2469 		start_off = offset & (blocksize - 1);
2470 		end_len = (offset + length) & (blocksize - 1);
2471 		if (start_off) {
2472 			unsigned int len = length;
2473 			if (length > blocksize - start_off)
2474 				len = blocksize - start_off;
2475 			error = gfs2_block_zero_range(inode, offset, len);
2476 			if (error)
2477 				goto out;
2478 			if (start_off + length < blocksize)
2479 				end_len = 0;
2480 		}
2481 		if (end_len) {
2482 			error = gfs2_block_zero_range(inode,
2483 				offset + length - end_len, end_len);
2484 			if (error)
2485 				goto out;
2486 		}
2487 	}
2488 
2489 	if (gfs2_is_jdata(ip)) {
2490 		BUG_ON(!current->journal_info);
2491 		gfs2_journaled_truncate_range(inode, offset, length);
2492 	} else
2493 		truncate_pagecache_range(inode, offset, offset + length - 1);
2494 
2495 	file_update_time(file);
2496 	mark_inode_dirty(inode);
2497 
2498 	if (current->journal_info)
2499 		gfs2_trans_end(sdp);
2500 
2501 	if (!gfs2_is_stuffed(ip))
2502 		error = punch_hole(ip, offset, length);
2503 
2504 out:
2505 	if (current->journal_info)
2506 		gfs2_trans_end(sdp);
2507 	return error;
2508 }
2509