xref: /openbmc/linux/fs/gfs2/bmap.c (revision 82b5d164)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #include <linux/spinlock.h>
8 #include <linux/completion.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/gfs2_ondisk.h>
12 #include <linux/crc32.h>
13 #include <linux/iomap.h>
14 #include <linux/ktime.h>
15 
16 #include "gfs2.h"
17 #include "incore.h"
18 #include "bmap.h"
19 #include "glock.h"
20 #include "inode.h"
21 #include "meta_io.h"
22 #include "quota.h"
23 #include "rgrp.h"
24 #include "log.h"
25 #include "super.h"
26 #include "trans.h"
27 #include "dir.h"
28 #include "util.h"
29 #include "aops.h"
30 #include "trace_gfs2.h"
31 
32 /* This doesn't need to be that large as max 64 bit pointers in a 4k
33  * block is 512, so __u16 is fine for that. It saves stack space to
34  * keep it small.
35  */
36 struct metapath {
37 	struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT];
38 	__u16 mp_list[GFS2_MAX_META_HEIGHT];
39 	int mp_fheight; /* find_metapath height */
40 	int mp_aheight; /* actual height (lookup height) */
41 };
42 
43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length);
44 
45 /**
46  * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page
47  * @ip: the inode
48  * @dibh: the dinode buffer
49  * @block: the block number that was allocated
50  * @page: The (optional) page. This is looked up if @page is NULL
51  *
52  * Returns: errno
53  */
54 
55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh,
56 			       u64 block, struct page *page)
57 {
58 	struct inode *inode = &ip->i_inode;
59 	struct buffer_head *bh;
60 	int release = 0;
61 
62 	if (!page || page->index) {
63 		page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
64 		if (!page)
65 			return -ENOMEM;
66 		release = 1;
67 	}
68 
69 	if (!PageUptodate(page)) {
70 		void *kaddr = kmap(page);
71 		u64 dsize = i_size_read(inode);
72 
73 		if (dsize > gfs2_max_stuffed_size(ip))
74 			dsize = gfs2_max_stuffed_size(ip);
75 
76 		memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
77 		memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
78 		kunmap(page);
79 
80 		SetPageUptodate(page);
81 	}
82 
83 	if (!page_has_buffers(page))
84 		create_empty_buffers(page, BIT(inode->i_blkbits),
85 				     BIT(BH_Uptodate));
86 
87 	bh = page_buffers(page);
88 
89 	if (!buffer_mapped(bh))
90 		map_bh(bh, inode->i_sb, block);
91 
92 	set_buffer_uptodate(bh);
93 	if (gfs2_is_jdata(ip))
94 		gfs2_trans_add_data(ip->i_gl, bh);
95 	else {
96 		mark_buffer_dirty(bh);
97 		gfs2_ordered_add_inode(ip);
98 	}
99 
100 	if (release) {
101 		unlock_page(page);
102 		put_page(page);
103 	}
104 
105 	return 0;
106 }
107 
108 /**
109  * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big
110  * @ip: The GFS2 inode to unstuff
111  * @page: The (optional) page. This is looked up if the @page is NULL
112  *
113  * This routine unstuffs a dinode and returns it to a "normal" state such
114  * that the height can be grown in the traditional way.
115  *
116  * Returns: errno
117  */
118 
119 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page)
120 {
121 	struct buffer_head *bh, *dibh;
122 	struct gfs2_dinode *di;
123 	u64 block = 0;
124 	int isdir = gfs2_is_dir(ip);
125 	int error;
126 
127 	down_write(&ip->i_rw_mutex);
128 
129 	error = gfs2_meta_inode_buffer(ip, &dibh);
130 	if (error)
131 		goto out;
132 
133 	if (i_size_read(&ip->i_inode)) {
134 		/* Get a free block, fill it with the stuffed data,
135 		   and write it out to disk */
136 
137 		unsigned int n = 1;
138 		error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL);
139 		if (error)
140 			goto out_brelse;
141 		if (isdir) {
142 			gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1);
143 			error = gfs2_dir_get_new_buffer(ip, block, &bh);
144 			if (error)
145 				goto out_brelse;
146 			gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header),
147 					      dibh, sizeof(struct gfs2_dinode));
148 			brelse(bh);
149 		} else {
150 			error = gfs2_unstuffer_page(ip, dibh, block, page);
151 			if (error)
152 				goto out_brelse;
153 		}
154 	}
155 
156 	/*  Set up the pointer to the new block  */
157 
158 	gfs2_trans_add_meta(ip->i_gl, dibh);
159 	di = (struct gfs2_dinode *)dibh->b_data;
160 	gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
161 
162 	if (i_size_read(&ip->i_inode)) {
163 		*(__be64 *)(di + 1) = cpu_to_be64(block);
164 		gfs2_add_inode_blocks(&ip->i_inode, 1);
165 		di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode));
166 	}
167 
168 	ip->i_height = 1;
169 	di->di_height = cpu_to_be16(1);
170 
171 out_brelse:
172 	brelse(dibh);
173 out:
174 	up_write(&ip->i_rw_mutex);
175 	return error;
176 }
177 
178 
179 /**
180  * find_metapath - Find path through the metadata tree
181  * @sdp: The superblock
182  * @block: The disk block to look up
183  * @mp: The metapath to return the result in
184  * @height: The pre-calculated height of the metadata tree
185  *
186  *   This routine returns a struct metapath structure that defines a path
187  *   through the metadata of inode "ip" to get to block "block".
188  *
189  *   Example:
190  *   Given:  "ip" is a height 3 file, "offset" is 101342453, and this is a
191  *   filesystem with a blocksize of 4096.
192  *
193  *   find_metapath() would return a struct metapath structure set to:
194  *   mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165.
195  *
196  *   That means that in order to get to the block containing the byte at
197  *   offset 101342453, we would load the indirect block pointed to by pointer
198  *   0 in the dinode.  We would then load the indirect block pointed to by
199  *   pointer 48 in that indirect block.  We would then load the data block
200  *   pointed to by pointer 165 in that indirect block.
201  *
202  *             ----------------------------------------
203  *             | Dinode |                             |
204  *             |        |                            4|
205  *             |        |0 1 2 3 4 5                 9|
206  *             |        |                            6|
207  *             ----------------------------------------
208  *                       |
209  *                       |
210  *                       V
211  *             ----------------------------------------
212  *             | Indirect Block                       |
213  *             |                                     5|
214  *             |            4 4 4 4 4 5 5            1|
215  *             |0           5 6 7 8 9 0 1            2|
216  *             ----------------------------------------
217  *                                |
218  *                                |
219  *                                V
220  *             ----------------------------------------
221  *             | Indirect Block                       |
222  *             |                         1 1 1 1 1   5|
223  *             |                         6 6 6 6 6   1|
224  *             |0                        3 4 5 6 7   2|
225  *             ----------------------------------------
226  *                                           |
227  *                                           |
228  *                                           V
229  *             ----------------------------------------
230  *             | Data block containing offset         |
231  *             |            101342453                 |
232  *             |                                      |
233  *             |                                      |
234  *             ----------------------------------------
235  *
236  */
237 
238 static void find_metapath(const struct gfs2_sbd *sdp, u64 block,
239 			  struct metapath *mp, unsigned int height)
240 {
241 	unsigned int i;
242 
243 	mp->mp_fheight = height;
244 	for (i = height; i--;)
245 		mp->mp_list[i] = do_div(block, sdp->sd_inptrs);
246 }
247 
248 static inline unsigned int metapath_branch_start(const struct metapath *mp)
249 {
250 	if (mp->mp_list[0] == 0)
251 		return 2;
252 	return 1;
253 }
254 
255 /**
256  * metaptr1 - Return the first possible metadata pointer in a metapath buffer
257  * @height: The metadata height (0 = dinode)
258  * @mp: The metapath
259  */
260 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp)
261 {
262 	struct buffer_head *bh = mp->mp_bh[height];
263 	if (height == 0)
264 		return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)));
265 	return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header)));
266 }
267 
268 /**
269  * metapointer - Return pointer to start of metadata in a buffer
270  * @height: The metadata height (0 = dinode)
271  * @mp: The metapath
272  *
273  * Return a pointer to the block number of the next height of the metadata
274  * tree given a buffer containing the pointer to the current height of the
275  * metadata tree.
276  */
277 
278 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp)
279 {
280 	__be64 *p = metaptr1(height, mp);
281 	return p + mp->mp_list[height];
282 }
283 
284 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp)
285 {
286 	const struct buffer_head *bh = mp->mp_bh[height];
287 	return (const __be64 *)(bh->b_data + bh->b_size);
288 }
289 
290 static void clone_metapath(struct metapath *clone, struct metapath *mp)
291 {
292 	unsigned int hgt;
293 
294 	*clone = *mp;
295 	for (hgt = 0; hgt < mp->mp_aheight; hgt++)
296 		get_bh(clone->mp_bh[hgt]);
297 }
298 
299 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end)
300 {
301 	const __be64 *t;
302 
303 	for (t = start; t < end; t++) {
304 		struct buffer_head *rabh;
305 
306 		if (!*t)
307 			continue;
308 
309 		rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE);
310 		if (trylock_buffer(rabh)) {
311 			if (!buffer_uptodate(rabh)) {
312 				rabh->b_end_io = end_buffer_read_sync;
313 				submit_bh(REQ_OP_READ,
314 					  REQ_RAHEAD | REQ_META | REQ_PRIO,
315 					  rabh);
316 				continue;
317 			}
318 			unlock_buffer(rabh);
319 		}
320 		brelse(rabh);
321 	}
322 }
323 
324 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp,
325 			     unsigned int x, unsigned int h)
326 {
327 	for (; x < h; x++) {
328 		__be64 *ptr = metapointer(x, mp);
329 		u64 dblock = be64_to_cpu(*ptr);
330 		int ret;
331 
332 		if (!dblock)
333 			break;
334 		ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]);
335 		if (ret)
336 			return ret;
337 	}
338 	mp->mp_aheight = x + 1;
339 	return 0;
340 }
341 
342 /**
343  * lookup_metapath - Walk the metadata tree to a specific point
344  * @ip: The inode
345  * @mp: The metapath
346  *
347  * Assumes that the inode's buffer has already been looked up and
348  * hooked onto mp->mp_bh[0] and that the metapath has been initialised
349  * by find_metapath().
350  *
351  * If this function encounters part of the tree which has not been
352  * allocated, it returns the current height of the tree at the point
353  * at which it found the unallocated block. Blocks which are found are
354  * added to the mp->mp_bh[] list.
355  *
356  * Returns: error
357  */
358 
359 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp)
360 {
361 	return __fillup_metapath(ip, mp, 0, ip->i_height - 1);
362 }
363 
364 /**
365  * fillup_metapath - fill up buffers for the metadata path to a specific height
366  * @ip: The inode
367  * @mp: The metapath
368  * @h: The height to which it should be mapped
369  *
370  * Similar to lookup_metapath, but does lookups for a range of heights
371  *
372  * Returns: error or the number of buffers filled
373  */
374 
375 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h)
376 {
377 	unsigned int x = 0;
378 	int ret;
379 
380 	if (h) {
381 		/* find the first buffer we need to look up. */
382 		for (x = h - 1; x > 0; x--) {
383 			if (mp->mp_bh[x])
384 				break;
385 		}
386 	}
387 	ret = __fillup_metapath(ip, mp, x, h);
388 	if (ret)
389 		return ret;
390 	return mp->mp_aheight - x - 1;
391 }
392 
393 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp)
394 {
395 	sector_t factor = 1, block = 0;
396 	int hgt;
397 
398 	for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) {
399 		if (hgt < mp->mp_aheight)
400 			block += mp->mp_list[hgt] * factor;
401 		factor *= sdp->sd_inptrs;
402 	}
403 	return block;
404 }
405 
406 static void release_metapath(struct metapath *mp)
407 {
408 	int i;
409 
410 	for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) {
411 		if (mp->mp_bh[i] == NULL)
412 			break;
413 		brelse(mp->mp_bh[i]);
414 		mp->mp_bh[i] = NULL;
415 	}
416 }
417 
418 /**
419  * gfs2_extent_length - Returns length of an extent of blocks
420  * @bh: The metadata block
421  * @ptr: Current position in @bh
422  * @limit: Max extent length to return
423  * @eob: Set to 1 if we hit "end of block"
424  *
425  * Returns: The length of the extent (minimum of one block)
426  */
427 
428 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob)
429 {
430 	const __be64 *end = (__be64 *)(bh->b_data + bh->b_size);
431 	const __be64 *first = ptr;
432 	u64 d = be64_to_cpu(*ptr);
433 
434 	*eob = 0;
435 	do {
436 		ptr++;
437 		if (ptr >= end)
438 			break;
439 		d++;
440 	} while(be64_to_cpu(*ptr) == d);
441 	if (ptr >= end)
442 		*eob = 1;
443 	return ptr - first;
444 }
445 
446 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE };
447 
448 /*
449  * gfs2_metadata_walker - walk an indirect block
450  * @mp: Metapath to indirect block
451  * @ptrs: Number of pointers to look at
452  *
453  * When returning WALK_FOLLOW, the walker must update @mp to point at the right
454  * indirect block to follow.
455  */
456 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp,
457 						   unsigned int ptrs);
458 
459 /*
460  * gfs2_walk_metadata - walk a tree of indirect blocks
461  * @inode: The inode
462  * @mp: Starting point of walk
463  * @max_len: Maximum number of blocks to walk
464  * @walker: Called during the walk
465  *
466  * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or
467  * past the end of metadata, and a negative error code otherwise.
468  */
469 
470 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp,
471 		u64 max_len, gfs2_metadata_walker walker)
472 {
473 	struct gfs2_inode *ip = GFS2_I(inode);
474 	struct gfs2_sbd *sdp = GFS2_SB(inode);
475 	u64 factor = 1;
476 	unsigned int hgt;
477 	int ret;
478 
479 	/*
480 	 * The walk starts in the lowest allocated indirect block, which may be
481 	 * before the position indicated by @mp.  Adjust @max_len accordingly
482 	 * to avoid a short walk.
483 	 */
484 	for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) {
485 		max_len += mp->mp_list[hgt] * factor;
486 		mp->mp_list[hgt] = 0;
487 		factor *= sdp->sd_inptrs;
488 	}
489 
490 	for (;;) {
491 		u16 start = mp->mp_list[hgt];
492 		enum walker_status status;
493 		unsigned int ptrs;
494 		u64 len;
495 
496 		/* Walk indirect block. */
497 		ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start;
498 		len = ptrs * factor;
499 		if (len > max_len)
500 			ptrs = DIV_ROUND_UP_ULL(max_len, factor);
501 		status = walker(mp, ptrs);
502 		switch (status) {
503 		case WALK_STOP:
504 			return 1;
505 		case WALK_FOLLOW:
506 			BUG_ON(mp->mp_aheight == mp->mp_fheight);
507 			ptrs = mp->mp_list[hgt] - start;
508 			len = ptrs * factor;
509 			break;
510 		case WALK_CONTINUE:
511 			break;
512 		}
513 		if (len >= max_len)
514 			break;
515 		max_len -= len;
516 		if (status == WALK_FOLLOW)
517 			goto fill_up_metapath;
518 
519 lower_metapath:
520 		/* Decrease height of metapath. */
521 		brelse(mp->mp_bh[hgt]);
522 		mp->mp_bh[hgt] = NULL;
523 		mp->mp_list[hgt] = 0;
524 		if (!hgt)
525 			break;
526 		hgt--;
527 		factor *= sdp->sd_inptrs;
528 
529 		/* Advance in metadata tree. */
530 		(mp->mp_list[hgt])++;
531 		if (mp->mp_list[hgt] >= sdp->sd_inptrs) {
532 			if (!hgt)
533 				break;
534 			goto lower_metapath;
535 		}
536 
537 fill_up_metapath:
538 		/* Increase height of metapath. */
539 		ret = fillup_metapath(ip, mp, ip->i_height - 1);
540 		if (ret < 0)
541 			return ret;
542 		hgt += ret;
543 		for (; ret; ret--)
544 			do_div(factor, sdp->sd_inptrs);
545 		mp->mp_aheight = hgt + 1;
546 	}
547 	return 0;
548 }
549 
550 static enum walker_status gfs2_hole_walker(struct metapath *mp,
551 					   unsigned int ptrs)
552 {
553 	const __be64 *start, *ptr, *end;
554 	unsigned int hgt;
555 
556 	hgt = mp->mp_aheight - 1;
557 	start = metapointer(hgt, mp);
558 	end = start + ptrs;
559 
560 	for (ptr = start; ptr < end; ptr++) {
561 		if (*ptr) {
562 			mp->mp_list[hgt] += ptr - start;
563 			if (mp->mp_aheight == mp->mp_fheight)
564 				return WALK_STOP;
565 			return WALK_FOLLOW;
566 		}
567 	}
568 	return WALK_CONTINUE;
569 }
570 
571 /**
572  * gfs2_hole_size - figure out the size of a hole
573  * @inode: The inode
574  * @lblock: The logical starting block number
575  * @len: How far to look (in blocks)
576  * @mp: The metapath at lblock
577  * @iomap: The iomap to store the hole size in
578  *
579  * This function modifies @mp.
580  *
581  * Returns: errno on error
582  */
583 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len,
584 			  struct metapath *mp, struct iomap *iomap)
585 {
586 	struct metapath clone;
587 	u64 hole_size;
588 	int ret;
589 
590 	clone_metapath(&clone, mp);
591 	ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker);
592 	if (ret < 0)
593 		goto out;
594 
595 	if (ret == 1)
596 		hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock;
597 	else
598 		hole_size = len;
599 	iomap->length = hole_size << inode->i_blkbits;
600 	ret = 0;
601 
602 out:
603 	release_metapath(&clone);
604 	return ret;
605 }
606 
607 static inline __be64 *gfs2_indirect_init(struct metapath *mp,
608 					 struct gfs2_glock *gl, unsigned int i,
609 					 unsigned offset, u64 bn)
610 {
611 	__be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data +
612 		       ((i > 1) ? sizeof(struct gfs2_meta_header) :
613 				 sizeof(struct gfs2_dinode)));
614 	BUG_ON(i < 1);
615 	BUG_ON(mp->mp_bh[i] != NULL);
616 	mp->mp_bh[i] = gfs2_meta_new(gl, bn);
617 	gfs2_trans_add_meta(gl, mp->mp_bh[i]);
618 	gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN);
619 	gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header));
620 	ptr += offset;
621 	*ptr = cpu_to_be64(bn);
622 	return ptr;
623 }
624 
625 enum alloc_state {
626 	ALLOC_DATA = 0,
627 	ALLOC_GROW_DEPTH = 1,
628 	ALLOC_GROW_HEIGHT = 2,
629 	/* ALLOC_UNSTUFF = 3,   TBD and rather complicated */
630 };
631 
632 /**
633  * gfs2_iomap_alloc - Build a metadata tree of the requested height
634  * @inode: The GFS2 inode
635  * @iomap: The iomap structure
636  * @mp: The metapath, with proper height information calculated
637  *
638  * In this routine we may have to alloc:
639  *   i) Indirect blocks to grow the metadata tree height
640  *  ii) Indirect blocks to fill in lower part of the metadata tree
641  * iii) Data blocks
642  *
643  * This function is called after gfs2_iomap_get, which works out the
644  * total number of blocks which we need via gfs2_alloc_size.
645  *
646  * We then do the actual allocation asking for an extent at a time (if
647  * enough contiguous free blocks are available, there will only be one
648  * allocation request per call) and uses the state machine to initialise
649  * the blocks in order.
650  *
651  * Right now, this function will allocate at most one indirect block
652  * worth of data -- with a default block size of 4K, that's slightly
653  * less than 2M.  If this limitation is ever removed to allow huge
654  * allocations, we would probably still want to limit the iomap size we
655  * return to avoid stalling other tasks during huge writes; the next
656  * iomap iteration would then find the blocks already allocated.
657  *
658  * Returns: errno on error
659  */
660 
661 static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap,
662 			    struct metapath *mp)
663 {
664 	struct gfs2_inode *ip = GFS2_I(inode);
665 	struct gfs2_sbd *sdp = GFS2_SB(inode);
666 	struct buffer_head *dibh = mp->mp_bh[0];
667 	u64 bn;
668 	unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0;
669 	size_t dblks = iomap->length >> inode->i_blkbits;
670 	const unsigned end_of_metadata = mp->mp_fheight - 1;
671 	int ret;
672 	enum alloc_state state;
673 	__be64 *ptr;
674 	__be64 zero_bn = 0;
675 
676 	BUG_ON(mp->mp_aheight < 1);
677 	BUG_ON(dibh == NULL);
678 	BUG_ON(dblks < 1);
679 
680 	gfs2_trans_add_meta(ip->i_gl, dibh);
681 
682 	down_write(&ip->i_rw_mutex);
683 
684 	if (mp->mp_fheight == mp->mp_aheight) {
685 		/* Bottom indirect block exists */
686 		state = ALLOC_DATA;
687 	} else {
688 		/* Need to allocate indirect blocks */
689 		if (mp->mp_fheight == ip->i_height) {
690 			/* Writing into existing tree, extend tree down */
691 			iblks = mp->mp_fheight - mp->mp_aheight;
692 			state = ALLOC_GROW_DEPTH;
693 		} else {
694 			/* Building up tree height */
695 			state = ALLOC_GROW_HEIGHT;
696 			iblks = mp->mp_fheight - ip->i_height;
697 			branch_start = metapath_branch_start(mp);
698 			iblks += (mp->mp_fheight - branch_start);
699 		}
700 	}
701 
702 	/* start of the second part of the function (state machine) */
703 
704 	blks = dblks + iblks;
705 	i = mp->mp_aheight;
706 	do {
707 		n = blks - alloced;
708 		ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL);
709 		if (ret)
710 			goto out;
711 		alloced += n;
712 		if (state != ALLOC_DATA || gfs2_is_jdata(ip))
713 			gfs2_trans_remove_revoke(sdp, bn, n);
714 		switch (state) {
715 		/* Growing height of tree */
716 		case ALLOC_GROW_HEIGHT:
717 			if (i == 1) {
718 				ptr = (__be64 *)(dibh->b_data +
719 						 sizeof(struct gfs2_dinode));
720 				zero_bn = *ptr;
721 			}
722 			for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0;
723 			     i++, n--)
724 				gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++);
725 			if (i - 1 == mp->mp_fheight - ip->i_height) {
726 				i--;
727 				gfs2_buffer_copy_tail(mp->mp_bh[i],
728 						sizeof(struct gfs2_meta_header),
729 						dibh, sizeof(struct gfs2_dinode));
730 				gfs2_buffer_clear_tail(dibh,
731 						sizeof(struct gfs2_dinode) +
732 						sizeof(__be64));
733 				ptr = (__be64 *)(mp->mp_bh[i]->b_data +
734 					sizeof(struct gfs2_meta_header));
735 				*ptr = zero_bn;
736 				state = ALLOC_GROW_DEPTH;
737 				for(i = branch_start; i < mp->mp_fheight; i++) {
738 					if (mp->mp_bh[i] == NULL)
739 						break;
740 					brelse(mp->mp_bh[i]);
741 					mp->mp_bh[i] = NULL;
742 				}
743 				i = branch_start;
744 			}
745 			if (n == 0)
746 				break;
747 		/* fall through - To branching from existing tree */
748 		case ALLOC_GROW_DEPTH:
749 			if (i > 1 && i < mp->mp_fheight)
750 				gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]);
751 			for (; i < mp->mp_fheight && n > 0; i++, n--)
752 				gfs2_indirect_init(mp, ip->i_gl, i,
753 						   mp->mp_list[i-1], bn++);
754 			if (i == mp->mp_fheight)
755 				state = ALLOC_DATA;
756 			if (n == 0)
757 				break;
758 		/* fall through - To tree complete, adding data blocks */
759 		case ALLOC_DATA:
760 			BUG_ON(n > dblks);
761 			BUG_ON(mp->mp_bh[end_of_metadata] == NULL);
762 			gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]);
763 			dblks = n;
764 			ptr = metapointer(end_of_metadata, mp);
765 			iomap->addr = bn << inode->i_blkbits;
766 			iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW;
767 			while (n-- > 0)
768 				*ptr++ = cpu_to_be64(bn++);
769 			break;
770 		}
771 	} while (iomap->addr == IOMAP_NULL_ADDR);
772 
773 	iomap->type = IOMAP_MAPPED;
774 	iomap->length = (u64)dblks << inode->i_blkbits;
775 	ip->i_height = mp->mp_fheight;
776 	gfs2_add_inode_blocks(&ip->i_inode, alloced);
777 	gfs2_dinode_out(ip, dibh->b_data);
778 out:
779 	up_write(&ip->i_rw_mutex);
780 	return ret;
781 }
782 
783 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE
784 
785 /**
786  * gfs2_alloc_size - Compute the maximum allocation size
787  * @inode: The inode
788  * @mp: The metapath
789  * @size: Requested size in blocks
790  *
791  * Compute the maximum size of the next allocation at @mp.
792  *
793  * Returns: size in blocks
794  */
795 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size)
796 {
797 	struct gfs2_inode *ip = GFS2_I(inode);
798 	struct gfs2_sbd *sdp = GFS2_SB(inode);
799 	const __be64 *first, *ptr, *end;
800 
801 	/*
802 	 * For writes to stuffed files, this function is called twice via
803 	 * gfs2_iomap_get, before and after unstuffing. The size we return the
804 	 * first time needs to be large enough to get the reservation and
805 	 * allocation sizes right.  The size we return the second time must
806 	 * be exact or else gfs2_iomap_alloc won't do the right thing.
807 	 */
808 
809 	if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) {
810 		unsigned int maxsize = mp->mp_fheight > 1 ?
811 			sdp->sd_inptrs : sdp->sd_diptrs;
812 		maxsize -= mp->mp_list[mp->mp_fheight - 1];
813 		if (size > maxsize)
814 			size = maxsize;
815 		return size;
816 	}
817 
818 	first = metapointer(ip->i_height - 1, mp);
819 	end = metaend(ip->i_height - 1, mp);
820 	if (end - first > size)
821 		end = first + size;
822 	for (ptr = first; ptr < end; ptr++) {
823 		if (*ptr)
824 			break;
825 	}
826 	return ptr - first;
827 }
828 
829 /**
830  * gfs2_iomap_get - Map blocks from an inode to disk blocks
831  * @inode: The inode
832  * @pos: Starting position in bytes
833  * @length: Length to map, in bytes
834  * @flags: iomap flags
835  * @iomap: The iomap structure
836  * @mp: The metapath
837  *
838  * Returns: errno
839  */
840 static int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
841 			  unsigned flags, struct iomap *iomap,
842 			  struct metapath *mp)
843 {
844 	struct gfs2_inode *ip = GFS2_I(inode);
845 	struct gfs2_sbd *sdp = GFS2_SB(inode);
846 	loff_t size = i_size_read(inode);
847 	__be64 *ptr;
848 	sector_t lblock;
849 	sector_t lblock_stop;
850 	int ret;
851 	int eob;
852 	u64 len;
853 	struct buffer_head *dibh = NULL, *bh;
854 	u8 height;
855 
856 	if (!length)
857 		return -EINVAL;
858 
859 	down_read(&ip->i_rw_mutex);
860 
861 	ret = gfs2_meta_inode_buffer(ip, &dibh);
862 	if (ret)
863 		goto unlock;
864 	mp->mp_bh[0] = dibh;
865 
866 	if (gfs2_is_stuffed(ip)) {
867 		if (flags & IOMAP_WRITE) {
868 			loff_t max_size = gfs2_max_stuffed_size(ip);
869 
870 			if (pos + length > max_size)
871 				goto unstuff;
872 			iomap->length = max_size;
873 		} else {
874 			if (pos >= size) {
875 				if (flags & IOMAP_REPORT) {
876 					ret = -ENOENT;
877 					goto unlock;
878 				} else {
879 					/* report a hole */
880 					iomap->offset = pos;
881 					iomap->length = length;
882 					goto do_alloc;
883 				}
884 			}
885 			iomap->length = size;
886 		}
887 		iomap->addr = (ip->i_no_addr << inode->i_blkbits) +
888 			      sizeof(struct gfs2_dinode);
889 		iomap->type = IOMAP_INLINE;
890 		iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode);
891 		goto out;
892 	}
893 
894 unstuff:
895 	lblock = pos >> inode->i_blkbits;
896 	iomap->offset = lblock << inode->i_blkbits;
897 	lblock_stop = (pos + length - 1) >> inode->i_blkbits;
898 	len = lblock_stop - lblock + 1;
899 	iomap->length = len << inode->i_blkbits;
900 
901 	height = ip->i_height;
902 	while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height])
903 		height++;
904 	find_metapath(sdp, lblock, mp, height);
905 	if (height > ip->i_height || gfs2_is_stuffed(ip))
906 		goto do_alloc;
907 
908 	ret = lookup_metapath(ip, mp);
909 	if (ret)
910 		goto unlock;
911 
912 	if (mp->mp_aheight != ip->i_height)
913 		goto do_alloc;
914 
915 	ptr = metapointer(ip->i_height - 1, mp);
916 	if (*ptr == 0)
917 		goto do_alloc;
918 
919 	bh = mp->mp_bh[ip->i_height - 1];
920 	len = gfs2_extent_length(bh, ptr, len, &eob);
921 
922 	iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits;
923 	iomap->length = len << inode->i_blkbits;
924 	iomap->type = IOMAP_MAPPED;
925 	iomap->flags |= IOMAP_F_MERGED;
926 	if (eob)
927 		iomap->flags |= IOMAP_F_GFS2_BOUNDARY;
928 
929 out:
930 	iomap->bdev = inode->i_sb->s_bdev;
931 unlock:
932 	up_read(&ip->i_rw_mutex);
933 	return ret;
934 
935 do_alloc:
936 	iomap->addr = IOMAP_NULL_ADDR;
937 	iomap->type = IOMAP_HOLE;
938 	if (flags & IOMAP_REPORT) {
939 		if (pos >= size)
940 			ret = -ENOENT;
941 		else if (height == ip->i_height)
942 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
943 		else
944 			iomap->length = size - pos;
945 	} else if (flags & IOMAP_WRITE) {
946 		u64 alloc_size;
947 
948 		if (flags & IOMAP_DIRECT)
949 			goto out;  /* (see gfs2_file_direct_write) */
950 
951 		len = gfs2_alloc_size(inode, mp, len);
952 		alloc_size = len << inode->i_blkbits;
953 		if (alloc_size < iomap->length)
954 			iomap->length = alloc_size;
955 	} else {
956 		if (pos < size && height == ip->i_height)
957 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
958 	}
959 	goto out;
960 }
961 
962 /**
963  * gfs2_lblk_to_dblk - convert logical block to disk block
964  * @inode: the inode of the file we're mapping
965  * @lblock: the block relative to the start of the file
966  * @dblock: the returned dblock, if no error
967  *
968  * This function maps a single block from a file logical block (relative to
969  * the start of the file) to a file system absolute block using iomap.
970  *
971  * Returns: the absolute file system block, or an error
972  */
973 int gfs2_lblk_to_dblk(struct inode *inode, u32 lblock, u64 *dblock)
974 {
975 	struct iomap iomap = { };
976 	struct metapath mp = { .mp_aheight = 1, };
977 	loff_t pos = (loff_t)lblock << inode->i_blkbits;
978 	int ret;
979 
980 	ret = gfs2_iomap_get(inode, pos, i_blocksize(inode), 0, &iomap, &mp);
981 	release_metapath(&mp);
982 	if (ret == 0)
983 		*dblock = iomap.addr >> inode->i_blkbits;
984 
985 	return ret;
986 }
987 
988 static int gfs2_write_lock(struct inode *inode)
989 {
990 	struct gfs2_inode *ip = GFS2_I(inode);
991 	struct gfs2_sbd *sdp = GFS2_SB(inode);
992 	int error;
993 
994 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
995 	error = gfs2_glock_nq(&ip->i_gh);
996 	if (error)
997 		goto out_uninit;
998 	if (&ip->i_inode == sdp->sd_rindex) {
999 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
1000 
1001 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
1002 					   GL_NOCACHE, &m_ip->i_gh);
1003 		if (error)
1004 			goto out_unlock;
1005 	}
1006 	return 0;
1007 
1008 out_unlock:
1009 	gfs2_glock_dq(&ip->i_gh);
1010 out_uninit:
1011 	gfs2_holder_uninit(&ip->i_gh);
1012 	return error;
1013 }
1014 
1015 static void gfs2_write_unlock(struct inode *inode)
1016 {
1017 	struct gfs2_inode *ip = GFS2_I(inode);
1018 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1019 
1020 	if (&ip->i_inode == sdp->sd_rindex) {
1021 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
1022 
1023 		gfs2_glock_dq_uninit(&m_ip->i_gh);
1024 	}
1025 	gfs2_glock_dq_uninit(&ip->i_gh);
1026 }
1027 
1028 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos,
1029 				   unsigned len, struct iomap *iomap)
1030 {
1031 	unsigned int blockmask = i_blocksize(inode) - 1;
1032 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1033 	unsigned int blocks;
1034 
1035 	blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits;
1036 	return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0);
1037 }
1038 
1039 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos,
1040 				 unsigned copied, struct page *page,
1041 				 struct iomap *iomap)
1042 {
1043 	struct gfs2_trans *tr = current->journal_info;
1044 	struct gfs2_inode *ip = GFS2_I(inode);
1045 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1046 
1047 	if (page && !gfs2_is_stuffed(ip))
1048 		gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied);
1049 
1050 	if (tr->tr_num_buf_new)
1051 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1052 
1053 	gfs2_trans_end(sdp);
1054 }
1055 
1056 static const struct iomap_page_ops gfs2_iomap_page_ops = {
1057 	.page_prepare = gfs2_iomap_page_prepare,
1058 	.page_done = gfs2_iomap_page_done,
1059 };
1060 
1061 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos,
1062 				  loff_t length, unsigned flags,
1063 				  struct iomap *iomap,
1064 				  struct metapath *mp)
1065 {
1066 	struct gfs2_inode *ip = GFS2_I(inode);
1067 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1068 	bool unstuff;
1069 	int ret;
1070 
1071 	unstuff = gfs2_is_stuffed(ip) &&
1072 		  pos + length > gfs2_max_stuffed_size(ip);
1073 
1074 	if (unstuff || iomap->type == IOMAP_HOLE) {
1075 		unsigned int data_blocks, ind_blocks;
1076 		struct gfs2_alloc_parms ap = {};
1077 		unsigned int rblocks;
1078 		struct gfs2_trans *tr;
1079 
1080 		gfs2_write_calc_reserv(ip, iomap->length, &data_blocks,
1081 				       &ind_blocks);
1082 		ap.target = data_blocks + ind_blocks;
1083 		ret = gfs2_quota_lock_check(ip, &ap);
1084 		if (ret)
1085 			return ret;
1086 
1087 		ret = gfs2_inplace_reserve(ip, &ap);
1088 		if (ret)
1089 			goto out_qunlock;
1090 
1091 		rblocks = RES_DINODE + ind_blocks;
1092 		if (gfs2_is_jdata(ip))
1093 			rblocks += data_blocks;
1094 		if (ind_blocks || data_blocks)
1095 			rblocks += RES_STATFS + RES_QUOTA;
1096 		if (inode == sdp->sd_rindex)
1097 			rblocks += 2 * RES_STATFS;
1098 		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1099 
1100 		ret = gfs2_trans_begin(sdp, rblocks,
1101 				       iomap->length >> inode->i_blkbits);
1102 		if (ret)
1103 			goto out_trans_fail;
1104 
1105 		if (unstuff) {
1106 			ret = gfs2_unstuff_dinode(ip, NULL);
1107 			if (ret)
1108 				goto out_trans_end;
1109 			release_metapath(mp);
1110 			ret = gfs2_iomap_get(inode, iomap->offset,
1111 					     iomap->length, flags, iomap, mp);
1112 			if (ret)
1113 				goto out_trans_end;
1114 		}
1115 
1116 		if (iomap->type == IOMAP_HOLE) {
1117 			ret = gfs2_iomap_alloc(inode, iomap, mp);
1118 			if (ret) {
1119 				gfs2_trans_end(sdp);
1120 				gfs2_inplace_release(ip);
1121 				punch_hole(ip, iomap->offset, iomap->length);
1122 				goto out_qunlock;
1123 			}
1124 		}
1125 
1126 		tr = current->journal_info;
1127 		if (tr->tr_num_buf_new)
1128 			__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1129 
1130 		gfs2_trans_end(sdp);
1131 	}
1132 
1133 	if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip))
1134 		iomap->page_ops = &gfs2_iomap_page_ops;
1135 	return 0;
1136 
1137 out_trans_end:
1138 	gfs2_trans_end(sdp);
1139 out_trans_fail:
1140 	gfs2_inplace_release(ip);
1141 out_qunlock:
1142 	gfs2_quota_unlock(ip);
1143 	return ret;
1144 }
1145 
1146 static inline bool gfs2_iomap_need_write_lock(unsigned flags)
1147 {
1148 	return (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT);
1149 }
1150 
1151 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
1152 			    unsigned flags, struct iomap *iomap)
1153 {
1154 	struct gfs2_inode *ip = GFS2_I(inode);
1155 	struct metapath mp = { .mp_aheight = 1, };
1156 	int ret;
1157 
1158 	iomap->flags |= IOMAP_F_BUFFER_HEAD;
1159 
1160 	trace_gfs2_iomap_start(ip, pos, length, flags);
1161 	if (gfs2_iomap_need_write_lock(flags)) {
1162 		ret = gfs2_write_lock(inode);
1163 		if (ret)
1164 			goto out;
1165 	}
1166 
1167 	ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp);
1168 	if (ret)
1169 		goto out_unlock;
1170 
1171 	switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1172 	case IOMAP_WRITE:
1173 		if (flags & IOMAP_DIRECT) {
1174 			/*
1175 			 * Silently fall back to buffered I/O for stuffed files
1176 			 * or if we've got a hole (see gfs2_file_direct_write).
1177 			 */
1178 			if (iomap->type != IOMAP_MAPPED)
1179 				ret = -ENOTBLK;
1180 			goto out_unlock;
1181 		}
1182 		break;
1183 	case IOMAP_ZERO:
1184 		if (iomap->type == IOMAP_HOLE)
1185 			goto out_unlock;
1186 		break;
1187 	default:
1188 		goto out_unlock;
1189 	}
1190 
1191 	ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp);
1192 
1193 out_unlock:
1194 	if (ret && gfs2_iomap_need_write_lock(flags))
1195 		gfs2_write_unlock(inode);
1196 	release_metapath(&mp);
1197 out:
1198 	trace_gfs2_iomap_end(ip, iomap, ret);
1199 	return ret;
1200 }
1201 
1202 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length,
1203 			  ssize_t written, unsigned flags, struct iomap *iomap)
1204 {
1205 	struct gfs2_inode *ip = GFS2_I(inode);
1206 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1207 
1208 	switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1209 	case IOMAP_WRITE:
1210 		if (flags & IOMAP_DIRECT)
1211 			return 0;
1212 		break;
1213 	case IOMAP_ZERO:
1214 		 if (iomap->type == IOMAP_HOLE)
1215 			 return 0;
1216 		 break;
1217 	default:
1218 		 return 0;
1219 	}
1220 
1221 	if (!gfs2_is_stuffed(ip))
1222 		gfs2_ordered_add_inode(ip);
1223 
1224 	if (inode == sdp->sd_rindex)
1225 		adjust_fs_space(inode);
1226 
1227 	gfs2_inplace_release(ip);
1228 
1229 	if (length != written && (iomap->flags & IOMAP_F_NEW)) {
1230 		/* Deallocate blocks that were just allocated. */
1231 		loff_t blockmask = i_blocksize(inode) - 1;
1232 		loff_t end = (pos + length) & ~blockmask;
1233 
1234 		pos = (pos + written + blockmask) & ~blockmask;
1235 		if (pos < end) {
1236 			truncate_pagecache_range(inode, pos, end - 1);
1237 			punch_hole(ip, pos, end - pos);
1238 		}
1239 	}
1240 
1241 	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
1242 		gfs2_quota_unlock(ip);
1243 
1244 	if (unlikely(!written))
1245 		goto out_unlock;
1246 
1247 	if (iomap->flags & IOMAP_F_SIZE_CHANGED)
1248 		mark_inode_dirty(inode);
1249 	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
1250 
1251 out_unlock:
1252 	if (gfs2_iomap_need_write_lock(flags))
1253 		gfs2_write_unlock(inode);
1254 	return 0;
1255 }
1256 
1257 const struct iomap_ops gfs2_iomap_ops = {
1258 	.iomap_begin = gfs2_iomap_begin,
1259 	.iomap_end = gfs2_iomap_end,
1260 };
1261 
1262 /**
1263  * gfs2_block_map - Map one or more blocks of an inode to a disk block
1264  * @inode: The inode
1265  * @lblock: The logical block number
1266  * @bh_map: The bh to be mapped
1267  * @create: True if its ok to alloc blocks to satify the request
1268  *
1269  * The size of the requested mapping is defined in bh_map->b_size.
1270  *
1271  * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged
1272  * when @lblock is not mapped.  Sets buffer_mapped(bh_map) and
1273  * bh_map->b_size to indicate the size of the mapping when @lblock and
1274  * successive blocks are mapped, up to the requested size.
1275  *
1276  * Sets buffer_boundary() if a read of metadata will be required
1277  * before the next block can be mapped. Sets buffer_new() if new
1278  * blocks were allocated.
1279  *
1280  * Returns: errno
1281  */
1282 
1283 int gfs2_block_map(struct inode *inode, sector_t lblock,
1284 		   struct buffer_head *bh_map, int create)
1285 {
1286 	struct gfs2_inode *ip = GFS2_I(inode);
1287 	loff_t pos = (loff_t)lblock << inode->i_blkbits;
1288 	loff_t length = bh_map->b_size;
1289 	struct metapath mp = { .mp_aheight = 1, };
1290 	struct iomap iomap = { };
1291 	int ret;
1292 
1293 	clear_buffer_mapped(bh_map);
1294 	clear_buffer_new(bh_map);
1295 	clear_buffer_boundary(bh_map);
1296 	trace_gfs2_bmap(ip, bh_map, lblock, create, 1);
1297 
1298 	if (create) {
1299 		ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, &iomap, &mp);
1300 		if (!ret && iomap.type == IOMAP_HOLE)
1301 			ret = gfs2_iomap_alloc(inode, &iomap, &mp);
1302 		release_metapath(&mp);
1303 	} else {
1304 		ret = gfs2_iomap_get(inode, pos, length, 0, &iomap, &mp);
1305 		release_metapath(&mp);
1306 	}
1307 	if (ret)
1308 		goto out;
1309 
1310 	if (iomap.length > bh_map->b_size) {
1311 		iomap.length = bh_map->b_size;
1312 		iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY;
1313 	}
1314 	if (iomap.addr != IOMAP_NULL_ADDR)
1315 		map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits);
1316 	bh_map->b_size = iomap.length;
1317 	if (iomap.flags & IOMAP_F_GFS2_BOUNDARY)
1318 		set_buffer_boundary(bh_map);
1319 	if (iomap.flags & IOMAP_F_NEW)
1320 		set_buffer_new(bh_map);
1321 
1322 out:
1323 	trace_gfs2_bmap(ip, bh_map, lblock, create, ret);
1324 	return ret;
1325 }
1326 
1327 /*
1328  * Deprecated: do not use in new code
1329  */
1330 int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen)
1331 {
1332 	struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 };
1333 	int ret;
1334 	int create = *new;
1335 
1336 	BUG_ON(!extlen);
1337 	BUG_ON(!dblock);
1338 	BUG_ON(!new);
1339 
1340 	bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5));
1341 	ret = gfs2_block_map(inode, lblock, &bh, create);
1342 	*extlen = bh.b_size >> inode->i_blkbits;
1343 	*dblock = bh.b_blocknr;
1344 	if (buffer_new(&bh))
1345 		*new = 1;
1346 	else
1347 		*new = 0;
1348 	return ret;
1349 }
1350 
1351 static int gfs2_block_zero_range(struct inode *inode, loff_t from,
1352 				 unsigned int length)
1353 {
1354 	return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops);
1355 }
1356 
1357 #define GFS2_JTRUNC_REVOKES 8192
1358 
1359 /**
1360  * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files
1361  * @inode: The inode being truncated
1362  * @oldsize: The original (larger) size
1363  * @newsize: The new smaller size
1364  *
1365  * With jdata files, we have to journal a revoke for each block which is
1366  * truncated. As a result, we need to split this into separate transactions
1367  * if the number of pages being truncated gets too large.
1368  */
1369 
1370 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize)
1371 {
1372 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1373 	u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
1374 	u64 chunk;
1375 	int error;
1376 
1377 	while (oldsize != newsize) {
1378 		struct gfs2_trans *tr;
1379 		unsigned int offs;
1380 
1381 		chunk = oldsize - newsize;
1382 		if (chunk > max_chunk)
1383 			chunk = max_chunk;
1384 
1385 		offs = oldsize & ~PAGE_MASK;
1386 		if (offs && chunk > PAGE_SIZE)
1387 			chunk = offs + ((chunk - offs) & PAGE_MASK);
1388 
1389 		truncate_pagecache(inode, oldsize - chunk);
1390 		oldsize -= chunk;
1391 
1392 		tr = current->journal_info;
1393 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
1394 			continue;
1395 
1396 		gfs2_trans_end(sdp);
1397 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
1398 		if (error)
1399 			return error;
1400 	}
1401 
1402 	return 0;
1403 }
1404 
1405 static int trunc_start(struct inode *inode, u64 newsize)
1406 {
1407 	struct gfs2_inode *ip = GFS2_I(inode);
1408 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1409 	struct buffer_head *dibh = NULL;
1410 	int journaled = gfs2_is_jdata(ip);
1411 	u64 oldsize = inode->i_size;
1412 	int error;
1413 
1414 	if (journaled)
1415 		error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES);
1416 	else
1417 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1418 	if (error)
1419 		return error;
1420 
1421 	error = gfs2_meta_inode_buffer(ip, &dibh);
1422 	if (error)
1423 		goto out;
1424 
1425 	gfs2_trans_add_meta(ip->i_gl, dibh);
1426 
1427 	if (gfs2_is_stuffed(ip)) {
1428 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize);
1429 	} else {
1430 		unsigned int blocksize = i_blocksize(inode);
1431 		unsigned int offs = newsize & (blocksize - 1);
1432 		if (offs) {
1433 			error = gfs2_block_zero_range(inode, newsize,
1434 						      blocksize - offs);
1435 			if (error)
1436 				goto out;
1437 		}
1438 		ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG;
1439 	}
1440 
1441 	i_size_write(inode, newsize);
1442 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1443 	gfs2_dinode_out(ip, dibh->b_data);
1444 
1445 	if (journaled)
1446 		error = gfs2_journaled_truncate(inode, oldsize, newsize);
1447 	else
1448 		truncate_pagecache(inode, newsize);
1449 
1450 out:
1451 	brelse(dibh);
1452 	if (current->journal_info)
1453 		gfs2_trans_end(sdp);
1454 	return error;
1455 }
1456 
1457 int gfs2_iomap_get_alloc(struct inode *inode, loff_t pos, loff_t length,
1458 			 struct iomap *iomap)
1459 {
1460 	struct metapath mp = { .mp_aheight = 1, };
1461 	int ret;
1462 
1463 	ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp);
1464 	if (!ret && iomap->type == IOMAP_HOLE)
1465 		ret = gfs2_iomap_alloc(inode, iomap, &mp);
1466 	release_metapath(&mp);
1467 	return ret;
1468 }
1469 
1470 /**
1471  * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein
1472  * @ip: inode
1473  * @rg_gh: holder of resource group glock
1474  * @bh: buffer head to sweep
1475  * @start: starting point in bh
1476  * @end: end point in bh
1477  * @meta: true if bh points to metadata (rather than data)
1478  * @btotal: place to keep count of total blocks freed
1479  *
1480  * We sweep a metadata buffer (provided by the metapath) for blocks we need to
1481  * free, and free them all. However, we do it one rgrp at a time. If this
1482  * block has references to multiple rgrps, we break it into individual
1483  * transactions. This allows other processes to use the rgrps while we're
1484  * focused on a single one, for better concurrency / performance.
1485  * At every transaction boundary, we rewrite the inode into the journal.
1486  * That way the bitmaps are kept consistent with the inode and we can recover
1487  * if we're interrupted by power-outages.
1488  *
1489  * Returns: 0, or return code if an error occurred.
1490  *          *btotal has the total number of blocks freed
1491  */
1492 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh,
1493 			      struct buffer_head *bh, __be64 *start, __be64 *end,
1494 			      bool meta, u32 *btotal)
1495 {
1496 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1497 	struct gfs2_rgrpd *rgd;
1498 	struct gfs2_trans *tr;
1499 	__be64 *p;
1500 	int blks_outside_rgrp;
1501 	u64 bn, bstart, isize_blks;
1502 	s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */
1503 	int ret = 0;
1504 	bool buf_in_tr = false; /* buffer was added to transaction */
1505 
1506 more_rgrps:
1507 	rgd = NULL;
1508 	if (gfs2_holder_initialized(rd_gh)) {
1509 		rgd = gfs2_glock2rgrp(rd_gh->gh_gl);
1510 		gfs2_assert_withdraw(sdp,
1511 			     gfs2_glock_is_locked_by_me(rd_gh->gh_gl));
1512 	}
1513 	blks_outside_rgrp = 0;
1514 	bstart = 0;
1515 	blen = 0;
1516 
1517 	for (p = start; p < end; p++) {
1518 		if (!*p)
1519 			continue;
1520 		bn = be64_to_cpu(*p);
1521 
1522 		if (rgd) {
1523 			if (!rgrp_contains_block(rgd, bn)) {
1524 				blks_outside_rgrp++;
1525 				continue;
1526 			}
1527 		} else {
1528 			rgd = gfs2_blk2rgrpd(sdp, bn, true);
1529 			if (unlikely(!rgd)) {
1530 				ret = -EIO;
1531 				goto out;
1532 			}
1533 			ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1534 						 0, rd_gh);
1535 			if (ret)
1536 				goto out;
1537 
1538 			/* Must be done with the rgrp glock held: */
1539 			if (gfs2_rs_active(&ip->i_res) &&
1540 			    rgd == ip->i_res.rs_rbm.rgd)
1541 				gfs2_rs_deltree(&ip->i_res);
1542 		}
1543 
1544 		/* The size of our transactions will be unknown until we
1545 		   actually process all the metadata blocks that relate to
1546 		   the rgrp. So we estimate. We know it can't be more than
1547 		   the dinode's i_blocks and we don't want to exceed the
1548 		   journal flush threshold, sd_log_thresh2. */
1549 		if (current->journal_info == NULL) {
1550 			unsigned int jblocks_rqsted, revokes;
1551 
1552 			jblocks_rqsted = rgd->rd_length + RES_DINODE +
1553 				RES_INDIRECT;
1554 			isize_blks = gfs2_get_inode_blocks(&ip->i_inode);
1555 			if (isize_blks > atomic_read(&sdp->sd_log_thresh2))
1556 				jblocks_rqsted +=
1557 					atomic_read(&sdp->sd_log_thresh2);
1558 			else
1559 				jblocks_rqsted += isize_blks;
1560 			revokes = jblocks_rqsted;
1561 			if (meta)
1562 				revokes += end - start;
1563 			else if (ip->i_depth)
1564 				revokes += sdp->sd_inptrs;
1565 			ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes);
1566 			if (ret)
1567 				goto out_unlock;
1568 			down_write(&ip->i_rw_mutex);
1569 		}
1570 		/* check if we will exceed the transaction blocks requested */
1571 		tr = current->journal_info;
1572 		if (tr->tr_num_buf_new + RES_STATFS +
1573 		    RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) {
1574 			/* We set blks_outside_rgrp to ensure the loop will
1575 			   be repeated for the same rgrp, but with a new
1576 			   transaction. */
1577 			blks_outside_rgrp++;
1578 			/* This next part is tricky. If the buffer was added
1579 			   to the transaction, we've already set some block
1580 			   pointers to 0, so we better follow through and free
1581 			   them, or we will introduce corruption (so break).
1582 			   This may be impossible, or at least rare, but I
1583 			   decided to cover the case regardless.
1584 
1585 			   If the buffer was not added to the transaction
1586 			   (this call), doing so would exceed our transaction
1587 			   size, so we need to end the transaction and start a
1588 			   new one (so goto). */
1589 
1590 			if (buf_in_tr)
1591 				break;
1592 			goto out_unlock;
1593 		}
1594 
1595 		gfs2_trans_add_meta(ip->i_gl, bh);
1596 		buf_in_tr = true;
1597 		*p = 0;
1598 		if (bstart + blen == bn) {
1599 			blen++;
1600 			continue;
1601 		}
1602 		if (bstart) {
1603 			__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1604 			(*btotal) += blen;
1605 			gfs2_add_inode_blocks(&ip->i_inode, -blen);
1606 		}
1607 		bstart = bn;
1608 		blen = 1;
1609 	}
1610 	if (bstart) {
1611 		__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1612 		(*btotal) += blen;
1613 		gfs2_add_inode_blocks(&ip->i_inode, -blen);
1614 	}
1615 out_unlock:
1616 	if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks
1617 					    outside the rgrp we just processed,
1618 					    do it all over again. */
1619 		if (current->journal_info) {
1620 			struct buffer_head *dibh;
1621 
1622 			ret = gfs2_meta_inode_buffer(ip, &dibh);
1623 			if (ret)
1624 				goto out;
1625 
1626 			/* Every transaction boundary, we rewrite the dinode
1627 			   to keep its di_blocks current in case of failure. */
1628 			ip->i_inode.i_mtime = ip->i_inode.i_ctime =
1629 				current_time(&ip->i_inode);
1630 			gfs2_trans_add_meta(ip->i_gl, dibh);
1631 			gfs2_dinode_out(ip, dibh->b_data);
1632 			brelse(dibh);
1633 			up_write(&ip->i_rw_mutex);
1634 			gfs2_trans_end(sdp);
1635 			buf_in_tr = false;
1636 		}
1637 		gfs2_glock_dq_uninit(rd_gh);
1638 		cond_resched();
1639 		goto more_rgrps;
1640 	}
1641 out:
1642 	return ret;
1643 }
1644 
1645 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h)
1646 {
1647 	if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0])))
1648 		return false;
1649 	return true;
1650 }
1651 
1652 /**
1653  * find_nonnull_ptr - find a non-null pointer given a metapath and height
1654  * @mp: starting metapath
1655  * @h: desired height to search
1656  *
1657  * Assumes the metapath is valid (with buffers) out to height h.
1658  * Returns: true if a non-null pointer was found in the metapath buffer
1659  *          false if all remaining pointers are NULL in the buffer
1660  */
1661 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp,
1662 			     unsigned int h,
1663 			     __u16 *end_list, unsigned int end_aligned)
1664 {
1665 	struct buffer_head *bh = mp->mp_bh[h];
1666 	__be64 *first, *ptr, *end;
1667 
1668 	first = metaptr1(h, mp);
1669 	ptr = first + mp->mp_list[h];
1670 	end = (__be64 *)(bh->b_data + bh->b_size);
1671 	if (end_list && mp_eq_to_hgt(mp, end_list, h)) {
1672 		bool keep_end = h < end_aligned;
1673 		end = first + end_list[h] + keep_end;
1674 	}
1675 
1676 	while (ptr < end) {
1677 		if (*ptr) { /* if we have a non-null pointer */
1678 			mp->mp_list[h] = ptr - first;
1679 			h++;
1680 			if (h < GFS2_MAX_META_HEIGHT)
1681 				mp->mp_list[h] = 0;
1682 			return true;
1683 		}
1684 		ptr++;
1685 	}
1686 	return false;
1687 }
1688 
1689 enum dealloc_states {
1690 	DEALLOC_MP_FULL = 0,    /* Strip a metapath with all buffers read in */
1691 	DEALLOC_MP_LOWER = 1,   /* lower the metapath strip height */
1692 	DEALLOC_FILL_MP = 2,  /* Fill in the metapath to the given height. */
1693 	DEALLOC_DONE = 3,       /* process complete */
1694 };
1695 
1696 static inline void
1697 metapointer_range(struct metapath *mp, int height,
1698 		  __u16 *start_list, unsigned int start_aligned,
1699 		  __u16 *end_list, unsigned int end_aligned,
1700 		  __be64 **start, __be64 **end)
1701 {
1702 	struct buffer_head *bh = mp->mp_bh[height];
1703 	__be64 *first;
1704 
1705 	first = metaptr1(height, mp);
1706 	*start = first;
1707 	if (mp_eq_to_hgt(mp, start_list, height)) {
1708 		bool keep_start = height < start_aligned;
1709 		*start = first + start_list[height] + keep_start;
1710 	}
1711 	*end = (__be64 *)(bh->b_data + bh->b_size);
1712 	if (end_list && mp_eq_to_hgt(mp, end_list, height)) {
1713 		bool keep_end = height < end_aligned;
1714 		*end = first + end_list[height] + keep_end;
1715 	}
1716 }
1717 
1718 static inline bool walk_done(struct gfs2_sbd *sdp,
1719 			     struct metapath *mp, int height,
1720 			     __u16 *end_list, unsigned int end_aligned)
1721 {
1722 	__u16 end;
1723 
1724 	if (end_list) {
1725 		bool keep_end = height < end_aligned;
1726 		if (!mp_eq_to_hgt(mp, end_list, height))
1727 			return false;
1728 		end = end_list[height] + keep_end;
1729 	} else
1730 		end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs;
1731 	return mp->mp_list[height] >= end;
1732 }
1733 
1734 /**
1735  * punch_hole - deallocate blocks in a file
1736  * @ip: inode to truncate
1737  * @offset: the start of the hole
1738  * @length: the size of the hole (or 0 for truncate)
1739  *
1740  * Punch a hole into a file or truncate a file at a given position.  This
1741  * function operates in whole blocks (@offset and @length are rounded
1742  * accordingly); partially filled blocks must be cleared otherwise.
1743  *
1744  * This function works from the bottom up, and from the right to the left. In
1745  * other words, it strips off the highest layer (data) before stripping any of
1746  * the metadata. Doing it this way is best in case the operation is interrupted
1747  * by power failure, etc.  The dinode is rewritten in every transaction to
1748  * guarantee integrity.
1749  */
1750 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length)
1751 {
1752 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1753 	u64 maxsize = sdp->sd_heightsize[ip->i_height];
1754 	struct metapath mp = {};
1755 	struct buffer_head *dibh, *bh;
1756 	struct gfs2_holder rd_gh;
1757 	unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift;
1758 	u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift;
1759 	__u16 start_list[GFS2_MAX_META_HEIGHT];
1760 	__u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL;
1761 	unsigned int start_aligned, uninitialized_var(end_aligned);
1762 	unsigned int strip_h = ip->i_height - 1;
1763 	u32 btotal = 0;
1764 	int ret, state;
1765 	int mp_h; /* metapath buffers are read in to this height */
1766 	u64 prev_bnr = 0;
1767 	__be64 *start, *end;
1768 
1769 	if (offset >= maxsize) {
1770 		/*
1771 		 * The starting point lies beyond the allocated meta-data;
1772 		 * there are no blocks do deallocate.
1773 		 */
1774 		return 0;
1775 	}
1776 
1777 	/*
1778 	 * The start position of the hole is defined by lblock, start_list, and
1779 	 * start_aligned.  The end position of the hole is defined by lend,
1780 	 * end_list, and end_aligned.
1781 	 *
1782 	 * start_aligned and end_aligned define down to which height the start
1783 	 * and end positions are aligned to the metadata tree (i.e., the
1784 	 * position is a multiple of the metadata granularity at the height
1785 	 * above).  This determines at which heights additional meta pointers
1786 	 * needs to be preserved for the remaining data.
1787 	 */
1788 
1789 	if (length) {
1790 		u64 end_offset = offset + length;
1791 		u64 lend;
1792 
1793 		/*
1794 		 * Clip the end at the maximum file size for the given height:
1795 		 * that's how far the metadata goes; files bigger than that
1796 		 * will have additional layers of indirection.
1797 		 */
1798 		if (end_offset > maxsize)
1799 			end_offset = maxsize;
1800 		lend = end_offset >> bsize_shift;
1801 
1802 		if (lblock >= lend)
1803 			return 0;
1804 
1805 		find_metapath(sdp, lend, &mp, ip->i_height);
1806 		end_list = __end_list;
1807 		memcpy(end_list, mp.mp_list, sizeof(mp.mp_list));
1808 
1809 		for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1810 			if (end_list[mp_h])
1811 				break;
1812 		}
1813 		end_aligned = mp_h;
1814 	}
1815 
1816 	find_metapath(sdp, lblock, &mp, ip->i_height);
1817 	memcpy(start_list, mp.mp_list, sizeof(start_list));
1818 
1819 	for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1820 		if (start_list[mp_h])
1821 			break;
1822 	}
1823 	start_aligned = mp_h;
1824 
1825 	ret = gfs2_meta_inode_buffer(ip, &dibh);
1826 	if (ret)
1827 		return ret;
1828 
1829 	mp.mp_bh[0] = dibh;
1830 	ret = lookup_metapath(ip, &mp);
1831 	if (ret)
1832 		goto out_metapath;
1833 
1834 	/* issue read-ahead on metadata */
1835 	for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) {
1836 		metapointer_range(&mp, mp_h, start_list, start_aligned,
1837 				  end_list, end_aligned, &start, &end);
1838 		gfs2_metapath_ra(ip->i_gl, start, end);
1839 	}
1840 
1841 	if (mp.mp_aheight == ip->i_height)
1842 		state = DEALLOC_MP_FULL; /* We have a complete metapath */
1843 	else
1844 		state = DEALLOC_FILL_MP; /* deal with partial metapath */
1845 
1846 	ret = gfs2_rindex_update(sdp);
1847 	if (ret)
1848 		goto out_metapath;
1849 
1850 	ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
1851 	if (ret)
1852 		goto out_metapath;
1853 	gfs2_holder_mark_uninitialized(&rd_gh);
1854 
1855 	mp_h = strip_h;
1856 
1857 	while (state != DEALLOC_DONE) {
1858 		switch (state) {
1859 		/* Truncate a full metapath at the given strip height.
1860 		 * Note that strip_h == mp_h in order to be in this state. */
1861 		case DEALLOC_MP_FULL:
1862 			bh = mp.mp_bh[mp_h];
1863 			gfs2_assert_withdraw(sdp, bh);
1864 			if (gfs2_assert_withdraw(sdp,
1865 						 prev_bnr != bh->b_blocknr)) {
1866 				fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u,"
1867 					 "s_h:%u, mp_h:%u\n",
1868 				       (unsigned long long)ip->i_no_addr,
1869 				       prev_bnr, ip->i_height, strip_h, mp_h);
1870 			}
1871 			prev_bnr = bh->b_blocknr;
1872 
1873 			if (gfs2_metatype_check(sdp, bh,
1874 						(mp_h ? GFS2_METATYPE_IN :
1875 							GFS2_METATYPE_DI))) {
1876 				ret = -EIO;
1877 				goto out;
1878 			}
1879 
1880 			/*
1881 			 * Below, passing end_aligned as 0 gives us the
1882 			 * metapointer range excluding the end point: the end
1883 			 * point is the first metapath we must not deallocate!
1884 			 */
1885 
1886 			metapointer_range(&mp, mp_h, start_list, start_aligned,
1887 					  end_list, 0 /* end_aligned */,
1888 					  &start, &end);
1889 			ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h],
1890 						 start, end,
1891 						 mp_h != ip->i_height - 1,
1892 						 &btotal);
1893 
1894 			/* If we hit an error or just swept dinode buffer,
1895 			   just exit. */
1896 			if (ret || !mp_h) {
1897 				state = DEALLOC_DONE;
1898 				break;
1899 			}
1900 			state = DEALLOC_MP_LOWER;
1901 			break;
1902 
1903 		/* lower the metapath strip height */
1904 		case DEALLOC_MP_LOWER:
1905 			/* We're done with the current buffer, so release it,
1906 			   unless it's the dinode buffer. Then back up to the
1907 			   previous pointer. */
1908 			if (mp_h) {
1909 				brelse(mp.mp_bh[mp_h]);
1910 				mp.mp_bh[mp_h] = NULL;
1911 			}
1912 			/* If we can't get any lower in height, we've stripped
1913 			   off all we can. Next step is to back up and start
1914 			   stripping the previous level of metadata. */
1915 			if (mp_h == 0) {
1916 				strip_h--;
1917 				memcpy(mp.mp_list, start_list, sizeof(start_list));
1918 				mp_h = strip_h;
1919 				state = DEALLOC_FILL_MP;
1920 				break;
1921 			}
1922 			mp.mp_list[mp_h] = 0;
1923 			mp_h--; /* search one metadata height down */
1924 			mp.mp_list[mp_h]++;
1925 			if (walk_done(sdp, &mp, mp_h, end_list, end_aligned))
1926 				break;
1927 			/* Here we've found a part of the metapath that is not
1928 			 * allocated. We need to search at that height for the
1929 			 * next non-null pointer. */
1930 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) {
1931 				state = DEALLOC_FILL_MP;
1932 				mp_h++;
1933 			}
1934 			/* No more non-null pointers at this height. Back up
1935 			   to the previous height and try again. */
1936 			break; /* loop around in the same state */
1937 
1938 		/* Fill the metapath with buffers to the given height. */
1939 		case DEALLOC_FILL_MP:
1940 			/* Fill the buffers out to the current height. */
1941 			ret = fillup_metapath(ip, &mp, mp_h);
1942 			if (ret < 0)
1943 				goto out;
1944 
1945 			/* On the first pass, issue read-ahead on metadata. */
1946 			if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) {
1947 				unsigned int height = mp.mp_aheight - 1;
1948 
1949 				/* No read-ahead for data blocks. */
1950 				if (mp.mp_aheight - 1 == strip_h)
1951 					height--;
1952 
1953 				for (; height >= mp.mp_aheight - ret; height--) {
1954 					metapointer_range(&mp, height,
1955 							  start_list, start_aligned,
1956 							  end_list, end_aligned,
1957 							  &start, &end);
1958 					gfs2_metapath_ra(ip->i_gl, start, end);
1959 				}
1960 			}
1961 
1962 			/* If buffers found for the entire strip height */
1963 			if (mp.mp_aheight - 1 == strip_h) {
1964 				state = DEALLOC_MP_FULL;
1965 				break;
1966 			}
1967 			if (mp.mp_aheight < ip->i_height) /* We have a partial height */
1968 				mp_h = mp.mp_aheight - 1;
1969 
1970 			/* If we find a non-null block pointer, crawl a bit
1971 			   higher up in the metapath and try again, otherwise
1972 			   we need to look lower for a new starting point. */
1973 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned))
1974 				mp_h++;
1975 			else
1976 				state = DEALLOC_MP_LOWER;
1977 			break;
1978 		}
1979 	}
1980 
1981 	if (btotal) {
1982 		if (current->journal_info == NULL) {
1983 			ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS +
1984 					       RES_QUOTA, 0);
1985 			if (ret)
1986 				goto out;
1987 			down_write(&ip->i_rw_mutex);
1988 		}
1989 		gfs2_statfs_change(sdp, 0, +btotal, 0);
1990 		gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid,
1991 				  ip->i_inode.i_gid);
1992 		ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1993 		gfs2_trans_add_meta(ip->i_gl, dibh);
1994 		gfs2_dinode_out(ip, dibh->b_data);
1995 		up_write(&ip->i_rw_mutex);
1996 		gfs2_trans_end(sdp);
1997 	}
1998 
1999 out:
2000 	if (gfs2_holder_initialized(&rd_gh))
2001 		gfs2_glock_dq_uninit(&rd_gh);
2002 	if (current->journal_info) {
2003 		up_write(&ip->i_rw_mutex);
2004 		gfs2_trans_end(sdp);
2005 		cond_resched();
2006 	}
2007 	gfs2_quota_unhold(ip);
2008 out_metapath:
2009 	release_metapath(&mp);
2010 	return ret;
2011 }
2012 
2013 static int trunc_end(struct gfs2_inode *ip)
2014 {
2015 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2016 	struct buffer_head *dibh;
2017 	int error;
2018 
2019 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2020 	if (error)
2021 		return error;
2022 
2023 	down_write(&ip->i_rw_mutex);
2024 
2025 	error = gfs2_meta_inode_buffer(ip, &dibh);
2026 	if (error)
2027 		goto out;
2028 
2029 	if (!i_size_read(&ip->i_inode)) {
2030 		ip->i_height = 0;
2031 		ip->i_goal = ip->i_no_addr;
2032 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
2033 		gfs2_ordered_del_inode(ip);
2034 	}
2035 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2036 	ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG;
2037 
2038 	gfs2_trans_add_meta(ip->i_gl, dibh);
2039 	gfs2_dinode_out(ip, dibh->b_data);
2040 	brelse(dibh);
2041 
2042 out:
2043 	up_write(&ip->i_rw_mutex);
2044 	gfs2_trans_end(sdp);
2045 	return error;
2046 }
2047 
2048 /**
2049  * do_shrink - make a file smaller
2050  * @inode: the inode
2051  * @newsize: the size to make the file
2052  *
2053  * Called with an exclusive lock on @inode. The @size must
2054  * be equal to or smaller than the current inode size.
2055  *
2056  * Returns: errno
2057  */
2058 
2059 static int do_shrink(struct inode *inode, u64 newsize)
2060 {
2061 	struct gfs2_inode *ip = GFS2_I(inode);
2062 	int error;
2063 
2064 	error = trunc_start(inode, newsize);
2065 	if (error < 0)
2066 		return error;
2067 	if (gfs2_is_stuffed(ip))
2068 		return 0;
2069 
2070 	error = punch_hole(ip, newsize, 0);
2071 	if (error == 0)
2072 		error = trunc_end(ip);
2073 
2074 	return error;
2075 }
2076 
2077 void gfs2_trim_blocks(struct inode *inode)
2078 {
2079 	int ret;
2080 
2081 	ret = do_shrink(inode, inode->i_size);
2082 	WARN_ON(ret != 0);
2083 }
2084 
2085 /**
2086  * do_grow - Touch and update inode size
2087  * @inode: The inode
2088  * @size: The new size
2089  *
2090  * This function updates the timestamps on the inode and
2091  * may also increase the size of the inode. This function
2092  * must not be called with @size any smaller than the current
2093  * inode size.
2094  *
2095  * Although it is not strictly required to unstuff files here,
2096  * earlier versions of GFS2 have a bug in the stuffed file reading
2097  * code which will result in a buffer overrun if the size is larger
2098  * than the max stuffed file size. In order to prevent this from
2099  * occurring, such files are unstuffed, but in other cases we can
2100  * just update the inode size directly.
2101  *
2102  * Returns: 0 on success, or -ve on error
2103  */
2104 
2105 static int do_grow(struct inode *inode, u64 size)
2106 {
2107 	struct gfs2_inode *ip = GFS2_I(inode);
2108 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2109 	struct gfs2_alloc_parms ap = { .target = 1, };
2110 	struct buffer_head *dibh;
2111 	int error;
2112 	int unstuff = 0;
2113 
2114 	if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) {
2115 		error = gfs2_quota_lock_check(ip, &ap);
2116 		if (error)
2117 			return error;
2118 
2119 		error = gfs2_inplace_reserve(ip, &ap);
2120 		if (error)
2121 			goto do_grow_qunlock;
2122 		unstuff = 1;
2123 	}
2124 
2125 	error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT +
2126 				 (unstuff &&
2127 				  gfs2_is_jdata(ip) ? RES_JDATA : 0) +
2128 				 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ?
2129 				  0 : RES_QUOTA), 0);
2130 	if (error)
2131 		goto do_grow_release;
2132 
2133 	if (unstuff) {
2134 		error = gfs2_unstuff_dinode(ip, NULL);
2135 		if (error)
2136 			goto do_end_trans;
2137 	}
2138 
2139 	error = gfs2_meta_inode_buffer(ip, &dibh);
2140 	if (error)
2141 		goto do_end_trans;
2142 
2143 	truncate_setsize(inode, size);
2144 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2145 	gfs2_trans_add_meta(ip->i_gl, dibh);
2146 	gfs2_dinode_out(ip, dibh->b_data);
2147 	brelse(dibh);
2148 
2149 do_end_trans:
2150 	gfs2_trans_end(sdp);
2151 do_grow_release:
2152 	if (unstuff) {
2153 		gfs2_inplace_release(ip);
2154 do_grow_qunlock:
2155 		gfs2_quota_unlock(ip);
2156 	}
2157 	return error;
2158 }
2159 
2160 /**
2161  * gfs2_setattr_size - make a file a given size
2162  * @inode: the inode
2163  * @newsize: the size to make the file
2164  *
2165  * The file size can grow, shrink, or stay the same size. This
2166  * is called holding i_rwsem and an exclusive glock on the inode
2167  * in question.
2168  *
2169  * Returns: errno
2170  */
2171 
2172 int gfs2_setattr_size(struct inode *inode, u64 newsize)
2173 {
2174 	struct gfs2_inode *ip = GFS2_I(inode);
2175 	int ret;
2176 
2177 	BUG_ON(!S_ISREG(inode->i_mode));
2178 
2179 	ret = inode_newsize_ok(inode, newsize);
2180 	if (ret)
2181 		return ret;
2182 
2183 	inode_dio_wait(inode);
2184 
2185 	ret = gfs2_rsqa_alloc(ip);
2186 	if (ret)
2187 		goto out;
2188 
2189 	if (newsize >= inode->i_size) {
2190 		ret = do_grow(inode, newsize);
2191 		goto out;
2192 	}
2193 
2194 	ret = do_shrink(inode, newsize);
2195 out:
2196 	gfs2_rsqa_delete(ip, NULL);
2197 	return ret;
2198 }
2199 
2200 int gfs2_truncatei_resume(struct gfs2_inode *ip)
2201 {
2202 	int error;
2203 	error = punch_hole(ip, i_size_read(&ip->i_inode), 0);
2204 	if (!error)
2205 		error = trunc_end(ip);
2206 	return error;
2207 }
2208 
2209 int gfs2_file_dealloc(struct gfs2_inode *ip)
2210 {
2211 	return punch_hole(ip, 0, 0);
2212 }
2213 
2214 /**
2215  * gfs2_free_journal_extents - Free cached journal bmap info
2216  * @jd: The journal
2217  *
2218  */
2219 
2220 void gfs2_free_journal_extents(struct gfs2_jdesc *jd)
2221 {
2222 	struct gfs2_journal_extent *jext;
2223 
2224 	while(!list_empty(&jd->extent_list)) {
2225 		jext = list_entry(jd->extent_list.next, struct gfs2_journal_extent, list);
2226 		list_del(&jext->list);
2227 		kfree(jext);
2228 	}
2229 }
2230 
2231 /**
2232  * gfs2_add_jextent - Add or merge a new extent to extent cache
2233  * @jd: The journal descriptor
2234  * @lblock: The logical block at start of new extent
2235  * @dblock: The physical block at start of new extent
2236  * @blocks: Size of extent in fs blocks
2237  *
2238  * Returns: 0 on success or -ENOMEM
2239  */
2240 
2241 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks)
2242 {
2243 	struct gfs2_journal_extent *jext;
2244 
2245 	if (!list_empty(&jd->extent_list)) {
2246 		jext = list_entry(jd->extent_list.prev, struct gfs2_journal_extent, list);
2247 		if ((jext->dblock + jext->blocks) == dblock) {
2248 			jext->blocks += blocks;
2249 			return 0;
2250 		}
2251 	}
2252 
2253 	jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS);
2254 	if (jext == NULL)
2255 		return -ENOMEM;
2256 	jext->dblock = dblock;
2257 	jext->lblock = lblock;
2258 	jext->blocks = blocks;
2259 	list_add_tail(&jext->list, &jd->extent_list);
2260 	jd->nr_extents++;
2261 	return 0;
2262 }
2263 
2264 /**
2265  * gfs2_map_journal_extents - Cache journal bmap info
2266  * @sdp: The super block
2267  * @jd: The journal to map
2268  *
2269  * Create a reusable "extent" mapping from all logical
2270  * blocks to all physical blocks for the given journal.  This will save
2271  * us time when writing journal blocks.  Most journals will have only one
2272  * extent that maps all their logical blocks.  That's because gfs2.mkfs
2273  * arranges the journal blocks sequentially to maximize performance.
2274  * So the extent would map the first block for the entire file length.
2275  * However, gfs2_jadd can happen while file activity is happening, so
2276  * those journals may not be sequential.  Less likely is the case where
2277  * the users created their own journals by mounting the metafs and
2278  * laying it out.  But it's still possible.  These journals might have
2279  * several extents.
2280  *
2281  * Returns: 0 on success, or error on failure
2282  */
2283 
2284 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd)
2285 {
2286 	u64 lblock = 0;
2287 	u64 lblock_stop;
2288 	struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
2289 	struct buffer_head bh;
2290 	unsigned int shift = sdp->sd_sb.sb_bsize_shift;
2291 	u64 size;
2292 	int rc;
2293 	ktime_t start, end;
2294 
2295 	start = ktime_get();
2296 	lblock_stop = i_size_read(jd->jd_inode) >> shift;
2297 	size = (lblock_stop - lblock) << shift;
2298 	jd->nr_extents = 0;
2299 	WARN_ON(!list_empty(&jd->extent_list));
2300 
2301 	do {
2302 		bh.b_state = 0;
2303 		bh.b_blocknr = 0;
2304 		bh.b_size = size;
2305 		rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0);
2306 		if (rc || !buffer_mapped(&bh))
2307 			goto fail;
2308 		rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift);
2309 		if (rc)
2310 			goto fail;
2311 		size -= bh.b_size;
2312 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2313 	} while(size > 0);
2314 
2315 	end = ktime_get();
2316 	fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid,
2317 		jd->nr_extents, ktime_ms_delta(end, start));
2318 	return 0;
2319 
2320 fail:
2321 	fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n",
2322 		rc, jd->jd_jid,
2323 		(unsigned long long)(i_size_read(jd->jd_inode) - size),
2324 		jd->nr_extents);
2325 	fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n",
2326 		rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr,
2327 		bh.b_state, (unsigned long long)bh.b_size);
2328 	gfs2_free_journal_extents(jd);
2329 	return rc;
2330 }
2331 
2332 /**
2333  * gfs2_write_alloc_required - figure out if a write will require an allocation
2334  * @ip: the file being written to
2335  * @offset: the offset to write to
2336  * @len: the number of bytes being written
2337  *
2338  * Returns: 1 if an alloc is required, 0 otherwise
2339  */
2340 
2341 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset,
2342 			      unsigned int len)
2343 {
2344 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2345 	struct buffer_head bh;
2346 	unsigned int shift;
2347 	u64 lblock, lblock_stop, size;
2348 	u64 end_of_file;
2349 
2350 	if (!len)
2351 		return 0;
2352 
2353 	if (gfs2_is_stuffed(ip)) {
2354 		if (offset + len > gfs2_max_stuffed_size(ip))
2355 			return 1;
2356 		return 0;
2357 	}
2358 
2359 	shift = sdp->sd_sb.sb_bsize_shift;
2360 	BUG_ON(gfs2_is_dir(ip));
2361 	end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift;
2362 	lblock = offset >> shift;
2363 	lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift;
2364 	if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex))
2365 		return 1;
2366 
2367 	size = (lblock_stop - lblock) << shift;
2368 	do {
2369 		bh.b_state = 0;
2370 		bh.b_size = size;
2371 		gfs2_block_map(&ip->i_inode, lblock, &bh, 0);
2372 		if (!buffer_mapped(&bh))
2373 			return 1;
2374 		size -= bh.b_size;
2375 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2376 	} while(size > 0);
2377 
2378 	return 0;
2379 }
2380 
2381 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length)
2382 {
2383 	struct gfs2_inode *ip = GFS2_I(inode);
2384 	struct buffer_head *dibh;
2385 	int error;
2386 
2387 	if (offset >= inode->i_size)
2388 		return 0;
2389 	if (offset + length > inode->i_size)
2390 		length = inode->i_size - offset;
2391 
2392 	error = gfs2_meta_inode_buffer(ip, &dibh);
2393 	if (error)
2394 		return error;
2395 	gfs2_trans_add_meta(ip->i_gl, dibh);
2396 	memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0,
2397 	       length);
2398 	brelse(dibh);
2399 	return 0;
2400 }
2401 
2402 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset,
2403 					 loff_t length)
2404 {
2405 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2406 	loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
2407 	int error;
2408 
2409 	while (length) {
2410 		struct gfs2_trans *tr;
2411 		loff_t chunk;
2412 		unsigned int offs;
2413 
2414 		chunk = length;
2415 		if (chunk > max_chunk)
2416 			chunk = max_chunk;
2417 
2418 		offs = offset & ~PAGE_MASK;
2419 		if (offs && chunk > PAGE_SIZE)
2420 			chunk = offs + ((chunk - offs) & PAGE_MASK);
2421 
2422 		truncate_pagecache_range(inode, offset, chunk);
2423 		offset += chunk;
2424 		length -= chunk;
2425 
2426 		tr = current->journal_info;
2427 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
2428 			continue;
2429 
2430 		gfs2_trans_end(sdp);
2431 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
2432 		if (error)
2433 			return error;
2434 	}
2435 	return 0;
2436 }
2437 
2438 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length)
2439 {
2440 	struct inode *inode = file_inode(file);
2441 	struct gfs2_inode *ip = GFS2_I(inode);
2442 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2443 	int error;
2444 
2445 	if (gfs2_is_jdata(ip))
2446 		error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA,
2447 					 GFS2_JTRUNC_REVOKES);
2448 	else
2449 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2450 	if (error)
2451 		return error;
2452 
2453 	if (gfs2_is_stuffed(ip)) {
2454 		error = stuffed_zero_range(inode, offset, length);
2455 		if (error)
2456 			goto out;
2457 	} else {
2458 		unsigned int start_off, end_len, blocksize;
2459 
2460 		blocksize = i_blocksize(inode);
2461 		start_off = offset & (blocksize - 1);
2462 		end_len = (offset + length) & (blocksize - 1);
2463 		if (start_off) {
2464 			unsigned int len = length;
2465 			if (length > blocksize - start_off)
2466 				len = blocksize - start_off;
2467 			error = gfs2_block_zero_range(inode, offset, len);
2468 			if (error)
2469 				goto out;
2470 			if (start_off + length < blocksize)
2471 				end_len = 0;
2472 		}
2473 		if (end_len) {
2474 			error = gfs2_block_zero_range(inode,
2475 				offset + length - end_len, end_len);
2476 			if (error)
2477 				goto out;
2478 		}
2479 	}
2480 
2481 	if (gfs2_is_jdata(ip)) {
2482 		BUG_ON(!current->journal_info);
2483 		gfs2_journaled_truncate_range(inode, offset, length);
2484 	} else
2485 		truncate_pagecache_range(inode, offset, offset + length - 1);
2486 
2487 	file_update_time(file);
2488 	mark_inode_dirty(inode);
2489 
2490 	if (current->journal_info)
2491 		gfs2_trans_end(sdp);
2492 
2493 	if (!gfs2_is_stuffed(ip))
2494 		error = punch_hole(ip, offset, length);
2495 
2496 out:
2497 	if (current->journal_info)
2498 		gfs2_trans_end(sdp);
2499 	return error;
2500 }
2501