1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 5 */ 6 7 #include <linux/spinlock.h> 8 #include <linux/completion.h> 9 #include <linux/buffer_head.h> 10 #include <linux/blkdev.h> 11 #include <linux/gfs2_ondisk.h> 12 #include <linux/crc32.h> 13 #include <linux/iomap.h> 14 #include <linux/ktime.h> 15 16 #include "gfs2.h" 17 #include "incore.h" 18 #include "bmap.h" 19 #include "glock.h" 20 #include "inode.h" 21 #include "meta_io.h" 22 #include "quota.h" 23 #include "rgrp.h" 24 #include "log.h" 25 #include "super.h" 26 #include "trans.h" 27 #include "dir.h" 28 #include "util.h" 29 #include "aops.h" 30 #include "trace_gfs2.h" 31 32 /* This doesn't need to be that large as max 64 bit pointers in a 4k 33 * block is 512, so __u16 is fine for that. It saves stack space to 34 * keep it small. 35 */ 36 struct metapath { 37 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT]; 38 __u16 mp_list[GFS2_MAX_META_HEIGHT]; 39 int mp_fheight; /* find_metapath height */ 40 int mp_aheight; /* actual height (lookup height) */ 41 }; 42 43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length); 44 45 /** 46 * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page 47 * @ip: the inode 48 * @dibh: the dinode buffer 49 * @block: the block number that was allocated 50 * @page: The (optional) page. This is looked up if @page is NULL 51 * 52 * Returns: errno 53 */ 54 55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh, 56 u64 block, struct page *page) 57 { 58 struct inode *inode = &ip->i_inode; 59 struct buffer_head *bh; 60 int release = 0; 61 62 if (!page || page->index) { 63 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 64 if (!page) 65 return -ENOMEM; 66 release = 1; 67 } 68 69 if (!PageUptodate(page)) { 70 void *kaddr = kmap(page); 71 u64 dsize = i_size_read(inode); 72 73 if (dsize > gfs2_max_stuffed_size(ip)) 74 dsize = gfs2_max_stuffed_size(ip); 75 76 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize); 77 memset(kaddr + dsize, 0, PAGE_SIZE - dsize); 78 kunmap(page); 79 80 SetPageUptodate(page); 81 } 82 83 if (!page_has_buffers(page)) 84 create_empty_buffers(page, BIT(inode->i_blkbits), 85 BIT(BH_Uptodate)); 86 87 bh = page_buffers(page); 88 89 if (!buffer_mapped(bh)) 90 map_bh(bh, inode->i_sb, block); 91 92 set_buffer_uptodate(bh); 93 if (gfs2_is_jdata(ip)) 94 gfs2_trans_add_data(ip->i_gl, bh); 95 else { 96 mark_buffer_dirty(bh); 97 gfs2_ordered_add_inode(ip); 98 } 99 100 if (release) { 101 unlock_page(page); 102 put_page(page); 103 } 104 105 return 0; 106 } 107 108 /** 109 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big 110 * @ip: The GFS2 inode to unstuff 111 * @page: The (optional) page. This is looked up if the @page is NULL 112 * 113 * This routine unstuffs a dinode and returns it to a "normal" state such 114 * that the height can be grown in the traditional way. 115 * 116 * Returns: errno 117 */ 118 119 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page) 120 { 121 struct buffer_head *bh, *dibh; 122 struct gfs2_dinode *di; 123 u64 block = 0; 124 int isdir = gfs2_is_dir(ip); 125 int error; 126 127 down_write(&ip->i_rw_mutex); 128 129 error = gfs2_meta_inode_buffer(ip, &dibh); 130 if (error) 131 goto out; 132 133 if (i_size_read(&ip->i_inode)) { 134 /* Get a free block, fill it with the stuffed data, 135 and write it out to disk */ 136 137 unsigned int n = 1; 138 error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL); 139 if (error) 140 goto out_brelse; 141 if (isdir) { 142 gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1); 143 error = gfs2_dir_get_new_buffer(ip, block, &bh); 144 if (error) 145 goto out_brelse; 146 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header), 147 dibh, sizeof(struct gfs2_dinode)); 148 brelse(bh); 149 } else { 150 error = gfs2_unstuffer_page(ip, dibh, block, page); 151 if (error) 152 goto out_brelse; 153 } 154 } 155 156 /* Set up the pointer to the new block */ 157 158 gfs2_trans_add_meta(ip->i_gl, dibh); 159 di = (struct gfs2_dinode *)dibh->b_data; 160 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 161 162 if (i_size_read(&ip->i_inode)) { 163 *(__be64 *)(di + 1) = cpu_to_be64(block); 164 gfs2_add_inode_blocks(&ip->i_inode, 1); 165 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode)); 166 } 167 168 ip->i_height = 1; 169 di->di_height = cpu_to_be16(1); 170 171 out_brelse: 172 brelse(dibh); 173 out: 174 up_write(&ip->i_rw_mutex); 175 return error; 176 } 177 178 179 /** 180 * find_metapath - Find path through the metadata tree 181 * @sdp: The superblock 182 * @block: The disk block to look up 183 * @mp: The metapath to return the result in 184 * @height: The pre-calculated height of the metadata tree 185 * 186 * This routine returns a struct metapath structure that defines a path 187 * through the metadata of inode "ip" to get to block "block". 188 * 189 * Example: 190 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a 191 * filesystem with a blocksize of 4096. 192 * 193 * find_metapath() would return a struct metapath structure set to: 194 * mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165. 195 * 196 * That means that in order to get to the block containing the byte at 197 * offset 101342453, we would load the indirect block pointed to by pointer 198 * 0 in the dinode. We would then load the indirect block pointed to by 199 * pointer 48 in that indirect block. We would then load the data block 200 * pointed to by pointer 165 in that indirect block. 201 * 202 * ---------------------------------------- 203 * | Dinode | | 204 * | | 4| 205 * | |0 1 2 3 4 5 9| 206 * | | 6| 207 * ---------------------------------------- 208 * | 209 * | 210 * V 211 * ---------------------------------------- 212 * | Indirect Block | 213 * | 5| 214 * | 4 4 4 4 4 5 5 1| 215 * |0 5 6 7 8 9 0 1 2| 216 * ---------------------------------------- 217 * | 218 * | 219 * V 220 * ---------------------------------------- 221 * | Indirect Block | 222 * | 1 1 1 1 1 5| 223 * | 6 6 6 6 6 1| 224 * |0 3 4 5 6 7 2| 225 * ---------------------------------------- 226 * | 227 * | 228 * V 229 * ---------------------------------------- 230 * | Data block containing offset | 231 * | 101342453 | 232 * | | 233 * | | 234 * ---------------------------------------- 235 * 236 */ 237 238 static void find_metapath(const struct gfs2_sbd *sdp, u64 block, 239 struct metapath *mp, unsigned int height) 240 { 241 unsigned int i; 242 243 mp->mp_fheight = height; 244 for (i = height; i--;) 245 mp->mp_list[i] = do_div(block, sdp->sd_inptrs); 246 } 247 248 static inline unsigned int metapath_branch_start(const struct metapath *mp) 249 { 250 if (mp->mp_list[0] == 0) 251 return 2; 252 return 1; 253 } 254 255 /** 256 * metaptr1 - Return the first possible metadata pointer in a metapath buffer 257 * @height: The metadata height (0 = dinode) 258 * @mp: The metapath 259 */ 260 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp) 261 { 262 struct buffer_head *bh = mp->mp_bh[height]; 263 if (height == 0) 264 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode))); 265 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header))); 266 } 267 268 /** 269 * metapointer - Return pointer to start of metadata in a buffer 270 * @height: The metadata height (0 = dinode) 271 * @mp: The metapath 272 * 273 * Return a pointer to the block number of the next height of the metadata 274 * tree given a buffer containing the pointer to the current height of the 275 * metadata tree. 276 */ 277 278 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp) 279 { 280 __be64 *p = metaptr1(height, mp); 281 return p + mp->mp_list[height]; 282 } 283 284 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp) 285 { 286 const struct buffer_head *bh = mp->mp_bh[height]; 287 return (const __be64 *)(bh->b_data + bh->b_size); 288 } 289 290 static void clone_metapath(struct metapath *clone, struct metapath *mp) 291 { 292 unsigned int hgt; 293 294 *clone = *mp; 295 for (hgt = 0; hgt < mp->mp_aheight; hgt++) 296 get_bh(clone->mp_bh[hgt]); 297 } 298 299 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end) 300 { 301 const __be64 *t; 302 303 for (t = start; t < end; t++) { 304 struct buffer_head *rabh; 305 306 if (!*t) 307 continue; 308 309 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE); 310 if (trylock_buffer(rabh)) { 311 if (!buffer_uptodate(rabh)) { 312 rabh->b_end_io = end_buffer_read_sync; 313 submit_bh(REQ_OP_READ, 314 REQ_RAHEAD | REQ_META | REQ_PRIO, 315 rabh); 316 continue; 317 } 318 unlock_buffer(rabh); 319 } 320 brelse(rabh); 321 } 322 } 323 324 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, 325 unsigned int x, unsigned int h) 326 { 327 for (; x < h; x++) { 328 __be64 *ptr = metapointer(x, mp); 329 u64 dblock = be64_to_cpu(*ptr); 330 int ret; 331 332 if (!dblock) 333 break; 334 ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]); 335 if (ret) 336 return ret; 337 } 338 mp->mp_aheight = x + 1; 339 return 0; 340 } 341 342 /** 343 * lookup_metapath - Walk the metadata tree to a specific point 344 * @ip: The inode 345 * @mp: The metapath 346 * 347 * Assumes that the inode's buffer has already been looked up and 348 * hooked onto mp->mp_bh[0] and that the metapath has been initialised 349 * by find_metapath(). 350 * 351 * If this function encounters part of the tree which has not been 352 * allocated, it returns the current height of the tree at the point 353 * at which it found the unallocated block. Blocks which are found are 354 * added to the mp->mp_bh[] list. 355 * 356 * Returns: error 357 */ 358 359 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp) 360 { 361 return __fillup_metapath(ip, mp, 0, ip->i_height - 1); 362 } 363 364 /** 365 * fillup_metapath - fill up buffers for the metadata path to a specific height 366 * @ip: The inode 367 * @mp: The metapath 368 * @h: The height to which it should be mapped 369 * 370 * Similar to lookup_metapath, but does lookups for a range of heights 371 * 372 * Returns: error or the number of buffers filled 373 */ 374 375 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h) 376 { 377 unsigned int x = 0; 378 int ret; 379 380 if (h) { 381 /* find the first buffer we need to look up. */ 382 for (x = h - 1; x > 0; x--) { 383 if (mp->mp_bh[x]) 384 break; 385 } 386 } 387 ret = __fillup_metapath(ip, mp, x, h); 388 if (ret) 389 return ret; 390 return mp->mp_aheight - x - 1; 391 } 392 393 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp) 394 { 395 sector_t factor = 1, block = 0; 396 int hgt; 397 398 for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) { 399 if (hgt < mp->mp_aheight) 400 block += mp->mp_list[hgt] * factor; 401 factor *= sdp->sd_inptrs; 402 } 403 return block; 404 } 405 406 static void release_metapath(struct metapath *mp) 407 { 408 int i; 409 410 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) { 411 if (mp->mp_bh[i] == NULL) 412 break; 413 brelse(mp->mp_bh[i]); 414 mp->mp_bh[i] = NULL; 415 } 416 } 417 418 /** 419 * gfs2_extent_length - Returns length of an extent of blocks 420 * @bh: The metadata block 421 * @ptr: Current position in @bh 422 * @limit: Max extent length to return 423 * @eob: Set to 1 if we hit "end of block" 424 * 425 * Returns: The length of the extent (minimum of one block) 426 */ 427 428 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob) 429 { 430 const __be64 *end = (__be64 *)(bh->b_data + bh->b_size); 431 const __be64 *first = ptr; 432 u64 d = be64_to_cpu(*ptr); 433 434 *eob = 0; 435 do { 436 ptr++; 437 if (ptr >= end) 438 break; 439 d++; 440 } while(be64_to_cpu(*ptr) == d); 441 if (ptr >= end) 442 *eob = 1; 443 return ptr - first; 444 } 445 446 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE }; 447 448 /* 449 * gfs2_metadata_walker - walk an indirect block 450 * @mp: Metapath to indirect block 451 * @ptrs: Number of pointers to look at 452 * 453 * When returning WALK_FOLLOW, the walker must update @mp to point at the right 454 * indirect block to follow. 455 */ 456 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp, 457 unsigned int ptrs); 458 459 /* 460 * gfs2_walk_metadata - walk a tree of indirect blocks 461 * @inode: The inode 462 * @mp: Starting point of walk 463 * @max_len: Maximum number of blocks to walk 464 * @walker: Called during the walk 465 * 466 * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or 467 * past the end of metadata, and a negative error code otherwise. 468 */ 469 470 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp, 471 u64 max_len, gfs2_metadata_walker walker) 472 { 473 struct gfs2_inode *ip = GFS2_I(inode); 474 struct gfs2_sbd *sdp = GFS2_SB(inode); 475 u64 factor = 1; 476 unsigned int hgt; 477 int ret; 478 479 /* 480 * The walk starts in the lowest allocated indirect block, which may be 481 * before the position indicated by @mp. Adjust @max_len accordingly 482 * to avoid a short walk. 483 */ 484 for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) { 485 max_len += mp->mp_list[hgt] * factor; 486 mp->mp_list[hgt] = 0; 487 factor *= sdp->sd_inptrs; 488 } 489 490 for (;;) { 491 u16 start = mp->mp_list[hgt]; 492 enum walker_status status; 493 unsigned int ptrs; 494 u64 len; 495 496 /* Walk indirect block. */ 497 ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start; 498 len = ptrs * factor; 499 if (len > max_len) 500 ptrs = DIV_ROUND_UP_ULL(max_len, factor); 501 status = walker(mp, ptrs); 502 switch (status) { 503 case WALK_STOP: 504 return 1; 505 case WALK_FOLLOW: 506 BUG_ON(mp->mp_aheight == mp->mp_fheight); 507 ptrs = mp->mp_list[hgt] - start; 508 len = ptrs * factor; 509 break; 510 case WALK_CONTINUE: 511 break; 512 } 513 if (len >= max_len) 514 break; 515 max_len -= len; 516 if (status == WALK_FOLLOW) 517 goto fill_up_metapath; 518 519 lower_metapath: 520 /* Decrease height of metapath. */ 521 brelse(mp->mp_bh[hgt]); 522 mp->mp_bh[hgt] = NULL; 523 mp->mp_list[hgt] = 0; 524 if (!hgt) 525 break; 526 hgt--; 527 factor *= sdp->sd_inptrs; 528 529 /* Advance in metadata tree. */ 530 (mp->mp_list[hgt])++; 531 if (mp->mp_list[hgt] >= sdp->sd_inptrs) { 532 if (!hgt) 533 break; 534 goto lower_metapath; 535 } 536 537 fill_up_metapath: 538 /* Increase height of metapath. */ 539 ret = fillup_metapath(ip, mp, ip->i_height - 1); 540 if (ret < 0) 541 return ret; 542 hgt += ret; 543 for (; ret; ret--) 544 do_div(factor, sdp->sd_inptrs); 545 mp->mp_aheight = hgt + 1; 546 } 547 return 0; 548 } 549 550 static enum walker_status gfs2_hole_walker(struct metapath *mp, 551 unsigned int ptrs) 552 { 553 const __be64 *start, *ptr, *end; 554 unsigned int hgt; 555 556 hgt = mp->mp_aheight - 1; 557 start = metapointer(hgt, mp); 558 end = start + ptrs; 559 560 for (ptr = start; ptr < end; ptr++) { 561 if (*ptr) { 562 mp->mp_list[hgt] += ptr - start; 563 if (mp->mp_aheight == mp->mp_fheight) 564 return WALK_STOP; 565 return WALK_FOLLOW; 566 } 567 } 568 return WALK_CONTINUE; 569 } 570 571 /** 572 * gfs2_hole_size - figure out the size of a hole 573 * @inode: The inode 574 * @lblock: The logical starting block number 575 * @len: How far to look (in blocks) 576 * @mp: The metapath at lblock 577 * @iomap: The iomap to store the hole size in 578 * 579 * This function modifies @mp. 580 * 581 * Returns: errno on error 582 */ 583 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len, 584 struct metapath *mp, struct iomap *iomap) 585 { 586 struct metapath clone; 587 u64 hole_size; 588 int ret; 589 590 clone_metapath(&clone, mp); 591 ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker); 592 if (ret < 0) 593 goto out; 594 595 if (ret == 1) 596 hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock; 597 else 598 hole_size = len; 599 iomap->length = hole_size << inode->i_blkbits; 600 ret = 0; 601 602 out: 603 release_metapath(&clone); 604 return ret; 605 } 606 607 static inline __be64 *gfs2_indirect_init(struct metapath *mp, 608 struct gfs2_glock *gl, unsigned int i, 609 unsigned offset, u64 bn) 610 { 611 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data + 612 ((i > 1) ? sizeof(struct gfs2_meta_header) : 613 sizeof(struct gfs2_dinode))); 614 BUG_ON(i < 1); 615 BUG_ON(mp->mp_bh[i] != NULL); 616 mp->mp_bh[i] = gfs2_meta_new(gl, bn); 617 gfs2_trans_add_meta(gl, mp->mp_bh[i]); 618 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN); 619 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header)); 620 ptr += offset; 621 *ptr = cpu_to_be64(bn); 622 return ptr; 623 } 624 625 enum alloc_state { 626 ALLOC_DATA = 0, 627 ALLOC_GROW_DEPTH = 1, 628 ALLOC_GROW_HEIGHT = 2, 629 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */ 630 }; 631 632 /** 633 * gfs2_iomap_alloc - Build a metadata tree of the requested height 634 * @inode: The GFS2 inode 635 * @iomap: The iomap structure 636 * @mp: The metapath, with proper height information calculated 637 * 638 * In this routine we may have to alloc: 639 * i) Indirect blocks to grow the metadata tree height 640 * ii) Indirect blocks to fill in lower part of the metadata tree 641 * iii) Data blocks 642 * 643 * This function is called after gfs2_iomap_get, which works out the 644 * total number of blocks which we need via gfs2_alloc_size. 645 * 646 * We then do the actual allocation asking for an extent at a time (if 647 * enough contiguous free blocks are available, there will only be one 648 * allocation request per call) and uses the state machine to initialise 649 * the blocks in order. 650 * 651 * Right now, this function will allocate at most one indirect block 652 * worth of data -- with a default block size of 4K, that's slightly 653 * less than 2M. If this limitation is ever removed to allow huge 654 * allocations, we would probably still want to limit the iomap size we 655 * return to avoid stalling other tasks during huge writes; the next 656 * iomap iteration would then find the blocks already allocated. 657 * 658 * Returns: errno on error 659 */ 660 661 static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap, 662 struct metapath *mp) 663 { 664 struct gfs2_inode *ip = GFS2_I(inode); 665 struct gfs2_sbd *sdp = GFS2_SB(inode); 666 struct buffer_head *dibh = mp->mp_bh[0]; 667 u64 bn; 668 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0; 669 size_t dblks = iomap->length >> inode->i_blkbits; 670 const unsigned end_of_metadata = mp->mp_fheight - 1; 671 int ret; 672 enum alloc_state state; 673 __be64 *ptr; 674 __be64 zero_bn = 0; 675 676 BUG_ON(mp->mp_aheight < 1); 677 BUG_ON(dibh == NULL); 678 BUG_ON(dblks < 1); 679 680 gfs2_trans_add_meta(ip->i_gl, dibh); 681 682 down_write(&ip->i_rw_mutex); 683 684 if (mp->mp_fheight == mp->mp_aheight) { 685 /* Bottom indirect block exists */ 686 state = ALLOC_DATA; 687 } else { 688 /* Need to allocate indirect blocks */ 689 if (mp->mp_fheight == ip->i_height) { 690 /* Writing into existing tree, extend tree down */ 691 iblks = mp->mp_fheight - mp->mp_aheight; 692 state = ALLOC_GROW_DEPTH; 693 } else { 694 /* Building up tree height */ 695 state = ALLOC_GROW_HEIGHT; 696 iblks = mp->mp_fheight - ip->i_height; 697 branch_start = metapath_branch_start(mp); 698 iblks += (mp->mp_fheight - branch_start); 699 } 700 } 701 702 /* start of the second part of the function (state machine) */ 703 704 blks = dblks + iblks; 705 i = mp->mp_aheight; 706 do { 707 n = blks - alloced; 708 ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL); 709 if (ret) 710 goto out; 711 alloced += n; 712 if (state != ALLOC_DATA || gfs2_is_jdata(ip)) 713 gfs2_trans_remove_revoke(sdp, bn, n); 714 switch (state) { 715 /* Growing height of tree */ 716 case ALLOC_GROW_HEIGHT: 717 if (i == 1) { 718 ptr = (__be64 *)(dibh->b_data + 719 sizeof(struct gfs2_dinode)); 720 zero_bn = *ptr; 721 } 722 for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0; 723 i++, n--) 724 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++); 725 if (i - 1 == mp->mp_fheight - ip->i_height) { 726 i--; 727 gfs2_buffer_copy_tail(mp->mp_bh[i], 728 sizeof(struct gfs2_meta_header), 729 dibh, sizeof(struct gfs2_dinode)); 730 gfs2_buffer_clear_tail(dibh, 731 sizeof(struct gfs2_dinode) + 732 sizeof(__be64)); 733 ptr = (__be64 *)(mp->mp_bh[i]->b_data + 734 sizeof(struct gfs2_meta_header)); 735 *ptr = zero_bn; 736 state = ALLOC_GROW_DEPTH; 737 for(i = branch_start; i < mp->mp_fheight; i++) { 738 if (mp->mp_bh[i] == NULL) 739 break; 740 brelse(mp->mp_bh[i]); 741 mp->mp_bh[i] = NULL; 742 } 743 i = branch_start; 744 } 745 if (n == 0) 746 break; 747 /* fall through - To branching from existing tree */ 748 case ALLOC_GROW_DEPTH: 749 if (i > 1 && i < mp->mp_fheight) 750 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]); 751 for (; i < mp->mp_fheight && n > 0; i++, n--) 752 gfs2_indirect_init(mp, ip->i_gl, i, 753 mp->mp_list[i-1], bn++); 754 if (i == mp->mp_fheight) 755 state = ALLOC_DATA; 756 if (n == 0) 757 break; 758 /* fall through - To tree complete, adding data blocks */ 759 case ALLOC_DATA: 760 BUG_ON(n > dblks); 761 BUG_ON(mp->mp_bh[end_of_metadata] == NULL); 762 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]); 763 dblks = n; 764 ptr = metapointer(end_of_metadata, mp); 765 iomap->addr = bn << inode->i_blkbits; 766 iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW; 767 while (n-- > 0) 768 *ptr++ = cpu_to_be64(bn++); 769 break; 770 } 771 } while (iomap->addr == IOMAP_NULL_ADDR); 772 773 iomap->type = IOMAP_MAPPED; 774 iomap->length = (u64)dblks << inode->i_blkbits; 775 ip->i_height = mp->mp_fheight; 776 gfs2_add_inode_blocks(&ip->i_inode, alloced); 777 gfs2_dinode_out(ip, dibh->b_data); 778 out: 779 up_write(&ip->i_rw_mutex); 780 return ret; 781 } 782 783 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE 784 785 /** 786 * gfs2_alloc_size - Compute the maximum allocation size 787 * @inode: The inode 788 * @mp: The metapath 789 * @size: Requested size in blocks 790 * 791 * Compute the maximum size of the next allocation at @mp. 792 * 793 * Returns: size in blocks 794 */ 795 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size) 796 { 797 struct gfs2_inode *ip = GFS2_I(inode); 798 struct gfs2_sbd *sdp = GFS2_SB(inode); 799 const __be64 *first, *ptr, *end; 800 801 /* 802 * For writes to stuffed files, this function is called twice via 803 * gfs2_iomap_get, before and after unstuffing. The size we return the 804 * first time needs to be large enough to get the reservation and 805 * allocation sizes right. The size we return the second time must 806 * be exact or else gfs2_iomap_alloc won't do the right thing. 807 */ 808 809 if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) { 810 unsigned int maxsize = mp->mp_fheight > 1 ? 811 sdp->sd_inptrs : sdp->sd_diptrs; 812 maxsize -= mp->mp_list[mp->mp_fheight - 1]; 813 if (size > maxsize) 814 size = maxsize; 815 return size; 816 } 817 818 first = metapointer(ip->i_height - 1, mp); 819 end = metaend(ip->i_height - 1, mp); 820 if (end - first > size) 821 end = first + size; 822 for (ptr = first; ptr < end; ptr++) { 823 if (*ptr) 824 break; 825 } 826 return ptr - first; 827 } 828 829 /** 830 * gfs2_iomap_get - Map blocks from an inode to disk blocks 831 * @inode: The inode 832 * @pos: Starting position in bytes 833 * @length: Length to map, in bytes 834 * @flags: iomap flags 835 * @iomap: The iomap structure 836 * @mp: The metapath 837 * 838 * Returns: errno 839 */ 840 static int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length, 841 unsigned flags, struct iomap *iomap, 842 struct metapath *mp) 843 { 844 struct gfs2_inode *ip = GFS2_I(inode); 845 struct gfs2_sbd *sdp = GFS2_SB(inode); 846 loff_t size = i_size_read(inode); 847 __be64 *ptr; 848 sector_t lblock; 849 sector_t lblock_stop; 850 int ret; 851 int eob; 852 u64 len; 853 struct buffer_head *dibh = NULL, *bh; 854 u8 height; 855 856 if (!length) 857 return -EINVAL; 858 859 down_read(&ip->i_rw_mutex); 860 861 ret = gfs2_meta_inode_buffer(ip, &dibh); 862 if (ret) 863 goto unlock; 864 mp->mp_bh[0] = dibh; 865 866 if (gfs2_is_stuffed(ip)) { 867 if (flags & IOMAP_WRITE) { 868 loff_t max_size = gfs2_max_stuffed_size(ip); 869 870 if (pos + length > max_size) 871 goto unstuff; 872 iomap->length = max_size; 873 } else { 874 if (pos >= size) { 875 if (flags & IOMAP_REPORT) { 876 ret = -ENOENT; 877 goto unlock; 878 } else { 879 /* report a hole */ 880 iomap->offset = pos; 881 iomap->length = length; 882 goto do_alloc; 883 } 884 } 885 iomap->length = size; 886 } 887 iomap->addr = (ip->i_no_addr << inode->i_blkbits) + 888 sizeof(struct gfs2_dinode); 889 iomap->type = IOMAP_INLINE; 890 iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode); 891 goto out; 892 } 893 894 unstuff: 895 lblock = pos >> inode->i_blkbits; 896 iomap->offset = lblock << inode->i_blkbits; 897 lblock_stop = (pos + length - 1) >> inode->i_blkbits; 898 len = lblock_stop - lblock + 1; 899 iomap->length = len << inode->i_blkbits; 900 901 height = ip->i_height; 902 while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height]) 903 height++; 904 find_metapath(sdp, lblock, mp, height); 905 if (height > ip->i_height || gfs2_is_stuffed(ip)) 906 goto do_alloc; 907 908 ret = lookup_metapath(ip, mp); 909 if (ret) 910 goto unlock; 911 912 if (mp->mp_aheight != ip->i_height) 913 goto do_alloc; 914 915 ptr = metapointer(ip->i_height - 1, mp); 916 if (*ptr == 0) 917 goto do_alloc; 918 919 bh = mp->mp_bh[ip->i_height - 1]; 920 len = gfs2_extent_length(bh, ptr, len, &eob); 921 922 iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits; 923 iomap->length = len << inode->i_blkbits; 924 iomap->type = IOMAP_MAPPED; 925 iomap->flags |= IOMAP_F_MERGED; 926 if (eob) 927 iomap->flags |= IOMAP_F_GFS2_BOUNDARY; 928 929 out: 930 iomap->bdev = inode->i_sb->s_bdev; 931 unlock: 932 up_read(&ip->i_rw_mutex); 933 return ret; 934 935 do_alloc: 936 iomap->addr = IOMAP_NULL_ADDR; 937 iomap->type = IOMAP_HOLE; 938 if (flags & IOMAP_REPORT) { 939 if (pos >= size) 940 ret = -ENOENT; 941 else if (height == ip->i_height) 942 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 943 else 944 iomap->length = size - pos; 945 } else if (flags & IOMAP_WRITE) { 946 u64 alloc_size; 947 948 if (flags & IOMAP_DIRECT) 949 goto out; /* (see gfs2_file_direct_write) */ 950 951 len = gfs2_alloc_size(inode, mp, len); 952 alloc_size = len << inode->i_blkbits; 953 if (alloc_size < iomap->length) 954 iomap->length = alloc_size; 955 } else { 956 if (pos < size && height == ip->i_height) 957 ret = gfs2_hole_size(inode, lblock, len, mp, iomap); 958 } 959 goto out; 960 } 961 962 /** 963 * gfs2_lblk_to_dblk - convert logical block to disk block 964 * @inode: the inode of the file we're mapping 965 * @lblock: the block relative to the start of the file 966 * @dblock: the returned dblock, if no error 967 * 968 * This function maps a single block from a file logical block (relative to 969 * the start of the file) to a file system absolute block using iomap. 970 * 971 * Returns: the absolute file system block, or an error 972 */ 973 int gfs2_lblk_to_dblk(struct inode *inode, u32 lblock, u64 *dblock) 974 { 975 struct iomap iomap = { }; 976 struct metapath mp = { .mp_aheight = 1, }; 977 loff_t pos = (loff_t)lblock << inode->i_blkbits; 978 int ret; 979 980 ret = gfs2_iomap_get(inode, pos, i_blocksize(inode), 0, &iomap, &mp); 981 release_metapath(&mp); 982 if (ret == 0) 983 *dblock = iomap.addr >> inode->i_blkbits; 984 985 return ret; 986 } 987 988 static int gfs2_write_lock(struct inode *inode) 989 { 990 struct gfs2_inode *ip = GFS2_I(inode); 991 struct gfs2_sbd *sdp = GFS2_SB(inode); 992 int error; 993 994 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh); 995 error = gfs2_glock_nq(&ip->i_gh); 996 if (error) 997 goto out_uninit; 998 if (&ip->i_inode == sdp->sd_rindex) { 999 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 1000 1001 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE, 1002 GL_NOCACHE, &m_ip->i_gh); 1003 if (error) 1004 goto out_unlock; 1005 } 1006 return 0; 1007 1008 out_unlock: 1009 gfs2_glock_dq(&ip->i_gh); 1010 out_uninit: 1011 gfs2_holder_uninit(&ip->i_gh); 1012 return error; 1013 } 1014 1015 static void gfs2_write_unlock(struct inode *inode) 1016 { 1017 struct gfs2_inode *ip = GFS2_I(inode); 1018 struct gfs2_sbd *sdp = GFS2_SB(inode); 1019 1020 if (&ip->i_inode == sdp->sd_rindex) { 1021 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); 1022 1023 gfs2_glock_dq_uninit(&m_ip->i_gh); 1024 } 1025 gfs2_glock_dq_uninit(&ip->i_gh); 1026 } 1027 1028 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos, 1029 unsigned len, struct iomap *iomap) 1030 { 1031 unsigned int blockmask = i_blocksize(inode) - 1; 1032 struct gfs2_sbd *sdp = GFS2_SB(inode); 1033 unsigned int blocks; 1034 1035 blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits; 1036 return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0); 1037 } 1038 1039 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos, 1040 unsigned copied, struct page *page, 1041 struct iomap *iomap) 1042 { 1043 struct gfs2_trans *tr = current->journal_info; 1044 struct gfs2_inode *ip = GFS2_I(inode); 1045 struct gfs2_sbd *sdp = GFS2_SB(inode); 1046 1047 if (page && !gfs2_is_stuffed(ip)) 1048 gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied); 1049 1050 if (tr->tr_num_buf_new) 1051 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1052 1053 gfs2_trans_end(sdp); 1054 } 1055 1056 static const struct iomap_page_ops gfs2_iomap_page_ops = { 1057 .page_prepare = gfs2_iomap_page_prepare, 1058 .page_done = gfs2_iomap_page_done, 1059 }; 1060 1061 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos, 1062 loff_t length, unsigned flags, 1063 struct iomap *iomap, 1064 struct metapath *mp) 1065 { 1066 struct gfs2_inode *ip = GFS2_I(inode); 1067 struct gfs2_sbd *sdp = GFS2_SB(inode); 1068 bool unstuff; 1069 int ret; 1070 1071 unstuff = gfs2_is_stuffed(ip) && 1072 pos + length > gfs2_max_stuffed_size(ip); 1073 1074 if (unstuff || iomap->type == IOMAP_HOLE) { 1075 unsigned int data_blocks, ind_blocks; 1076 struct gfs2_alloc_parms ap = {}; 1077 unsigned int rblocks; 1078 struct gfs2_trans *tr; 1079 1080 gfs2_write_calc_reserv(ip, iomap->length, &data_blocks, 1081 &ind_blocks); 1082 ap.target = data_blocks + ind_blocks; 1083 ret = gfs2_quota_lock_check(ip, &ap); 1084 if (ret) 1085 return ret; 1086 1087 ret = gfs2_inplace_reserve(ip, &ap); 1088 if (ret) 1089 goto out_qunlock; 1090 1091 rblocks = RES_DINODE + ind_blocks; 1092 if (gfs2_is_jdata(ip)) 1093 rblocks += data_blocks; 1094 if (ind_blocks || data_blocks) 1095 rblocks += RES_STATFS + RES_QUOTA; 1096 if (inode == sdp->sd_rindex) 1097 rblocks += 2 * RES_STATFS; 1098 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 1099 1100 ret = gfs2_trans_begin(sdp, rblocks, 1101 iomap->length >> inode->i_blkbits); 1102 if (ret) 1103 goto out_trans_fail; 1104 1105 if (unstuff) { 1106 ret = gfs2_unstuff_dinode(ip, NULL); 1107 if (ret) 1108 goto out_trans_end; 1109 release_metapath(mp); 1110 ret = gfs2_iomap_get(inode, iomap->offset, 1111 iomap->length, flags, iomap, mp); 1112 if (ret) 1113 goto out_trans_end; 1114 } 1115 1116 if (iomap->type == IOMAP_HOLE) { 1117 ret = gfs2_iomap_alloc(inode, iomap, mp); 1118 if (ret) { 1119 gfs2_trans_end(sdp); 1120 gfs2_inplace_release(ip); 1121 punch_hole(ip, iomap->offset, iomap->length); 1122 goto out_qunlock; 1123 } 1124 } 1125 1126 tr = current->journal_info; 1127 if (tr->tr_num_buf_new) 1128 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1129 1130 gfs2_trans_end(sdp); 1131 } 1132 1133 if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip)) 1134 iomap->page_ops = &gfs2_iomap_page_ops; 1135 return 0; 1136 1137 out_trans_end: 1138 gfs2_trans_end(sdp); 1139 out_trans_fail: 1140 gfs2_inplace_release(ip); 1141 out_qunlock: 1142 gfs2_quota_unlock(ip); 1143 return ret; 1144 } 1145 1146 static inline bool gfs2_iomap_need_write_lock(unsigned flags) 1147 { 1148 return (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT); 1149 } 1150 1151 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length, 1152 unsigned flags, struct iomap *iomap) 1153 { 1154 struct gfs2_inode *ip = GFS2_I(inode); 1155 struct metapath mp = { .mp_aheight = 1, }; 1156 int ret; 1157 1158 iomap->flags |= IOMAP_F_BUFFER_HEAD; 1159 1160 trace_gfs2_iomap_start(ip, pos, length, flags); 1161 if (gfs2_iomap_need_write_lock(flags)) { 1162 ret = gfs2_write_lock(inode); 1163 if (ret) 1164 goto out; 1165 } 1166 1167 ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp); 1168 if (ret) 1169 goto out_unlock; 1170 1171 switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) { 1172 case IOMAP_WRITE: 1173 if (flags & IOMAP_DIRECT) { 1174 /* 1175 * Silently fall back to buffered I/O for stuffed files 1176 * or if we've got a hole (see gfs2_file_direct_write). 1177 */ 1178 if (iomap->type != IOMAP_MAPPED) 1179 ret = -ENOTBLK; 1180 goto out_unlock; 1181 } 1182 break; 1183 case IOMAP_ZERO: 1184 if (iomap->type == IOMAP_HOLE) 1185 goto out_unlock; 1186 break; 1187 default: 1188 goto out_unlock; 1189 } 1190 1191 ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp); 1192 1193 out_unlock: 1194 if (ret && gfs2_iomap_need_write_lock(flags)) 1195 gfs2_write_unlock(inode); 1196 release_metapath(&mp); 1197 out: 1198 trace_gfs2_iomap_end(ip, iomap, ret); 1199 return ret; 1200 } 1201 1202 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length, 1203 ssize_t written, unsigned flags, struct iomap *iomap) 1204 { 1205 struct gfs2_inode *ip = GFS2_I(inode); 1206 struct gfs2_sbd *sdp = GFS2_SB(inode); 1207 1208 switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) { 1209 case IOMAP_WRITE: 1210 if (flags & IOMAP_DIRECT) 1211 return 0; 1212 break; 1213 case IOMAP_ZERO: 1214 if (iomap->type == IOMAP_HOLE) 1215 return 0; 1216 break; 1217 default: 1218 return 0; 1219 } 1220 1221 if (!gfs2_is_stuffed(ip)) 1222 gfs2_ordered_add_inode(ip); 1223 1224 if (inode == sdp->sd_rindex) 1225 adjust_fs_space(inode); 1226 1227 gfs2_inplace_release(ip); 1228 1229 if (length != written && (iomap->flags & IOMAP_F_NEW)) { 1230 /* Deallocate blocks that were just allocated. */ 1231 loff_t blockmask = i_blocksize(inode) - 1; 1232 loff_t end = (pos + length) & ~blockmask; 1233 1234 pos = (pos + written + blockmask) & ~blockmask; 1235 if (pos < end) { 1236 truncate_pagecache_range(inode, pos, end - 1); 1237 punch_hole(ip, pos, end - pos); 1238 } 1239 } 1240 1241 if (ip->i_qadata && ip->i_qadata->qa_qd_num) 1242 gfs2_quota_unlock(ip); 1243 1244 if (unlikely(!written)) 1245 goto out_unlock; 1246 1247 if (iomap->flags & IOMAP_F_SIZE_CHANGED) 1248 mark_inode_dirty(inode); 1249 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags); 1250 1251 out_unlock: 1252 if (gfs2_iomap_need_write_lock(flags)) 1253 gfs2_write_unlock(inode); 1254 return 0; 1255 } 1256 1257 const struct iomap_ops gfs2_iomap_ops = { 1258 .iomap_begin = gfs2_iomap_begin, 1259 .iomap_end = gfs2_iomap_end, 1260 }; 1261 1262 /** 1263 * gfs2_block_map - Map one or more blocks of an inode to a disk block 1264 * @inode: The inode 1265 * @lblock: The logical block number 1266 * @bh_map: The bh to be mapped 1267 * @create: True if its ok to alloc blocks to satify the request 1268 * 1269 * The size of the requested mapping is defined in bh_map->b_size. 1270 * 1271 * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged 1272 * when @lblock is not mapped. Sets buffer_mapped(bh_map) and 1273 * bh_map->b_size to indicate the size of the mapping when @lblock and 1274 * successive blocks are mapped, up to the requested size. 1275 * 1276 * Sets buffer_boundary() if a read of metadata will be required 1277 * before the next block can be mapped. Sets buffer_new() if new 1278 * blocks were allocated. 1279 * 1280 * Returns: errno 1281 */ 1282 1283 int gfs2_block_map(struct inode *inode, sector_t lblock, 1284 struct buffer_head *bh_map, int create) 1285 { 1286 struct gfs2_inode *ip = GFS2_I(inode); 1287 loff_t pos = (loff_t)lblock << inode->i_blkbits; 1288 loff_t length = bh_map->b_size; 1289 struct metapath mp = { .mp_aheight = 1, }; 1290 struct iomap iomap = { }; 1291 int ret; 1292 1293 clear_buffer_mapped(bh_map); 1294 clear_buffer_new(bh_map); 1295 clear_buffer_boundary(bh_map); 1296 trace_gfs2_bmap(ip, bh_map, lblock, create, 1); 1297 1298 if (create) { 1299 ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, &iomap, &mp); 1300 if (!ret && iomap.type == IOMAP_HOLE) 1301 ret = gfs2_iomap_alloc(inode, &iomap, &mp); 1302 release_metapath(&mp); 1303 } else { 1304 ret = gfs2_iomap_get(inode, pos, length, 0, &iomap, &mp); 1305 release_metapath(&mp); 1306 } 1307 if (ret) 1308 goto out; 1309 1310 if (iomap.length > bh_map->b_size) { 1311 iomap.length = bh_map->b_size; 1312 iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY; 1313 } 1314 if (iomap.addr != IOMAP_NULL_ADDR) 1315 map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits); 1316 bh_map->b_size = iomap.length; 1317 if (iomap.flags & IOMAP_F_GFS2_BOUNDARY) 1318 set_buffer_boundary(bh_map); 1319 if (iomap.flags & IOMAP_F_NEW) 1320 set_buffer_new(bh_map); 1321 1322 out: 1323 trace_gfs2_bmap(ip, bh_map, lblock, create, ret); 1324 return ret; 1325 } 1326 1327 /* 1328 * Deprecated: do not use in new code 1329 */ 1330 int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen) 1331 { 1332 struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 }; 1333 int ret; 1334 int create = *new; 1335 1336 BUG_ON(!extlen); 1337 BUG_ON(!dblock); 1338 BUG_ON(!new); 1339 1340 bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5)); 1341 ret = gfs2_block_map(inode, lblock, &bh, create); 1342 *extlen = bh.b_size >> inode->i_blkbits; 1343 *dblock = bh.b_blocknr; 1344 if (buffer_new(&bh)) 1345 *new = 1; 1346 else 1347 *new = 0; 1348 return ret; 1349 } 1350 1351 static int gfs2_block_zero_range(struct inode *inode, loff_t from, 1352 unsigned int length) 1353 { 1354 return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops); 1355 } 1356 1357 #define GFS2_JTRUNC_REVOKES 8192 1358 1359 /** 1360 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files 1361 * @inode: The inode being truncated 1362 * @oldsize: The original (larger) size 1363 * @newsize: The new smaller size 1364 * 1365 * With jdata files, we have to journal a revoke for each block which is 1366 * truncated. As a result, we need to split this into separate transactions 1367 * if the number of pages being truncated gets too large. 1368 */ 1369 1370 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize) 1371 { 1372 struct gfs2_sbd *sdp = GFS2_SB(inode); 1373 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 1374 u64 chunk; 1375 int error; 1376 1377 while (oldsize != newsize) { 1378 struct gfs2_trans *tr; 1379 unsigned int offs; 1380 1381 chunk = oldsize - newsize; 1382 if (chunk > max_chunk) 1383 chunk = max_chunk; 1384 1385 offs = oldsize & ~PAGE_MASK; 1386 if (offs && chunk > PAGE_SIZE) 1387 chunk = offs + ((chunk - offs) & PAGE_MASK); 1388 1389 truncate_pagecache(inode, oldsize - chunk); 1390 oldsize -= chunk; 1391 1392 tr = current->journal_info; 1393 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 1394 continue; 1395 1396 gfs2_trans_end(sdp); 1397 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 1398 if (error) 1399 return error; 1400 } 1401 1402 return 0; 1403 } 1404 1405 static int trunc_start(struct inode *inode, u64 newsize) 1406 { 1407 struct gfs2_inode *ip = GFS2_I(inode); 1408 struct gfs2_sbd *sdp = GFS2_SB(inode); 1409 struct buffer_head *dibh = NULL; 1410 int journaled = gfs2_is_jdata(ip); 1411 u64 oldsize = inode->i_size; 1412 int error; 1413 1414 if (journaled) 1415 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES); 1416 else 1417 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 1418 if (error) 1419 return error; 1420 1421 error = gfs2_meta_inode_buffer(ip, &dibh); 1422 if (error) 1423 goto out; 1424 1425 gfs2_trans_add_meta(ip->i_gl, dibh); 1426 1427 if (gfs2_is_stuffed(ip)) { 1428 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize); 1429 } else { 1430 unsigned int blocksize = i_blocksize(inode); 1431 unsigned int offs = newsize & (blocksize - 1); 1432 if (offs) { 1433 error = gfs2_block_zero_range(inode, newsize, 1434 blocksize - offs); 1435 if (error) 1436 goto out; 1437 } 1438 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG; 1439 } 1440 1441 i_size_write(inode, newsize); 1442 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1443 gfs2_dinode_out(ip, dibh->b_data); 1444 1445 if (journaled) 1446 error = gfs2_journaled_truncate(inode, oldsize, newsize); 1447 else 1448 truncate_pagecache(inode, newsize); 1449 1450 out: 1451 brelse(dibh); 1452 if (current->journal_info) 1453 gfs2_trans_end(sdp); 1454 return error; 1455 } 1456 1457 int gfs2_iomap_get_alloc(struct inode *inode, loff_t pos, loff_t length, 1458 struct iomap *iomap) 1459 { 1460 struct metapath mp = { .mp_aheight = 1, }; 1461 int ret; 1462 1463 ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp); 1464 if (!ret && iomap->type == IOMAP_HOLE) 1465 ret = gfs2_iomap_alloc(inode, iomap, &mp); 1466 release_metapath(&mp); 1467 return ret; 1468 } 1469 1470 /** 1471 * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein 1472 * @ip: inode 1473 * @rg_gh: holder of resource group glock 1474 * @bh: buffer head to sweep 1475 * @start: starting point in bh 1476 * @end: end point in bh 1477 * @meta: true if bh points to metadata (rather than data) 1478 * @btotal: place to keep count of total blocks freed 1479 * 1480 * We sweep a metadata buffer (provided by the metapath) for blocks we need to 1481 * free, and free them all. However, we do it one rgrp at a time. If this 1482 * block has references to multiple rgrps, we break it into individual 1483 * transactions. This allows other processes to use the rgrps while we're 1484 * focused on a single one, for better concurrency / performance. 1485 * At every transaction boundary, we rewrite the inode into the journal. 1486 * That way the bitmaps are kept consistent with the inode and we can recover 1487 * if we're interrupted by power-outages. 1488 * 1489 * Returns: 0, or return code if an error occurred. 1490 * *btotal has the total number of blocks freed 1491 */ 1492 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh, 1493 struct buffer_head *bh, __be64 *start, __be64 *end, 1494 bool meta, u32 *btotal) 1495 { 1496 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1497 struct gfs2_rgrpd *rgd; 1498 struct gfs2_trans *tr; 1499 __be64 *p; 1500 int blks_outside_rgrp; 1501 u64 bn, bstart, isize_blks; 1502 s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */ 1503 int ret = 0; 1504 bool buf_in_tr = false; /* buffer was added to transaction */ 1505 1506 more_rgrps: 1507 rgd = NULL; 1508 if (gfs2_holder_initialized(rd_gh)) { 1509 rgd = gfs2_glock2rgrp(rd_gh->gh_gl); 1510 gfs2_assert_withdraw(sdp, 1511 gfs2_glock_is_locked_by_me(rd_gh->gh_gl)); 1512 } 1513 blks_outside_rgrp = 0; 1514 bstart = 0; 1515 blen = 0; 1516 1517 for (p = start; p < end; p++) { 1518 if (!*p) 1519 continue; 1520 bn = be64_to_cpu(*p); 1521 1522 if (rgd) { 1523 if (!rgrp_contains_block(rgd, bn)) { 1524 blks_outside_rgrp++; 1525 continue; 1526 } 1527 } else { 1528 rgd = gfs2_blk2rgrpd(sdp, bn, true); 1529 if (unlikely(!rgd)) { 1530 ret = -EIO; 1531 goto out; 1532 } 1533 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 1534 0, rd_gh); 1535 if (ret) 1536 goto out; 1537 1538 /* Must be done with the rgrp glock held: */ 1539 if (gfs2_rs_active(&ip->i_res) && 1540 rgd == ip->i_res.rs_rbm.rgd) 1541 gfs2_rs_deltree(&ip->i_res); 1542 } 1543 1544 /* The size of our transactions will be unknown until we 1545 actually process all the metadata blocks that relate to 1546 the rgrp. So we estimate. We know it can't be more than 1547 the dinode's i_blocks and we don't want to exceed the 1548 journal flush threshold, sd_log_thresh2. */ 1549 if (current->journal_info == NULL) { 1550 unsigned int jblocks_rqsted, revokes; 1551 1552 jblocks_rqsted = rgd->rd_length + RES_DINODE + 1553 RES_INDIRECT; 1554 isize_blks = gfs2_get_inode_blocks(&ip->i_inode); 1555 if (isize_blks > atomic_read(&sdp->sd_log_thresh2)) 1556 jblocks_rqsted += 1557 atomic_read(&sdp->sd_log_thresh2); 1558 else 1559 jblocks_rqsted += isize_blks; 1560 revokes = jblocks_rqsted; 1561 if (meta) 1562 revokes += end - start; 1563 else if (ip->i_depth) 1564 revokes += sdp->sd_inptrs; 1565 ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes); 1566 if (ret) 1567 goto out_unlock; 1568 down_write(&ip->i_rw_mutex); 1569 } 1570 /* check if we will exceed the transaction blocks requested */ 1571 tr = current->journal_info; 1572 if (tr->tr_num_buf_new + RES_STATFS + 1573 RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) { 1574 /* We set blks_outside_rgrp to ensure the loop will 1575 be repeated for the same rgrp, but with a new 1576 transaction. */ 1577 blks_outside_rgrp++; 1578 /* This next part is tricky. If the buffer was added 1579 to the transaction, we've already set some block 1580 pointers to 0, so we better follow through and free 1581 them, or we will introduce corruption (so break). 1582 This may be impossible, or at least rare, but I 1583 decided to cover the case regardless. 1584 1585 If the buffer was not added to the transaction 1586 (this call), doing so would exceed our transaction 1587 size, so we need to end the transaction and start a 1588 new one (so goto). */ 1589 1590 if (buf_in_tr) 1591 break; 1592 goto out_unlock; 1593 } 1594 1595 gfs2_trans_add_meta(ip->i_gl, bh); 1596 buf_in_tr = true; 1597 *p = 0; 1598 if (bstart + blen == bn) { 1599 blen++; 1600 continue; 1601 } 1602 if (bstart) { 1603 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1604 (*btotal) += blen; 1605 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1606 } 1607 bstart = bn; 1608 blen = 1; 1609 } 1610 if (bstart) { 1611 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta); 1612 (*btotal) += blen; 1613 gfs2_add_inode_blocks(&ip->i_inode, -blen); 1614 } 1615 out_unlock: 1616 if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks 1617 outside the rgrp we just processed, 1618 do it all over again. */ 1619 if (current->journal_info) { 1620 struct buffer_head *dibh; 1621 1622 ret = gfs2_meta_inode_buffer(ip, &dibh); 1623 if (ret) 1624 goto out; 1625 1626 /* Every transaction boundary, we rewrite the dinode 1627 to keep its di_blocks current in case of failure. */ 1628 ip->i_inode.i_mtime = ip->i_inode.i_ctime = 1629 current_time(&ip->i_inode); 1630 gfs2_trans_add_meta(ip->i_gl, dibh); 1631 gfs2_dinode_out(ip, dibh->b_data); 1632 brelse(dibh); 1633 up_write(&ip->i_rw_mutex); 1634 gfs2_trans_end(sdp); 1635 buf_in_tr = false; 1636 } 1637 gfs2_glock_dq_uninit(rd_gh); 1638 cond_resched(); 1639 goto more_rgrps; 1640 } 1641 out: 1642 return ret; 1643 } 1644 1645 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h) 1646 { 1647 if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0]))) 1648 return false; 1649 return true; 1650 } 1651 1652 /** 1653 * find_nonnull_ptr - find a non-null pointer given a metapath and height 1654 * @mp: starting metapath 1655 * @h: desired height to search 1656 * 1657 * Assumes the metapath is valid (with buffers) out to height h. 1658 * Returns: true if a non-null pointer was found in the metapath buffer 1659 * false if all remaining pointers are NULL in the buffer 1660 */ 1661 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp, 1662 unsigned int h, 1663 __u16 *end_list, unsigned int end_aligned) 1664 { 1665 struct buffer_head *bh = mp->mp_bh[h]; 1666 __be64 *first, *ptr, *end; 1667 1668 first = metaptr1(h, mp); 1669 ptr = first + mp->mp_list[h]; 1670 end = (__be64 *)(bh->b_data + bh->b_size); 1671 if (end_list && mp_eq_to_hgt(mp, end_list, h)) { 1672 bool keep_end = h < end_aligned; 1673 end = first + end_list[h] + keep_end; 1674 } 1675 1676 while (ptr < end) { 1677 if (*ptr) { /* if we have a non-null pointer */ 1678 mp->mp_list[h] = ptr - first; 1679 h++; 1680 if (h < GFS2_MAX_META_HEIGHT) 1681 mp->mp_list[h] = 0; 1682 return true; 1683 } 1684 ptr++; 1685 } 1686 return false; 1687 } 1688 1689 enum dealloc_states { 1690 DEALLOC_MP_FULL = 0, /* Strip a metapath with all buffers read in */ 1691 DEALLOC_MP_LOWER = 1, /* lower the metapath strip height */ 1692 DEALLOC_FILL_MP = 2, /* Fill in the metapath to the given height. */ 1693 DEALLOC_DONE = 3, /* process complete */ 1694 }; 1695 1696 static inline void 1697 metapointer_range(struct metapath *mp, int height, 1698 __u16 *start_list, unsigned int start_aligned, 1699 __u16 *end_list, unsigned int end_aligned, 1700 __be64 **start, __be64 **end) 1701 { 1702 struct buffer_head *bh = mp->mp_bh[height]; 1703 __be64 *first; 1704 1705 first = metaptr1(height, mp); 1706 *start = first; 1707 if (mp_eq_to_hgt(mp, start_list, height)) { 1708 bool keep_start = height < start_aligned; 1709 *start = first + start_list[height] + keep_start; 1710 } 1711 *end = (__be64 *)(bh->b_data + bh->b_size); 1712 if (end_list && mp_eq_to_hgt(mp, end_list, height)) { 1713 bool keep_end = height < end_aligned; 1714 *end = first + end_list[height] + keep_end; 1715 } 1716 } 1717 1718 static inline bool walk_done(struct gfs2_sbd *sdp, 1719 struct metapath *mp, int height, 1720 __u16 *end_list, unsigned int end_aligned) 1721 { 1722 __u16 end; 1723 1724 if (end_list) { 1725 bool keep_end = height < end_aligned; 1726 if (!mp_eq_to_hgt(mp, end_list, height)) 1727 return false; 1728 end = end_list[height] + keep_end; 1729 } else 1730 end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs; 1731 return mp->mp_list[height] >= end; 1732 } 1733 1734 /** 1735 * punch_hole - deallocate blocks in a file 1736 * @ip: inode to truncate 1737 * @offset: the start of the hole 1738 * @length: the size of the hole (or 0 for truncate) 1739 * 1740 * Punch a hole into a file or truncate a file at a given position. This 1741 * function operates in whole blocks (@offset and @length are rounded 1742 * accordingly); partially filled blocks must be cleared otherwise. 1743 * 1744 * This function works from the bottom up, and from the right to the left. In 1745 * other words, it strips off the highest layer (data) before stripping any of 1746 * the metadata. Doing it this way is best in case the operation is interrupted 1747 * by power failure, etc. The dinode is rewritten in every transaction to 1748 * guarantee integrity. 1749 */ 1750 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length) 1751 { 1752 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1753 u64 maxsize = sdp->sd_heightsize[ip->i_height]; 1754 struct metapath mp = {}; 1755 struct buffer_head *dibh, *bh; 1756 struct gfs2_holder rd_gh; 1757 unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift; 1758 u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift; 1759 __u16 start_list[GFS2_MAX_META_HEIGHT]; 1760 __u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL; 1761 unsigned int start_aligned, uninitialized_var(end_aligned); 1762 unsigned int strip_h = ip->i_height - 1; 1763 u32 btotal = 0; 1764 int ret, state; 1765 int mp_h; /* metapath buffers are read in to this height */ 1766 u64 prev_bnr = 0; 1767 __be64 *start, *end; 1768 1769 if (offset >= maxsize) { 1770 /* 1771 * The starting point lies beyond the allocated meta-data; 1772 * there are no blocks do deallocate. 1773 */ 1774 return 0; 1775 } 1776 1777 /* 1778 * The start position of the hole is defined by lblock, start_list, and 1779 * start_aligned. The end position of the hole is defined by lend, 1780 * end_list, and end_aligned. 1781 * 1782 * start_aligned and end_aligned define down to which height the start 1783 * and end positions are aligned to the metadata tree (i.e., the 1784 * position is a multiple of the metadata granularity at the height 1785 * above). This determines at which heights additional meta pointers 1786 * needs to be preserved for the remaining data. 1787 */ 1788 1789 if (length) { 1790 u64 end_offset = offset + length; 1791 u64 lend; 1792 1793 /* 1794 * Clip the end at the maximum file size for the given height: 1795 * that's how far the metadata goes; files bigger than that 1796 * will have additional layers of indirection. 1797 */ 1798 if (end_offset > maxsize) 1799 end_offset = maxsize; 1800 lend = end_offset >> bsize_shift; 1801 1802 if (lblock >= lend) 1803 return 0; 1804 1805 find_metapath(sdp, lend, &mp, ip->i_height); 1806 end_list = __end_list; 1807 memcpy(end_list, mp.mp_list, sizeof(mp.mp_list)); 1808 1809 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1810 if (end_list[mp_h]) 1811 break; 1812 } 1813 end_aligned = mp_h; 1814 } 1815 1816 find_metapath(sdp, lblock, &mp, ip->i_height); 1817 memcpy(start_list, mp.mp_list, sizeof(start_list)); 1818 1819 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) { 1820 if (start_list[mp_h]) 1821 break; 1822 } 1823 start_aligned = mp_h; 1824 1825 ret = gfs2_meta_inode_buffer(ip, &dibh); 1826 if (ret) 1827 return ret; 1828 1829 mp.mp_bh[0] = dibh; 1830 ret = lookup_metapath(ip, &mp); 1831 if (ret) 1832 goto out_metapath; 1833 1834 /* issue read-ahead on metadata */ 1835 for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) { 1836 metapointer_range(&mp, mp_h, start_list, start_aligned, 1837 end_list, end_aligned, &start, &end); 1838 gfs2_metapath_ra(ip->i_gl, start, end); 1839 } 1840 1841 if (mp.mp_aheight == ip->i_height) 1842 state = DEALLOC_MP_FULL; /* We have a complete metapath */ 1843 else 1844 state = DEALLOC_FILL_MP; /* deal with partial metapath */ 1845 1846 ret = gfs2_rindex_update(sdp); 1847 if (ret) 1848 goto out_metapath; 1849 1850 ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE); 1851 if (ret) 1852 goto out_metapath; 1853 gfs2_holder_mark_uninitialized(&rd_gh); 1854 1855 mp_h = strip_h; 1856 1857 while (state != DEALLOC_DONE) { 1858 switch (state) { 1859 /* Truncate a full metapath at the given strip height. 1860 * Note that strip_h == mp_h in order to be in this state. */ 1861 case DEALLOC_MP_FULL: 1862 bh = mp.mp_bh[mp_h]; 1863 gfs2_assert_withdraw(sdp, bh); 1864 if (gfs2_assert_withdraw(sdp, 1865 prev_bnr != bh->b_blocknr)) { 1866 fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u," 1867 "s_h:%u, mp_h:%u\n", 1868 (unsigned long long)ip->i_no_addr, 1869 prev_bnr, ip->i_height, strip_h, mp_h); 1870 } 1871 prev_bnr = bh->b_blocknr; 1872 1873 if (gfs2_metatype_check(sdp, bh, 1874 (mp_h ? GFS2_METATYPE_IN : 1875 GFS2_METATYPE_DI))) { 1876 ret = -EIO; 1877 goto out; 1878 } 1879 1880 /* 1881 * Below, passing end_aligned as 0 gives us the 1882 * metapointer range excluding the end point: the end 1883 * point is the first metapath we must not deallocate! 1884 */ 1885 1886 metapointer_range(&mp, mp_h, start_list, start_aligned, 1887 end_list, 0 /* end_aligned */, 1888 &start, &end); 1889 ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h], 1890 start, end, 1891 mp_h != ip->i_height - 1, 1892 &btotal); 1893 1894 /* If we hit an error or just swept dinode buffer, 1895 just exit. */ 1896 if (ret || !mp_h) { 1897 state = DEALLOC_DONE; 1898 break; 1899 } 1900 state = DEALLOC_MP_LOWER; 1901 break; 1902 1903 /* lower the metapath strip height */ 1904 case DEALLOC_MP_LOWER: 1905 /* We're done with the current buffer, so release it, 1906 unless it's the dinode buffer. Then back up to the 1907 previous pointer. */ 1908 if (mp_h) { 1909 brelse(mp.mp_bh[mp_h]); 1910 mp.mp_bh[mp_h] = NULL; 1911 } 1912 /* If we can't get any lower in height, we've stripped 1913 off all we can. Next step is to back up and start 1914 stripping the previous level of metadata. */ 1915 if (mp_h == 0) { 1916 strip_h--; 1917 memcpy(mp.mp_list, start_list, sizeof(start_list)); 1918 mp_h = strip_h; 1919 state = DEALLOC_FILL_MP; 1920 break; 1921 } 1922 mp.mp_list[mp_h] = 0; 1923 mp_h--; /* search one metadata height down */ 1924 mp.mp_list[mp_h]++; 1925 if (walk_done(sdp, &mp, mp_h, end_list, end_aligned)) 1926 break; 1927 /* Here we've found a part of the metapath that is not 1928 * allocated. We need to search at that height for the 1929 * next non-null pointer. */ 1930 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) { 1931 state = DEALLOC_FILL_MP; 1932 mp_h++; 1933 } 1934 /* No more non-null pointers at this height. Back up 1935 to the previous height and try again. */ 1936 break; /* loop around in the same state */ 1937 1938 /* Fill the metapath with buffers to the given height. */ 1939 case DEALLOC_FILL_MP: 1940 /* Fill the buffers out to the current height. */ 1941 ret = fillup_metapath(ip, &mp, mp_h); 1942 if (ret < 0) 1943 goto out; 1944 1945 /* On the first pass, issue read-ahead on metadata. */ 1946 if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) { 1947 unsigned int height = mp.mp_aheight - 1; 1948 1949 /* No read-ahead for data blocks. */ 1950 if (mp.mp_aheight - 1 == strip_h) 1951 height--; 1952 1953 for (; height >= mp.mp_aheight - ret; height--) { 1954 metapointer_range(&mp, height, 1955 start_list, start_aligned, 1956 end_list, end_aligned, 1957 &start, &end); 1958 gfs2_metapath_ra(ip->i_gl, start, end); 1959 } 1960 } 1961 1962 /* If buffers found for the entire strip height */ 1963 if (mp.mp_aheight - 1 == strip_h) { 1964 state = DEALLOC_MP_FULL; 1965 break; 1966 } 1967 if (mp.mp_aheight < ip->i_height) /* We have a partial height */ 1968 mp_h = mp.mp_aheight - 1; 1969 1970 /* If we find a non-null block pointer, crawl a bit 1971 higher up in the metapath and try again, otherwise 1972 we need to look lower for a new starting point. */ 1973 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) 1974 mp_h++; 1975 else 1976 state = DEALLOC_MP_LOWER; 1977 break; 1978 } 1979 } 1980 1981 if (btotal) { 1982 if (current->journal_info == NULL) { 1983 ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + 1984 RES_QUOTA, 0); 1985 if (ret) 1986 goto out; 1987 down_write(&ip->i_rw_mutex); 1988 } 1989 gfs2_statfs_change(sdp, 0, +btotal, 0); 1990 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid, 1991 ip->i_inode.i_gid); 1992 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 1993 gfs2_trans_add_meta(ip->i_gl, dibh); 1994 gfs2_dinode_out(ip, dibh->b_data); 1995 up_write(&ip->i_rw_mutex); 1996 gfs2_trans_end(sdp); 1997 } 1998 1999 out: 2000 if (gfs2_holder_initialized(&rd_gh)) 2001 gfs2_glock_dq_uninit(&rd_gh); 2002 if (current->journal_info) { 2003 up_write(&ip->i_rw_mutex); 2004 gfs2_trans_end(sdp); 2005 cond_resched(); 2006 } 2007 gfs2_quota_unhold(ip); 2008 out_metapath: 2009 release_metapath(&mp); 2010 return ret; 2011 } 2012 2013 static int trunc_end(struct gfs2_inode *ip) 2014 { 2015 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2016 struct buffer_head *dibh; 2017 int error; 2018 2019 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2020 if (error) 2021 return error; 2022 2023 down_write(&ip->i_rw_mutex); 2024 2025 error = gfs2_meta_inode_buffer(ip, &dibh); 2026 if (error) 2027 goto out; 2028 2029 if (!i_size_read(&ip->i_inode)) { 2030 ip->i_height = 0; 2031 ip->i_goal = ip->i_no_addr; 2032 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode)); 2033 gfs2_ordered_del_inode(ip); 2034 } 2035 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2036 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG; 2037 2038 gfs2_trans_add_meta(ip->i_gl, dibh); 2039 gfs2_dinode_out(ip, dibh->b_data); 2040 brelse(dibh); 2041 2042 out: 2043 up_write(&ip->i_rw_mutex); 2044 gfs2_trans_end(sdp); 2045 return error; 2046 } 2047 2048 /** 2049 * do_shrink - make a file smaller 2050 * @inode: the inode 2051 * @newsize: the size to make the file 2052 * 2053 * Called with an exclusive lock on @inode. The @size must 2054 * be equal to or smaller than the current inode size. 2055 * 2056 * Returns: errno 2057 */ 2058 2059 static int do_shrink(struct inode *inode, u64 newsize) 2060 { 2061 struct gfs2_inode *ip = GFS2_I(inode); 2062 int error; 2063 2064 error = trunc_start(inode, newsize); 2065 if (error < 0) 2066 return error; 2067 if (gfs2_is_stuffed(ip)) 2068 return 0; 2069 2070 error = punch_hole(ip, newsize, 0); 2071 if (error == 0) 2072 error = trunc_end(ip); 2073 2074 return error; 2075 } 2076 2077 void gfs2_trim_blocks(struct inode *inode) 2078 { 2079 int ret; 2080 2081 ret = do_shrink(inode, inode->i_size); 2082 WARN_ON(ret != 0); 2083 } 2084 2085 /** 2086 * do_grow - Touch and update inode size 2087 * @inode: The inode 2088 * @size: The new size 2089 * 2090 * This function updates the timestamps on the inode and 2091 * may also increase the size of the inode. This function 2092 * must not be called with @size any smaller than the current 2093 * inode size. 2094 * 2095 * Although it is not strictly required to unstuff files here, 2096 * earlier versions of GFS2 have a bug in the stuffed file reading 2097 * code which will result in a buffer overrun if the size is larger 2098 * than the max stuffed file size. In order to prevent this from 2099 * occurring, such files are unstuffed, but in other cases we can 2100 * just update the inode size directly. 2101 * 2102 * Returns: 0 on success, or -ve on error 2103 */ 2104 2105 static int do_grow(struct inode *inode, u64 size) 2106 { 2107 struct gfs2_inode *ip = GFS2_I(inode); 2108 struct gfs2_sbd *sdp = GFS2_SB(inode); 2109 struct gfs2_alloc_parms ap = { .target = 1, }; 2110 struct buffer_head *dibh; 2111 int error; 2112 int unstuff = 0; 2113 2114 if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) { 2115 error = gfs2_quota_lock_check(ip, &ap); 2116 if (error) 2117 return error; 2118 2119 error = gfs2_inplace_reserve(ip, &ap); 2120 if (error) 2121 goto do_grow_qunlock; 2122 unstuff = 1; 2123 } 2124 2125 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT + 2126 (unstuff && 2127 gfs2_is_jdata(ip) ? RES_JDATA : 0) + 2128 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ? 2129 0 : RES_QUOTA), 0); 2130 if (error) 2131 goto do_grow_release; 2132 2133 if (unstuff) { 2134 error = gfs2_unstuff_dinode(ip, NULL); 2135 if (error) 2136 goto do_end_trans; 2137 } 2138 2139 error = gfs2_meta_inode_buffer(ip, &dibh); 2140 if (error) 2141 goto do_end_trans; 2142 2143 truncate_setsize(inode, size); 2144 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode); 2145 gfs2_trans_add_meta(ip->i_gl, dibh); 2146 gfs2_dinode_out(ip, dibh->b_data); 2147 brelse(dibh); 2148 2149 do_end_trans: 2150 gfs2_trans_end(sdp); 2151 do_grow_release: 2152 if (unstuff) { 2153 gfs2_inplace_release(ip); 2154 do_grow_qunlock: 2155 gfs2_quota_unlock(ip); 2156 } 2157 return error; 2158 } 2159 2160 /** 2161 * gfs2_setattr_size - make a file a given size 2162 * @inode: the inode 2163 * @newsize: the size to make the file 2164 * 2165 * The file size can grow, shrink, or stay the same size. This 2166 * is called holding i_rwsem and an exclusive glock on the inode 2167 * in question. 2168 * 2169 * Returns: errno 2170 */ 2171 2172 int gfs2_setattr_size(struct inode *inode, u64 newsize) 2173 { 2174 struct gfs2_inode *ip = GFS2_I(inode); 2175 int ret; 2176 2177 BUG_ON(!S_ISREG(inode->i_mode)); 2178 2179 ret = inode_newsize_ok(inode, newsize); 2180 if (ret) 2181 return ret; 2182 2183 inode_dio_wait(inode); 2184 2185 ret = gfs2_rsqa_alloc(ip); 2186 if (ret) 2187 goto out; 2188 2189 if (newsize >= inode->i_size) { 2190 ret = do_grow(inode, newsize); 2191 goto out; 2192 } 2193 2194 ret = do_shrink(inode, newsize); 2195 out: 2196 gfs2_rsqa_delete(ip, NULL); 2197 return ret; 2198 } 2199 2200 int gfs2_truncatei_resume(struct gfs2_inode *ip) 2201 { 2202 int error; 2203 error = punch_hole(ip, i_size_read(&ip->i_inode), 0); 2204 if (!error) 2205 error = trunc_end(ip); 2206 return error; 2207 } 2208 2209 int gfs2_file_dealloc(struct gfs2_inode *ip) 2210 { 2211 return punch_hole(ip, 0, 0); 2212 } 2213 2214 /** 2215 * gfs2_free_journal_extents - Free cached journal bmap info 2216 * @jd: The journal 2217 * 2218 */ 2219 2220 void gfs2_free_journal_extents(struct gfs2_jdesc *jd) 2221 { 2222 struct gfs2_journal_extent *jext; 2223 2224 while(!list_empty(&jd->extent_list)) { 2225 jext = list_entry(jd->extent_list.next, struct gfs2_journal_extent, list); 2226 list_del(&jext->list); 2227 kfree(jext); 2228 } 2229 } 2230 2231 /** 2232 * gfs2_add_jextent - Add or merge a new extent to extent cache 2233 * @jd: The journal descriptor 2234 * @lblock: The logical block at start of new extent 2235 * @dblock: The physical block at start of new extent 2236 * @blocks: Size of extent in fs blocks 2237 * 2238 * Returns: 0 on success or -ENOMEM 2239 */ 2240 2241 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks) 2242 { 2243 struct gfs2_journal_extent *jext; 2244 2245 if (!list_empty(&jd->extent_list)) { 2246 jext = list_entry(jd->extent_list.prev, struct gfs2_journal_extent, list); 2247 if ((jext->dblock + jext->blocks) == dblock) { 2248 jext->blocks += blocks; 2249 return 0; 2250 } 2251 } 2252 2253 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS); 2254 if (jext == NULL) 2255 return -ENOMEM; 2256 jext->dblock = dblock; 2257 jext->lblock = lblock; 2258 jext->blocks = blocks; 2259 list_add_tail(&jext->list, &jd->extent_list); 2260 jd->nr_extents++; 2261 return 0; 2262 } 2263 2264 /** 2265 * gfs2_map_journal_extents - Cache journal bmap info 2266 * @sdp: The super block 2267 * @jd: The journal to map 2268 * 2269 * Create a reusable "extent" mapping from all logical 2270 * blocks to all physical blocks for the given journal. This will save 2271 * us time when writing journal blocks. Most journals will have only one 2272 * extent that maps all their logical blocks. That's because gfs2.mkfs 2273 * arranges the journal blocks sequentially to maximize performance. 2274 * So the extent would map the first block for the entire file length. 2275 * However, gfs2_jadd can happen while file activity is happening, so 2276 * those journals may not be sequential. Less likely is the case where 2277 * the users created their own journals by mounting the metafs and 2278 * laying it out. But it's still possible. These journals might have 2279 * several extents. 2280 * 2281 * Returns: 0 on success, or error on failure 2282 */ 2283 2284 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd) 2285 { 2286 u64 lblock = 0; 2287 u64 lblock_stop; 2288 struct gfs2_inode *ip = GFS2_I(jd->jd_inode); 2289 struct buffer_head bh; 2290 unsigned int shift = sdp->sd_sb.sb_bsize_shift; 2291 u64 size; 2292 int rc; 2293 ktime_t start, end; 2294 2295 start = ktime_get(); 2296 lblock_stop = i_size_read(jd->jd_inode) >> shift; 2297 size = (lblock_stop - lblock) << shift; 2298 jd->nr_extents = 0; 2299 WARN_ON(!list_empty(&jd->extent_list)); 2300 2301 do { 2302 bh.b_state = 0; 2303 bh.b_blocknr = 0; 2304 bh.b_size = size; 2305 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0); 2306 if (rc || !buffer_mapped(&bh)) 2307 goto fail; 2308 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift); 2309 if (rc) 2310 goto fail; 2311 size -= bh.b_size; 2312 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2313 } while(size > 0); 2314 2315 end = ktime_get(); 2316 fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid, 2317 jd->nr_extents, ktime_ms_delta(end, start)); 2318 return 0; 2319 2320 fail: 2321 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n", 2322 rc, jd->jd_jid, 2323 (unsigned long long)(i_size_read(jd->jd_inode) - size), 2324 jd->nr_extents); 2325 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n", 2326 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr, 2327 bh.b_state, (unsigned long long)bh.b_size); 2328 gfs2_free_journal_extents(jd); 2329 return rc; 2330 } 2331 2332 /** 2333 * gfs2_write_alloc_required - figure out if a write will require an allocation 2334 * @ip: the file being written to 2335 * @offset: the offset to write to 2336 * @len: the number of bytes being written 2337 * 2338 * Returns: 1 if an alloc is required, 0 otherwise 2339 */ 2340 2341 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset, 2342 unsigned int len) 2343 { 2344 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2345 struct buffer_head bh; 2346 unsigned int shift; 2347 u64 lblock, lblock_stop, size; 2348 u64 end_of_file; 2349 2350 if (!len) 2351 return 0; 2352 2353 if (gfs2_is_stuffed(ip)) { 2354 if (offset + len > gfs2_max_stuffed_size(ip)) 2355 return 1; 2356 return 0; 2357 } 2358 2359 shift = sdp->sd_sb.sb_bsize_shift; 2360 BUG_ON(gfs2_is_dir(ip)); 2361 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift; 2362 lblock = offset >> shift; 2363 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift; 2364 if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex)) 2365 return 1; 2366 2367 size = (lblock_stop - lblock) << shift; 2368 do { 2369 bh.b_state = 0; 2370 bh.b_size = size; 2371 gfs2_block_map(&ip->i_inode, lblock, &bh, 0); 2372 if (!buffer_mapped(&bh)) 2373 return 1; 2374 size -= bh.b_size; 2375 lblock += (bh.b_size >> ip->i_inode.i_blkbits); 2376 } while(size > 0); 2377 2378 return 0; 2379 } 2380 2381 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length) 2382 { 2383 struct gfs2_inode *ip = GFS2_I(inode); 2384 struct buffer_head *dibh; 2385 int error; 2386 2387 if (offset >= inode->i_size) 2388 return 0; 2389 if (offset + length > inode->i_size) 2390 length = inode->i_size - offset; 2391 2392 error = gfs2_meta_inode_buffer(ip, &dibh); 2393 if (error) 2394 return error; 2395 gfs2_trans_add_meta(ip->i_gl, dibh); 2396 memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0, 2397 length); 2398 brelse(dibh); 2399 return 0; 2400 } 2401 2402 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset, 2403 loff_t length) 2404 { 2405 struct gfs2_sbd *sdp = GFS2_SB(inode); 2406 loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize; 2407 int error; 2408 2409 while (length) { 2410 struct gfs2_trans *tr; 2411 loff_t chunk; 2412 unsigned int offs; 2413 2414 chunk = length; 2415 if (chunk > max_chunk) 2416 chunk = max_chunk; 2417 2418 offs = offset & ~PAGE_MASK; 2419 if (offs && chunk > PAGE_SIZE) 2420 chunk = offs + ((chunk - offs) & PAGE_MASK); 2421 2422 truncate_pagecache_range(inode, offset, chunk); 2423 offset += chunk; 2424 length -= chunk; 2425 2426 tr = current->journal_info; 2427 if (!test_bit(TR_TOUCHED, &tr->tr_flags)) 2428 continue; 2429 2430 gfs2_trans_end(sdp); 2431 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES); 2432 if (error) 2433 return error; 2434 } 2435 return 0; 2436 } 2437 2438 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length) 2439 { 2440 struct inode *inode = file_inode(file); 2441 struct gfs2_inode *ip = GFS2_I(inode); 2442 struct gfs2_sbd *sdp = GFS2_SB(inode); 2443 int error; 2444 2445 if (gfs2_is_jdata(ip)) 2446 error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA, 2447 GFS2_JTRUNC_REVOKES); 2448 else 2449 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 2450 if (error) 2451 return error; 2452 2453 if (gfs2_is_stuffed(ip)) { 2454 error = stuffed_zero_range(inode, offset, length); 2455 if (error) 2456 goto out; 2457 } else { 2458 unsigned int start_off, end_len, blocksize; 2459 2460 blocksize = i_blocksize(inode); 2461 start_off = offset & (blocksize - 1); 2462 end_len = (offset + length) & (blocksize - 1); 2463 if (start_off) { 2464 unsigned int len = length; 2465 if (length > blocksize - start_off) 2466 len = blocksize - start_off; 2467 error = gfs2_block_zero_range(inode, offset, len); 2468 if (error) 2469 goto out; 2470 if (start_off + length < blocksize) 2471 end_len = 0; 2472 } 2473 if (end_len) { 2474 error = gfs2_block_zero_range(inode, 2475 offset + length - end_len, end_len); 2476 if (error) 2477 goto out; 2478 } 2479 } 2480 2481 if (gfs2_is_jdata(ip)) { 2482 BUG_ON(!current->journal_info); 2483 gfs2_journaled_truncate_range(inode, offset, length); 2484 } else 2485 truncate_pagecache_range(inode, offset, offset + length - 1); 2486 2487 file_update_time(file); 2488 mark_inode_dirty(inode); 2489 2490 if (current->journal_info) 2491 gfs2_trans_end(sdp); 2492 2493 if (!gfs2_is_stuffed(ip)) 2494 error = punch_hole(ip, offset, length); 2495 2496 out: 2497 if (current->journal_info) 2498 gfs2_trans_end(sdp); 2499 return error; 2500 } 2501