xref: /openbmc/linux/fs/gfs2/bmap.c (revision 6d99a79c)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/spinlock.h>
11 #include <linux/completion.h>
12 #include <linux/buffer_head.h>
13 #include <linux/blkdev.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/crc32.h>
16 #include <linux/iomap.h>
17 
18 #include "gfs2.h"
19 #include "incore.h"
20 #include "bmap.h"
21 #include "glock.h"
22 #include "inode.h"
23 #include "meta_io.h"
24 #include "quota.h"
25 #include "rgrp.h"
26 #include "log.h"
27 #include "super.h"
28 #include "trans.h"
29 #include "dir.h"
30 #include "util.h"
31 #include "aops.h"
32 #include "trace_gfs2.h"
33 
34 /* This doesn't need to be that large as max 64 bit pointers in a 4k
35  * block is 512, so __u16 is fine for that. It saves stack space to
36  * keep it small.
37  */
38 struct metapath {
39 	struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT];
40 	__u16 mp_list[GFS2_MAX_META_HEIGHT];
41 	int mp_fheight; /* find_metapath height */
42 	int mp_aheight; /* actual height (lookup height) */
43 };
44 
45 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length);
46 
47 /**
48  * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page
49  * @ip: the inode
50  * @dibh: the dinode buffer
51  * @block: the block number that was allocated
52  * @page: The (optional) page. This is looked up if @page is NULL
53  *
54  * Returns: errno
55  */
56 
57 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh,
58 			       u64 block, struct page *page)
59 {
60 	struct inode *inode = &ip->i_inode;
61 	struct buffer_head *bh;
62 	int release = 0;
63 
64 	if (!page || page->index) {
65 		page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
66 		if (!page)
67 			return -ENOMEM;
68 		release = 1;
69 	}
70 
71 	if (!PageUptodate(page)) {
72 		void *kaddr = kmap(page);
73 		u64 dsize = i_size_read(inode);
74 
75 		if (dsize > gfs2_max_stuffed_size(ip))
76 			dsize = gfs2_max_stuffed_size(ip);
77 
78 		memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
79 		memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
80 		kunmap(page);
81 
82 		SetPageUptodate(page);
83 	}
84 
85 	if (!page_has_buffers(page))
86 		create_empty_buffers(page, BIT(inode->i_blkbits),
87 				     BIT(BH_Uptodate));
88 
89 	bh = page_buffers(page);
90 
91 	if (!buffer_mapped(bh))
92 		map_bh(bh, inode->i_sb, block);
93 
94 	set_buffer_uptodate(bh);
95 	if (gfs2_is_jdata(ip))
96 		gfs2_trans_add_data(ip->i_gl, bh);
97 	else {
98 		mark_buffer_dirty(bh);
99 		gfs2_ordered_add_inode(ip);
100 	}
101 
102 	if (release) {
103 		unlock_page(page);
104 		put_page(page);
105 	}
106 
107 	return 0;
108 }
109 
110 /**
111  * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big
112  * @ip: The GFS2 inode to unstuff
113  * @page: The (optional) page. This is looked up if the @page is NULL
114  *
115  * This routine unstuffs a dinode and returns it to a "normal" state such
116  * that the height can be grown in the traditional way.
117  *
118  * Returns: errno
119  */
120 
121 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page)
122 {
123 	struct buffer_head *bh, *dibh;
124 	struct gfs2_dinode *di;
125 	u64 block = 0;
126 	int isdir = gfs2_is_dir(ip);
127 	int error;
128 
129 	down_write(&ip->i_rw_mutex);
130 
131 	error = gfs2_meta_inode_buffer(ip, &dibh);
132 	if (error)
133 		goto out;
134 
135 	if (i_size_read(&ip->i_inode)) {
136 		/* Get a free block, fill it with the stuffed data,
137 		   and write it out to disk */
138 
139 		unsigned int n = 1;
140 		error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL);
141 		if (error)
142 			goto out_brelse;
143 		if (isdir) {
144 			gfs2_trans_add_unrevoke(GFS2_SB(&ip->i_inode), block, 1);
145 			error = gfs2_dir_get_new_buffer(ip, block, &bh);
146 			if (error)
147 				goto out_brelse;
148 			gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header),
149 					      dibh, sizeof(struct gfs2_dinode));
150 			brelse(bh);
151 		} else {
152 			error = gfs2_unstuffer_page(ip, dibh, block, page);
153 			if (error)
154 				goto out_brelse;
155 		}
156 	}
157 
158 	/*  Set up the pointer to the new block  */
159 
160 	gfs2_trans_add_meta(ip->i_gl, dibh);
161 	di = (struct gfs2_dinode *)dibh->b_data;
162 	gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
163 
164 	if (i_size_read(&ip->i_inode)) {
165 		*(__be64 *)(di + 1) = cpu_to_be64(block);
166 		gfs2_add_inode_blocks(&ip->i_inode, 1);
167 		di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode));
168 	}
169 
170 	ip->i_height = 1;
171 	di->di_height = cpu_to_be16(1);
172 
173 out_brelse:
174 	brelse(dibh);
175 out:
176 	up_write(&ip->i_rw_mutex);
177 	return error;
178 }
179 
180 
181 /**
182  * find_metapath - Find path through the metadata tree
183  * @sdp: The superblock
184  * @block: The disk block to look up
185  * @mp: The metapath to return the result in
186  * @height: The pre-calculated height of the metadata tree
187  *
188  *   This routine returns a struct metapath structure that defines a path
189  *   through the metadata of inode "ip" to get to block "block".
190  *
191  *   Example:
192  *   Given:  "ip" is a height 3 file, "offset" is 101342453, and this is a
193  *   filesystem with a blocksize of 4096.
194  *
195  *   find_metapath() would return a struct metapath structure set to:
196  *   mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165.
197  *
198  *   That means that in order to get to the block containing the byte at
199  *   offset 101342453, we would load the indirect block pointed to by pointer
200  *   0 in the dinode.  We would then load the indirect block pointed to by
201  *   pointer 48 in that indirect block.  We would then load the data block
202  *   pointed to by pointer 165 in that indirect block.
203  *
204  *             ----------------------------------------
205  *             | Dinode |                             |
206  *             |        |                            4|
207  *             |        |0 1 2 3 4 5                 9|
208  *             |        |                            6|
209  *             ----------------------------------------
210  *                       |
211  *                       |
212  *                       V
213  *             ----------------------------------------
214  *             | Indirect Block                       |
215  *             |                                     5|
216  *             |            4 4 4 4 4 5 5            1|
217  *             |0           5 6 7 8 9 0 1            2|
218  *             ----------------------------------------
219  *                                |
220  *                                |
221  *                                V
222  *             ----------------------------------------
223  *             | Indirect Block                       |
224  *             |                         1 1 1 1 1   5|
225  *             |                         6 6 6 6 6   1|
226  *             |0                        3 4 5 6 7   2|
227  *             ----------------------------------------
228  *                                           |
229  *                                           |
230  *                                           V
231  *             ----------------------------------------
232  *             | Data block containing offset         |
233  *             |            101342453                 |
234  *             |                                      |
235  *             |                                      |
236  *             ----------------------------------------
237  *
238  */
239 
240 static void find_metapath(const struct gfs2_sbd *sdp, u64 block,
241 			  struct metapath *mp, unsigned int height)
242 {
243 	unsigned int i;
244 
245 	mp->mp_fheight = height;
246 	for (i = height; i--;)
247 		mp->mp_list[i] = do_div(block, sdp->sd_inptrs);
248 }
249 
250 static inline unsigned int metapath_branch_start(const struct metapath *mp)
251 {
252 	if (mp->mp_list[0] == 0)
253 		return 2;
254 	return 1;
255 }
256 
257 /**
258  * metaptr1 - Return the first possible metadata pointer in a metapath buffer
259  * @height: The metadata height (0 = dinode)
260  * @mp: The metapath
261  */
262 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp)
263 {
264 	struct buffer_head *bh = mp->mp_bh[height];
265 	if (height == 0)
266 		return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)));
267 	return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header)));
268 }
269 
270 /**
271  * metapointer - Return pointer to start of metadata in a buffer
272  * @height: The metadata height (0 = dinode)
273  * @mp: The metapath
274  *
275  * Return a pointer to the block number of the next height of the metadata
276  * tree given a buffer containing the pointer to the current height of the
277  * metadata tree.
278  */
279 
280 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp)
281 {
282 	__be64 *p = metaptr1(height, mp);
283 	return p + mp->mp_list[height];
284 }
285 
286 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp)
287 {
288 	const struct buffer_head *bh = mp->mp_bh[height];
289 	return (const __be64 *)(bh->b_data + bh->b_size);
290 }
291 
292 static void clone_metapath(struct metapath *clone, struct metapath *mp)
293 {
294 	unsigned int hgt;
295 
296 	*clone = *mp;
297 	for (hgt = 0; hgt < mp->mp_aheight; hgt++)
298 		get_bh(clone->mp_bh[hgt]);
299 }
300 
301 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end)
302 {
303 	const __be64 *t;
304 
305 	for (t = start; t < end; t++) {
306 		struct buffer_head *rabh;
307 
308 		if (!*t)
309 			continue;
310 
311 		rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE);
312 		if (trylock_buffer(rabh)) {
313 			if (!buffer_uptodate(rabh)) {
314 				rabh->b_end_io = end_buffer_read_sync;
315 				submit_bh(REQ_OP_READ,
316 					  REQ_RAHEAD | REQ_META | REQ_PRIO,
317 					  rabh);
318 				continue;
319 			}
320 			unlock_buffer(rabh);
321 		}
322 		brelse(rabh);
323 	}
324 }
325 
326 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp,
327 			     unsigned int x, unsigned int h)
328 {
329 	for (; x < h; x++) {
330 		__be64 *ptr = metapointer(x, mp);
331 		u64 dblock = be64_to_cpu(*ptr);
332 		int ret;
333 
334 		if (!dblock)
335 			break;
336 		ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]);
337 		if (ret)
338 			return ret;
339 	}
340 	mp->mp_aheight = x + 1;
341 	return 0;
342 }
343 
344 /**
345  * lookup_metapath - Walk the metadata tree to a specific point
346  * @ip: The inode
347  * @mp: The metapath
348  *
349  * Assumes that the inode's buffer has already been looked up and
350  * hooked onto mp->mp_bh[0] and that the metapath has been initialised
351  * by find_metapath().
352  *
353  * If this function encounters part of the tree which has not been
354  * allocated, it returns the current height of the tree at the point
355  * at which it found the unallocated block. Blocks which are found are
356  * added to the mp->mp_bh[] list.
357  *
358  * Returns: error
359  */
360 
361 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp)
362 {
363 	return __fillup_metapath(ip, mp, 0, ip->i_height - 1);
364 }
365 
366 /**
367  * fillup_metapath - fill up buffers for the metadata path to a specific height
368  * @ip: The inode
369  * @mp: The metapath
370  * @h: The height to which it should be mapped
371  *
372  * Similar to lookup_metapath, but does lookups for a range of heights
373  *
374  * Returns: error or the number of buffers filled
375  */
376 
377 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h)
378 {
379 	unsigned int x = 0;
380 	int ret;
381 
382 	if (h) {
383 		/* find the first buffer we need to look up. */
384 		for (x = h - 1; x > 0; x--) {
385 			if (mp->mp_bh[x])
386 				break;
387 		}
388 	}
389 	ret = __fillup_metapath(ip, mp, x, h);
390 	if (ret)
391 		return ret;
392 	return mp->mp_aheight - x - 1;
393 }
394 
395 static void release_metapath(struct metapath *mp)
396 {
397 	int i;
398 
399 	for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) {
400 		if (mp->mp_bh[i] == NULL)
401 			break;
402 		brelse(mp->mp_bh[i]);
403 		mp->mp_bh[i] = NULL;
404 	}
405 }
406 
407 /**
408  * gfs2_extent_length - Returns length of an extent of blocks
409  * @bh: The metadata block
410  * @ptr: Current position in @bh
411  * @limit: Max extent length to return
412  * @eob: Set to 1 if we hit "end of block"
413  *
414  * Returns: The length of the extent (minimum of one block)
415  */
416 
417 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob)
418 {
419 	const __be64 *end = (__be64 *)(bh->b_data + bh->b_size);
420 	const __be64 *first = ptr;
421 	u64 d = be64_to_cpu(*ptr);
422 
423 	*eob = 0;
424 	do {
425 		ptr++;
426 		if (ptr >= end)
427 			break;
428 		d++;
429 	} while(be64_to_cpu(*ptr) == d);
430 	if (ptr >= end)
431 		*eob = 1;
432 	return ptr - first;
433 }
434 
435 typedef const __be64 *(*gfs2_metadata_walker)(
436 		struct metapath *mp,
437 		const __be64 *start, const __be64 *end,
438 		u64 factor, void *data);
439 
440 #define WALK_STOP ((__be64 *)0)
441 #define WALK_NEXT ((__be64 *)1)
442 
443 static int gfs2_walk_metadata(struct inode *inode, sector_t lblock,
444 		u64 len, struct metapath *mp, gfs2_metadata_walker walker,
445 		void *data)
446 {
447 	struct metapath clone;
448 	struct gfs2_inode *ip = GFS2_I(inode);
449 	struct gfs2_sbd *sdp = GFS2_SB(inode);
450 	const __be64 *start, *end, *ptr;
451 	u64 factor = 1;
452 	unsigned int hgt;
453 	int ret = 0;
454 
455 	for (hgt = ip->i_height - 1; hgt >= mp->mp_aheight; hgt--)
456 		factor *= sdp->sd_inptrs;
457 
458 	for (;;) {
459 		u64 step;
460 
461 		/* Walk indirect block. */
462 		start = metapointer(hgt, mp);
463 		end = metaend(hgt, mp);
464 
465 		step = (end - start) * factor;
466 		if (step > len)
467 			end = start + DIV_ROUND_UP_ULL(len, factor);
468 
469 		ptr = walker(mp, start, end, factor, data);
470 		if (ptr == WALK_STOP)
471 			break;
472 		if (step >= len)
473 			break;
474 		len -= step;
475 		if (ptr != WALK_NEXT) {
476 			BUG_ON(!*ptr);
477 			mp->mp_list[hgt] += ptr - start;
478 			goto fill_up_metapath;
479 		}
480 
481 lower_metapath:
482 		/* Decrease height of metapath. */
483 		if (mp != &clone) {
484 			clone_metapath(&clone, mp);
485 			mp = &clone;
486 		}
487 		brelse(mp->mp_bh[hgt]);
488 		mp->mp_bh[hgt] = NULL;
489 		if (!hgt)
490 			break;
491 		hgt--;
492 		factor *= sdp->sd_inptrs;
493 
494 		/* Advance in metadata tree. */
495 		(mp->mp_list[hgt])++;
496 		start = metapointer(hgt, mp);
497 		end = metaend(hgt, mp);
498 		if (start >= end) {
499 			mp->mp_list[hgt] = 0;
500 			if (!hgt)
501 				break;
502 			goto lower_metapath;
503 		}
504 
505 fill_up_metapath:
506 		/* Increase height of metapath. */
507 		if (mp != &clone) {
508 			clone_metapath(&clone, mp);
509 			mp = &clone;
510 		}
511 		ret = fillup_metapath(ip, mp, ip->i_height - 1);
512 		if (ret < 0)
513 			break;
514 		hgt += ret;
515 		for (; ret; ret--)
516 			do_div(factor, sdp->sd_inptrs);
517 		mp->mp_aheight = hgt + 1;
518 	}
519 	if (mp == &clone)
520 		release_metapath(mp);
521 	return ret;
522 }
523 
524 struct gfs2_hole_walker_args {
525 	u64 blocks;
526 };
527 
528 static const __be64 *gfs2_hole_walker(struct metapath *mp,
529 		const __be64 *start, const __be64 *end,
530 		u64 factor, void *data)
531 {
532 	struct gfs2_hole_walker_args *args = data;
533 	const __be64 *ptr;
534 
535 	for (ptr = start; ptr < end; ptr++) {
536 		if (*ptr) {
537 			args->blocks += (ptr - start) * factor;
538 			if (mp->mp_aheight == mp->mp_fheight)
539 				return WALK_STOP;
540 			return ptr;  /* increase height */
541 		}
542 	}
543 	args->blocks += (end - start) * factor;
544 	return WALK_NEXT;
545 }
546 
547 /**
548  * gfs2_hole_size - figure out the size of a hole
549  * @inode: The inode
550  * @lblock: The logical starting block number
551  * @len: How far to look (in blocks)
552  * @mp: The metapath at lblock
553  * @iomap: The iomap to store the hole size in
554  *
555  * This function modifies @mp.
556  *
557  * Returns: errno on error
558  */
559 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len,
560 			  struct metapath *mp, struct iomap *iomap)
561 {
562 	struct gfs2_hole_walker_args args = { };
563 	int ret = 0;
564 
565 	ret = gfs2_walk_metadata(inode, lblock, len, mp, gfs2_hole_walker, &args);
566 	if (!ret)
567 		iomap->length = args.blocks << inode->i_blkbits;
568 	return ret;
569 }
570 
571 static inline __be64 *gfs2_indirect_init(struct metapath *mp,
572 					 struct gfs2_glock *gl, unsigned int i,
573 					 unsigned offset, u64 bn)
574 {
575 	__be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data +
576 		       ((i > 1) ? sizeof(struct gfs2_meta_header) :
577 				 sizeof(struct gfs2_dinode)));
578 	BUG_ON(i < 1);
579 	BUG_ON(mp->mp_bh[i] != NULL);
580 	mp->mp_bh[i] = gfs2_meta_new(gl, bn);
581 	gfs2_trans_add_meta(gl, mp->mp_bh[i]);
582 	gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN);
583 	gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header));
584 	ptr += offset;
585 	*ptr = cpu_to_be64(bn);
586 	return ptr;
587 }
588 
589 enum alloc_state {
590 	ALLOC_DATA = 0,
591 	ALLOC_GROW_DEPTH = 1,
592 	ALLOC_GROW_HEIGHT = 2,
593 	/* ALLOC_UNSTUFF = 3,   TBD and rather complicated */
594 };
595 
596 /**
597  * gfs2_iomap_alloc - Build a metadata tree of the requested height
598  * @inode: The GFS2 inode
599  * @iomap: The iomap structure
600  * @flags: iomap flags
601  * @mp: The metapath, with proper height information calculated
602  *
603  * In this routine we may have to alloc:
604  *   i) Indirect blocks to grow the metadata tree height
605  *  ii) Indirect blocks to fill in lower part of the metadata tree
606  * iii) Data blocks
607  *
608  * This function is called after gfs2_iomap_get, which works out the
609  * total number of blocks which we need via gfs2_alloc_size.
610  *
611  * We then do the actual allocation asking for an extent at a time (if
612  * enough contiguous free blocks are available, there will only be one
613  * allocation request per call) and uses the state machine to initialise
614  * the blocks in order.
615  *
616  * Right now, this function will allocate at most one indirect block
617  * worth of data -- with a default block size of 4K, that's slightly
618  * less than 2M.  If this limitation is ever removed to allow huge
619  * allocations, we would probably still want to limit the iomap size we
620  * return to avoid stalling other tasks during huge writes; the next
621  * iomap iteration would then find the blocks already allocated.
622  *
623  * Returns: errno on error
624  */
625 
626 static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap,
627 			    unsigned flags, struct metapath *mp)
628 {
629 	struct gfs2_inode *ip = GFS2_I(inode);
630 	struct gfs2_sbd *sdp = GFS2_SB(inode);
631 	struct buffer_head *dibh = mp->mp_bh[0];
632 	u64 bn;
633 	unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0;
634 	size_t dblks = iomap->length >> inode->i_blkbits;
635 	const unsigned end_of_metadata = mp->mp_fheight - 1;
636 	int ret;
637 	enum alloc_state state;
638 	__be64 *ptr;
639 	__be64 zero_bn = 0;
640 
641 	BUG_ON(mp->mp_aheight < 1);
642 	BUG_ON(dibh == NULL);
643 	BUG_ON(dblks < 1);
644 
645 	gfs2_trans_add_meta(ip->i_gl, dibh);
646 
647 	down_write(&ip->i_rw_mutex);
648 
649 	if (mp->mp_fheight == mp->mp_aheight) {
650 		/* Bottom indirect block exists */
651 		state = ALLOC_DATA;
652 	} else {
653 		/* Need to allocate indirect blocks */
654 		if (mp->mp_fheight == ip->i_height) {
655 			/* Writing into existing tree, extend tree down */
656 			iblks = mp->mp_fheight - mp->mp_aheight;
657 			state = ALLOC_GROW_DEPTH;
658 		} else {
659 			/* Building up tree height */
660 			state = ALLOC_GROW_HEIGHT;
661 			iblks = mp->mp_fheight - ip->i_height;
662 			branch_start = metapath_branch_start(mp);
663 			iblks += (mp->mp_fheight - branch_start);
664 		}
665 	}
666 
667 	/* start of the second part of the function (state machine) */
668 
669 	blks = dblks + iblks;
670 	i = mp->mp_aheight;
671 	do {
672 		n = blks - alloced;
673 		ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL);
674 		if (ret)
675 			goto out;
676 		alloced += n;
677 		if (state != ALLOC_DATA || gfs2_is_jdata(ip))
678 			gfs2_trans_add_unrevoke(sdp, bn, n);
679 		switch (state) {
680 		/* Growing height of tree */
681 		case ALLOC_GROW_HEIGHT:
682 			if (i == 1) {
683 				ptr = (__be64 *)(dibh->b_data +
684 						 sizeof(struct gfs2_dinode));
685 				zero_bn = *ptr;
686 			}
687 			for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0;
688 			     i++, n--)
689 				gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++);
690 			if (i - 1 == mp->mp_fheight - ip->i_height) {
691 				i--;
692 				gfs2_buffer_copy_tail(mp->mp_bh[i],
693 						sizeof(struct gfs2_meta_header),
694 						dibh, sizeof(struct gfs2_dinode));
695 				gfs2_buffer_clear_tail(dibh,
696 						sizeof(struct gfs2_dinode) +
697 						sizeof(__be64));
698 				ptr = (__be64 *)(mp->mp_bh[i]->b_data +
699 					sizeof(struct gfs2_meta_header));
700 				*ptr = zero_bn;
701 				state = ALLOC_GROW_DEPTH;
702 				for(i = branch_start; i < mp->mp_fheight; i++) {
703 					if (mp->mp_bh[i] == NULL)
704 						break;
705 					brelse(mp->mp_bh[i]);
706 					mp->mp_bh[i] = NULL;
707 				}
708 				i = branch_start;
709 			}
710 			if (n == 0)
711 				break;
712 		/* Branching from existing tree */
713 		case ALLOC_GROW_DEPTH:
714 			if (i > 1 && i < mp->mp_fheight)
715 				gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]);
716 			for (; i < mp->mp_fheight && n > 0; i++, n--)
717 				gfs2_indirect_init(mp, ip->i_gl, i,
718 						   mp->mp_list[i-1], bn++);
719 			if (i == mp->mp_fheight)
720 				state = ALLOC_DATA;
721 			if (n == 0)
722 				break;
723 		/* Tree complete, adding data blocks */
724 		case ALLOC_DATA:
725 			BUG_ON(n > dblks);
726 			BUG_ON(mp->mp_bh[end_of_metadata] == NULL);
727 			gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]);
728 			dblks = n;
729 			ptr = metapointer(end_of_metadata, mp);
730 			iomap->addr = bn << inode->i_blkbits;
731 			iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW;
732 			while (n-- > 0)
733 				*ptr++ = cpu_to_be64(bn++);
734 			break;
735 		}
736 	} while (iomap->addr == IOMAP_NULL_ADDR);
737 
738 	iomap->type = IOMAP_MAPPED;
739 	iomap->length = (u64)dblks << inode->i_blkbits;
740 	ip->i_height = mp->mp_fheight;
741 	gfs2_add_inode_blocks(&ip->i_inode, alloced);
742 	gfs2_dinode_out(ip, dibh->b_data);
743 out:
744 	up_write(&ip->i_rw_mutex);
745 	return ret;
746 }
747 
748 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE
749 
750 /**
751  * gfs2_alloc_size - Compute the maximum allocation size
752  * @inode: The inode
753  * @mp: The metapath
754  * @size: Requested size in blocks
755  *
756  * Compute the maximum size of the next allocation at @mp.
757  *
758  * Returns: size in blocks
759  */
760 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size)
761 {
762 	struct gfs2_inode *ip = GFS2_I(inode);
763 	struct gfs2_sbd *sdp = GFS2_SB(inode);
764 	const __be64 *first, *ptr, *end;
765 
766 	/*
767 	 * For writes to stuffed files, this function is called twice via
768 	 * gfs2_iomap_get, before and after unstuffing. The size we return the
769 	 * first time needs to be large enough to get the reservation and
770 	 * allocation sizes right.  The size we return the second time must
771 	 * be exact or else gfs2_iomap_alloc won't do the right thing.
772 	 */
773 
774 	if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) {
775 		unsigned int maxsize = mp->mp_fheight > 1 ?
776 			sdp->sd_inptrs : sdp->sd_diptrs;
777 		maxsize -= mp->mp_list[mp->mp_fheight - 1];
778 		if (size > maxsize)
779 			size = maxsize;
780 		return size;
781 	}
782 
783 	first = metapointer(ip->i_height - 1, mp);
784 	end = metaend(ip->i_height - 1, mp);
785 	if (end - first > size)
786 		end = first + size;
787 	for (ptr = first; ptr < end; ptr++) {
788 		if (*ptr)
789 			break;
790 	}
791 	return ptr - first;
792 }
793 
794 /**
795  * gfs2_iomap_get - Map blocks from an inode to disk blocks
796  * @inode: The inode
797  * @pos: Starting position in bytes
798  * @length: Length to map, in bytes
799  * @flags: iomap flags
800  * @iomap: The iomap structure
801  * @mp: The metapath
802  *
803  * Returns: errno
804  */
805 static int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
806 			  unsigned flags, struct iomap *iomap,
807 			  struct metapath *mp)
808 {
809 	struct gfs2_inode *ip = GFS2_I(inode);
810 	struct gfs2_sbd *sdp = GFS2_SB(inode);
811 	loff_t size = i_size_read(inode);
812 	__be64 *ptr;
813 	sector_t lblock;
814 	sector_t lblock_stop;
815 	int ret;
816 	int eob;
817 	u64 len;
818 	struct buffer_head *dibh = NULL, *bh;
819 	u8 height;
820 
821 	if (!length)
822 		return -EINVAL;
823 
824 	down_read(&ip->i_rw_mutex);
825 
826 	ret = gfs2_meta_inode_buffer(ip, &dibh);
827 	if (ret)
828 		goto unlock;
829 	mp->mp_bh[0] = dibh;
830 
831 	if (gfs2_is_stuffed(ip)) {
832 		if (flags & IOMAP_WRITE) {
833 			loff_t max_size = gfs2_max_stuffed_size(ip);
834 
835 			if (pos + length > max_size)
836 				goto unstuff;
837 			iomap->length = max_size;
838 		} else {
839 			if (pos >= size) {
840 				if (flags & IOMAP_REPORT) {
841 					ret = -ENOENT;
842 					goto unlock;
843 				} else {
844 					/* report a hole */
845 					iomap->offset = pos;
846 					iomap->length = length;
847 					goto do_alloc;
848 				}
849 			}
850 			iomap->length = size;
851 		}
852 		iomap->addr = (ip->i_no_addr << inode->i_blkbits) +
853 			      sizeof(struct gfs2_dinode);
854 		iomap->type = IOMAP_INLINE;
855 		iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode);
856 		goto out;
857 	}
858 
859 unstuff:
860 	lblock = pos >> inode->i_blkbits;
861 	iomap->offset = lblock << inode->i_blkbits;
862 	lblock_stop = (pos + length - 1) >> inode->i_blkbits;
863 	len = lblock_stop - lblock + 1;
864 	iomap->length = len << inode->i_blkbits;
865 
866 	height = ip->i_height;
867 	while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height])
868 		height++;
869 	find_metapath(sdp, lblock, mp, height);
870 	if (height > ip->i_height || gfs2_is_stuffed(ip))
871 		goto do_alloc;
872 
873 	ret = lookup_metapath(ip, mp);
874 	if (ret)
875 		goto unlock;
876 
877 	if (mp->mp_aheight != ip->i_height)
878 		goto do_alloc;
879 
880 	ptr = metapointer(ip->i_height - 1, mp);
881 	if (*ptr == 0)
882 		goto do_alloc;
883 
884 	bh = mp->mp_bh[ip->i_height - 1];
885 	len = gfs2_extent_length(bh, ptr, len, &eob);
886 
887 	iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits;
888 	iomap->length = len << inode->i_blkbits;
889 	iomap->type = IOMAP_MAPPED;
890 	iomap->flags |= IOMAP_F_MERGED;
891 	if (eob)
892 		iomap->flags |= IOMAP_F_GFS2_BOUNDARY;
893 
894 out:
895 	iomap->bdev = inode->i_sb->s_bdev;
896 unlock:
897 	up_read(&ip->i_rw_mutex);
898 	return ret;
899 
900 do_alloc:
901 	iomap->addr = IOMAP_NULL_ADDR;
902 	iomap->type = IOMAP_HOLE;
903 	if (flags & IOMAP_REPORT) {
904 		if (pos >= size)
905 			ret = -ENOENT;
906 		else if (height == ip->i_height)
907 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
908 		else
909 			iomap->length = size - pos;
910 	} else if (flags & IOMAP_WRITE) {
911 		u64 alloc_size;
912 
913 		if (flags & IOMAP_DIRECT)
914 			goto out;  /* (see gfs2_file_direct_write) */
915 
916 		len = gfs2_alloc_size(inode, mp, len);
917 		alloc_size = len << inode->i_blkbits;
918 		if (alloc_size < iomap->length)
919 			iomap->length = alloc_size;
920 	} else {
921 		if (pos < size && height == ip->i_height)
922 			ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
923 	}
924 	goto out;
925 }
926 
927 static int gfs2_write_lock(struct inode *inode)
928 {
929 	struct gfs2_inode *ip = GFS2_I(inode);
930 	struct gfs2_sbd *sdp = GFS2_SB(inode);
931 	int error;
932 
933 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
934 	error = gfs2_glock_nq(&ip->i_gh);
935 	if (error)
936 		goto out_uninit;
937 	if (&ip->i_inode == sdp->sd_rindex) {
938 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
939 
940 		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
941 					   GL_NOCACHE, &m_ip->i_gh);
942 		if (error)
943 			goto out_unlock;
944 	}
945 	return 0;
946 
947 out_unlock:
948 	gfs2_glock_dq(&ip->i_gh);
949 out_uninit:
950 	gfs2_holder_uninit(&ip->i_gh);
951 	return error;
952 }
953 
954 static void gfs2_write_unlock(struct inode *inode)
955 {
956 	struct gfs2_inode *ip = GFS2_I(inode);
957 	struct gfs2_sbd *sdp = GFS2_SB(inode);
958 
959 	if (&ip->i_inode == sdp->sd_rindex) {
960 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
961 
962 		gfs2_glock_dq_uninit(&m_ip->i_gh);
963 	}
964 	gfs2_glock_dq_uninit(&ip->i_gh);
965 }
966 
967 static void gfs2_iomap_journaled_page_done(struct inode *inode, loff_t pos,
968 				unsigned copied, struct page *page,
969 				struct iomap *iomap)
970 {
971 	struct gfs2_inode *ip = GFS2_I(inode);
972 
973 	gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied);
974 }
975 
976 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos,
977 				  loff_t length, unsigned flags,
978 				  struct iomap *iomap,
979 				  struct metapath *mp)
980 {
981 	struct gfs2_inode *ip = GFS2_I(inode);
982 	struct gfs2_sbd *sdp = GFS2_SB(inode);
983 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
984 	bool unstuff, alloc_required;
985 	int ret;
986 
987 	ret = gfs2_write_lock(inode);
988 	if (ret)
989 		return ret;
990 
991 	unstuff = gfs2_is_stuffed(ip) &&
992 		  pos + length > gfs2_max_stuffed_size(ip);
993 
994 	ret = gfs2_iomap_get(inode, pos, length, flags, iomap, mp);
995 	if (ret)
996 		goto out_unlock;
997 
998 	alloc_required = unstuff || iomap->type == IOMAP_HOLE;
999 
1000 	if (alloc_required || gfs2_is_jdata(ip))
1001 		gfs2_write_calc_reserv(ip, iomap->length, &data_blocks,
1002 				       &ind_blocks);
1003 
1004 	if (alloc_required) {
1005 		struct gfs2_alloc_parms ap = {
1006 			.target = data_blocks + ind_blocks
1007 		};
1008 
1009 		ret = gfs2_quota_lock_check(ip, &ap);
1010 		if (ret)
1011 			goto out_unlock;
1012 
1013 		ret = gfs2_inplace_reserve(ip, &ap);
1014 		if (ret)
1015 			goto out_qunlock;
1016 	}
1017 
1018 	rblocks = RES_DINODE + ind_blocks;
1019 	if (gfs2_is_jdata(ip))
1020 		rblocks += data_blocks;
1021 	if (ind_blocks || data_blocks)
1022 		rblocks += RES_STATFS + RES_QUOTA;
1023 	if (inode == sdp->sd_rindex)
1024 		rblocks += 2 * RES_STATFS;
1025 	if (alloc_required)
1026 		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1027 
1028 	ret = gfs2_trans_begin(sdp, rblocks, iomap->length >> inode->i_blkbits);
1029 	if (ret)
1030 		goto out_trans_fail;
1031 
1032 	if (unstuff) {
1033 		ret = gfs2_unstuff_dinode(ip, NULL);
1034 		if (ret)
1035 			goto out_trans_end;
1036 		release_metapath(mp);
1037 		ret = gfs2_iomap_get(inode, iomap->offset, iomap->length,
1038 				     flags, iomap, mp);
1039 		if (ret)
1040 			goto out_trans_end;
1041 	}
1042 
1043 	if (iomap->type == IOMAP_HOLE) {
1044 		ret = gfs2_iomap_alloc(inode, iomap, flags, mp);
1045 		if (ret) {
1046 			gfs2_trans_end(sdp);
1047 			gfs2_inplace_release(ip);
1048 			punch_hole(ip, iomap->offset, iomap->length);
1049 			goto out_qunlock;
1050 		}
1051 	}
1052 	if (!gfs2_is_stuffed(ip) && gfs2_is_jdata(ip))
1053 		iomap->page_done = gfs2_iomap_journaled_page_done;
1054 	return 0;
1055 
1056 out_trans_end:
1057 	gfs2_trans_end(sdp);
1058 out_trans_fail:
1059 	if (alloc_required)
1060 		gfs2_inplace_release(ip);
1061 out_qunlock:
1062 	if (alloc_required)
1063 		gfs2_quota_unlock(ip);
1064 out_unlock:
1065 	gfs2_write_unlock(inode);
1066 	return ret;
1067 }
1068 
1069 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
1070 			    unsigned flags, struct iomap *iomap)
1071 {
1072 	struct gfs2_inode *ip = GFS2_I(inode);
1073 	struct metapath mp = { .mp_aheight = 1, };
1074 	int ret;
1075 
1076 	iomap->flags |= IOMAP_F_BUFFER_HEAD;
1077 
1078 	trace_gfs2_iomap_start(ip, pos, length, flags);
1079 	if ((flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT)) {
1080 		ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp);
1081 	} else {
1082 		ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp);
1083 
1084 		/*
1085 		 * Silently fall back to buffered I/O for stuffed files or if
1086 		 * we've hot a hole (see gfs2_file_direct_write).
1087 		 */
1088 		if ((flags & IOMAP_WRITE) && (flags & IOMAP_DIRECT) &&
1089 		    iomap->type != IOMAP_MAPPED)
1090 			ret = -ENOTBLK;
1091 	}
1092 	if (!ret) {
1093 		get_bh(mp.mp_bh[0]);
1094 		iomap->private = mp.mp_bh[0];
1095 	}
1096 	release_metapath(&mp);
1097 	trace_gfs2_iomap_end(ip, iomap, ret);
1098 	return ret;
1099 }
1100 
1101 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length,
1102 			  ssize_t written, unsigned flags, struct iomap *iomap)
1103 {
1104 	struct gfs2_inode *ip = GFS2_I(inode);
1105 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1106 	struct gfs2_trans *tr = current->journal_info;
1107 	struct buffer_head *dibh = iomap->private;
1108 
1109 	if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) != IOMAP_WRITE)
1110 		goto out;
1111 
1112 	if (iomap->type != IOMAP_INLINE) {
1113 		gfs2_ordered_add_inode(ip);
1114 
1115 		if (tr->tr_num_buf_new)
1116 			__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1117 		else
1118 			gfs2_trans_add_meta(ip->i_gl, dibh);
1119 	}
1120 
1121 	if (inode == sdp->sd_rindex) {
1122 		adjust_fs_space(inode);
1123 		sdp->sd_rindex_uptodate = 0;
1124 	}
1125 
1126 	gfs2_trans_end(sdp);
1127 	gfs2_inplace_release(ip);
1128 
1129 	if (length != written && (iomap->flags & IOMAP_F_NEW)) {
1130 		/* Deallocate blocks that were just allocated. */
1131 		loff_t blockmask = i_blocksize(inode) - 1;
1132 		loff_t end = (pos + length) & ~blockmask;
1133 
1134 		pos = (pos + written + blockmask) & ~blockmask;
1135 		if (pos < end) {
1136 			truncate_pagecache_range(inode, pos, end - 1);
1137 			punch_hole(ip, pos, end - pos);
1138 		}
1139 	}
1140 
1141 	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
1142 		gfs2_quota_unlock(ip);
1143 	gfs2_write_unlock(inode);
1144 
1145 out:
1146 	if (dibh)
1147 		brelse(dibh);
1148 	return 0;
1149 }
1150 
1151 const struct iomap_ops gfs2_iomap_ops = {
1152 	.iomap_begin = gfs2_iomap_begin,
1153 	.iomap_end = gfs2_iomap_end,
1154 };
1155 
1156 /**
1157  * gfs2_block_map - Map one or more blocks of an inode to a disk block
1158  * @inode: The inode
1159  * @lblock: The logical block number
1160  * @bh_map: The bh to be mapped
1161  * @create: True if its ok to alloc blocks to satify the request
1162  *
1163  * The size of the requested mapping is defined in bh_map->b_size.
1164  *
1165  * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged
1166  * when @lblock is not mapped.  Sets buffer_mapped(bh_map) and
1167  * bh_map->b_size to indicate the size of the mapping when @lblock and
1168  * successive blocks are mapped, up to the requested size.
1169  *
1170  * Sets buffer_boundary() if a read of metadata will be required
1171  * before the next block can be mapped. Sets buffer_new() if new
1172  * blocks were allocated.
1173  *
1174  * Returns: errno
1175  */
1176 
1177 int gfs2_block_map(struct inode *inode, sector_t lblock,
1178 		   struct buffer_head *bh_map, int create)
1179 {
1180 	struct gfs2_inode *ip = GFS2_I(inode);
1181 	loff_t pos = (loff_t)lblock << inode->i_blkbits;
1182 	loff_t length = bh_map->b_size;
1183 	struct metapath mp = { .mp_aheight = 1, };
1184 	struct iomap iomap = { };
1185 	int ret;
1186 
1187 	clear_buffer_mapped(bh_map);
1188 	clear_buffer_new(bh_map);
1189 	clear_buffer_boundary(bh_map);
1190 	trace_gfs2_bmap(ip, bh_map, lblock, create, 1);
1191 
1192 	if (create) {
1193 		ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, &iomap, &mp);
1194 		if (!ret && iomap.type == IOMAP_HOLE)
1195 			ret = gfs2_iomap_alloc(inode, &iomap, IOMAP_WRITE, &mp);
1196 		release_metapath(&mp);
1197 	} else {
1198 		ret = gfs2_iomap_get(inode, pos, length, 0, &iomap, &mp);
1199 		release_metapath(&mp);
1200 	}
1201 	if (ret)
1202 		goto out;
1203 
1204 	if (iomap.length > bh_map->b_size) {
1205 		iomap.length = bh_map->b_size;
1206 		iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY;
1207 	}
1208 	if (iomap.addr != IOMAP_NULL_ADDR)
1209 		map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits);
1210 	bh_map->b_size = iomap.length;
1211 	if (iomap.flags & IOMAP_F_GFS2_BOUNDARY)
1212 		set_buffer_boundary(bh_map);
1213 	if (iomap.flags & IOMAP_F_NEW)
1214 		set_buffer_new(bh_map);
1215 
1216 out:
1217 	trace_gfs2_bmap(ip, bh_map, lblock, create, ret);
1218 	return ret;
1219 }
1220 
1221 /*
1222  * Deprecated: do not use in new code
1223  */
1224 int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen)
1225 {
1226 	struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 };
1227 	int ret;
1228 	int create = *new;
1229 
1230 	BUG_ON(!extlen);
1231 	BUG_ON(!dblock);
1232 	BUG_ON(!new);
1233 
1234 	bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5));
1235 	ret = gfs2_block_map(inode, lblock, &bh, create);
1236 	*extlen = bh.b_size >> inode->i_blkbits;
1237 	*dblock = bh.b_blocknr;
1238 	if (buffer_new(&bh))
1239 		*new = 1;
1240 	else
1241 		*new = 0;
1242 	return ret;
1243 }
1244 
1245 /**
1246  * gfs2_block_zero_range - Deal with zeroing out data
1247  *
1248  * This is partly borrowed from ext3.
1249  */
1250 static int gfs2_block_zero_range(struct inode *inode, loff_t from,
1251 				 unsigned int length)
1252 {
1253 	struct address_space *mapping = inode->i_mapping;
1254 	struct gfs2_inode *ip = GFS2_I(inode);
1255 	unsigned long index = from >> PAGE_SHIFT;
1256 	unsigned offset = from & (PAGE_SIZE-1);
1257 	unsigned blocksize, iblock, pos;
1258 	struct buffer_head *bh;
1259 	struct page *page;
1260 	int err;
1261 
1262 	page = find_or_create_page(mapping, index, GFP_NOFS);
1263 	if (!page)
1264 		return 0;
1265 
1266 	blocksize = inode->i_sb->s_blocksize;
1267 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
1268 
1269 	if (!page_has_buffers(page))
1270 		create_empty_buffers(page, blocksize, 0);
1271 
1272 	/* Find the buffer that contains "offset" */
1273 	bh = page_buffers(page);
1274 	pos = blocksize;
1275 	while (offset >= pos) {
1276 		bh = bh->b_this_page;
1277 		iblock++;
1278 		pos += blocksize;
1279 	}
1280 
1281 	err = 0;
1282 
1283 	if (!buffer_mapped(bh)) {
1284 		gfs2_block_map(inode, iblock, bh, 0);
1285 		/* unmapped? It's a hole - nothing to do */
1286 		if (!buffer_mapped(bh))
1287 			goto unlock;
1288 	}
1289 
1290 	/* Ok, it's mapped. Make sure it's up-to-date */
1291 	if (PageUptodate(page))
1292 		set_buffer_uptodate(bh);
1293 
1294 	if (!buffer_uptodate(bh)) {
1295 		err = -EIO;
1296 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1297 		wait_on_buffer(bh);
1298 		/* Uhhuh. Read error. Complain and punt. */
1299 		if (!buffer_uptodate(bh))
1300 			goto unlock;
1301 		err = 0;
1302 	}
1303 
1304 	if (gfs2_is_jdata(ip))
1305 		gfs2_trans_add_data(ip->i_gl, bh);
1306 	else
1307 		gfs2_ordered_add_inode(ip);
1308 
1309 	zero_user(page, offset, length);
1310 	mark_buffer_dirty(bh);
1311 unlock:
1312 	unlock_page(page);
1313 	put_page(page);
1314 	return err;
1315 }
1316 
1317 #define GFS2_JTRUNC_REVOKES 8192
1318 
1319 /**
1320  * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files
1321  * @inode: The inode being truncated
1322  * @oldsize: The original (larger) size
1323  * @newsize: The new smaller size
1324  *
1325  * With jdata files, we have to journal a revoke for each block which is
1326  * truncated. As a result, we need to split this into separate transactions
1327  * if the number of pages being truncated gets too large.
1328  */
1329 
1330 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize)
1331 {
1332 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1333 	u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
1334 	u64 chunk;
1335 	int error;
1336 
1337 	while (oldsize != newsize) {
1338 		struct gfs2_trans *tr;
1339 		unsigned int offs;
1340 
1341 		chunk = oldsize - newsize;
1342 		if (chunk > max_chunk)
1343 			chunk = max_chunk;
1344 
1345 		offs = oldsize & ~PAGE_MASK;
1346 		if (offs && chunk > PAGE_SIZE)
1347 			chunk = offs + ((chunk - offs) & PAGE_MASK);
1348 
1349 		truncate_pagecache(inode, oldsize - chunk);
1350 		oldsize -= chunk;
1351 
1352 		tr = current->journal_info;
1353 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
1354 			continue;
1355 
1356 		gfs2_trans_end(sdp);
1357 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
1358 		if (error)
1359 			return error;
1360 	}
1361 
1362 	return 0;
1363 }
1364 
1365 static int trunc_start(struct inode *inode, u64 newsize)
1366 {
1367 	struct gfs2_inode *ip = GFS2_I(inode);
1368 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1369 	struct buffer_head *dibh = NULL;
1370 	int journaled = gfs2_is_jdata(ip);
1371 	u64 oldsize = inode->i_size;
1372 	int error;
1373 
1374 	if (journaled)
1375 		error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES);
1376 	else
1377 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1378 	if (error)
1379 		return error;
1380 
1381 	error = gfs2_meta_inode_buffer(ip, &dibh);
1382 	if (error)
1383 		goto out;
1384 
1385 	gfs2_trans_add_meta(ip->i_gl, dibh);
1386 
1387 	if (gfs2_is_stuffed(ip)) {
1388 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize);
1389 	} else {
1390 		unsigned int blocksize = i_blocksize(inode);
1391 		unsigned int offs = newsize & (blocksize - 1);
1392 		if (offs) {
1393 			error = gfs2_block_zero_range(inode, newsize,
1394 						      blocksize - offs);
1395 			if (error)
1396 				goto out;
1397 		}
1398 		ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG;
1399 	}
1400 
1401 	i_size_write(inode, newsize);
1402 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1403 	gfs2_dinode_out(ip, dibh->b_data);
1404 
1405 	if (journaled)
1406 		error = gfs2_journaled_truncate(inode, oldsize, newsize);
1407 	else
1408 		truncate_pagecache(inode, newsize);
1409 
1410 out:
1411 	brelse(dibh);
1412 	if (current->journal_info)
1413 		gfs2_trans_end(sdp);
1414 	return error;
1415 }
1416 
1417 int gfs2_iomap_get_alloc(struct inode *inode, loff_t pos, loff_t length,
1418 			 struct iomap *iomap)
1419 {
1420 	struct metapath mp = { .mp_aheight = 1, };
1421 	int ret;
1422 
1423 	ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp);
1424 	if (!ret && iomap->type == IOMAP_HOLE)
1425 		ret = gfs2_iomap_alloc(inode, iomap, IOMAP_WRITE, &mp);
1426 	release_metapath(&mp);
1427 	return ret;
1428 }
1429 
1430 /**
1431  * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein
1432  * @ip: inode
1433  * @rg_gh: holder of resource group glock
1434  * @bh: buffer head to sweep
1435  * @start: starting point in bh
1436  * @end: end point in bh
1437  * @meta: true if bh points to metadata (rather than data)
1438  * @btotal: place to keep count of total blocks freed
1439  *
1440  * We sweep a metadata buffer (provided by the metapath) for blocks we need to
1441  * free, and free them all. However, we do it one rgrp at a time. If this
1442  * block has references to multiple rgrps, we break it into individual
1443  * transactions. This allows other processes to use the rgrps while we're
1444  * focused on a single one, for better concurrency / performance.
1445  * At every transaction boundary, we rewrite the inode into the journal.
1446  * That way the bitmaps are kept consistent with the inode and we can recover
1447  * if we're interrupted by power-outages.
1448  *
1449  * Returns: 0, or return code if an error occurred.
1450  *          *btotal has the total number of blocks freed
1451  */
1452 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh,
1453 			      struct buffer_head *bh, __be64 *start, __be64 *end,
1454 			      bool meta, u32 *btotal)
1455 {
1456 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1457 	struct gfs2_rgrpd *rgd;
1458 	struct gfs2_trans *tr;
1459 	__be64 *p;
1460 	int blks_outside_rgrp;
1461 	u64 bn, bstart, isize_blks;
1462 	s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */
1463 	int ret = 0;
1464 	bool buf_in_tr = false; /* buffer was added to transaction */
1465 
1466 more_rgrps:
1467 	rgd = NULL;
1468 	if (gfs2_holder_initialized(rd_gh)) {
1469 		rgd = gfs2_glock2rgrp(rd_gh->gh_gl);
1470 		gfs2_assert_withdraw(sdp,
1471 			     gfs2_glock_is_locked_by_me(rd_gh->gh_gl));
1472 	}
1473 	blks_outside_rgrp = 0;
1474 	bstart = 0;
1475 	blen = 0;
1476 
1477 	for (p = start; p < end; p++) {
1478 		if (!*p)
1479 			continue;
1480 		bn = be64_to_cpu(*p);
1481 
1482 		if (rgd) {
1483 			if (!rgrp_contains_block(rgd, bn)) {
1484 				blks_outside_rgrp++;
1485 				continue;
1486 			}
1487 		} else {
1488 			rgd = gfs2_blk2rgrpd(sdp, bn, true);
1489 			if (unlikely(!rgd)) {
1490 				ret = -EIO;
1491 				goto out;
1492 			}
1493 			ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1494 						 0, rd_gh);
1495 			if (ret)
1496 				goto out;
1497 
1498 			/* Must be done with the rgrp glock held: */
1499 			if (gfs2_rs_active(&ip->i_res) &&
1500 			    rgd == ip->i_res.rs_rbm.rgd)
1501 				gfs2_rs_deltree(&ip->i_res);
1502 		}
1503 
1504 		/* The size of our transactions will be unknown until we
1505 		   actually process all the metadata blocks that relate to
1506 		   the rgrp. So we estimate. We know it can't be more than
1507 		   the dinode's i_blocks and we don't want to exceed the
1508 		   journal flush threshold, sd_log_thresh2. */
1509 		if (current->journal_info == NULL) {
1510 			unsigned int jblocks_rqsted, revokes;
1511 
1512 			jblocks_rqsted = rgd->rd_length + RES_DINODE +
1513 				RES_INDIRECT;
1514 			isize_blks = gfs2_get_inode_blocks(&ip->i_inode);
1515 			if (isize_blks > atomic_read(&sdp->sd_log_thresh2))
1516 				jblocks_rqsted +=
1517 					atomic_read(&sdp->sd_log_thresh2);
1518 			else
1519 				jblocks_rqsted += isize_blks;
1520 			revokes = jblocks_rqsted;
1521 			if (meta)
1522 				revokes += end - start;
1523 			else if (ip->i_depth)
1524 				revokes += sdp->sd_inptrs;
1525 			ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes);
1526 			if (ret)
1527 				goto out_unlock;
1528 			down_write(&ip->i_rw_mutex);
1529 		}
1530 		/* check if we will exceed the transaction blocks requested */
1531 		tr = current->journal_info;
1532 		if (tr->tr_num_buf_new + RES_STATFS +
1533 		    RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) {
1534 			/* We set blks_outside_rgrp to ensure the loop will
1535 			   be repeated for the same rgrp, but with a new
1536 			   transaction. */
1537 			blks_outside_rgrp++;
1538 			/* This next part is tricky. If the buffer was added
1539 			   to the transaction, we've already set some block
1540 			   pointers to 0, so we better follow through and free
1541 			   them, or we will introduce corruption (so break).
1542 			   This may be impossible, or at least rare, but I
1543 			   decided to cover the case regardless.
1544 
1545 			   If the buffer was not added to the transaction
1546 			   (this call), doing so would exceed our transaction
1547 			   size, so we need to end the transaction and start a
1548 			   new one (so goto). */
1549 
1550 			if (buf_in_tr)
1551 				break;
1552 			goto out_unlock;
1553 		}
1554 
1555 		gfs2_trans_add_meta(ip->i_gl, bh);
1556 		buf_in_tr = true;
1557 		*p = 0;
1558 		if (bstart + blen == bn) {
1559 			blen++;
1560 			continue;
1561 		}
1562 		if (bstart) {
1563 			__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1564 			(*btotal) += blen;
1565 			gfs2_add_inode_blocks(&ip->i_inode, -blen);
1566 		}
1567 		bstart = bn;
1568 		blen = 1;
1569 	}
1570 	if (bstart) {
1571 		__gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1572 		(*btotal) += blen;
1573 		gfs2_add_inode_blocks(&ip->i_inode, -blen);
1574 	}
1575 out_unlock:
1576 	if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks
1577 					    outside the rgrp we just processed,
1578 					    do it all over again. */
1579 		if (current->journal_info) {
1580 			struct buffer_head *dibh;
1581 
1582 			ret = gfs2_meta_inode_buffer(ip, &dibh);
1583 			if (ret)
1584 				goto out;
1585 
1586 			/* Every transaction boundary, we rewrite the dinode
1587 			   to keep its di_blocks current in case of failure. */
1588 			ip->i_inode.i_mtime = ip->i_inode.i_ctime =
1589 				current_time(&ip->i_inode);
1590 			gfs2_trans_add_meta(ip->i_gl, dibh);
1591 			gfs2_dinode_out(ip, dibh->b_data);
1592 			brelse(dibh);
1593 			up_write(&ip->i_rw_mutex);
1594 			gfs2_trans_end(sdp);
1595 		}
1596 		gfs2_glock_dq_uninit(rd_gh);
1597 		cond_resched();
1598 		goto more_rgrps;
1599 	}
1600 out:
1601 	return ret;
1602 }
1603 
1604 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h)
1605 {
1606 	if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0])))
1607 		return false;
1608 	return true;
1609 }
1610 
1611 /**
1612  * find_nonnull_ptr - find a non-null pointer given a metapath and height
1613  * @mp: starting metapath
1614  * @h: desired height to search
1615  *
1616  * Assumes the metapath is valid (with buffers) out to height h.
1617  * Returns: true if a non-null pointer was found in the metapath buffer
1618  *          false if all remaining pointers are NULL in the buffer
1619  */
1620 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp,
1621 			     unsigned int h,
1622 			     __u16 *end_list, unsigned int end_aligned)
1623 {
1624 	struct buffer_head *bh = mp->mp_bh[h];
1625 	__be64 *first, *ptr, *end;
1626 
1627 	first = metaptr1(h, mp);
1628 	ptr = first + mp->mp_list[h];
1629 	end = (__be64 *)(bh->b_data + bh->b_size);
1630 	if (end_list && mp_eq_to_hgt(mp, end_list, h)) {
1631 		bool keep_end = h < end_aligned;
1632 		end = first + end_list[h] + keep_end;
1633 	}
1634 
1635 	while (ptr < end) {
1636 		if (*ptr) { /* if we have a non-null pointer */
1637 			mp->mp_list[h] = ptr - first;
1638 			h++;
1639 			if (h < GFS2_MAX_META_HEIGHT)
1640 				mp->mp_list[h] = 0;
1641 			return true;
1642 		}
1643 		ptr++;
1644 	}
1645 	return false;
1646 }
1647 
1648 enum dealloc_states {
1649 	DEALLOC_MP_FULL = 0,    /* Strip a metapath with all buffers read in */
1650 	DEALLOC_MP_LOWER = 1,   /* lower the metapath strip height */
1651 	DEALLOC_FILL_MP = 2,  /* Fill in the metapath to the given height. */
1652 	DEALLOC_DONE = 3,       /* process complete */
1653 };
1654 
1655 static inline void
1656 metapointer_range(struct metapath *mp, int height,
1657 		  __u16 *start_list, unsigned int start_aligned,
1658 		  __u16 *end_list, unsigned int end_aligned,
1659 		  __be64 **start, __be64 **end)
1660 {
1661 	struct buffer_head *bh = mp->mp_bh[height];
1662 	__be64 *first;
1663 
1664 	first = metaptr1(height, mp);
1665 	*start = first;
1666 	if (mp_eq_to_hgt(mp, start_list, height)) {
1667 		bool keep_start = height < start_aligned;
1668 		*start = first + start_list[height] + keep_start;
1669 	}
1670 	*end = (__be64 *)(bh->b_data + bh->b_size);
1671 	if (end_list && mp_eq_to_hgt(mp, end_list, height)) {
1672 		bool keep_end = height < end_aligned;
1673 		*end = first + end_list[height] + keep_end;
1674 	}
1675 }
1676 
1677 static inline bool walk_done(struct gfs2_sbd *sdp,
1678 			     struct metapath *mp, int height,
1679 			     __u16 *end_list, unsigned int end_aligned)
1680 {
1681 	__u16 end;
1682 
1683 	if (end_list) {
1684 		bool keep_end = height < end_aligned;
1685 		if (!mp_eq_to_hgt(mp, end_list, height))
1686 			return false;
1687 		end = end_list[height] + keep_end;
1688 	} else
1689 		end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs;
1690 	return mp->mp_list[height] >= end;
1691 }
1692 
1693 /**
1694  * punch_hole - deallocate blocks in a file
1695  * @ip: inode to truncate
1696  * @offset: the start of the hole
1697  * @length: the size of the hole (or 0 for truncate)
1698  *
1699  * Punch a hole into a file or truncate a file at a given position.  This
1700  * function operates in whole blocks (@offset and @length are rounded
1701  * accordingly); partially filled blocks must be cleared otherwise.
1702  *
1703  * This function works from the bottom up, and from the right to the left. In
1704  * other words, it strips off the highest layer (data) before stripping any of
1705  * the metadata. Doing it this way is best in case the operation is interrupted
1706  * by power failure, etc.  The dinode is rewritten in every transaction to
1707  * guarantee integrity.
1708  */
1709 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length)
1710 {
1711 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1712 	u64 maxsize = sdp->sd_heightsize[ip->i_height];
1713 	struct metapath mp = {};
1714 	struct buffer_head *dibh, *bh;
1715 	struct gfs2_holder rd_gh;
1716 	unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift;
1717 	u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift;
1718 	__u16 start_list[GFS2_MAX_META_HEIGHT];
1719 	__u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL;
1720 	unsigned int start_aligned, uninitialized_var(end_aligned);
1721 	unsigned int strip_h = ip->i_height - 1;
1722 	u32 btotal = 0;
1723 	int ret, state;
1724 	int mp_h; /* metapath buffers are read in to this height */
1725 	u64 prev_bnr = 0;
1726 	__be64 *start, *end;
1727 
1728 	if (offset >= maxsize) {
1729 		/*
1730 		 * The starting point lies beyond the allocated meta-data;
1731 		 * there are no blocks do deallocate.
1732 		 */
1733 		return 0;
1734 	}
1735 
1736 	/*
1737 	 * The start position of the hole is defined by lblock, start_list, and
1738 	 * start_aligned.  The end position of the hole is defined by lend,
1739 	 * end_list, and end_aligned.
1740 	 *
1741 	 * start_aligned and end_aligned define down to which height the start
1742 	 * and end positions are aligned to the metadata tree (i.e., the
1743 	 * position is a multiple of the metadata granularity at the height
1744 	 * above).  This determines at which heights additional meta pointers
1745 	 * needs to be preserved for the remaining data.
1746 	 */
1747 
1748 	if (length) {
1749 		u64 end_offset = offset + length;
1750 		u64 lend;
1751 
1752 		/*
1753 		 * Clip the end at the maximum file size for the given height:
1754 		 * that's how far the metadata goes; files bigger than that
1755 		 * will have additional layers of indirection.
1756 		 */
1757 		if (end_offset > maxsize)
1758 			end_offset = maxsize;
1759 		lend = end_offset >> bsize_shift;
1760 
1761 		if (lblock >= lend)
1762 			return 0;
1763 
1764 		find_metapath(sdp, lend, &mp, ip->i_height);
1765 		end_list = __end_list;
1766 		memcpy(end_list, mp.mp_list, sizeof(mp.mp_list));
1767 
1768 		for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1769 			if (end_list[mp_h])
1770 				break;
1771 		}
1772 		end_aligned = mp_h;
1773 	}
1774 
1775 	find_metapath(sdp, lblock, &mp, ip->i_height);
1776 	memcpy(start_list, mp.mp_list, sizeof(start_list));
1777 
1778 	for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1779 		if (start_list[mp_h])
1780 			break;
1781 	}
1782 	start_aligned = mp_h;
1783 
1784 	ret = gfs2_meta_inode_buffer(ip, &dibh);
1785 	if (ret)
1786 		return ret;
1787 
1788 	mp.mp_bh[0] = dibh;
1789 	ret = lookup_metapath(ip, &mp);
1790 	if (ret)
1791 		goto out_metapath;
1792 
1793 	/* issue read-ahead on metadata */
1794 	for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) {
1795 		metapointer_range(&mp, mp_h, start_list, start_aligned,
1796 				  end_list, end_aligned, &start, &end);
1797 		gfs2_metapath_ra(ip->i_gl, start, end);
1798 	}
1799 
1800 	if (mp.mp_aheight == ip->i_height)
1801 		state = DEALLOC_MP_FULL; /* We have a complete metapath */
1802 	else
1803 		state = DEALLOC_FILL_MP; /* deal with partial metapath */
1804 
1805 	ret = gfs2_rindex_update(sdp);
1806 	if (ret)
1807 		goto out_metapath;
1808 
1809 	ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
1810 	if (ret)
1811 		goto out_metapath;
1812 	gfs2_holder_mark_uninitialized(&rd_gh);
1813 
1814 	mp_h = strip_h;
1815 
1816 	while (state != DEALLOC_DONE) {
1817 		switch (state) {
1818 		/* Truncate a full metapath at the given strip height.
1819 		 * Note that strip_h == mp_h in order to be in this state. */
1820 		case DEALLOC_MP_FULL:
1821 			bh = mp.mp_bh[mp_h];
1822 			gfs2_assert_withdraw(sdp, bh);
1823 			if (gfs2_assert_withdraw(sdp,
1824 						 prev_bnr != bh->b_blocknr)) {
1825 				printk(KERN_EMERG "GFS2: fsid=%s:inode %llu, "
1826 				       "block:%llu, i_h:%u, s_h:%u, mp_h:%u\n",
1827 				       sdp->sd_fsname,
1828 				       (unsigned long long)ip->i_no_addr,
1829 				       prev_bnr, ip->i_height, strip_h, mp_h);
1830 			}
1831 			prev_bnr = bh->b_blocknr;
1832 
1833 			if (gfs2_metatype_check(sdp, bh,
1834 						(mp_h ? GFS2_METATYPE_IN :
1835 							GFS2_METATYPE_DI))) {
1836 				ret = -EIO;
1837 				goto out;
1838 			}
1839 
1840 			/*
1841 			 * Below, passing end_aligned as 0 gives us the
1842 			 * metapointer range excluding the end point: the end
1843 			 * point is the first metapath we must not deallocate!
1844 			 */
1845 
1846 			metapointer_range(&mp, mp_h, start_list, start_aligned,
1847 					  end_list, 0 /* end_aligned */,
1848 					  &start, &end);
1849 			ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h],
1850 						 start, end,
1851 						 mp_h != ip->i_height - 1,
1852 						 &btotal);
1853 
1854 			/* If we hit an error or just swept dinode buffer,
1855 			   just exit. */
1856 			if (ret || !mp_h) {
1857 				state = DEALLOC_DONE;
1858 				break;
1859 			}
1860 			state = DEALLOC_MP_LOWER;
1861 			break;
1862 
1863 		/* lower the metapath strip height */
1864 		case DEALLOC_MP_LOWER:
1865 			/* We're done with the current buffer, so release it,
1866 			   unless it's the dinode buffer. Then back up to the
1867 			   previous pointer. */
1868 			if (mp_h) {
1869 				brelse(mp.mp_bh[mp_h]);
1870 				mp.mp_bh[mp_h] = NULL;
1871 			}
1872 			/* If we can't get any lower in height, we've stripped
1873 			   off all we can. Next step is to back up and start
1874 			   stripping the previous level of metadata. */
1875 			if (mp_h == 0) {
1876 				strip_h--;
1877 				memcpy(mp.mp_list, start_list, sizeof(start_list));
1878 				mp_h = strip_h;
1879 				state = DEALLOC_FILL_MP;
1880 				break;
1881 			}
1882 			mp.mp_list[mp_h] = 0;
1883 			mp_h--; /* search one metadata height down */
1884 			mp.mp_list[mp_h]++;
1885 			if (walk_done(sdp, &mp, mp_h, end_list, end_aligned))
1886 				break;
1887 			/* Here we've found a part of the metapath that is not
1888 			 * allocated. We need to search at that height for the
1889 			 * next non-null pointer. */
1890 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) {
1891 				state = DEALLOC_FILL_MP;
1892 				mp_h++;
1893 			}
1894 			/* No more non-null pointers at this height. Back up
1895 			   to the previous height and try again. */
1896 			break; /* loop around in the same state */
1897 
1898 		/* Fill the metapath with buffers to the given height. */
1899 		case DEALLOC_FILL_MP:
1900 			/* Fill the buffers out to the current height. */
1901 			ret = fillup_metapath(ip, &mp, mp_h);
1902 			if (ret < 0)
1903 				goto out;
1904 
1905 			/* On the first pass, issue read-ahead on metadata. */
1906 			if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) {
1907 				unsigned int height = mp.mp_aheight - 1;
1908 
1909 				/* No read-ahead for data blocks. */
1910 				if (mp.mp_aheight - 1 == strip_h)
1911 					height--;
1912 
1913 				for (; height >= mp.mp_aheight - ret; height--) {
1914 					metapointer_range(&mp, height,
1915 							  start_list, start_aligned,
1916 							  end_list, end_aligned,
1917 							  &start, &end);
1918 					gfs2_metapath_ra(ip->i_gl, start, end);
1919 				}
1920 			}
1921 
1922 			/* If buffers found for the entire strip height */
1923 			if (mp.mp_aheight - 1 == strip_h) {
1924 				state = DEALLOC_MP_FULL;
1925 				break;
1926 			}
1927 			if (mp.mp_aheight < ip->i_height) /* We have a partial height */
1928 				mp_h = mp.mp_aheight - 1;
1929 
1930 			/* If we find a non-null block pointer, crawl a bit
1931 			   higher up in the metapath and try again, otherwise
1932 			   we need to look lower for a new starting point. */
1933 			if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned))
1934 				mp_h++;
1935 			else
1936 				state = DEALLOC_MP_LOWER;
1937 			break;
1938 		}
1939 	}
1940 
1941 	if (btotal) {
1942 		if (current->journal_info == NULL) {
1943 			ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS +
1944 					       RES_QUOTA, 0);
1945 			if (ret)
1946 				goto out;
1947 			down_write(&ip->i_rw_mutex);
1948 		}
1949 		gfs2_statfs_change(sdp, 0, +btotal, 0);
1950 		gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid,
1951 				  ip->i_inode.i_gid);
1952 		ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1953 		gfs2_trans_add_meta(ip->i_gl, dibh);
1954 		gfs2_dinode_out(ip, dibh->b_data);
1955 		up_write(&ip->i_rw_mutex);
1956 		gfs2_trans_end(sdp);
1957 	}
1958 
1959 out:
1960 	if (gfs2_holder_initialized(&rd_gh))
1961 		gfs2_glock_dq_uninit(&rd_gh);
1962 	if (current->journal_info) {
1963 		up_write(&ip->i_rw_mutex);
1964 		gfs2_trans_end(sdp);
1965 		cond_resched();
1966 	}
1967 	gfs2_quota_unhold(ip);
1968 out_metapath:
1969 	release_metapath(&mp);
1970 	return ret;
1971 }
1972 
1973 static int trunc_end(struct gfs2_inode *ip)
1974 {
1975 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1976 	struct buffer_head *dibh;
1977 	int error;
1978 
1979 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1980 	if (error)
1981 		return error;
1982 
1983 	down_write(&ip->i_rw_mutex);
1984 
1985 	error = gfs2_meta_inode_buffer(ip, &dibh);
1986 	if (error)
1987 		goto out;
1988 
1989 	if (!i_size_read(&ip->i_inode)) {
1990 		ip->i_height = 0;
1991 		ip->i_goal = ip->i_no_addr;
1992 		gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
1993 		gfs2_ordered_del_inode(ip);
1994 	}
1995 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1996 	ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG;
1997 
1998 	gfs2_trans_add_meta(ip->i_gl, dibh);
1999 	gfs2_dinode_out(ip, dibh->b_data);
2000 	brelse(dibh);
2001 
2002 out:
2003 	up_write(&ip->i_rw_mutex);
2004 	gfs2_trans_end(sdp);
2005 	return error;
2006 }
2007 
2008 /**
2009  * do_shrink - make a file smaller
2010  * @inode: the inode
2011  * @newsize: the size to make the file
2012  *
2013  * Called with an exclusive lock on @inode. The @size must
2014  * be equal to or smaller than the current inode size.
2015  *
2016  * Returns: errno
2017  */
2018 
2019 static int do_shrink(struct inode *inode, u64 newsize)
2020 {
2021 	struct gfs2_inode *ip = GFS2_I(inode);
2022 	int error;
2023 
2024 	error = trunc_start(inode, newsize);
2025 	if (error < 0)
2026 		return error;
2027 	if (gfs2_is_stuffed(ip))
2028 		return 0;
2029 
2030 	error = punch_hole(ip, newsize, 0);
2031 	if (error == 0)
2032 		error = trunc_end(ip);
2033 
2034 	return error;
2035 }
2036 
2037 void gfs2_trim_blocks(struct inode *inode)
2038 {
2039 	int ret;
2040 
2041 	ret = do_shrink(inode, inode->i_size);
2042 	WARN_ON(ret != 0);
2043 }
2044 
2045 /**
2046  * do_grow - Touch and update inode size
2047  * @inode: The inode
2048  * @size: The new size
2049  *
2050  * This function updates the timestamps on the inode and
2051  * may also increase the size of the inode. This function
2052  * must not be called with @size any smaller than the current
2053  * inode size.
2054  *
2055  * Although it is not strictly required to unstuff files here,
2056  * earlier versions of GFS2 have a bug in the stuffed file reading
2057  * code which will result in a buffer overrun if the size is larger
2058  * than the max stuffed file size. In order to prevent this from
2059  * occurring, such files are unstuffed, but in other cases we can
2060  * just update the inode size directly.
2061  *
2062  * Returns: 0 on success, or -ve on error
2063  */
2064 
2065 static int do_grow(struct inode *inode, u64 size)
2066 {
2067 	struct gfs2_inode *ip = GFS2_I(inode);
2068 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2069 	struct gfs2_alloc_parms ap = { .target = 1, };
2070 	struct buffer_head *dibh;
2071 	int error;
2072 	int unstuff = 0;
2073 
2074 	if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) {
2075 		error = gfs2_quota_lock_check(ip, &ap);
2076 		if (error)
2077 			return error;
2078 
2079 		error = gfs2_inplace_reserve(ip, &ap);
2080 		if (error)
2081 			goto do_grow_qunlock;
2082 		unstuff = 1;
2083 	}
2084 
2085 	error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT +
2086 				 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ?
2087 				  0 : RES_QUOTA), 0);
2088 	if (error)
2089 		goto do_grow_release;
2090 
2091 	if (unstuff) {
2092 		error = gfs2_unstuff_dinode(ip, NULL);
2093 		if (error)
2094 			goto do_end_trans;
2095 	}
2096 
2097 	error = gfs2_meta_inode_buffer(ip, &dibh);
2098 	if (error)
2099 		goto do_end_trans;
2100 
2101 	i_size_write(inode, size);
2102 	ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2103 	gfs2_trans_add_meta(ip->i_gl, dibh);
2104 	gfs2_dinode_out(ip, dibh->b_data);
2105 	brelse(dibh);
2106 
2107 do_end_trans:
2108 	gfs2_trans_end(sdp);
2109 do_grow_release:
2110 	if (unstuff) {
2111 		gfs2_inplace_release(ip);
2112 do_grow_qunlock:
2113 		gfs2_quota_unlock(ip);
2114 	}
2115 	return error;
2116 }
2117 
2118 /**
2119  * gfs2_setattr_size - make a file a given size
2120  * @inode: the inode
2121  * @newsize: the size to make the file
2122  *
2123  * The file size can grow, shrink, or stay the same size. This
2124  * is called holding i_rwsem and an exclusive glock on the inode
2125  * in question.
2126  *
2127  * Returns: errno
2128  */
2129 
2130 int gfs2_setattr_size(struct inode *inode, u64 newsize)
2131 {
2132 	struct gfs2_inode *ip = GFS2_I(inode);
2133 	int ret;
2134 
2135 	BUG_ON(!S_ISREG(inode->i_mode));
2136 
2137 	ret = inode_newsize_ok(inode, newsize);
2138 	if (ret)
2139 		return ret;
2140 
2141 	inode_dio_wait(inode);
2142 
2143 	ret = gfs2_rsqa_alloc(ip);
2144 	if (ret)
2145 		goto out;
2146 
2147 	if (newsize >= inode->i_size) {
2148 		ret = do_grow(inode, newsize);
2149 		goto out;
2150 	}
2151 
2152 	ret = do_shrink(inode, newsize);
2153 out:
2154 	gfs2_rsqa_delete(ip, NULL);
2155 	return ret;
2156 }
2157 
2158 int gfs2_truncatei_resume(struct gfs2_inode *ip)
2159 {
2160 	int error;
2161 	error = punch_hole(ip, i_size_read(&ip->i_inode), 0);
2162 	if (!error)
2163 		error = trunc_end(ip);
2164 	return error;
2165 }
2166 
2167 int gfs2_file_dealloc(struct gfs2_inode *ip)
2168 {
2169 	return punch_hole(ip, 0, 0);
2170 }
2171 
2172 /**
2173  * gfs2_free_journal_extents - Free cached journal bmap info
2174  * @jd: The journal
2175  *
2176  */
2177 
2178 void gfs2_free_journal_extents(struct gfs2_jdesc *jd)
2179 {
2180 	struct gfs2_journal_extent *jext;
2181 
2182 	while(!list_empty(&jd->extent_list)) {
2183 		jext = list_entry(jd->extent_list.next, struct gfs2_journal_extent, list);
2184 		list_del(&jext->list);
2185 		kfree(jext);
2186 	}
2187 }
2188 
2189 /**
2190  * gfs2_add_jextent - Add or merge a new extent to extent cache
2191  * @jd: The journal descriptor
2192  * @lblock: The logical block at start of new extent
2193  * @dblock: The physical block at start of new extent
2194  * @blocks: Size of extent in fs blocks
2195  *
2196  * Returns: 0 on success or -ENOMEM
2197  */
2198 
2199 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks)
2200 {
2201 	struct gfs2_journal_extent *jext;
2202 
2203 	if (!list_empty(&jd->extent_list)) {
2204 		jext = list_entry(jd->extent_list.prev, struct gfs2_journal_extent, list);
2205 		if ((jext->dblock + jext->blocks) == dblock) {
2206 			jext->blocks += blocks;
2207 			return 0;
2208 		}
2209 	}
2210 
2211 	jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS);
2212 	if (jext == NULL)
2213 		return -ENOMEM;
2214 	jext->dblock = dblock;
2215 	jext->lblock = lblock;
2216 	jext->blocks = blocks;
2217 	list_add_tail(&jext->list, &jd->extent_list);
2218 	jd->nr_extents++;
2219 	return 0;
2220 }
2221 
2222 /**
2223  * gfs2_map_journal_extents - Cache journal bmap info
2224  * @sdp: The super block
2225  * @jd: The journal to map
2226  *
2227  * Create a reusable "extent" mapping from all logical
2228  * blocks to all physical blocks for the given journal.  This will save
2229  * us time when writing journal blocks.  Most journals will have only one
2230  * extent that maps all their logical blocks.  That's because gfs2.mkfs
2231  * arranges the journal blocks sequentially to maximize performance.
2232  * So the extent would map the first block for the entire file length.
2233  * However, gfs2_jadd can happen while file activity is happening, so
2234  * those journals may not be sequential.  Less likely is the case where
2235  * the users created their own journals by mounting the metafs and
2236  * laying it out.  But it's still possible.  These journals might have
2237  * several extents.
2238  *
2239  * Returns: 0 on success, or error on failure
2240  */
2241 
2242 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd)
2243 {
2244 	u64 lblock = 0;
2245 	u64 lblock_stop;
2246 	struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
2247 	struct buffer_head bh;
2248 	unsigned int shift = sdp->sd_sb.sb_bsize_shift;
2249 	u64 size;
2250 	int rc;
2251 
2252 	lblock_stop = i_size_read(jd->jd_inode) >> shift;
2253 	size = (lblock_stop - lblock) << shift;
2254 	jd->nr_extents = 0;
2255 	WARN_ON(!list_empty(&jd->extent_list));
2256 
2257 	do {
2258 		bh.b_state = 0;
2259 		bh.b_blocknr = 0;
2260 		bh.b_size = size;
2261 		rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0);
2262 		if (rc || !buffer_mapped(&bh))
2263 			goto fail;
2264 		rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift);
2265 		if (rc)
2266 			goto fail;
2267 		size -= bh.b_size;
2268 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2269 	} while(size > 0);
2270 
2271 	fs_info(sdp, "journal %d mapped with %u extents\n", jd->jd_jid,
2272 		jd->nr_extents);
2273 	return 0;
2274 
2275 fail:
2276 	fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n",
2277 		rc, jd->jd_jid,
2278 		(unsigned long long)(i_size_read(jd->jd_inode) - size),
2279 		jd->nr_extents);
2280 	fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n",
2281 		rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr,
2282 		bh.b_state, (unsigned long long)bh.b_size);
2283 	gfs2_free_journal_extents(jd);
2284 	return rc;
2285 }
2286 
2287 /**
2288  * gfs2_write_alloc_required - figure out if a write will require an allocation
2289  * @ip: the file being written to
2290  * @offset: the offset to write to
2291  * @len: the number of bytes being written
2292  *
2293  * Returns: 1 if an alloc is required, 0 otherwise
2294  */
2295 
2296 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset,
2297 			      unsigned int len)
2298 {
2299 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2300 	struct buffer_head bh;
2301 	unsigned int shift;
2302 	u64 lblock, lblock_stop, size;
2303 	u64 end_of_file;
2304 
2305 	if (!len)
2306 		return 0;
2307 
2308 	if (gfs2_is_stuffed(ip)) {
2309 		if (offset + len > gfs2_max_stuffed_size(ip))
2310 			return 1;
2311 		return 0;
2312 	}
2313 
2314 	shift = sdp->sd_sb.sb_bsize_shift;
2315 	BUG_ON(gfs2_is_dir(ip));
2316 	end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift;
2317 	lblock = offset >> shift;
2318 	lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift;
2319 	if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex))
2320 		return 1;
2321 
2322 	size = (lblock_stop - lblock) << shift;
2323 	do {
2324 		bh.b_state = 0;
2325 		bh.b_size = size;
2326 		gfs2_block_map(&ip->i_inode, lblock, &bh, 0);
2327 		if (!buffer_mapped(&bh))
2328 			return 1;
2329 		size -= bh.b_size;
2330 		lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2331 	} while(size > 0);
2332 
2333 	return 0;
2334 }
2335 
2336 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length)
2337 {
2338 	struct gfs2_inode *ip = GFS2_I(inode);
2339 	struct buffer_head *dibh;
2340 	int error;
2341 
2342 	if (offset >= inode->i_size)
2343 		return 0;
2344 	if (offset + length > inode->i_size)
2345 		length = inode->i_size - offset;
2346 
2347 	error = gfs2_meta_inode_buffer(ip, &dibh);
2348 	if (error)
2349 		return error;
2350 	gfs2_trans_add_meta(ip->i_gl, dibh);
2351 	memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0,
2352 	       length);
2353 	brelse(dibh);
2354 	return 0;
2355 }
2356 
2357 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset,
2358 					 loff_t length)
2359 {
2360 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2361 	loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
2362 	int error;
2363 
2364 	while (length) {
2365 		struct gfs2_trans *tr;
2366 		loff_t chunk;
2367 		unsigned int offs;
2368 
2369 		chunk = length;
2370 		if (chunk > max_chunk)
2371 			chunk = max_chunk;
2372 
2373 		offs = offset & ~PAGE_MASK;
2374 		if (offs && chunk > PAGE_SIZE)
2375 			chunk = offs + ((chunk - offs) & PAGE_MASK);
2376 
2377 		truncate_pagecache_range(inode, offset, chunk);
2378 		offset += chunk;
2379 		length -= chunk;
2380 
2381 		tr = current->journal_info;
2382 		if (!test_bit(TR_TOUCHED, &tr->tr_flags))
2383 			continue;
2384 
2385 		gfs2_trans_end(sdp);
2386 		error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
2387 		if (error)
2388 			return error;
2389 	}
2390 	return 0;
2391 }
2392 
2393 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length)
2394 {
2395 	struct inode *inode = file_inode(file);
2396 	struct gfs2_inode *ip = GFS2_I(inode);
2397 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2398 	int error;
2399 
2400 	if (gfs2_is_jdata(ip))
2401 		error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA,
2402 					 GFS2_JTRUNC_REVOKES);
2403 	else
2404 		error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2405 	if (error)
2406 		return error;
2407 
2408 	if (gfs2_is_stuffed(ip)) {
2409 		error = stuffed_zero_range(inode, offset, length);
2410 		if (error)
2411 			goto out;
2412 	} else {
2413 		unsigned int start_off, end_len, blocksize;
2414 
2415 		blocksize = i_blocksize(inode);
2416 		start_off = offset & (blocksize - 1);
2417 		end_len = (offset + length) & (blocksize - 1);
2418 		if (start_off) {
2419 			unsigned int len = length;
2420 			if (length > blocksize - start_off)
2421 				len = blocksize - start_off;
2422 			error = gfs2_block_zero_range(inode, offset, len);
2423 			if (error)
2424 				goto out;
2425 			if (start_off + length < blocksize)
2426 				end_len = 0;
2427 		}
2428 		if (end_len) {
2429 			error = gfs2_block_zero_range(inode,
2430 				offset + length - end_len, end_len);
2431 			if (error)
2432 				goto out;
2433 		}
2434 	}
2435 
2436 	if (gfs2_is_jdata(ip)) {
2437 		BUG_ON(!current->journal_info);
2438 		gfs2_journaled_truncate_range(inode, offset, length);
2439 	} else
2440 		truncate_pagecache_range(inode, offset, offset + length - 1);
2441 
2442 	file_update_time(file);
2443 	mark_inode_dirty(inode);
2444 
2445 	if (current->journal_info)
2446 		gfs2_trans_end(sdp);
2447 
2448 	if (!gfs2_is_stuffed(ip))
2449 		error = punch_hole(ip, offset, length);
2450 
2451 out:
2452 	if (current->journal_info)
2453 		gfs2_trans_end(sdp);
2454 	return error;
2455 }
2456